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H Control of Nonperiodic Two-Dimensional
Channel Flow

Lubomír Baramov, Owen R Tutty, and Eric Rogers

Abstract—This paper deals with finite-dimensional boundary
control of the two-dimensional (2-D) flow between two infinite par-
allel planes. Surface transpiration along a few regularly spaced
sections of the bottom wall is used to control the flow. Measure-
ments from several discrete, suitably placed shear-stress sensors
provide the feedback. Unlike other studies in this area, the flow is
not assumed to be periodic, and spatially growing flows are consid-
ered. Using spatial discretization in the streamwise direction, fre-
quency responses for a relevant part of the channel are obtained.
A low-order model is fitted to these data and the modeling uncer-
tainty is estimated. An controller is designed to guarantee sta-
bility for the model set and to reduce the wall-shear stress at the
channel wall. A nonlinear Navier-Stokes PDE solver was used to
test the designs in the loop. The only assumption made in these
simulations is that the flow is two dimensional. The results showed
that, although the problem was linearized when designing the con-
troller, the controller could significantly reduce fundamental 2-D
disturbances in practice.

Index Terms— -control, flow control, model validation, non-
periodic flows.

I. INTRODUCTION

FLOW control is currently attracting considerable interest in
the fluids research community. A major motivation for this

is the possibility of reducing drag on a body by preventing or
delaying transition from laminar to turbulent flow. The systems
dealt with in these problems are, in control terms, very complex,
nonlinear, and infinite dimensional, even if, in fluid mechan-
ical terms, the structure of the flow field is simple in nature.
Plane Poiseuille flow, i.e., flow between two infinite parallel
plates is one of the simplest and best understood cases of fluid
dynamics. Controlling this flow is, however, still an extremely
challenging problem, even if it is assumed that deviations from
the steady state are small enough for the governing equations
to be linearized. It has become a benchmark problem for devel-
oping control algorithms for fluid flows and was considered in
[4], [6], [9], [14]–[16] among others. All these references make
a fundamental assumption that the flow is spatially periodic in
the streamwise direction, and hence that a Fourier-Galerkin de-
composition can be used to obtain independent dynamics for
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each respective Fourier mode. [14] proposes a simple propor-
tional control using distributed arrays of shear sensors and ther-
moelectric actuators; their goal was to modify the dynamical
properties of the flow by heating the fluid and changing its vis-
cosity. A more usual way is, however, boundary control based
on transpiration along one of the walls. Different strategies have
been proposed, e.g., a simple integral control in [15], LQG con-
trol in [9], [16], control in [4], [6]. [6], [15], [16] deal with
the single wavenumber case: the controlled boundary condition
is assumed to be harmonically distributed along the channel
wall and the measurements are taken at discrete, periodically
spaced points. These single wavenumber results can be extended
to multiwavenumber cases using both distributed actuators and
measurements, via the fast Fourier transform, [9].

An interesting result is in [2] where tangential blowing and
suction was used instead of the normal one. Distributed actua-
tion and sensing was considered and a nonlinear decentralized
controller was developed. A major constraint is, however, that
this method is applicable only for a limited range of Reynolds
numbers.

In [4], boundary control for discrete transpiration was
proposed, where blowing and suction takes place only along
short, periodically spaced sections of the wall. This is a model
of blowing/suction panels which are being developed and
considered for use in the aerospace industry. Then, assuming
point measurements, a reduced order multiwavenumber flow
model was obtained. The modeling uncertainty was estimated
and taken into account in the control design.

In this paper we do not assume periodicity and consider
control of a spatially developing flow. This type of flow is
of considerable practical importance (see, e.g., [18]). For
example, standard transition prediction methods are based
on spatially growing disturbances. We shall consider mainly
boundary control in the form of blowing/suction panels and
discrete-points measurements, although results from a simple
proportional controller based on point actuation and sensing are
also presented. Specifically, we shall use four regularly spaced
pairs of blowing/suction panels and five sensors—which, as
will be seen below, is sufficient to reduce the wall-shear stress
significantly from the actuation/sensing area downstream.
Finite differences in the streamwise direction and Chebyshev
polynomials across the channel are used to obtain a finite
dimensional approximation of the governing equations. By
a technique based on the Redheffer star product we obtain
(pointwise) frequency-response data of the flow. A low-order
model is then fitted on these data, and a modeling uncertainty is
estimated using the frequency-domain model validation ideas
of [8]. Finally, a robustly stable controller was designed
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for this model set to reduce spatially growing components of
the flow field.

