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Using Boundary Conditions for Estimation of Complex Modulus
From Flexural Wave Experiments

Kaushik Mahata, Saed Mousavi, Torsten Söderström, and Urmas Valdek

Abstract—Estimation of the complex Young’s modulus from
transverse wave experiment is considered in this brief. The main
goal is to modify the usual least squares estimate so that additional
information provided by the boundary conditions can be incor-
porated in the estimation algorithm. As a result, it is required to
solve a constrained nonlinear least squares problem instead of
an unconstrained one. The analytical results are validated using
experimental data, where the modified estimates outperform the
conventional nonlinear least squares estimate by a significant
margin.

Index Terms—Boundary condition, complex modulus, flexural
waves, identification, nonlinear least squares, regularization, visco-
elasticity.

I. INTRODUCTION

FOR a linearly viscoelastic material, the stress at time
instant depends upon the entire deformation history and

the relation between the stress and the strain can be expressed
as

(1)

where is the relaxation modulus and is the time deriva-
tive of the strain [1], [2]. The convolution relationship in
the time domain is equivalently expressed as a multiplication in
frequency domain

(2)

where and are the Fourier transforms of and
, respectively.1 The complex valued frequency dependent

quantity

(3)
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1In some literature �̂(!) is used to denote the frequency domain function
associated to the time domain function �(t). However, it is another common
practice to use x̂ to denote an estimate of x. Hence, to maintain clarity of nota-
tions we use � (!), etc, to denote the Fourier transform of �(t) etc.

Fig. 1. Transversal wave experimental set up.

is commonly known as the complex Young’s modulus. Since
is a real valued causal function of , the real part of is an

even function of and the imaginary part is an odd function of
[3]. Although the model descriptions (1) and (2) are equivalent,
the frequency domain representation (2) is more convenient to
use when short time data (frequency range of interest is above
10 Hz) are employed to characterize the dynamic behavior of
a viscoelastic material. This brief concerns the determination
of complex Young’s modulus from flexural wave propagation
experiments. Such an experiment is useful when the frequencies
of interest are between 10 Hz and 1 kHz.

The experimental setup is described in Fig. 1. A beam is
mounted vertically, and is clamped at the top. It is supported
by a roller support which prohibits any rigid body motion in
the horizontal direction. The specimen is impacted laterally by
a pendulum released from a given height (larger the height,
more is the impulsive force) giving rise to flexural waves trav-
elling along the bar. The strains due to the wave propagation
are registered using strain gauges at sections within the
beam segment under consideration. The measured signal is pro-
portional to the bending moment at the measurement section.
The analog strain data are passed through an anti-aliasing filter
and discretized. The discretized data are subjected to discrete
Fourier transform (DFT) to get a frequency-domain description
[3]. A nonparametric identification of the complex modulus is
carried out for each frequency. Similar approaches for evalu-
ating material parameters can also be found in [4]–[6].
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In [4] and [6], the problem of estimating the complex mod-
ulus from flexural wave propagation experiments was consid-
ered, where a variable projection problem was solved to com-
pute the complex modulus. The primary aim in this work is to
incorporate the additional information hidden in the boundary
conditions in the estimation process. As a result we must solve
a constrained variable projection problem. Incorporation of the
additional information brings in significant improvement in the
estimation accuracy [7]. This can also be interpreted as a regu-
larization procedure. The estimation accuracy will also be quan-
tified in terms of the variance of the estimates. Here we start with
a brief review of flexural wave dynamics in Section II. Next, we
describe the conventional nonlinear least squares estimation of
the complex modulus from flexural wave propagation experi-
ments in Section III. Then the algorithm will be modified using
the knowledge of the boundary conditions in Section IV. A sta-
tistical analysis of the estimation accuracy will also be presented
in this section. The analytical results will be validated through
experimental study in Section V. We conclude in Section VI.

II. TRANSVERSE WAVES IN A BEAM

In a beam propagated by transverse waves, the bending mo-
ment and the shear force at any section and
time are related to the rotational velocity, , and the time
derivative of the center-line deflection, [4], [8]. These
quantities constitute the state vector

(4)

The dynamics of the state vector are more conveniently ex-
pressed in the frequency domain, where the convolutions are
transformed to multiplication and the underlying partial differ-
ential equations are transformed to ordinary differential equa-
tions. We shall consider the Timoshenko beam theory.2 Here we
omit the details and state the frequency domain relationships
straightaway. Let the beam have a cross-sectional area , den-
sity and complex Young’s modulus . In the frequency do-
main, the state vector follows a system of ordinary differential
equations in [4] given by

(5)

(6)

(7)

(8)

where the first-order derivative of a function with respect to
is denoted by . The second-order derivative with respect to
is denoted by , and so on. Note that, we have introduced

(9)

where is the frequency dependent Poisson’s ratio and
is a dimensionless quantity. The value of depends upon the
cross-sectional geometry [4] of the beam. We have 0.9
for a circular cross section. The relations (5)–(8) constitute a

2Another and more simplified theory is well known as the Euler–Bernoulli
beam theory [8].

first-order system of ordinary differential equations of dimen-
sion four. The characteristic equation for this system is given by
[4]

(10)

where

(11)

(12)

It is readily verified that the roots of the (10) satisfy

(13)

(14)

which are commonly known as the wave propagation functions.
As a consequence the general solution to the bending moment

is given by

(15)

The quantities and depend upon the
boundary conditions. Note that is composed of the
contributions of two different waves corresponding to the prop-
agation functions and .

