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Abstract— This article presents new approaches to system
verification and synthesis based on subsystem verification and the
novel combined use of counter-examples and heuristics to identify
suitable subsystems incrementally. The scope of safety properties
considered is limited to behavioural inclusion and controllability.
The verification examples considered provide a comparison of the
approaches presented with straightforward state exploration, and
an understanding of their applicability in an industrial context.

Index Terms— Software verification and validation, software
requirements and specifications, control systems, formal lan-
guages, controllability, search methods.

I. INTRODUCTION

FOR certain behavioural properties, and with obvious com-
putational advantages, it is possible to verify that a system

satisfies given behavioural requirements, by verifying that
one or more subsystems satisfy the same requirements. The
identification of suitable subsystems, possibly in an automated
fashion, remains one of the key challenges of such verification
approaches.

The identification methods presented herein are based on
the use of counter-examples, providing information on which
system components may contribute to a proof, and on corre-
sponding selection heuristics.

The scope of safety properties considered is limited in
this article to behavioural inclusion and controllability. Be-
havioural inclusion can be described as follows: a system
behaviour is verified to satisfy given behavioural requirements
when its behaviour can be shown to always remain within
the behavioural requirements. Controllability can be seen as
an extension under control of behavioural inclusion: a system
behaviour is verified to be controllable with respect to given
requirements when its behaviour can be shown to always
remain through control within the behavioural requirements. In
case behavioural inclusion or controllability are not satisfied,
the synthesis of new subsystems is proposed, which when
composed with the original system, guarantee that the com-
posed system satisfies behavioural inclusion and controllability
requirements.

The examples considered provide a comparison of the
approaches presented with straightforward state exploration,
and an understanding of their applicability in an industrial
context.
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Incremental verification approaches are not new and have
been used to improve performance of model checking proce-
dures. A number of abstraction techniques have been proposed
to simplify the verification task, for example in [1], [2], also
[3] suggests the use of counter-examples for CTL model
checking. The work presented in this article is based on
the discrete-event system framework of [4]–[7], and proposes
new approaches to system verification and synthesis based
on subsystem verification and the novel combined use of
counter-example and heuristics to identify suitable subsystems
incrementally. Earlier related work by the authors is found
in [8] and has been extended with respect to synthesis in [9].

II. NOTATION AND PRELIMINARIES

The following summary of notions and terms from supervi-
sory control theory has been composed from several sources,
but principally from [4], [5]. The concepts of synchronous
communication used in this framework are adaptations of
earlier work in the field of process algebras [10], [11].

A. Languages

Event sequences and languages are simple means of describ-
ing discrete system behaviours. In this context, we consider
an alphabet Σ as a finite set of distinct events. By Σ+ we
denote the set of all finite strings of the form σ1σ2 · · ·σk,
where k ≥ 1 and σi ∈ Σ. Furthermore it is convenient to
introduce the empty string ε, where ε /∈ Σ. Then we write
Σ∗ = Σ+ ∪ {ε}. A language over Σ is any subset L ⊆ Σ∗.

The length |s| of a string s ∈ Σ∗ is the number of symbols
in s. The catenation of two strings s, t ∈ Σ∗ is written as st.
Languages and alphabets can also be catenated: we write
LΣ = { sσ ∈ Σ∗ | s ∈ L, σ ∈ Σ }.

For a string s ∈ Σ∗ we say that t ∈ Σ∗ is a prefix of s,
and write t ≤ s, if s = tu for some u ∈ Σ∗. The prefix-
closure L of a language L ⊆ Σ∗ is the set of all prefixes
of strings in L, i.e. L = { t ∈ Σ∗ | t ≤ s for some s ∈
L }. A language L is called prefix-closed if L = L. For the
purpose of this paper, which is restricted to safety properties,
it is sufficient to consider only prefix-closed languages.

B. Automata

Languages can be represented naturally by means of au-
tomata. An automaton is a 4-tuple G = (Σ, Q, δ, q0), where
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Σ is an alphabet of events, Q is the state set (assumed to
be finite and nonempty), δ: Q × Σ → Q is the transition
function, and q0 ∈ Q is the initial state. The transition function
δ: Q × Σ → Q is defined at each state q ∈ Q only for some
of the events σ ∈ Σ, i.e. δ is a partial function. The transition
function δ is extended to a partial function δ: Q × Σ∗ → Q
by letting δ(q, ε) = q, and δ(q, sσ) = δ(δ(q, s), σ) provided
that q′ = δ(q, s) and δ(q′, σ) are defined. The possible
behaviour of an automaton G = (Σ, Q, δ, q0) is described by
the language L(G) = { s ∈ Σ∗ | δ(q0, s) is defined}.

Automata are represented visually by means of state transi-
tion graphs. An example is shown in Fig. 1: states are repre-
sented as nodes, with the initial state highlighted, the transition
function is represented by labelled edges; if δ(q1, σ) = q2, then
the graph contains an edge from node q1 to q2 labelled σ.

C. Synchronous Product

Several automata can be combined into a single, more
complex automaton by means of the synchronous product op-
eration. Let G1 = (Σ, Q1, δ1, q1,0) and G2 = (Σ, Q2, δ2, q2,0)
be two automata, both using the alphabet Σ. Then their
synchronous product G1 ‖ G2 is defined as

G1 ‖ G2 = (Σ, Q1 × Q2, δ, (q0,1, q0,2))

where
δ((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ))

provided that δ1(q1, σ) and δ2(q2, σ) are both defined.
Thus the synchronous product of two automata defines how

two automata are composed by synchronising them on their
events. Its state set consists of the Cartesian product of the
state sets of the composed automata. Its language is seen to
be the intersection of the languages of the composed automata,
i.e.

L(G1 ‖ G2) = L(G1) ∩ L(G2). (1)

We define for future reference the neutral element GΣ∗ with
respect to synchronous composition, such that L(GΣ∗) = Σ∗

and L(G ‖ GΣ∗) = L(G) for any automaton G.

D. Relevant Event Set

The synchronous product as defined above can only be used
for the composition of automata with the same event alphabet.
In order to compose two automata

G1 = (Σ1, Q1, δ1, q0,1)

G2 = (Σ2, Q2, δ2, q0,2)

with different event alphabets Σ1 and Σ2, these must be
extended to consider the alphabet Σ = Σ1 ∪ Σ2 by adding
selfloops with the missing events to all their states. Fig. 2
shows how the automaton Buffer of Fig. 1, originally with
alphabet {s1, s2, f1}, has been extended to consider the al-
phabet {s1, s2, f1, f2, b1, b2, r1, r2} by adding selfloops with
corresponding event labels.

Given such an extended automaton, it is interesting to
determine which events are selflooped at every state of the
automaton, being effectively irrelevant to the automaton’s

behaviour, and which events are associated with “meaningful”
state transitions relevant to the automaton’s behaviour. Ac-
cordingly, we introduce the notion of relevant and irrelevant
events. For a language L ⊆ Σ∗, an event σ ∈ Σ is said to be
irrelevant for L, if we have for all s, t ∈ Σ∗

st ∈ L if and only if sσt ∈ L; (2)

otherwise σ is called relevant for L. The set of all relevant
events for a language L ⊆ Σ∗ is denoted by

relL = {σ ∈ Σ | σ is relevant for L }. (3)

Accordingly, an event will be said to be relevant or irrelevant
for an automaton G if it is relevant or correspondingly
irrelevant for the language L(G). For convenience, we will
picture automata with relevant events only, unless otherwise
stated.

E. Supervisory Control

In order to introduce the notion of supervisory control, the
set Σ of events is partitioned into two disjoint subsets of
events: the subset Σc of controllable events and the subset Σu

of uncontrollable events. Controllable events may be enabled
or disabled by an external agent; uncontrollable events are
spontaneous.

Let L be a prefix-closed language describing a possible
system behaviour, and let K be another prefix-closed language
describing a desired system behaviour. K is defined to be
controllable with respect to L if

K Σu ∩ L ⊆ K. (4)

In other words, a language K is controllable with respect
to L if there is no string in K that can be followed by an
uncontrollable event possible in L but not possible in K. This
means that, given a possible system behaviour L, the behaviour
given by K can be achieved by disabling controllable events
only. Note that the languages ∅, L, and Σ∗ are all trivially
controllable with respect to L.