A nonlinear Navier–Stokes PDE solver was used to test the
designs in the loop. The only assumption made in these simu-
lations is that the flow is two dimensional. The results reported
below show that, although a linear model was used in designing
it, the controller can significantly reduce fundamental two-di-
mensional (2-D) disturbances in practice.

Finally in this section we note that although we have specif-
ically dropped the assumption of periodicity which is used in
many other studies of flow control, including those cited above,
this does not imply that a control system designed using a peri-
odic framework will not work in a nonperiodic setting or control
a spatially developing flow. The key issue here is one of local-
ization: when using a periodic domain both the sensing and ac-
tuation need to be sufficiently compact to be independent of the
size of the domain to ensure that such a control system will work
in a nonperiodic setting. That this is possible has been demon-
strated by Bewley [5], who has developed a method of designing
controllers which satisfies this requirement based on models
obtained by spatially localized convolution kernels. However,
in effect these controllers require point actuation and sensing
over the operating region in contrast to the control schemes de-
veloped here which require discrete actuation and sensing. The
question of the degree of localization that is required is a very
important question that has yet to be fully resolved. Some recent
substantial results on this matter can be found in [3]. Further, as
we demonstrate by an example, a simple proportional controller
with point actuation and sensing can achieve a significant reduc-
tion in the size of the disturbance. Note however that this does
not imply that control systems with high degree of localization
are practically feasible as it may not be possible to build them.
Indeed, this is a major motivation for using discrete panels as
these can be constructed and applied using current technology,
see, e.g., [13].

Here we are applying linear techniques to a nonlinear
problem. The subject of the application of linear methods to
control nonlinear perturbation of dynamic systems has been the
subject of intense research effort over a long number of years
and there is a very extensive literature available. The method
we use here is but one of these, but clearly before meaningful
comparisons between such methods can be attempted, it is
necessary to extensively investigate each in turn. It is in this
area that the major contributions of this paper lie.

II. MATHEMATICAL MODELS

A. Finite Approximations

We consider a planar flow in an infinite channel of fixed
height. The flow is nondimensionalised using the channel half-
height and the center-line velocity of the undisturbed flow.
We consider a coordinate system as in Fig. 1. Let be
the pressure and, and be the velocities in the
direction of and axes, respectively. The steady base flow is
given by , and

where is the Reynolds number and
is the kinematic viscosity of the fluid. Assume that the quan-

tities ,

Fig. 1. Coordinate system.

, and are sufficiently small for the
flow to be governed by the linearized Navier-Stokes equations

(1)

(2)

(3)

where . The boundary condi-
tions are , and

. The last condition describes
the wall-normal blowing/suction. The function repre-
sents the geometric configuration of the blowing and suction
elements. The function modifies the blowing/suction ac-
cording to the control law-it is the normalized suction velocity
through the wall. In the case of several independent actuators
we may consider to be an -dimensional row vector and an

-dimensional column vector.
To write the Navier-Stokes equations into the form used in

this study, we use the so-called modified stream function as
in [15], [16], i.e., let

(4)

(5)

where is any smooth function which satisfies
and . Equations (1)–(3) now
become

(6)

with boundary conditions for . As an
output we use the streamwise shear stress component at a point

on the lower wall given by

(7)

The surface shear stress is used as the output as this is one of the
quantities that it would be feasible to measure in an experiment.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 04,2010 at 09:38:34 EST from IEEE Xplore.  Restrictions apply. 



BARAMOV et al.: NONPERIODIC 2-D CHANNEL FLOW 113

To obtain a finite-dimensional approximation of the above
system of equations we use, as in [4], [15], [16], a Chebyshev
expansion in the cross channel direction. We use a finite-differ-
ence scheme in the streamwise direction. Assume that the -co-
ordinate is discretized into regularly spaced samples

, where where is a constant.
The function is now represented at these discrete points for

as

(8)

where are Chebyshev polynomials. The boundary con-
ditions are satisfied by requiring that for

(9)

Using (9) the functions can be expressed in
terms of .

The partial derivatives are approxi-
mated by symmetric difference formula as

(10)

where . Once the problem has been discretised
spatially using ((6)–(10)), a standard Galerkin procedure (see
[7] or [15]) is now used to produce for the -th grid point a set
of ordinary first-order equations which can be written
as

(11)

where . Notice that the matrices
above are the same for all grid points, except for and
which express the effect of the boundary input and depend on

. Note also that due to the properties of
Chebyshev polynomials, the above equation can be split into
two independent ones, solving for with either even or
odd. The details are omitted here for brevity.

The output approximating shear at the th gridpoint becomes

(12)

Fig. 2. Star product.