III. LEAST SQUARES ESTIMATION

As a first step of least squares estimation, a low rank signal
model is constructed using the physics of wave propagation
described in Section II. The frequency domain measurement

at section and frequency is given by

(16)

where is the true strain proportional to the bending
moment . The contribution of the measurement noise
is given by . The strain is measured at sections
for , where . Introduce

(17)

(18)

(19)

It is also important to characterize the statistical properties of
the measurement noise in frequency domain. Assume that the
noise sequence at the sensors are independent and identically
distributed and the spectral density of the distribution exists at
each frequency . Denote the spectral density at frequency
by . Assume also that the number of data samples (at each
sensor) in time domain is large. Then it can be shown that
[6], [9], [10] is asymptotically3 complex Gaussian
distributed with a covariance matrix , where denotes the
identity matrix of order , so that

(20)

3We emphasize that N ! 1 is not a strong assumption. In a practical ex-
perimental scenario, the value ofN is typically 2 . For such high values ofN
the result can be assumed to be true for all practical purposes.
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for every discrete frequency . Note that we use to denote
the mathematical expectation operator. Furthermore, the expres-
sions (20) hold for any finite if the noise sequences are tempo-
rally white. Using (15), (17) we can write the true strain vector

as

(21)

where

...
...

...
...

(22)

is a matrix and is a 4 1 vector given by

(23)

and is the proportionality constant between and
. The expression (21) can now be combined with (19)

to get

(24)

In (24) we see that the noise-free part of always lies in the
subspace spanned by the columns of for all . This
provides us with a low rank signal model, which can be ex-
ploited for the estimation purpose. One way to do so is to use
the least squares estimate [6]

(25)

where

(26)
is the projection operator onto the nullspace of .
The basic idea is to project the measurement vector onto the
nullspace of and tune to minimize the length of
the projection. Note that in absence of any more information
the estimate (25) can be shown to be the maximum likelihood
estimate. A statistical analysis of this estimator was presented
in [6]. The main problem with this estimator is the fact that the
optimization problem can often be ill-conditioned. During the
evaluation of the loss function in (25) numerical problems are
encountered quite often. This problem can be solved to a large
extent by using a regularization method suggested in [6], where
individual columns of are appropriately scaled to get
a numerically well-conditioned matrix. The method described
in the following section can also be seen as a regularization
to the optimization problem. In this case, additional relations
due to boundary conditions are used to improve the numerical
properties of the algorithm.

IV. USING THE BOUNDARY CONDITIONS

During the experiment design it is sometimes possible to set
up the experiment such that one of the boundaries of the beam
segment under consideration can be set free. For different types
of supports, clamping, pinning or roller for example, there exist

ideal boundary conditions [8], but it is very difficult to realize
these ideal conditions in practice. However, the free boundary
condition can be realized in laboratory experiments, if proper
precaution is taken. The setup depicted in Fig. 1 has been de-
signed specially such that the lower end Y is set free. The upper
boundary X is supported through a roller support. As mentioned
earlier, it is not advisable to use the ideal boundary conditions
for the upper end, since these are not realizable exactly. How-
ever, a free boundary Y can be used. Let us set 0 at the free
end Y, we have

(27)

where and denote the bending moment and shear
force at section and time . Recall that the measured signal
for a flexural wave experiment is proportional to the bending
moment. Thus, from the first boundary condition on the bending
moment we get from (15)

(28)

To examine the second condition of (27) it is required to express
the shear force in terms of . In what follows
next, we shall omit the arguments of the variables for simplicity.
First we shall eliminate and from (5), (7) and (8). Differ-
entiating (7) with respect to and combining with (8) we get

(29)

where we have used (5) and

(30)

Eliminating from (6) and (7) one gets

(31)

Now, we eliminate from (29) and (31). We differentiate (29)
with respect to and subtract from (31). We have

(32)

which we write as

(33)

Using the second boundary condition in (27) we get from (33)

(34)

Recall that the strain is directly proportional to the
bending moment . Therefore, using (34) and (30) it fol-
lows that:

(35)
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Fig. 2. Mean value of the estimated complex modulus E as a function of frequency.

After a few steps of straightforward calculations using (15) and
(35) we get

(36)

From the previous discussion, we can see that the linear con-
straint on originating from the boundary conditions can be
put in the following general form:

(37)

where is a 2 4 matrix. From (28) and (36), we have

(38)

Therefore, in order to take the boundary conditions in account,
we should solve the optimization problem (25) subject to the
constraint (37). To solve the optimization (25) subject to (37)
we need at least three measurement sections compared to five
sections for the unconstrained problem. This is because of the
two additional relationships which are available from the free
boundary conditions.