We introduce the set C (K, L) of all sublanguages of a
language K that are controllable with respect to L:

C (K, L) = {K ′ ⊆ K |
K ′ is controllable with respect to L }.

(5)

It is easy to show that the union of any number of controllable
languages is again controllable [4]. Therefore, the set C (K, L)
contains a unique supremal element

sup C (K, L) =
⋃

K′∈C(K,L)

K ′. (6)

This supremal element is known as the supremal controllable
sublanguage of K with respect to L [12]. It is the maximally
permissive behaviour achievable through control within K.
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III. VERIFICATION AND SYNTHESIS

A. Behavioural Inclusion

Let a system G and requirements R be modelled as autom-
ata. We define behavioural inclusion as follows.

Definition 1: Let G and R be two automata using the same
alphabet Σ. We say that G satisfies R if L(G) ⊆ L(R).

Thus, G satisfies R if every string of events accepted
by the automaton G is also accepted by the requirements
automaton R. In order to test whether this condition is true
for G and R, we can construct the synchronous product of
G and R, and check at each reachable combination of states
whether there exists an event possible in G which is not
allowed in R. If such a state combination exists, G does not
satisfy the requirements R, otherwise it does.

In practice however, the system G and the requirements R
are typically specified as the synchronous composition of
several automata, and not as single automata, i.e.

G = G1 ‖ · · · ‖ Gn, and

R = R1 ‖ · · · ‖ Rm.

Note that the synchronous composition of the automata G
and R may be large and impossible to construct explicitly.

The language of a composed system consists of the inter-
section of the languages of its components1, i.e.

L(G) = L(G1) ∩ · · · ∩ L(Gn),

L(R) = L(R1) ∩ · · · ∩ L(Rm).

Synchronous composition by definition always restricts the
system behaviour and never enlarges it. This leads to the
following simple result.

Proposition 1: Let K, L ⊆ Σ∗ be two languages, and let
L = L1 ∩ L2. If L1 ⊆ K then L ⊆ K.

Assume we want to check whether

G = G1 ‖ · · · ‖ Gn satisfies R. (7)

According to Proposition 1, in order to show that G satisfies R,
it is enough to find a subsystem G′ of G satisfying R. In
particular, in order to prove (7), it is enough to show that
there exists a set of indexes {i1, . . . , ik} ⊆ {1, . . . , n} such
that

G′ = Gi1 ‖ · · · ‖ Gik
satisfies R. (8)

In case the requirements R are specified as the synchronous
product of several automata, the following result can be used
to simplify checking behavioural inclusion.

Proposition 2: Let K, L ⊆ Σ∗ be two languages, and let
K = K1 ∩ K2. Then we have L ⊆ K if and only if L ⊆ K1

and L ⊆ K2.
Accordingly, in order to prove that a system G satisfies

multiple requirements, we can prove that the system satisfies
each requirement in turn. In particular, in order to prove that

G satisfies R = R1 ‖ · · · ‖ Rm

we can equivalently prove that

G satisfies Rj , for each j = 1, . . . , m.

1See Equation (1).

Finally, Propositions 1 and 2 can also be used to prove
that a system G, specified as the synchronous product of
several automata, satisfies multiple requirements by finding
different subsystems of G satisfying each requirement indi-
vidually. How to find suitable subsystems of G automatically
is addressed in Section IV.

B. Controllability

System behaviours cannot always be shown to satisfy be-
havioural requirements. If the requirements are not satisfied,
we can try to enforce them through control, i.e. through the
disablement of controllable events.

The notion of controllability introduced in (4) allows us to
characterise the languages which may be kept within another
language through control. In the following, we will also refer
to requirements R as being controllable with respect to a
system G, if L(R) is controllable with respect to L(G).
Assume a requirements automaton R to be controllable with
respect to a system G. Then, when composed with G, R will
restrict the behaviour of G to remain within the behaviour
of R, such that L(G ‖ R) ⊆ L(R).

For future reference, the definition of controllability is
extended to consider any set of events.

Definition 2: Let K, L ⊆ Σ∗ be two prefix-closed lan-
guages, and let Σ′ ⊆ Σ. K is called Σ′-controllable with
respect to L if KΣ′ ∩ L ⊆ K.

This definition extends (4) by replacing the fixed set Σu of
uncontrollable events by an arbitrary subset Σ′ ⊆ Σ, enabling
us to consider any set of events as the set of uncontrollable
events.

In order to check whether R is controllable with respect
to G, we can build the synchronous product and check at
each reachable combination of states whether there exists an
uncontrollable event possible in G but not in R. Fortunately,
as in the case of behavioural inclusion, G and R are typically
specified as the synchronous composition of several automata,
allowing subsystems of G and R to be considered instead for
verification purposes, as described in the following proposi-
tions.

Proposition 3: Let K, L1, L2 ⊆ Σ∗ be prefix-closed lan-
guages, and let L = L1 ∩ L2. Also let Σ′ ⊆ Σ. If K is
Σ′-controllable with respect to L1, then K is Σ′-controllable
with respect to L = L1 ∩ L2.

Proof: Simply observe that KΣ′∩L = KΣ′∩L1∩L2 ⊆
KΣ′ ∩ L1 ⊆ K.

Thus, as in the case of behavioural inclusion (Proposition 1),
to show that R is controllable with respect to G it is enough
to find a subsystem G′ of G such that R is controllable with
respect to G′. In particular, in order to check whether

R is controllable with respect to G = G1 ‖ · · · ‖ Gn (9)

it is enough to show that there exists a set of indexes
{i1, . . . , ik} ⊆ {1, . . . , n} such that

R is controllable with respect to G′ = Gi1 ‖ · · · ‖ Gik
.

(10)
In case requirements R are specified as the synchronous

product of several automata, the following extension of the
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corresponding result of [4] can be used to simplify checking
controllability.

Proposition 4: Let K1, K2, L ⊆ Σ∗ be prefix-closed lan-
guages, and let K = K1 ∩ K2. Also let Σ′ ⊆ Σ. If K1

and K2 are both Σ′-controllable with respect to L, then K
is Σ′-controllable with respect to L.

Proof: Let s ∈ KΣ′∩L. Then we have s ∈ (K1∩K2)Σ
′∩

L = K1Σ
′ ∩K2Σ

′ ∩L. By controllability of K1 and K2, this
implies s ∈ K1Σ

′ ∩ L ⊆ K1 and s ∈ K2Σ
′ ∩ L ⊆ K2.

Therefore we have s ∈ K1 ∩ K2 = K. Since s ∈ KΣ′ ∩ L
was chosen arbitrarily, this implies KΣ′ ∩ L ⊆ K, i.e. K is
Σ′-controllable with respect to L.

This result can be paraphrased by saying that the intersec-
tion of two controllable languages is itself controllable. In
other words, if requirements to be checked for controllability
are specified as the synchronous product of several automata,
it is enough to prove that each automaton is itself controllable.
In particular, in order to check whether

R = R1 ‖ · · · ‖ Rm is controllable with respect to G
(11)

it is enough to show that

Rj is controllable with respect to G (12)

for each j = 1, . . . , m.
Note that the converse of Proposition 4 is not true. Since

the composition of two uncontrollable behaviours may be
controllable, checking (12) provides only a sufficient, but not
a necessary condition for the controllability of the composed
behaviour. Nevertheless, Proposition 4 can be used to develop
interesting ways of checking controllability. For example,
requirements R specified as the synchronous composition of
several automata, can be shown to be controllable with respect
to a system G, if R can be grouped into sets of automata
controllable with respect to G. Thus, in order to check
condition (11), we can try finding index sets I1, . . . , Im′ ⊆
{1, . . . , m}, covering all the automata constituting R, such
that each corresponding subsystem of R is controllable with
respect to G, i.e. such that

‖
i∈Ij

Ri is controllable with respect to G (13)

for each j = 1, . . . , m′, with

m′⋃

j=1

Ij = {1, . . . , m}.