To condense the notation, we combine the equations for a set
of 5 grid points as

(13)

where

... (14)

(15)

Here the sub-script and stand for input-back and input-
forward, respectively. The outputs which are fed-back and fed-
forward from this system are denoted by

(16)

We can conveniently form the transfer function matrix
mapping Laplace transform images of , to the Laplace

images of , . To get a model of two adjacent segments
with a total 10 grid-points, we need a feedback interconnection
of and as in Fig. 2, known in the robust con-
trol literature (e.g., [20]) as a Redheffer Star Product, [17] and
denoted as . A long stretch of the channel flow is
obtained as a chain of star products,

(17)

Theoretically, a state-space representation of a channel could
now be built up this way, but, essentially, this would require the
storage of enormous amount of data which would be of little use
afterwards. Instead, we shall store only frequency domain data,
so the above cascade of star products is computed pointwise,
for a finite set of . Note that star-product
over complex matrices is a simple operation. Low-order transfer
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functions from the boundary input to the shear output will be
fitted on this frequency-domain data.

The boundary conditions at the up- and down-stream ends of
the channel can be described as transfer function matrices from

to and to , respectively.

In our case, we leave them zero and consider a channel suffi-
ciently long that the conditions at its ends have an negligible ef-
fect on the relevant mid-section. Note also that if we connected

with and with we would

obtain the periodic case, studied in [4], [6], [15], [16].
We assume that the dynamics of the actuator is described by

a simple model of a pump, given by

(18)

where is the control input. The derivative of is then obtained
as

(19)

In the following, we take as a representative case ,
and .

The Reynolds number is taken as . This is the
Reynolds number used in the other studies referenced above.
It is chosen as it is greater than the critical Reynolds number for
this problem of 5772, where the flow is known to be unstable to
small 2-D disturbances with a range of wave numbers and fre-
quencies. Hence it provides a suitable test case.

For the controlled boundary condition, we assume that
takes the form of a pair of opposed rectangular

pulses. Specifically

elsewhere.

(20)

The function is zero at the upstream end. The distance be-
tween centers of these pulses equals to which corresponds to
the half wavelength of one of the growing spatial modes. This
function is a model of a pair of blowing/suction panels which are
under development and considered for use in the aerospace in-
dustry. Strictly speaking, this function is not smooth and hence
the solution of the PDE (6) has singularities at points where

is not continuous. Because of the nonzero grid size,
the numerical procedure smoothes these singularities, and in
practice no special account needs to be taken of them. However,
the immediate neighborhood of these points must be avoided
when placing shear sensors, as the solution there is likely to have
a high relative amount of numerical error.

The use of coupled panels guarantees zero total mass of tran-
spired fluid at each time instant. This zero-mass condition is
necessary in the periodic setting, but not here with the finite-dif-
ference representation of the spatial dependence of the flow. We
shall, however, preserve it here. Note, however, that we have
also considered systems with independent panels with nonzero
mass flux, and found that pairs of coupled blowing/suction
panels with zero total mass of transpired fluid handles distur-
bances more effectively than independent panels while using
models and systems of approximately equal complexities.

Fig. 3. Magnitude plot for shear along the channel flow. Dashed line shows
the positions of the blowing/suction panels.

The grid size was chosen as which produces fre-
quency output data nearly identical to those of and

-naturally, except for the segments containing singulari-
ties. The scaling involving the factor was chosen because of
the fact that one of the fundamental wavenumbers has length

. The Chebyshev order is taken as and an analysis
in [4] (where the periodic case was treated) shows that this is
sufficiently accurate for frequency range of up to one radian.
The control design developed below is within this range.

The transfer function matrix from the pump input to the
wall-shear stress is denoted by . Its frequency
domain representation is obtained by a proce-
dure based on a string of star products discussed above. The data
available are for , sampled at intervals of five-times
the grid length. To eliminate the effect of the boundary condition
at the upstream and downstream ends of the channel, we added
another -long segment of channel to each end. Somewhat
arbitrarily the position of the blowing/suction panels was taken
as .

A three-dimensional plot of the shear magnitudes
is shown in Fig. 3. In accordance with

intuition, the actuator has very little affect on the upstream
flow, but also as expected, it has a significant affect on the flow
downstream of the actuation. The control-to-shear gain grows
in a band where , with the maximum growth
rate at . Elsewhere, the gain is (almost monotonically)
decreasing. Fig. 4 shows Bode plots computed at three different
locations downstream from the panels. The magnitude-phase
plot for fixed along the axis is shown in Fig. 5,
from which it can be seen that for large the amplitude grows
exponentially. The growth rate of about 1.08 every is close
to the maximum growth with for individual frequencies. The
phase decreases linearly with . It can be seen from Fig. 4
that the phase decreases by approximately 9000 degrees over a
distance of 170, which gives a wavelength somewhat below
for this . These observations are consistent with the properties
of solutions to the Orr-Sommerfeld equation (see later) which
governs linear normal mode disturbances to 2-D parallel flow.
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Fig. 4. Bode plot for shear transfer function at x = x + 10� (dotted), x +

20� (dash-dot) and x + 40� (solid).

