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Abstract— Control allocation problems can be formulated as optimiza-
tion problems, wherethe objective istypically to minimize the use of control
effort (or power) subject to actuator rateand position constraints, and other
operational constraints. Herewe consider the additional objective of singu-
larity avoidance, which is essential to avoid loss of controllability in some
applications, leading to a non-convex nonlinear program. We suggest a se-
quential quadratic programming approach, solving at each sample a convex
quadratic program approximating the nonlinear program. The method is
illustrated by simulated maneuvers for a marine vessel equipped with az-
imuth thrusters. The example indicates reduced power consumption and
increased maneuver ability asa consequence of the singularity-avoidance.

I. INTRODUCTION

A characteristic feature of control allocation problemsis that
there are more control signals available than the number of
commanded forces and moments, such that the system is over-
actuated. Control allocation is used in many mechanical control
systems in order to make a set of actuators jointly produce to-
tal forces and moments commanded by some higher level con-
troller, and in addition optimize power consumption, take into
account actuator constraints, and other objectives or constraints.
Control allocationis used in flight control [1], [2], [3], [4], ma-
rine vessel control [5], [6], [7], [8], and other applications e.g.
[9].

In the present work we focus on marine vessel control ap-
plications such as dynamic positioning and maneuvering. A
marine vessel is usualy equipped with a number of propul-
sion devices and control surfaces (generally called actuators),
such as main propellers, rudders, fins, tunnel thrusters, and az-
imuth thrusters [10]. The scope of the paper is to present a so-
lution for 3-DOF control alocation (horizontal plane motion),
although the presented solution can a so be used for 6-DOF mo-
tion. For horizontal plane motions (surge, sway and yaw) the
control allocation problem is to select the control signals asso-
ciated with theindividual actuatorsin order to produce the com-
manded surge/sway forces and yaw moment (three generalized
force components).

An actuator configuration is said to be singular if it cannot
produce forcesymomentsin every direction in the 3-dimensional
space of surge force, sway force and yaw moment. A singu-
lar configuration is characterized by the effect of every actuator
being linearly dependent, which is also termed coplanar con-
trol, e.g. [11]. For amarine vessel equipped with some azimuth
thrustersthis may happen when the thrusters have equal azimuth
angles. Since azimuth and rudder angle rates are often restricted
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to 1 deg/s or less, it takes several seconds to recover maneuver-
ability after a near-singular actuator configuration. On the other
hand, with a constant or slowly time-varying environmental dis-
turbance it may be energy-optimal with singular operation as it
is generally energy-optimal to aign the orientation of rotatable
thrusters with the direction of the disturbance force, if possible.
It will be expensive or impossibleto generate aforce component
orthogonal to this direction. Hence, there exists a tradeoff that
should be explicitly addressed and one may want flexibility to
tune the control allocation for energy-optimality versus maneu-
verability. The main contribution of this paper is that the cost
function used for optimizing control allocation includes a term
that penalizesthe singularity of the configuration. Thisisimpor-
tant in dynamic positioning applications, but also in maneuver-
ing applications that utilize azimuth thrusters or azipods, since
the consequences of loss of maneuverability may be serious.

Most existing marine vessel control allocation approaches
such as [6], [7] rely on alinear model that describes the rela-
tionship between the control signals and the generalized forces.
This allows least-squares solutions to be found in an explicit
form that allows the control allocation to be implemented using
simple matrix computations such as generalized inverses. Such
alinear model assumes that thruster azimuths or rudder angles
are determined using another algorithm that takes into account
power-optimality, non-singularity, constraints and other essen-
tial features, see[6], [12]. Various computational algorithmsfor
constrained least squares control alocation, with emphasis on
efficient real-time implementation without real-time optimiza-
tion, arestudied in[2], [3], [11], [12], [13], [14], [15]. Although
explicit solutions are desirable due to their smple and efficient
implementation, the use of real-time numerical optimization has
been suggested, see [4], [8], [16], [17]. Its main advantage is
that it admits considerable more flexibility in terms of handling
nonlinearities and constraints, representing the power consump-
tion more accurately than with a quadratic cost, dynamic recon-
figuration, and is useful for optimizing rudder and azimuth an-
gles.