Note that in (13), subsystems G′ of G can be considered
instead of G using (10).

If some requirements from R are known to be controllable
with respect to G, the following result allows us to mod-
ify (11).

Proposition 5: Let K1, K2, L ⊆ Σ∗ be prefix-closed lan-
guages, and let K = K1 ∩K2. Also let Σ′ ⊆ Σ. If K1 is Σ′-
controllable with respect to K2∩L, and K2 is Σ′-controllable
with respect to L, then K is Σ′-controllable with respect to L.

Proof: Let s ∈ KΣ′ ∩L = K1Σ
′ ∩K2Σ

′ ∩L. Since K2

is Σ′-controllable with respect to L, we have K2Σ
′∩L ⊆ K2,

and therefore s ∈ K2. This also implies s ∈ K1Σ
′ ∩ K2 ∩ L.

Since K1 is Σ′-controllable with respect to K2 ∩ L, we also
have K1Σ

′ ∩ K2 ∩ L ⊆ K1, and thus s ∈ K1. So we have
s ∈ K1 ∩ K2 = K, and since s ∈ KΣ′ ∩ L was chosen
arbitrarily, this implies that K is Σ′-controllable with respect
to L.

That is, if one of the requirements of R in (11), for
example Rm, is known to be controllable with respect to G,
(11) can be shown by verifying that

R1 ‖ · · · ‖ Rm−1 is controllable with respect to G ‖ Rm

(14)
which is likely to be simpler than proving (11), because fewer
requirements R1 ‖ · · · ‖ Rm−1 need to be shown to be
controllable with respect to the extended system G ‖ Rm.

While Propositions 3, 4 and 5 above show that given
requirements can be verified to be controllable with respect
to a given system, by verifying requirement subsets to be
controllable with respect to one or more subsystems, we will
now consider the use of subsets of uncontrollable events.

Proposition 6: Let K, L ⊆ Σ∗ be two prefix-closed lan-
guages, and let Σ′, Σ′

1, Σ
′
2 ⊆ Σ be alphabets such that Σ′ =

Σ′
1 ∪ Σ′

2. Then K is Σ′-controllable with respect to L if and
only if K is Σ′

1-controllable and Σ′
2-controllable with respect

to L.
Proof: First let K be Σ′-controllable with respect to L.

We have Σ′
i ⊆ Σ′ for each i ∈ {1, 2}. Since K is Σ′-

controllable with respect to L, this implies KΣ′
i ∩ L ⊆

KΣ′ ∩ L ⊆ K. Therefore, K is Σ′
i-controllable for each

i ∈ {1, 2}.
For the converse implication, let K be Σ′

i-controllable for
each i ∈ {1, 2}. Now let s ∈ KΣ′∩L. Then we have s ∈ KΣ′

and s ∈ L. Since Σ′ = Σ′
1∪Σ′

2, this implies that s ∈ KΣ′
i for

some i ∈ {1, 2}, and s ∈ L. Then we have s ∈ KΣ′
i∩L ⊆ K,

since K is Σ′
i-controllable. Since s ∈ KΣ′ ∩ L was chosen

arbitrarily, this implies KΣ′∩L ⊆ K, i.e. K is Σ′-controllable
with respect to L.

Thus, instead of considering all controllable events at once
and verifying requirements to be controllable with respect to
a given system, we can verify multiple times the requirements
to be controllable, each time considering different subsets of
uncontrollable events. In particular, it is possible to consider
each uncontrollable event on its own. That is, in order to verify
whether

R is {υ1, . . . , υl}-controllable with respect to G (15)

we can equivalently check that

R is {υj}-controllable with respect to G (16)

for each j = 1, . . . , l, i.e. l potentially simpler checks are
carried out, assuming each time all uncontrollable events but
one to be controllable, instead of one single more complex
check, considering all uncontrollable events at once. Note
that Proposition 6 should typically be used together with
Propositions 3, 4, and 5.

C. Synthesis

If both the behavioural inclusion and the controllability
checks fail, (i) the system considered is known not to satisfy
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the requirements of interest, and (ii) its behaviour cannot
be restricted through control to satisfy the corresponding
requirements. Typically, the system will require a redesign.
For this purpose, supervisory control [4] provides a means
to synthesise (when possible) least restrictive and controllable
components in the form of automata which composed with the
original system, guarantee that the composed system satisfies
behavioural inclusion and controllability requirements. Such
synthesised components are sometimes also referred to as
supervisors [4].

Similarly to the results of the above Sections, the following
results show how the modular structure of a system and
requirements composed of several automata can be used for
synthesis purposes.

Proposition 7: Let K1, K2, L ⊆ Σ∗ be prefix-closed lan-
guages, and let K = K1 ∩ K2. Furthermore let

K̂ = supC (K, L),

K̂1 = supC (K1, L),

K̂2 = supC (K2, L).

Then K̂ = K̂1 ∩ K̂2.
Proof: First, we show that K̂ ⊆ K̂1 ∩ K̂2. Note that

K̂ = sup C (K, L) is controllable with respect to L, and K̂ ⊆
K = K1 ∩ K2. The above implies that K̂ ∈ C (Ki, L) for
each i ∈ {1, 2}. Then we have K̂ ⊆ sup C (Ki, L) = K̂i, i.e.
K̂ ⊆ K̂1 ∩ K̂2.

We now show that K̂1∩K̂2 ⊆ K̂. Since K̂i = sup C (Ki, L)
is controllable with respect to L, for each i ∈ {1, 2}, we have
from Proposition 4 that K̂1 ∩ K̂2 is controllable with respect
to L. Furthermore, we have K̂i ⊆ Ki for each i ∈ {1, 2},
and therefore K̂1 ∩ K̂2 ⊆ K1 ∩ K2 = K. Then we have
K̂1 ∩ K̂2 ∈ C (K, L), i.e. K̂1 ∩ K̂2 ⊆ sup C (K, L) = K̂.

Consider a system behaviour G, and a requirements speci-
fication R consisting of several automata, i.e.

R = R1 ‖ · · · ‖ Rm.

Proposition 7 enables us to obtain synthesised compo-
nents R̂j , for each j = 1, . . . , m, such that L(R̂j) =
sup C (L(Rj), L(G)), whose composition is equivalent to the
synthesised least restrictive component R̂ such that L(R̂) =
sup C (L(R), L(G)).

Proposition 8: Let K, L1, L2 ⊆ Σ∗ be prefix-closed lan-
guages, and let L = L1 ∩ L2. Then K̂1 = sup C (K, L1) is
controllable with respect to L.

Proof: By construction of the supremal controllable
language, we have that K̂1 = sup C (K, L1) is controllable
with respect to L1. Then it follows from Proposition 3 that
K̂1 is controllable with respect to L.

Proposition 8 is useful in case the system behaviour G is
specified as the synchronous product of several automata

G = G1 ‖ · · · ‖ Gn.

In this case, we can try synthesising components R̂i, for each
i = 1, . . . , n, such that L(R̂i) = supC (L(R), L(Gi)). If
this fails, i.e. some L(R̂i) is empty, we can try grouping
system behaviours and synthesising supervisors for groups of

subsystems of G. Proposition 8 tells us that the composition
of all supervisors obtained in such a way is again controllable.

However, it is important to note that components which
have been synthesised for a subsystem G′ of G will be least
restrictive for G′, but not necessarily for G itself. Accordingly,
the composition of such components may also not be least
restrictive for G.

Proposition 8 has been extended in [9] to show that the
composition of components synthesised with respect to two
different system behaviours yields a least restrictive supervisor
if the two system behaviours do not share any uncontrollable
events. An alternative proof of the result in [9] is provided
below.

Proposition 9: Let K, L1, L2 ⊆ Σ∗ be prefix-closed lan-
guages, and let L = L1 ∩ L2. Also write K̂ = sup C (K, L)
and K̂1 = sup C (K, L1), and assume that (rel K ∪ relL1) ∩
relL2 ∩ Σu = ∅. Then we have K̂1 ∩ L = K̂ ∩ L.