Fig. 5. Magnitude-phase plot along the x-axis for fixed ! = 0:22.

For a frequency of , the Orr-Sommerfeld solution
predicts a growth rate of 1.08 every , and phase change of
approximately 9240 degrees over a distance of 170. Both of
these are consistent with the results shown in Fig. 5. Further,
an Orr-Sommerfeld analysis predicts instability in the range

, as found here. Hence, the modeling (and
model order reduction procedure) used in this paper produces
results consistent with the basic physics of the flow. Note
that we do not assume that the disturbance has normal mode
form, but allow the perturbation to the mean flow to evolve
from upstream excitation in the form of surface transpiration,
assuming only that the flow is 2-D and that problem can be
linearized.

B. Fitting a Transfer Function Matrix and Uncertainty Bound
on Frequency-Domain Data

Consider a set of sensors regularly spaced at intervals of
and a set of panel-pairs with a distance between their

centers. The corresponding transfer function matrix can be com-
puted for ; as

(21)

where the scalar transfer function is as in Section II-A;
is now fixed and describes the position of the most upstream

sensor relative to in (20) for the most upstream panel pair. In
what follows we shall consider . This separation
between panel pairs/sensors is chosen so that the controller can
most efficiently attack disturbances of wavelengths around .
The distance was chosen as .

Each of the above transfer functions is chosen as an -order
proper rational function. To obtain an approximation of the -th
row in we can use the function of the -toolbox
for MATLAB, see [1]. This function performs weighted least
square fitting. As we deal with computational and not experi-
mental data, we can assume arbitrarily many data points. Also,
we assume that these data are not corrupted by noise, which
greatly simplifies the modeling. In this case, noise would be just
computational round-off errors which are deemed to be small
compared to the modeling error arising from approximation of
an infinite-dimensional system (or its high-dimensional approx-
imation) by a low-order transfer function. The frequency-depen-
dent weight was chosen as which
emphasizes the frequency range of which contains
the range of spatial growth. The orders were chosen as 8, 10,
12, 16 for the respective rows of which fits the data
fairly accurately. The transfer functions were converted to state-
space representations which were used later in the control de-
sign. During this procedure we have to ensure that the resulting
models are stable, in accordance with the behavior of the real
system (in this setting the flow trajectories grow spatially but
not temporally for fixed ). If the approximation order is too
high, the procedure may result in models with almost cancelled
unstable zero-pole pairs.

The basic premise on which the controllers used in this work
are designed is that the underlying dynamics can be approxi-
mated by a relatively low-order transfer function coupled with
an uncertainty description which, in essence, is a parameteriza-
tion of the unmodeled dynamics. This problem is at the heart
of robust control and a rich theory exists based on different
models for describing the uncertainty and is extensively covered
in the relevant technical literature which includes texts such as
[20]. The basic point now is to obtain the components of this
overall description, i.e., the nominal model and the uncertainty
description, and then to proceed to controller design. Here we
use the left-coprime factor uncertainty description (but others
could also be considered).

Let the low-order representation of the flow, obtained from
the fitting procedure be and write its left-coprime fac-
torization as . One possible choice here
is the normalized left-coprime factorization. We then consider
the model set

(22)
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where , , are stable and minimum phase weighting
matrices. First, we shall consider the following problem: given
fixed weights and set of frequency points , are the data

, consistent with the model (22). As is
well known, even if the model is consistent, i.e., there is a fea-
sible uncertainty such that

(23)

it does not imply that the model (22) is valid—no finite set of
data can validate a model. We can only suppose that if the model
is not invalidated for a sufficiently large and carefully chosen
data set, it is very likely valid. This problem is, in a more general
setting, and under the presence of measurement noise, solved in
[8]. The main result of the work in [8]is, that checking the con-
sistency of a frequency-domain, noise corrupted data set with a
general class of uncertain models, requires the solution of a set
of independent linear matrix inequalities (LMIs). As we con-
sider only a noise-free case, this result would reduce to posi-
tive-semidefiniteness tests. The result for the coprime-factor un-
certainty case considered in the current work can be formulated
in an even simpler manner than in [8]as follows:

Theorem 1: Assume that is stable and
. The data ,

are consistent with the model (22) iff

(24)

where the subscript stands for the argument and the symbol
denotes conjugate transpose.
The proof is based on Lemma 4.3 and the arguments of The-

orem 4.1 in [8]. This result is critically important as it provides
the essential theoretical basis which guarantees that a model
structure of the form used here actually exists.