The algorithm suggested here is also based on solving a con-
strained optimization problem numerically in real time, at each
sampling instant. The objectiveis to minimize power consump-
tion (or some other suitable objective) and at the sametime avoid
singular configurations and excessive rates of change of the az-
imuth angles. If the commanded forces cannot be attained, due
to constraints on the attainable force, azimuth or rudder angles
or their rates of change, the objective is shifted to minimize the
error between the commanded and attained forces. The opti-

L inear models are also common in flight control applications [2], [3].



mization formulation takes into account rate constraints on the
azimuth/rudder angles, and possibly also rate constraints on the
individual propeller control signals (such as pitch/speed). The
present approach is therefore an extension of [4], [8], [16], [17],
where least-squares and linear programming type of criteriaare
considered together with control amplitude and rate constraints,
while non-singularity is not explicitly taken into account.

Closely related singularity avoidance objectivefunctionshave
been suggested for spacecraft maneuvering control using control
moment gyroscopes, see[18], [19], [20], [21] and the references
therein, as well as in robotics, e.g. [22], [23]. However, they
view the singularity avoidance problem either as one of running
smoothly through singularities (at the cost of atransient torque
error), or in the context of trajectory planning which is not nat-
ural in applications such as marine vessel dynamic positioning
where the control problem is more one of disturbance rejection.
Consequently, we take a quasi-dynamic control alocation ap-
proach, taking into account the actuator dynamics through rate
constraints.

Il. 3-DOF CONTROL ALLOCATION

Consider a marine vessel equipped with m force producing
actuators (thrusters, rudders, propellers, etc.). The generalized
force vector 7 = (1x, 7y, 7n)7 € R® produced jointly by the
actuatorsis given by

B(e)u 1)

Its components are the surge force Tx, sway force 7y and yaw
moment 7. The vector u € R™ contains the magnitude of
the force produced by each individual actuator, uniquely related

viainvertibleactuator characteristicsto low-level control signals
such as propeller speed or pitch, or intermediate-level control

signals such as shaft torque or power [24]. The angle «; is the
azimuth of the i-th actuator, defining the direction of the force
produced in the horizontal plane, and the vector « € R™ con-
tains these angles. Thei-th column of the 3 x m matrix B(«) is
given by

COS ai;
Bi(a;) = sin oy 2
—lyicosa; + £y sina;

The location of the i-th actuator in the horizontal plane is at
(Lss,2y;), in a coordinate system with origin in the center of
rotation, positive xz-axis forward, and positive y-axis towards
starboard. The control allocation task isillustrated in Figure 1.
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Fig. 1. Control allocation.

A singular configuration is characterized by B(a) not hav-
ing full rank. This means that the attainable generalized force

T is restricted to a sub-space of R® such that the system be-
comes under-actuated and controllability may be lost since the
commanded generalized force vector 7 cannot in general be at-

tained. With controllability we mean the ability to produce a
desired generalized force T in any directionin R? at every time-
instant, which is different from the common linear and nonlinear

system-theoretic definitions of controllability. Near-singular ac-

tuator configurations have the same problem, as the control will

easily saturate and the commanded generalized force cannot be
attained. With three or more actuators (m > 3) singularity usu-

aly only occurs for certain combinationsof a1, ..., a,,. Sucha
configuration must be avoided since it usually means that con-

trollability will be lost for several seconds because the rate of
change of the azimuths « may be small (typicaly 1 deg/s or
less).

In order to make the control allocation robust and avoid near-
singular configurations, we require that the optimal « gives a
feasible control allocation without a dramatic increase in power
consumption also when 7 is perturbed. This is achieved if
B(a)BT («) isnot close to singular.