Proof: First we show that K̂1 ∩ L ⊆ K̂ ∩ L. By
Proposition 8, K̂1 = supC (K, L1) is controllable with respect
to L. Since we also have K̂1 ⊆ K, this implies K̂1 ∈ C (K, L),
and therefore K̂1 ∩ L ⊆ sup C (K, L) ∩ L = K̂ ∩ L.

Next we show that K̂ ∩ L ⊆ K̂1 ∩ L. We write Σu1 =
(rel K ∪ relL1) ∩ Σu. Note that Σu1 is irrelevant for L2. Let
s ∈ K̂ ∩ L. We prove by induction on the length of s that
s ∈ K̂1.

Base case: s = ε. If ε ∈ K̂, then we have Σ∗
u ∩ L ⊆ K̂ by

controllability of K̂. Since Σu1 is irrelevant for L2, we also
have Σ∗

u1 ∩L2 = Σ∗
u1. These facts together imply Σ∗

u1 ∩L1 =
Σ∗

u1∩L1∩L2 = Σ∗
u1∩L ⊆ Σ∗

u∩L ⊆ K̂ ⊆ K. This means that
Σ∗

u ∩L1 ⊆ K because Σu −Σu1 is irrelevant for K. But then
we have s = ε ∈ K̂1, because K̂1 is a supremal controllable
language with respect to K.

Inductive step: s = tσ. Let s ∈ K̂∩L. Then we have t ∈ K̂,
and by inductive assumption also t ∈ K̂1. Since s ∈ K̂, we
also have s Σ∗

u ∩L ⊆ K̂ by controllability of K̂. Since Σu1 is
irrelevant for L2, and s ∈ L2, we also have s Σ∗

u1∩L2 = s Σ∗
u1.

These facts together imply s Σ∗
u1 ∩ L1 = s Σ∗

u1 ∩ L1 ∩ L2 =
s Σ∗

u1∩L ⊆ s Σ∗
u∩L ⊆ K̂ ⊆ K. This means that s Σ∗

u∩L1 ⊆
K because Σu−Σu1 is irrelevant for K. We also have s = tσ
with t ∈ K̂1, and therefore s ∈ K̂1, because K̂1 is a supremal
controllable language with respect to K.

Again, we assume the system behaviour G to be composed
of several automata

G = G1 ‖ · · · ‖ Gn.

In order to apply Proposition 9, we split the index set
{1, . . . , n} into two disjoint sets J1 and J2. In addition, we
require the subsystems

G′ = ‖
i∈J1

Gi and G′′ = ‖
i∈J2

Gi

to be such that the automata constituting G′′ do not have
any relevant uncontrollable events in common with any of
the automata constituting G′, nor with the requirement R.
If this is the case, we can synthesise a component R̂′ such
that L(R̂′) = sup C (L(R), L(G′)). Proposition 9 guarantees
that the behaviour of G composed with R̂′ is identical to the
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behaviour of G composed with the component R̂, such that
L(R̂) = sup C (L(R), L(G)).

In case both the system behaviour G and the requirements R
are specified as the synchronous product of several automata,
we can use Propositions 7 and 9 jointly, by considering
each requirement Rj in turn, applying Proposition 9 finding
for Rj an appropriate subsystem G′

j of G, and synthesising a
component R̂j such that L(R̂j) = sup C (L(Rj), L(G′

j)). The
composed behaviour L(R̂1 ‖ · · · ‖ R̂m) will be the same as
the behaviour L(R̂) = supC (L(R), L(G)).

This approach works well if for each requirement Rj , a
small set of system behaviours constituting the subsystem G′

j

of G can be found. In practice, this is often the case since
system behaviours typically only share few uncontrollable
events. A simple algorithm for finding the smallest set of
system behaviours needed for a given requirement is provided
in [9].

IV. PROOF SEARCH BY COUNTER-EXAMPLES

We have seen in Section III that it is possible to verify
that a system satisfies given behavioural requirements, such as
language inclusion and controllability, by verifying that one or
more subsystems satisfy these requirements. The identification
of suitable subsystems, in an automated fashion, remains one
of the key challenges of such verification approaches.

Verification algorithms, able to determine whether given be-
havioural requirements are satisfied, will also produce counter-
examples showing why the requirements are not satisfied.
Furthermore, such diagnostic information may be used, as is
shown below, to identify suitable subsystems, thereby guiding
an automated proof-search.

A. Incremental Behavioural Inclusion Check

Assume we want to check whether a system G satisfies
some behavioural requirements R, and consider an arbitrary
subsystem G′ of G. If the subsystem G′ satisfies the be-
havioural requirements R, we know by Proposition 1 that the
entire system G also satisfies the requirements R. Otherwise
there must exist a counter-example showing that G′ does not
satisfy R, i.e. there must exist a string

s ∈ L(G′) such that s /∈ L(R).

In this case, we can check whether the remaining compo-
nents of G accept the string s. In particular, we consider in turn
each automaton Gi of G not belonging to the subsystem G′,
and check whether s ∈ L(Gi). Note that checking whether
a string is accepted by a deterministic automaton is a simple
task with complexity bounded in the length of the string: it is
enough to trace a path through the automaton using the string’s
events, starting at the initial state.

If s is accepted by all the automata Gi of G not belonging
to G′, we can immediately conclude that the behavioural
requirement R is not satisfied: we have found a string

s ∈ L(G) such that s /∈ L(R).

Thus, s is a counter-example showing that G does not sat-
isfy R.

b1

f1

r1s1

DW

I

Machine1

s2

f2

b2

r2

I

W D

Machine2

s1

f1

s2
FE

Buffer

r1

b2

r2M1 M2

Repair

Fig. 1. Manufacturing example automata

s1

f2

b1

b2

r1

r2

f1

s2

f2

b1

b2

r1

r2

E F

Buffer

Fig. 2. Manufacturing example—Buffer automaton showing implicit
selfloops for events f2, b1, b2, r1, and r2

Otherwise there must be at least one automaton Gi not
accepting s, i.e.

s /∈ L(Gi).

In this case, we augment the subsystem G′ with the automa-
ton Gi, and check whether

G′ ‖ Gi satisfies R.

Note that augmenting G′ with an automaton Gj accepting s
makes no sense since we already know there exists a counter-
example s ∈ L(G′ ‖ Gj) such that s /∈ L(R).

Accordingly, the subsystem G′ is augmented incrementally
until it is either shown to satisfy the requirements R, or a
counter-example accepted by G is found, showing that G itself
does not satisfy R.

In order to illustrate the above procedure, we consider a
simple manufacturing system consisting of two machines and
a buffer of size one [4]. The system components are modelled
as automata and are shown in Fig. 1. Machine1 is initially in
its idle state I. It may start (s1), entering its working state W.
When working, the machine may finish (f1), returning to its
idle state I, or it may break down (b1) entering its down
state D. It can then be repaired (r1), returning to its idle state I.
Machine2 works in an identical fashion. The two machines
are linked by a buffer of size one, and whenever Machine 1

finishes (f1), it places a workpiece in the buffer, and whenever
Machine2 starts (s2), it removes a workpiece from the buffer.

The automata Buffer and Repair specify the following
behavioural requirements. The buffer must never overflow or
underflow, i.e. Machine1 must never finish operating while a
workpiece is present in the buffer, and Machine 2 must never
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s2

s1

M2M1

AltStart

f2

f1

M1 M2

AltFinish

Fig. 3. Requirements for manufacturing example

start operating unless a workpiece is present in the buffer.
Furthermore, Machine2 has repair and return-to-service pri-
ority over Machine1, i.e. in case both machines are down,
Machine2 must be repaired and returned to service first.

Please recall that, for convenience, automata are shown
without irrelevant events, i.e. the automaton Buffer in Fig. 1
is understood to behave like the automaton in Fig. 2.

We will check whether our manufacturing system

G = Machine1 ‖ Machine2 ‖ Buffer ‖ Repair

satisfies the behavioural requirement AltStart of Fig. 3, spe-
cifying that the two machines always start alternatingly, i.e.
we will check whether

L(Machine1 ‖ Machine2 ‖ Buffer ‖ Repair ) ⊆
L(AltStart).