In the following, for simplicity, we shall restrict ourselves
to diagonal weights; moreover, will be constant. For our
specific problem we shall consider to be a band-pass; its
frequency range will contain the interval of spatial growth, ap-
prox 0.17–0.27 radians. Conversely, is a band-stop, stop-
ping these frequencies. The order of the latter filter as well as
its maximum gain/minimum gain ratio is higher than in the case
of . This is because we a priori assume that the low-order
model is more accurate in the growth interval than elsewhere
(which was enforced by the weighting in the least-square fit-
ting). In this setting, control syntheses will yield control
restricted to this narrow frequency range. This is not a serious
restriction for the 2-D disturbances considered here—for other
frequencies the disturbances are not spatially growing and hence
relatively harmless. The frequency set consists of 320 unevenly
distributed points, with 240 of them concentrated between 0.1
and 1.

Fig. 6. Bode plot of F (j!; 100�).

To obtain tighter bounds, we can apply a minimization pro-
cedure: We set , , and

. Here, , , are weights for which
the model (22) is not invalidated and , , and are con-
stant diagonal matrices. On substitution into (24), we obtain an
LMI constraint for variables , and

. Further constraints are , .
The cost function to be minimized is where

, are weights. This optimization is done using the
mincx function of the LMI Control Toolbox, see [11].

C. Disturbance Model

For control system design we need a disturbance model. Al-
though its accuracy does not affect the closed-loop stability (and
hence its error is not included to the overall modeling uncer-
tainty) it is important for performance. First we consider this
problem: If we measure the shear disturbance at a point , can
we estimate the value of shear at at the same time? The
answer is yes, provided it is sufficiently far downstream from its
source. Let

(25)

A Bode plot of this transfer function (for ) and
is shown in Fig. 6. First, in the -interval approx.

the phase is a linear function of , and the magnitude is a con-
cave function of with a maximum of approximately 1.08 for

. This corresponds to the growth rate .
The interval where the magnitude is greater than 0dB is the
interval of spatial growth. These frequency responses are, for

, invariant of the base value of , provided it is
sufficiently far downstream from the panels. For outside this
region the disturbance behavior is complex, highly -dependent
and hence hard to predict. Note, however, that for control design
purposes we do not need to deal with disturbances which are
spatially decreasing. Therefore, we fit a stable 4th-order transfer
function to the frequency-domain data in the interval be-
tween 0.15 and 0.3. Assuming that is shear disturbance mea-
sured at , is our estimate for shear at .
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Fig. 7. Control configuration.

Time-domain simulations showed that this simple model esti-
mates the advance of the waves remarkably well, regardless of
the value of .

For a more efficient disturbance attenuation we shall add an
additional sensor upstream from the first sensor considered
in Section II-B. This is far enough upstream from all panels so
that the effect of wall transpiration on this sensor’s measure-
ments is negligible. It measures directly the oncoming distur-
bance (assuming the measurement noise is also negligible in
the relevant frequency range). The overall disturbance transfer
function matrix from the shear measured far upstream to distur-
bances at the other sensors is then given by

(26)
The state-space realization of this disturbance model has dimen-
sion 20.

III. CONTROL DESIGN AND SIMULATIONS

A. Control Problem Formulation

The control configuration in the control setting is shown
in Fig. 7. There are four external inputs— disturbs the co-
prime-factor model, generates the flow disturbance mea-
sured at the far upstream sensor; and are measurement
noises. Disturbance is filtered through which passes
only the frequencies around the growth region and enters the dis-
turbance model , as discussed in Section II. This filtered
disturbance is also mixed with scaled noise and fed to
the controller as measurement . The measurements from the
other sensors are corrupted by the noise and fed to the
controller as . The penalized outputs , are filtered shear
measurements and controls, respectively. The weights , ,

were discussed in Section II. We chose ,

, , where , ,
are constant diagonal scaling matrices. Specifically

Finally

and . Magnitude plots of the fre-
quency-dependent weights are shown in Fig. 8. For this weight
combination, the model set (22) is consistent with our extensive
data set. To guarantee robust stability for this set of plants it is
sufficient that the performance index is less than 1. For the
above problem formulation we found a controller which guar-
antees the performance index . It was computed
by the routine of the -analysis/synthesis toolbox, [1].