I11. QUASI-DYNAMIC OPTIMIZATION

The following optimization problem is defined: Minimize
with respect to («, u, s) the criterion

m

J(a,u,8) = Z Wi(ui) +57Qs + (@ — ag)TQ(a — ap)

=1

0
e det(B(@)BT () @
subject to

s = 17— B(a)u 4
Umin S u S Umaz (5)
Qmin S « S Amaz (6)
Aamin S a — Qo S Aamam (7)

The total power consumption is represented by the first term in
the criterion, combining the power consumptions W; (u;) of the
individual actuators. The second term s7'Qs penalizes the er-
ror s between the commanded and achieved generalized force,
cf. (4). This dlack variable formulation is necessary in order to
guarantee that the optimization problem aways has a feasible
solution. The diagonal weightsin the matrix () > 0 are chosen
so large that the constraint (4) is satisfied with s ~ 0 whenever
possible. The maximum and minimum forces produced by the
actuators are specified through the constraints (5), where u i,
and u ., are vectors with lower and upper bounds for u, re-
spectively. The azimuths, «, are required to belong to given
sectors defined by the vectors of lower and upper bounds, « i,
and a,,,.., cf. (6). Moreover, the rate-of-change in azimuths
is constrained and minimized such that a large change is only
allowed if thisis necessary, represented by the third term in the
criterion and the constraints (7). The matrix Q > 0 is used to
tune this objective, and the vector a contains the azimuths at
the previous sample. Singularity is avoided through the fourth
term in the criterion, wheree > 0 is required to avoid numeri-
cal problemsand p > 0 isaweighting parameter. Essentially, a



large o will lead to high maneuverability as the cost of increased
steady-state power consumption. Conversely, asmall o will give
low power consumption under steady-state conditionsat the cost
of reduced maneuverability with highly dynamic commands.

Dynamic reconfigurability and fault handling can be achieved
by dynamically changing the constraint limits or weighting ma-
trices. For example, if actuator i is not operative one may
require " = y"e® = (). Also, if an actuator can only
produce force in a fixed direction, this can be represented as
a; = aM" = oM = constant.

IV. LOCALLY CONVEX QUADRATIC PROGRAMMING
REFORMULATION

The above optimization problem is a nonlinear program that
is generally non-convex and requires a significant amount of
computations at each sample to solve. The first three termsin
(3) are generally convex, while non-convexity is caused primar-
ily by the non-linear constraint (4) and the fourth non-convex
term in (3). This term was introduced to avoid singularity, i.e.
designed to have peaks at singular configurations such that the
optimization landscape contains “valleys due to the three first
terms and “ peaks due to the fourth term.?

For the purpose of implementing this control allocation strat-
egy, alocaly convex quadratic programming (QP) reformula-
tion is suggested. Since the azimuth vector « is required to
change dowly from one sample to the next, a time-varying
quadratic/linear approximation to the cost/constraints may be
reasonable. The non-convex nonlinear program may therefore
be replaced locally with a convex QP which can be solved effi-
ciently and reliabily using standard numerical software, without
prohibitive loss of performance. Recomputing some of the QP
coefficients must be done at each sample, but thisis fairly sim-
ple.

In order to get a convex quadratic approximation to the cri-
terion, we approximate the first term (power consumption) by a
quadratic term, and the last term (singul arity avoidance) by alin-
ear term by linearizing about the azimuth « o and control . from
the previous sample optimal solution such that o = ay + A«
and u = ug + Au:

[ dW; d>W;

Jop(Aa, Au,s) = ; <d—ui(uo,i)AUi + d—u%(uo,i)AU?>

+57Qs + AaT QA

L4
da

Q
<s + det(B(a) BT (a)) > .
®)

Likewise, the constraints can be linearized as

s+ B(ap)Au + 9 (B(a)u)

50 -Aa =7 — B(ap)ug

a=qp
u = up

©)

2Thisissimilar to potential field obstacle avoidance in robotics, e.g. [23].