By Proposition 1, it is enough to find a subsystem G′ of G
satisfying AltStart. We start by considering an automaton able
to generate the set of all finite strings, i.e. we let G′ = GΣ∗ ,
and check whether

Σ∗ ⊆ L(AltStart). (17)

This is easily found not to be the case, producing the counter-
example s2 which is not accepted by AltStart . Note that in
our implementation, the checking of (17) is simply performed
by inspecting the automaton AltStart: we do not construct the
automaton GΣ∗ .

Having obtained the counter-example s2, we check whether
this is a counter-example for the entire system, i.e. we check
whether each of the automata of Fig. 1 accepts the string s2. It
turns out that all automata except Buffer accept s2. Accord-
ingly, we augment G′ with Buffer so that G′ = Buffer , and
check whether

L(Buffer) ⊆ L(AltStart). (18)

This is also not the case, yielding the counter-example f1s2.
Checking whether f1s2 is a counter-example for the entire
system, we find Machine1 not accepting it. Accordingly, we
augment G′ with Machine1 so that G′ = Buffer ‖ Machine1,
now check whether

L(Buffer ‖ Machine1) ⊆ L(AltStart) (19)

and obtain the counter-example s1b1r1s1 accepted by the
entire system G. Accordingly, we conclude that G does not
satisfy the behavioural requirement AltStart. Inspecting the
counter-example s1b1r1s1, we can see that the two machines
cannot be started alternatingly in case Machine1 breaks down,
since the latter will have to be started again.

Note that we only needed to compose two out of four
automata to show that G does not satisfy AltStart, and that
these were identified automatically through the use of counter-
examples.

B. Incremental Controllability Check

Assume we want to check whether

R = R1 ‖ · · · ‖ Rm

is controllable with respect to (20)

G = G1 ‖ · · · ‖ Gn.

According to Proposition 4 it is enough to show all require-
ment automata Ri, i = 1, . . . , m, to be controllable with
respect to the complete system behaviour G, either on their
own or composed with other requirement automata. This can
in turn be simplified considering Proposition 3, and identifying
suitable subsystems G′ of G to be used instead of G. In the
following, let R′ be the composition of several requirement
automata for which we try to prove controllability with respect
to a subsystem G′ of G. Initially, we let R′ = Rj , for some
j = 1, . . . , m.

We start by checking whether R′ is controllable with respect
to the set of all finite strings, i.e. we let G′ = GΣ∗ , and check
whether R′ is controllable with respect to GΣ∗ . If this is the
case, by Proposition 3, R′ is also controllable with respect
to G. Otherwise R′ is found not to be controllable with respect
to G′ = GΣ∗ , yielding a counter-example s. There are now
two possibilities.

(i) We can look for a system automaton Gk, k = 1, . . . , n,
not accepting s. If such an automaton is found, G′ is
augmented with Gk to check whether R′ is controllable
with respect to G′ ‖ Gk. If this is the case, by
Proposition 3, R′ is controllable with respect to G.
Otherwise we obtain a counter-example s showing that
R′ is not controllable with respect to G′ ‖ Gk. Note
that according to Proposition 5, a requirement Rl,
l = 1, . . . , m, controllable with respect to a subsystem
of G and not accepting s could have been used instead
of Gk to augment G′.

(ii) We can look for a requirement automaton Rl, l =
1, . . . , m, not accepting s such that the first event of
s not accepted by Rl is controllable, since requirement
automata cannot disable uncontrollable events but only
controllable events, in contrast to system automata
which can disable both uncontrollable and controllable
events. If such an automaton is found, we augment R′

with Rl and check whether R′ ‖ Rl is controllable with
respect to G′. If this is the case, by Propositions 3 and 4,
R′ ‖ Rl is controllable with respect to G. Otherwise
we obtain a counter-example s showing that R′ ‖ Rl is
not controllable with respect to G′.

Note that in (i) above, if all Gk , k = 1, . . . , n, accept s,
the composed requirements R may still be controllable with
respect to G as described in (ii).

Steps (i) and (ii) above are repeated, augmenting G′ and R′,
until either R′ is shown to be controllable with respect to
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G′, or G′ and R′ can no longer be augmented: a counter-
example s has been found, accepted by the system and
requirement automata G1, . . . , Gn, R1, . . . , Rm, showing R
not to be controllable with respect to G. In case R′ is found to
be controllable with respect to G, the remaining requirement
automata in R − R′ must next be shown to be controllable.

Note that checking R′ to be controllable with respect to
G′ ‖ Gk in (i) is usually easier than checking R′ ‖ Rl to be
controllable with respect to G′ in (ii), since in this case more
requirements (R′ ‖ Rl compared to R′) are considered with
respect to comparatively fewer system automata (G′ compared
to G′ ‖ Gk). Accordingly and if possible, it may be preferable
to select (i) over (ii). We have implemented both, i.e. preferring
(i) over (ii) and not preferring (i) over (ii); the experimental
results are shown in Table III and discussed in Section V-B.

We now consider Proposition 6, which allows us to divide
up the task of proving controllability in simpler subtasks, i.e.
instead of carrying out one check considering the complete
set of uncontrollable events, several checks are carried out
instead, considering subsets of uncontrollable events. Proving
controllability of a requirement with few relevant uncontrol-
lable events will typically require considering few system
components sharing these events. In particular, requirements
with no relevant uncontrollable event are controllable per
definition.

Consider again the small manufacturing example of the
previous Section. We will check whether the automata Buffer

and Repair of Fig. 1, and the automaton AltFinish of
Fig. 3 can actually implement the behaviour they describe.
Recall that the automata Buffer and Repair specify re-
spectively that the buffer must never overflow or underflow,
and that Machine2 has repair and return-to-service priority
over Machine1. The automaton AltFinish specifies that the
two machines must always finish their work alternatingly.
Accordingly, we will check whether

L(Buffer ‖ Repair ‖ AltFinish)

is {b1, b2, f1, f2}-controllable with respect to (21)

L(Machine1 ‖ Machine2).

We consider in turn each requirement Buffer , Repair ,
and AltFinish . First we check whether Buffer is controllable
with respect to G′ = GΣ∗ , i.e. whether

L(Buffer)

is {b1, b2, f1, f2}-controllable with respect to

Σ∗.

This fails, producing the counter-example f1f1, showing that
the Buffer requirement cannot be implemented with G′. We
search for automata not accepting the counter-example f1f1,
and find Machine1.

Note that, although the requirement automaton AltFinish

does not accept f1f1, the first event of f1f1 not accepted by
AltFinish is f1 which is an uncontrollable event. Being a
requirement automaton, AltFinish cannot disable the uncon-
trollable event f1 although it does not accept the string f1f1.
Therefore AltFinish is not considered in order to augment G′.

Accordingly, G′ is augmented with Machine1 in order to
check whether

L(Buffer)

is {b1, b2, f1, f2}-controllable with respect to

L(Machine1).

This check succeeds, showing that Buffer is controllable
with respect to Machine1, and therefore with respect to
Machine1 ‖ Machine2. Similarly, Repair is shown to be
controllable with respect to Machine2, and therefore with
respect to Machine1 ‖ Machine2.

As described above and according to Proposition 5, Buffer

and Repair being controllable with respect to Machine 1 ‖
Machine2, we can now show AltFinish to be controllable
with respect to Machine1 ‖ Machine2 by showing that

L(AltFinish)

is {b1, b2, f1, f2}-controllable with respect to (22)

L(Machine1 ‖ Machine2 ‖ Buffer ‖ Repair ).