The plant order is 142, where the order of the model de-
scribing the relation between control and measured shear is 46,
the order of the disturbance model is 20, and the rest account for
the weights. This will result in a controller of the same order,
which is very high for implementation in practice. However, it
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Fig. 8. Magnitudes of weights w (s) (solid), w (s) (dashed), W (s)
(dash-dotted).

can be readily reduced by the Hankel-optimal reduction proce-
dure [12] to 32, which is practically feasible, with no perfor-
mance degradation. Further reduction to 24 results in a slight
but acceptable performance degradation.

B. Closed-Loop Frequency-Domain Analysis

In this section we shall consider the full-order controller. For
the frequency-domain analysis, the disturbance has been sim-
ulated as an action of a pair of blowing-suction panels (the
same as those used for control) placed about upstream from
the panels. Fig. 9 shows the magnitude of this shear distur-
bance around the uncontrolled section (top) and the shear at
the same channel section when the control actuation is applied
(bottom). Only the frequencies around the growth interval are
shown—elsewhere there is no significant difference between
these two cases. Note that the controller reduces shear signifi-
cantly at the sensor locations and further downstream. Note also
that the design directly penalizes shear only at the four points
where the sensors are placed.

We can observe slight disturbance amplifications at the lo-
cations of the panels. However, this is compensated by signifi-
cant shear reductions downstream which occurs at all frequen-
cies of the growth region. The magnitude versus distance plot
for fixed frequency is given in Fig. 10, with the magnitude in
this plot scaled linearly. The positions of panels and sensors are
also shown in this figure.

As expected, at the sensor locations the shear is reduced much
more than elsewhere. Nevertheless we can see that, as desired,
the controller also reduces shear significantly far downstream
from the sensor position. As expected, downstream of the ac-
tuation the shear disturbance resumes its original growth rate,
but it would take a very long stretch of the channel to restore it
to the size it had before entering the controlled area. Finally,
a comparison of magnitude plots for uncontrolled/controlled
shear downstream from the controlled area is given in Fig. 11.
The uncontrolled-to-controlled shear ratio is nearly constant for
all locations at least downstream from the panels, further
demonstrating that the disturbance has in fact resumed its orig-
inal growth rate, albeit at a lower magnitude.

(a)

(b)

Fig. 9. Uncontrolled (top) and controlled (bottom) shear response.

Fig. 10. Magnitude versus distance: controlled shear (solid), uncontrolled
shear disturbance (dashed), control multiplied by 10 (dotted); triangles:
positions of the sensors.
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Fig. 11. Magnitude plots of uncontrolled (dashed) and controlled shear
disturbance in the distance of about 20� downstream from the sensors and
actuators.

C. CFD Evaluations

The controller was tested by incorporating it in a closed-loop
simulation with a 2-D nonlinear Navier–Stokes solver. This
CFD (Computational Fluid Dynamics) code solves the
nonlinear Navier–Stokes equations, given for 2-D flow in
streamfunction form as

(27)

where is the streamfunction and

(28)

Equation (27) is the nonlinear version of (6) minus the forcing
terms, which arise from the use of the modified streamfunction

as defined in (4) and (5) rather than the usual form of the
streamfunction as given in (28). The modified streamfunction is
used above for numerical convenience as it gives homogeneous
boundary conditions. With the boundary conditions are inho-
mogeneous, given by

(29)

(30)

Note that with this formulation the only assumption made is
that the flow is 2-D, and that interactions between the various
possible modes in the flow are allowed, including generation
of an infinite sequence of modes of different wavelengths due
to the nonlinear terms. Also, there is no inherent restriction to
small disturbances, although it is our aim to prevent the growth
of both disturbances which are introduced deliberately, as in the
frequency domain analysis above and at the upstream end of the
channel as below, and those generated through interactions in
the flow.

The code used to solve the system of (27)–(30) is an implicit
finite difference code which is fourth order in space and second

order in time. It was developed specifically for channel flow
problems of this kind. Full details of the code can be found in
[19].