and
Umin — U0 S Au S Umaz — U0 (10)
Omin — Qo S Ao S Omaz — O (11)
Aamin < Aa < Aapmas (12)

In the simulations below we have used the QLD public domain
software, due to Schittkowski’s implementation [25] based on
Powell’s original implementation [26] of the QP algorithm in
[27]. The gradients above are computed numerically using finite
differences. Convergence properties of QPs are well established
[27], [28]. Convergencetoward alocal minimum of J may hap-
pen. However, this is not regarded as a significant problem as
the non-convex cost function typically has several global min-
ima (due to symmetries) rather than sub-optimal local minima.
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Fig. 2. Generalized forces (surge force 7x, sway force 7y, and yaw-moment
) achieved by the thrust allocation algorithm. Solid curves are optimization
with singularity avoidance, and dashed curves are optimization without singu-
larity avoidance. Specifications are constant surge force, zero sway force, and
ayaw-moment that are given by dashed-dotted curves that are almost indistin-
guishable from the one achieved using optimization with singularity avoidance.

V. SIMULATION EXAMPLE

Consider a marine surface vessel with four equal azimuth
thrusters, one located at each “corner of the vessdl, i.e. at loca
tions (¢, ¢,) = (£20,+5) m relative to the center of rotation.
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Fig. 3. Thrust provided by each thruster. Solid curves are optimization with
singularity avoidance, and dashed curves are optimization without singularity
avoidance.

We assume the azimuths are restricted to |a;| < 25 deg, and
|&;| < 1 deg/s. The control signals are the thrusts provided by
each thruster. Sincethethrust isaquadratic function of propeller
angular velocity and the power consumption is a cubic function
of propeller angular velocity, [10], we take W (u;) = k;|u;|*/.
The simulation scenario assumes the vessel is operating at about
36 % of total surge force, zero sway force, and then makes a
heading change by commanding atime-varying yaw-moment of
30 s duration. Two different control allocation strategies have
been simulated:

« The numerical optimization approach described above (o >
0).
« The same numerical optimization approach, but without sin-
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Fig. 4. Azimuth angles for each thruster. Solid curves are optimization with
singularity avoidance, and dashed curves are optimization without singularity
avoidance.

gularity avoidance (o = 0).

Figures 2-5 show the achieved generalized forces, individual
thrust for each thruster, individual azimuths for each thruster,
and total power consumption (neglecting the relatively small
power used to change the azimuths). It is observed that the
optimization approach without singularity avoi dance has lowest
power consumption during steady-state operation (1-2 % less),
as al thrusters produce forces amost parallel to the direction
corresponding to a near-singular actuator configuration. How-
ever, during the course-changing maneuver, we observe that
the approach with singularity-avoidance has dramatically less
power consumption. Moreover, without singularity avoidance,
the specified longitudinal and lateral thrusts deviate strongly
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Fig. 5. Tota power consumption. Solid curves are optimization with singularity
avoidance, and dashed curves are optimization without singularity avoidance.

from the specifications because of partial loss of controllabil-
ity due to the constraints during this maneuver. The example
demonstrates the beneficial effect of singularity avoidance in
terms of reduced power consumption and improved accuracy
and reliability of the control allocation during maneuvering. The
numerical computations per sample typically require 2 ms com-
putation time on a1 GHz Pentium I11.

VI. CONCLUSIONS

It has been shown that singularities can be avoided in non-
linear constrained control allocation problems using a penalty
term in a nonlinear programming formulation. The nonlinear
program can be accurately approximated locally by a convex
QP that admits efficient numerical solution in real-time using
numerical QP software. Simulations indicate that power con-
sumption and maneuverability can be significantly improved us-
ing the singularity avoidance penalty term. While the main dis-
advantage of the sequential quadratic programming approach
lies in the complexity of the numerical software required to
runin real time, the advantages include flexibility to allow non-
quadratic cost functions, nonlinear models and multiple objec-
tive such as singularity avoidance.
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