First we check AltFinish to be controllable with respect to
G′ = GΣ∗ , obtaining the counter-example f2. Machine2 does
not accept the counter-example f2 and is therefore used to
augment G′ so that G′ = Machine2. Unfortunately, AltFinish

is not controllable with respect to G′, yielding the counter-
example f1f1. Since both Machine1 and Buffer do not accept
the counter-example f1f1, we arbitrarily choose to augment
G′ with Machine1 so that G′ = Machine1 ‖ Machine2, and
check whether

L(AltFinish)

is {b1, b2, f1, f2}-controllable with respect to

L(Machine1 ‖ Machine2)

resulting in the counter-example s2f2. Buffer is the only
automaton not accepting s2f2, and is used to augment G′ so
that G′ = Machine1 ‖ Machine2 ‖ Buffer , in order to check
whether

L(AltFinish)

is {b1, b2, f1, f2}-controllable with respect to

L(Machine1 ‖ Machine2 ‖ Buffer)

producing the new counter-example s1f1s2s1f1 accepted by
Machine1, Machine2, Buffer , and Repair . We conclude that
the requirement AltFinish is not controllable with respect to
Machine1 ‖ Machine2 ‖ Buffer ‖ Repair . Inspecting the
counter-example, we see that that the two machines can finish
in any order, when simultaneously in their working state W.

The above proof-searches are shown in tree form in Fig. 4.
Each node of the tree represents a step of the proof, and
lists the requirement and system automata composed in that
step, together with the counter-example obtained if any. We
note that, in the second step of the controllability proof of
AltFinish , had we selected Buffer instead of Machine 1, then
Machine1 would have been selected in the next step.

The above proof is now simplified using Proposition 6 and
considering one uncontrollable event at a time. Accordingly,
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Fig. 4. Incremental controllability proof-search by component

in order to prove (21), it is enough to check whether

L(Buffer ‖ Repair ‖ AltFinish)

is {σu}-controllable with respect to

L(Machine1 ‖ Machine2),

for each σu ∈ {b1, b2, f1, f2}.

We need to check each of the three requirement automata
to be controllable with respect to Machine1 ‖ Machine2,
each time assuming all uncontrollable events but one to be
controllable. Fortunately, most of these checks turn out to be
trivial. For example, the event b1 is seen to be irrelevant for any
of the requirement automata, automatically implying these to
be {b1}-controllable with respect to Machine1 ‖ Machine2.
Similarly, for σu = b2 only the Repair requirement must be
shown to be {b2}-controllable with respect to Machine1 ‖
Machine2.

The non-trivial proofs are described in tree form in Fig. 5.
Note that the requirement AltFinish is considered twice, once
for σu = f1 and once for σu = f2. Also note that, in the {f1}-
controllability proof of AltFinish , only Machine1 and Buffer

need to be considered. In comparison, recall that Machine 1,
Machine2, and Buffer were needed in the previous proof
considering the complete set of uncontrollable events.

C. Heuristics

The incremental verification algorithms presented in this
paper are guided by counter-examples obtained from failed
analysis attempts to verify that a system satisfies given be-
havioural requirements, by verifying that one or more sub-
systems satisfy the same requirements. Although there may
exist several counter-examples showing why one or more
subsystems do not satisfy the requirements considered, the
implementation presented always uses the first minimal-length
counter-example found. We have not investigated in this work

the use of alternative counter examples, which remains an
interesting question for future research.

Given a counter-example, the incremental verification algo-
rithms presented look for automata not accepting the particular
counter-example to include one or more of these automata in
the next analysis attempt. As seen in the previous Section,
there may be cases in which multiple automata are found not
to accept a particular counter-example. Experience shows that
choosing the right automata may be crucial, and can make the
difference between a quick proof or no proof, i.e. a proof-
search blow-up.

A number of heuristics for selecting automata not accepting
a counter-example of interest are presented below. They have
all been implemented, and thoroughly tested on the industrial
examples of Section V-B.

• All. This heuristic simply selects all the automata not
accepting the counter-example.

• EarlyNotAccept. This heuristic selects the automaton
rejecting the counter-example as early as possible, i.e. the
automaton accepting as little as possible of the counter-
example.

• LateNotAccept. This heuristic selects the automaton
rejecting the counter-example as late as possible, i.e. the
automaton accepting as much as possible of the counter-
example.

• MaxCommonEvents. This heuristic selects the automa-
ton with the maximum number of relevant events in
common with the system considered so far. Recall that
relevant events are defined by (2). An automaton sharing
a large number of relevant events with the system con-
sidered is likely to interact more closely with it, and is
therefore more likely to contribute to the analysis.

• MaxCommonUncontrollables. This heuristic selects the
automaton with the maximum number of relevant uncon-
trollable events in common with the system considered
so far. If two automata have the same number of relevant
uncontrollable events in common, the automaton with
the highest number of relevant controllable events in
common is considered. This heuristic is similar to the
MaxCommonEvents heuristic, but is adapted to con-
trollability checks.

• MinEvents. This heuristic selects the automaton with the
smallest number of relevant events, the motivation being
selecting the simplest automata to construct the smallest
possible synchronous product.

• MinNewEvents. This heuristic selects the automaton
adding the minimum number of additional relevant events
to the set of events of the system considered. This
heuristic is similar to the MaxCommonEvents heuristic,
which looks for an automaton interacting closely with the
system considered.

• MinStates. This heuristic selects the automaton with the
minimum number of states. This heuristic is similar to
the MinEvents heuristic, the idea being constructing the
smallest possible synchronous product.

• MinTransitions. This heuristic selects the automaton with
the minimum number of transitions. This heuristic is
very similar to the MinStates heuristic but considers the
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Fig. 5. Incremental controllability proof-search by component and event

number of transitions instead of the number of states as
a measure of size.

• One. This heuristic simply selects the first automaton
found.

• RelMaxCommonEvents. This heuristic selects the au-
tomaton with the maximum ratio of shared relevant events
with the system considered to the automaton relevant
alphabet. This heuristic is similar to the MaxCommon-
Events strategy, but tries to avoid adding complex au-
tomata with large relevant alphabets, sharing few relevant
events with the system considered. For example, an
automaton with four relevant events, of which two are
shared with the system considered (ratio: 2 to 4), is
preferred to an automaton with twenty relevant events,
sharing five relevant events with the system considered
(ratio: 5 to 20).

As discussed in Section IV-B, it may be preferable, if possi-
ble, to augment subsystems (G′) instead of the compositions of
requirements (R′) when checking controllability. Accordingly,
a further heuristic consists of selecting requirement autom-
ata only in case all system automata are found to accept
the counter-example under consideration. This heuristic has
been implemented in combination with the above heuristics,
resulting in two variations for each, one variation preferring
system automata over requirement automata whenever possi-
ble, the other variation not preferring system automata over
requirement automata.

V. EXPERIMENTAL RESULTS

A scalable transfer line is considered first to (i) compare the
incremental verification approaches presented with straight-
forward state exploration, and (ii) measure the computation
efforts for increasing system complexity. A number of com-
plex industrial applications are considered next to compare
different heuristics, and assess the applicability of incremental
verification to complex industrial examples.

A. Transfer Line Example

A scalable transfer line [5] is considered. It consists of
functional blocks, shown in Fig. 6, which can be combined
into a large, scalable system with regular structure.

Each block i consists of a machine Mi followed by a
test unit TUi, linked by two buffers B1i and B2i. The
machines Mi are a simplified version of the machines of the
manufacturing example of Section IV-A. They can start (si)
and finish (fi) operating. Workpieces can be loaded into the
test unit TUi (ti), which in turn accepts (ai) or rejects (ri)
them. If accepted, a workpiece is released and transferred to
the next block, if rejected it is returned to the buffer B1i for
processing by Mi. The buffer capacities for B1i and B2i are
3 and 1, respectively.

A functional block labelled i, modelled using five automata,
is shown in Fig. 7. The machine and test unit behaviours
are modelled by the automata Machine i and TestUnit

i
. The

behavioural requirements B1Sup1 i, B1Sup2 i, and B2Supi

specify that the two buffers must not underflow and overflow.
A loading unit, used to load work pieces into the first block
of the transfer line, is also shown in Fig. 7, modelled by the
automaton Init .

In spite of appearances, system complexity increases dra-
matically with the number of combined functional blocks. The
total number of reachable states of the synchronous product
can be calculated explicitly to be

(1 + 7
58

√
58)(7 +

√
58)n + (1 − 7

58

√
58)(7 −

√
58)n ≈

1.92 · 14.62n

ri

ai−1 aifisi

B1i Mi B2i TUi

ti

Fig. 6. Functional block for transfer line example
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Fig. 7. Automata for transfer line example

where n is the number of combined functional blocks involved.
Transfer line models with 1 to 1 000 functional blocks were

verified to be controllable using on the one hand, incremental
verification as proposed in Section IV-B, and on the other hand
straightforward state exploration, i.e. building the synchronous
product. Fig. 8 shows the number of states constructed vs. the
number of functional blocks considered.