A number of different disturbances were considered, in-
cluding those generated by a pair of suction/blowing panels,
similar to the procedure used in the frequency domain analysis
described above. Also, disturbances were generated at the
inlet (the upstream end of the channel) using a combination
of Orr-Sommerfeld modes, a procedure that will now be
described. A disturbance to the flow for a single wavenumber
takes the form

(31)

where is the perturbation streamfunction, is its complex
amplitude, and and are the wave number and frequency
of the disturbance. In generating the Orr-Sommerfeld notes,
is assumed to be sufficiently small that the governing Navier-
Stokes (27) can be linearized. Hence satisfies a fourth-order
ODE (the Orr-Sommerfeld equation)

(32)

where the prime denote differentiation with respect to . satis-
fies homogeneous boundary conditions: at .
This problem is a eigenvalue problem, where for our application
the Reynolds number of the flow and the frequency of the distur-
bance are chosen, and the complex wavenumber
is the eigenvalue which is calculated as part of the solution. Fur-
ther information of the Orr-Sommerfeld equation and its appli-
cations can be found in [10] or [18].

Here the value of is adjusted to give the desired real part of
the wave number , which determines the wavelength of the
disturbance. The complex part of , , gives the growth rate
of the disturbance. The disturbance was then generated at the
inlet from (31) by setting and adding the time varying
perturbation to Poiseuille flow.

Two different disturbances of this type where considered. The
first has a single Orr–Sommerfeld mode with , giving a
disturbance which grows slowly in . The spatial distribution
of the wall shear stress for this disturbance once the control
system has had time to come fully into play is shown in Fig. 12.
Note here that the actuation is extremely small. The disturbance
shown in Fig. 12 is relative to the shear of the
base Poiseuille flow ( at ), while the actu-
ation is two orders of magnitude less, i.e.,
against . It is clear that, even under these condition,
which are stricter and more realistic than those used in the con-
troller design phase, the controller produces a drastic reduction
in the shear. In Fig. 12 the disturbance downstream of the actua-
tors appears to be growing again. This is as expected as there is
no way in practice of completely eliminating the unstable mode
from the problem. However, the disturbance could be kept at
a low level by cascading controllers, i.e., by introducing inde-
pendent blocks of the control system at widely spaced intervals
along the channel.

Fig. 13 shows shear measurements against time at sensor
5 (placed upstream of the actuation so that it measures the

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 04,2010 at 09:38:34 EST from IEEE Xplore.  Restrictions apply. 



120 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 1, JANUARY 2004

Fig. 12. Shear stress perturbation and transpiration velocity (scaled byRe=48)
along the lower wall and at single instant in time. The disturbance is a single
mode with wavenumber � .

Fig. 13. Shear stress perturbation against time for the single wavenumber
disturbance, measured at further upstream (ahead of the actuation) and
downstream (behind the actuation) sensors.

oncoming disturbance) and sensor 4 (the furthest downstream,
after the actuation). As in Fig. 12, this shows a large reduction
in the disturbance across the region containing the actuation.
In fact, this figure understates the amount of shear reduction
as the uncontrolled disturbance arriving at sensor 4 would
be approximately 40% larger than that measured at sensor 5
due to its exponential growth. Also, from Fig. 13 we can see
that although the incoming disturbance settles on a constant
amplitude reasonably early in the run, the amplitude is still
decaying at sensor 4, even at . This decay continues
until , after which the signal from sensor 4 settles.

The calculations performed to generate Figs. 12 and 13 in-
volved determining iteratively approximately 350 000 unknown
variables each time step, where the time step was 0.025. In con-
trast,the full order controller has 142 states. Hence, the compu-
tational effort in calculating the new suction/blowing velocities
at each time step is insignificant, and generating a low-order
controller is not strictly necessary in order to perform simula-
tions such as those presented here. Note, i.e., however that this
does not imply a lower order controller would not be required if
the controllers were to be implemented experimentally.

Fig. 14. Shear stress perturbation on the lower wall for an uncontrolled
disturbance at one instant in time. The disturbance is multiple mode with
wavenumbers � = 0:8, 0.9, 1.0, 1.1, and 1.2.

Fig. 15. Shear stress perturbation and transpiration velocity (scaled byRe=24)
on the lower wall at one instant in time. The disturbance is multiple mode with
wavenumbers � = 0:8, 0.9, 1.0, 1.1, and 1.2.

The second disturbance of this type used a combination of
five Orr-Sommerfeld modes with , 0.9, 1.0, 1.1, and
1.2., which has two modes which grow spatially, two which are
decaying and one with close to zero growth rate. Further, each
of the modes was given the same magnitude at the inlet so that
the total disturbance had the form of a wave packet which is
modulated as it propagates downstream, as shown in Fig. 14.
This disturbance gives not only a combination of wavelengths,
which should provide a sterner test of the controller, but a simple
model of an intermittent disturbance. Intermittent disturbances
are of considerable practical significance as they are commonly
seen in transitional flows (see, e.g., [18]). Figs. 15 and 16 show
the results for this multiple-wavenumber disturbance. Again, the
controller is performing satisfactorily, with a large reduction in
the shear perturbation.