The synchronous product grows so quickly that it is im-
possible to construct it explicitly for n > 6 combined func-
tional blocks, and symbolically using BDDs [13] for n > 8
combined functional blocks. Incremental verification based
on the LateNotAccept, MaxCommonEvents, or RelMax-
CommonEvents heuristics, handles n = 1 000 combined
functional blocks easily (less than ten minutes of CPU time
on a 600 MHz Pentium III processor with 512 MB of RAM),
the number of states constructed growing linearly.

Further results are shown in Table I comparing the heuris-
tics of Section IV-C. Verification runs were performed for
different numbers n of functional blocks, recording the total
number of states constructed in all proof steps, as well as
the maximum number of automata composed in a single step.
The number of states constructed in a verification step was
limited to 1 000 000, if exceeded the run was aborted, and the
corresponding table entry left blank. No preference was given
to the selection of system automata or requirement automata.

Some heuristics are seen to perform poorly, constructing
more states than the synchronous product. However, most
heuristics succeeded in proving controllability of the entire
system, never composing more than 6 or 8 automata at a time.
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Fig. 8. Evaluation of transfer line example

In summary, we conclude that the incremental verification
approaches presented, while having a worst-case exponential
complexity, can solve some problems in linear time.

B. Industrial Application Examples

The incremental verification approaches presented have
been tested with complex industrial examples and case studies
taken from various application areas such as manufactur-
ing systems, communication protocols, and automotive body-
electronics. All examples considered are listed below, together
with the corresponding automata models, also referred to in
Tables II and III.

• BMW E65 CAS window lift controller [14], [15]:
big cmft kl50, big fh cmftreq1, big manual cmft, big-
cmft reg, big fh cmftreq0, big bmw.

• Case study production cell I [16]: fzelle.
• Case study production cell II [17]: ftechnik, ftechnik-

nocoll.
• PROFIsafe field bus protocol [18]–[20]: profisafe-

i4 host to, profisafe o4 host to, profisafe i4 slave,
profisafe o4 slave, profisafe i4, profisafe o4.

• AIP automated manufacturing system [21]–[23]: rhone-
alps.

• Train testbed [24]: tbed uncont, tbed nocoll, tbed-
noderail, tbed ctct, tbed valid.

• Central locking system (KORSYS project): verriegel4-
vrprop, verriegel4 erprop, verriegel4.

Considering in turn all the heuristics of Section IV-C,
behavioural inclusion checks were carried out for 14 different
behavioural requirements, and all examples were checked to
be controllable. Note that controllability was checked

(i) not preferring system automata over requirement au-
tomata,



12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

TABLE I

EXPERIMENTAL DATA FROM TRANSFER LINE EXAMPLE

Incremental controllability, not preferring system behaviours

All Early Late MaxCommon MaxCommon Min Min Min Min One RelMax
n NotAccept NotAccept Events Uncontr Events NewEvents States Transitions Common

Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States
1 6 114 6 97 6 134 6 97 6 97 6 97 6 97 6 97 6 97 6 97 6 128
2 7 256 11 1787 6 268 6 194 6 194 8 384 11 1787 8 384 11 1787 8 384 6 200
3 7 398 16 26016 6 402 6 291 6 291 8 671 16 26016 8 671 16 26016 8 671 6 272
4 7 540 21 295258 6 536 6 388 6 388 8 958 21 295258 8 958 21 295258 8 958 6 344
5 7 682 6 670 6 485 6 485 8 1245 8 1245 8 1245 6 416
6 7 824 6 804 6 582 6 582 8 1532 8 1532 8 1532 6 488
7 7 966 6 938 6 679 6 679 8 1819 8 1819 8 1819 6 560
8 7 1108 6 1072 6 776 6 776 8 2106 8 2106 8 2106 6 632
9 7 1250 6 1206 6 873 6 873 8 2393 8 2393 8 2393 6 704

10 8 1609 8 1542 6 970 6 970 8 2490 8 2490 8 2490 8 992
20 8 3029 8 2882 6 1940 6 1940 8 5360 8 5360 8 5360 8 1712
30 8 4449 8 4222 6 2910 6 2910 8 8230 8 8230 8 8230 8 2432
40 8 5869 8 5562 6 3880 6 3880 8 11100 8 11100 8 11100 8 3152
50 8 7289 8 6902 6 4850 6 4850 8 13970 8 13970 8 13970 8 3872
60 8 8709 8 8242 6 5820 6 5820 8 16840 8 16840 8 16840 8 4592
70 8 10129 8 9582 6 6790 6 6790 8 19710 8 19710 8 19710 8 5312
80 8 11549 8 10922 6 7760 6 7760 8 22580 8 22580 8 22580 8 6032
90 8 12969 8 12262 6 8730 6 8730 8 25450 8 25450 8 25450 8 6752

100 8 14606 8 13804 6 9700 6 9700 8 28130 8 28130 8 28130 8 7688
200 8 28806 8 27204 6 19400 6 19400 8 56830 8 56830 8 56830 8 14888
500 8 71406 8 67404 6 48500 6 48500 8 142930 8 142930 8 142930 8 36488

1000 8 142623 8 134606 6 97000 6 97000 8 286240 8 286240 8 286240 8 72704

Aut is the maximum number of automata composed in a single step; States is the total number of states constructed in all steps together.

(ii) preferring system automata over requirement automata,
and

(iii) considering uncontrollable events one at a time and not
preferring system automata over requirement automata.

The results of all test runs are shown in Tables II and III.
The first two columns list the model name and the number of
automata for each model. The subsequent column pairs list for
each heuristic and all examples, the maximum number of au-
tomata composed, and the total number of states constructed.
Each Table is split into two blocks: the examples above
the horizontal line satisfy the property considered (language
inclusion or controllability), whereas the examples below the
horizontal line do not satisfy the property considered.

The number of states constructed in a single verification step
was limited to 2 000 000, if exceeded the run was aborted,
and the corresponding table entry left blank. This number
was chosen small to keep the test run-times reasonably short,
increasing it was seen to have no impact on the test results.

In spite of the complexity of the models, these could all be
shown to satisfy or not to satisfy behavioural inclusion and
controllability, requiring less than ten minutes of CPU time
using a 600 MHz Pentium III processor with 512 MB of RAM.
This amount of memory is enough to explicitly construct state
spaces with approximately 107 reachable states. Note that all
the examples considered have state spaces in excess of 107

reachable states, which could not be constructed explicitly.
Fig. 9 and 10 respectively summarise the data from Tables II

and III. They show the total number of automata constituting
the model being checked versus the maximum number of
automata used by the incremental verification algorithms pre-
sented. Note that for each model, only the maximum number
of automata, used by successful heuristics with the minimum
use of automata, is shown. Note that in Fig. 10 for each
model, the data points, corresponding to the three alternative

controllability checks considered, are connected by a vertical
line.

The maximum number of automata used by incremental
verification is seen to remain constant as the total number of
automata constituting the model increases. This is particularly
the case in Fig. 9. In comparison, straightforward state explo-
ration requires using all the automata constituting the model
being checked.

From Fig. 10, we can see that preferring system automata
over requirements automata does not usually bring the ex-
pected gain in performance, although it can sometimes help
as seen in Table III. Closer investigation of the models for
which preferring system automata over requirements automata
did not help, showed that the corresponding requirements
could only be shown to be controllable if combined together.
Furthermore, Fig. 10 suggests that checking controllability one
uncontrollable event at a time typically reduces the maximum
number of automata used. Nevertheless, inspection of Table III
shows this approach does not perform much better than the
other approaches presented, typically requiring more checks to
be carried out, thereby increasing the chances of failed proof-
searches.

Closer inspection of Tables II and III reveals further in-
sights into the behaviour of the different heuristics. The
MaxCommonEvents heuristic, not preferring system be-
haviours, can be seen to be the only consistently success-
ful heuristic, but not necessarily the most efficient, some-
times constructing more states than for example the Max-
CommonUncontrollables heuristic for controllability. The
heuristics EarlyNotAccept and LateNotAccept outperform
MaxCommonEvents in some cases. In contrast, the heuristics
MinEvents, MinStates, and MinTransitions which select
automata according to a measure of size, are seen to perform
poorly; apparently size is not a good criterion when selecting
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TABLE II

EXPERIMENTAL DATA FROM INDUSTRIAL EXAMPLES: INCREMENTAL BEHAVIOURAL INCLUSION CHECK

Behavioural inclusion

Model All Early Late MaxCommon Min Min Min Min One RelMax
NotAccept NotAccept Events Events NewEvents States Transitions Common

Name Aut Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States
big cmft kl50 32 7 753 6 118 5 77 9 1669 8 3868 8 1309 5 53 6 118 7 3305 6 432
big fh cmftreq1 32 3 23 2 7 2 7 2 7 4 52 9 2684 2 7 2 7 4 52 4 52
big manual cmft 32 7 765 11 6323 4 40 5 60 7 438 11 8789 3 13 4 40 7 1178 7 438
ftechnik nocoll 42 30 271242 10 4309 13 2666552
profisafe i4 host to 76 10 419 12 13571 11 2409 20 277605 15 77038 15 41148
profisafe i4 slave 76 14 24612 18 475262 11 4450 12 11496 16 36377 18 274723 17 64953 18 454711 12 12635
profisafe o4 host to 85 10 436 12 13575 11 2454 20 277160 15 77044 15 40899
profisafe o4 slave 85 12 2907 11 1690 11 10611 22 1079247 12 17662
tbed nocoll 109 21 5144173 11 335791
tbed noderail 96 6 112 9 3287 24 8395939 6 623 11 4273 7 1245
verriegel4 vrprop 66 9 34326 8 23709 8 23709 8 22614 8 23709 8 23709 7 11000 8 23709 7 11000 8 23709
big cmft req 32 7 1465 7 1548 7 1572 7 1548 7 1572 7 1385 7 1572 7 1572 7 1548 7 1572
big fh cmftreq0 32 9 2296 9 3584 10 5809 9 3851 9 3851 11 6261 11 6276 9 3894 9 4715 9 3851
verriegel4 erprop 66 7 538 7 759 7 759 7 759 10 1716 10 1716 7 759 7 759 10 1571 7 700

TABLE III

EXPERIMENTAL DATA FROM INDUSTRIAL EXAMPLES: INCREMENTAL CONTROLLABILITY CHECK

Incremental controllability, not preferring system behaviours

Model All Early Late MaxCommon MaxCommon Min Min Min One RelMax
NotAccept NotAccept Events Uncontr NewEvents States Transitions Common

Name Aut Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States
big bmw 31 7 1096 4 190 4 190 6 411 4 223 7 1281 4 190 4 190 4 190 9 5219
fzelle 67 9 7793 13 18385 7 5366 5 4072 5 4072 14 7101 13 8990 13 8732 11 4901 8 3394
profisafe i4 75 6 688 3 351 5 245 3 155 5 160 4 369 5 244 5 245 5 160 3 224
profisafe o4 84 6 691 3 354 5 248 3 158 5 163 4 372 5 247 5 248 5 163 3 227
rhone alps 35 11 224616 15 1035198 9 16021 11 224838 10 16432 9 16063 6 903 6 903 6 955 13 1037531
tbed ctct 84 10 119934 7 29092 5 18522 5 18522 12 3557956
tbed valid 84 26 609040 30 3733989
verriegel4 65 10 32027 6 655 9 23142 6 1730 9 19103 7 7859 7 7859 13 75704 7 2956
ftechnik 36 23 159118 10 9879 3 221 3 221 3 221 20 6557213 20 6571455 20 4547036 6 683
tbed uncont 58 44 821906 40 310893 44 5772225 47 2158804 46 1536444 49 999512

Incremental controllability, preferring system behaviours

Model All Early Late MaxCommon MaxCommon Min Min Min One RelMax
NotAccept NotAccept Events Uncontr NewEvents States Transitions Common

Name Aut Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States
big bmw 31 5 346 4 190 4 190 4 223 4 223 5 339 4 190 4 190 4 190 7 1110
fzelle 67 13 9711 11 9733 13 7799 10 6316 11 6826 13 7882 13 8990 13 8732 11 4901 13 5658
profisafe i4 75 6 688 3 351 5 245 3 155 5 160 4 369 5 244 5 245 5 160 3 224
profisafe o4 84 6 691 3 354 5 248 3 158 5 163 4 372 5 247 5 248 5 163 3 227
rhone alps 35 11 224614 6 903 9 16021 8 8367 8 8333 9 16063 6 903 6 903 6 955 10 37030
tbed ctct 84 10 119934 7 29092 5 18522 5 18522 12 3557956
tbed valid 84
verriegel4 65 12 1227894 10 31666 7 7859 7 9454 7 8956 11 42931 7 7859 7 7859 13 75704 8 16605
ftechnik 36 23 1089179 19 2376834 20 6568826 17 3428725 17 3429005 20 6783622 20 6557213 20 6571455 20 4547036 20 5854300
tbed uncont 58 45 281589 48 6517643 46 1536444

Incremental controllability, considering one event at a time

Model All Early Late MaxCommon MaxCommon Min Min Min One RelMax
NotAccept NotAccept Events Uncontr NewEvents States Transitions Common

Name Aut Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States Aut States
big bmw 31 7 1410 4 571 4 565 6 757 6 757 7 1940 4 571 4 571 4 571 9 5918
fzelle 67 10 7743 12 63838 7 5480 4 3771 4 3839 15 82276 14 65032 14 67070 14 98735 6 3008
profisafe i4 75 7 48518 4 11287 3 3923 5 3945 8 46523 6 58483 4 8956
profisafe o4 84 7 48508 4 11457 3 4093 5 4115 11 3768020 9 63453 6 58653 4 9126
rhone alps 35 7 11572 8 30651 5 1951 6 4763 4 952 8 31748 8 31724 8 31473 8 31702 4 1112
tbed ctct 84 9 69909 7 43248 4 5641 3 2992
tbed valid 84 10 315204 15 820620
verriegel4 65 11 2179279 8 35151 4 893 9 30342 6 2260 7 15855 7 15375 7 15353 8 35376 4 861
ftechnik 36 8 216267 12 3116021 13 883573
tbed uncont 58 37 6311478 39 4348353 39 4356942
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Fig. 9. Number of automata used in incremental behavioural inclusion check

an automaton on the basis of counter-examples acceptance.
For all the examples considered, we either obtained a proof

(positive or negative) in a few minutes of CPU time with
a certain upper-limit, or this upper-limit was exceeded and
the proof-search failed. This suggests that, to maximise the
chances of obtaining a proof, it may make sense not to focus
on one heuristic in particular, but to consider several heuristics,
letting each run up to an empirical time upper-limit.

In summary, the incremental verification approaches pre-
sented were seen to be successful in checking behavioural in-
clusion and controllability for a number of complex industrial
examples and case studies.

VI. CONCLUSIONS

This article presented new approaches to system verifica-
tion and synthesis based on subsystem verification and the
combined use of counter-examples and heuristics to identify
suitable subsystems incrementally, thereby bringing about im-
portant computational advantages.

The scope of safety properties considered was limited in
this article to behavioural inclusion and controllability.

The examples considered provided a comparison of the
approaches presented with straightforward state exploration,
and an understanding of their applicability in an industrial
context. While having a worst-case exponential complexity,
these were shown to have the potential of solving some
problems in linear time, and were shown to be successful
in checking behavioural inclusion and controllability for a
number of complex industrial applications.

Two areas for future work have been identified: (i) the
extension of the approaches presented to discrete event system
synthesis, and in particular to the development of automatic
incremental synthesis procedures, and (ii) the investigation of
alternative subsystem selection heuristics in combination with
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Fig. 10. Number of automata used in incremental controllability check

state-space reduction techniques, such as symbolic represen-
tations or partial-order reduction.
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