In the addition to the disturbances based on solutions to the
Orr-Sommerfeld equation, disturbances were provoked using a
zero mass flux panel pair starting at where the inlet is
at . The first of the panels in the actuation was placed
at distance further downstream. The wavelength of the dis-
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Fig. 16. Shear stress perturbation against time at the furthest upstream and
downstream sensors for the disturbance as in Fig. 15.

turbance generated in this manner was varied by changing the
length and distance between the upstream panel pair (the config-
uration of the actuation sensor system was fixed as given above).
Different frequencies of excitation were also used. Further the
magnitude of the transpiration on the panels generating the dis-
turbance was varied, from an amplitude which produced a dis-
turbance similar in size to those shown in Figs. 12–16 above, to
one several orders of magnitude larger which generated a distur-
bance with a shear stress perturbation greater than 25% of the
mean value. In all these cases, the control system worked in a
similar manner to that shown in Figs. 12–16 above, with a sig-
nificant reduction of the shear downstream to the actuation.

The control system used above was not simple to produce.
However, as shown in [15], a simple proportional controller
can be used for a model problem with a single unstable mode
with . Although the particular control configuration used
in [15](sinusoidal transpiration with and a single sensor
based at a point of maximum transpiration) failed in a test when
confronted with the multiwavenumber Orr-Sommerfeld type
disturbance presented above, there would clearly be advantages
in practice if a simple proportional could be used. Hence a
number of different configurations with proportional control
were investigated. These included zero mass flux discrete panel
pairs, in a configuration the same as used above, but with a
sensor at the centre of the first panel, and a nonzero mass flux
system with independent panels with a sensor at the center of
each panel. In the latter case, the panels were either contiguous,
or had gaps between them. Different lengths and number of
panels were investigated. In addition, a simple point wise
proportional controller with

(33)

operating over a distance of , similar to that for the discrete
panel control system described earlier. This proportional con-
troller does not guarantee zero mass flux. The gain (-0.005) was
chosen through trial and error. Increasing its magnitude signifi-
cantly (to -0.0075 say) destabilises the entire system and the nu-
merical procedure failed rapidly, while decreasing it produces
worse results. The shear on the lower wall obtained when ap-
plying this system to the single mode Orr-Sommerfeld type dis-

Fig. 17. Shear stress perturbation and transpiration velocity (scaled byRe=24)
on the lower wall at one instant in time for a proportional controller with gain
�0:005. The disturbance is single mode with wavenumber � = 1.

turbance is shown in Fig. 17. As can be seen by comparing
Fig. 12 with Fig. 17, although the proportional controller does
significantly reduce the shear stress perturbation it does not per-
form as well as the discrete panel system used for Fig. 12.

Of all the configurations tested with proportional controllers,
the one used for Fig. 17, with continuous sensing and transpira-
tion, produced the best results. In particular, ones with a mod-
erate number of discrete panels, which are the most realistic
physically, produced a much lower level of reduction in the wall
shear perturbation.

IV. CONCLUSION

The main contribution of this paper is to (finite-dimensional)
modeling and control of spatially growing channel flows. Mod-
eling takes place in the frequency domain using an efficient
method of generating spatial frequency responses based on the
star product. From the spatial distribution of the magnitude and
phase we can obtain important information about the flow’s
properties. In this paper we considered actuation and sensing
based mainly on practical considerations, in the form of discrete
suction/blowing panels rather than continuous transpiration as
in previous work by other authors. This employed four suit-
ably placed pairs of blowing and suction panels and five shear
sensors. Frequency-domain data for fixed sensor locations were
used for low-order approximation of the flow model as well as
estimating the modeling uncertainty. A standard controller
was designed for this uncertain system. This design was eval-
uated by simulations with a CFD code in the loop. These sim-
ulations showed that the shear reduction downstream from the
panels was significant. Further, in practice the disturbance could
be maintained at a low level indefinitely far downstream by re-
peated implementation of the basic sensor/actuator configura-
tion, with each block acting independently.

We note the frequency domain analysis used here based on
the Redheffer Star Product produced a very efficient method of
analysing the response of the system. The computational effort
is for the number of streamwise grid points that have
actuation and in those that do not (most of them).
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Hence it is much less computationally intensive than an equiva-
lent time domain simulation. Finally, we note that the analysis of
the system was conducted entirely in terms of its inputs (transpi-
ration velocities) and outputs (shear stress measurements), and
could therefore, in principle, be applied to situations where de-
tailed knowledge of the flow is not available, e.g., when using
experimental measurements.
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