Note from the constraint (37) that belongs to the
nullspace of . Therefore, it is of interest to parameterize
the nullspace of . That would mean that we need to
construct a 4 2 matrix such that

(39)

Hence, from (37) we see that belongs to the column space of
. This means that there exists a 2 1 vector such that

(40)

Note that is not unique, and therefore depends upon
the choice of . One possible choice of is given by

(41)

for which we can readily verify (39). Now using (40) we can
rewrite the constrained optimization problem in a more con-
venient form. Using (40) in (25) we see that the constrained
problem can be reduced to an equivalent unconstrained problem
where a modified estimate is obtained

(42)

where

(43)

The accuracy of the parameter estimates improves signifi-
cantly when boundary conditions are employed in the estima-
tion process. They can be seen as extra noise-free measurements
[11]. These boundary conditions bring in more precise informa-
tion regarding the nuisance parameter that it is orthogonal to
the space spanned by the columns of . Hence, the dimen-
sion of the search space is reduced by two. As a result, in (42)
we minimize the orthogonal projection of onto a subspace
of dimension compared to in (25). This increase
makes the modified algorithm more robust to the additive noise
compared to the case when the constraints are not used. This
can also be seen as a regularization to the original numerically
ill-conditioned problem, which improves the conditioning of the
problem.

Next, we give the expressions for the covariance matrices of
the estimates. Introduce

(44)
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Fig. 3. Analytical S.D. and experimental S.D. of the estimated complex modulus. (a), (b) Comparison between the analytical and the experimental S.D. of
the unconstrained estimate of the complex modulus E . (c) Zoomed version of (b). (d), (e) Comparison between the experimental S.D. of the constrained and
unconstrained estimates. (f) Comparison between the analytical and the experimental S.D. of the imaginary part of the constrained estimate.

(45)

(46)

Then it was shown in [6] that is complex Gaussian with
variance

(47)
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Furthermore, it has been shown in [12] that the constrained es-
timate is also complex Gaussian with variance

(48)

Regarding the relative quality of the estimates and it was
also shown in [12] that

(49)

In fact, (49) is valid even if the noise at different sensors are
correlated to each other [12].

V. EXPERIMENTAL RESULTS

The analytical results were applied to experimental data,
where a polypropylene beam specimen of length 1.5 m with
uniform circular cross section was considered. The density
of polypropelene is 915 and the Poisson’s ratio is
0.33 [13]. The recorded analog strain signals were sampled at
20 kHz, i.e., the corresponding value of the sampling interval

s. The positions of the sensors were taken as

(50)

where the coordinates are expressed in meters. The number of
samples collected from each channel was . With this
choice of we can use the computationally efficient radix-2
fast Fourier transform (FFT) algorithm [3] to compute DFT.
With these values of and we have a resolution of 0.611
Hz in the frequency domain. At the beginning of each interval of
measurement, the tested beam was at rest, and at the end the sig-
nals were reduced almost to the level of the noise. This ensures
that the signals could be transferred to the frequency domain by
the FFT algorithm without the use of any window technique.

The experiment was repeated ten times to obtain ten statisti-
cally independent data sets. The results of the identification is
plotted in Fig. 2, where the variation of the real part and the
imaginary part of the estimated complex modulus, each as a
function of frequency, are shown. The results given in Fig. 2(a)
were obtained when the boundary conditions were not used in
the estimation algorithm. When the boundary conditions at the
free end were used, the results shown in Fig. 2(b) were obtained.
In each case, the value of the complex modulus at each fre-
quency was obtained by averaging the results of ten independent
experiments. As can be seen in Fig. 2, the use of the free end
boundary conditions leads to improved estimates, in the sense
that there is a significant noise reduction in the estimates. This is
due to two reasons. First, unlike the estimates in Fig. 2(a), the es-
timates in Fig. 2(b) do not suffer from numerical problems [see
for example the noisy estimates around 500 Hz in Fig. 2(a)].
Second, the standard deviations of the estimates in Fig. 2(b) are
significantly smaller than those in Fig. 2(a).

In order to check the validity of the expression given by (47),
the analytical standard deviation was compared with the sample
standard deviation obtained from the ten independent experi-
ments. The result of such a comparison is shown in Fig. 3(a)
(b). Note that the noise spectral density is unknown. If the
noise is white, the analytical variance (47) obtained using an ar-
bitrary value of the noise variance is directly proportional to the
actual variance of the estimates, which should be reflected as a
constant difference in a semilog scale. The value of used in
the calculation of the analytical variance (47) is
for all . It can be seen in Fig. 3(a) and (b) that the theoretical
prediction using (47) is very well in accordance with the results
obtained from the experiments. Let us now focus on the results
in Fig. 3(c), where we have shown a zoomed version of Fig. 3(b).
A close inspection reveals that the analytical standard deviation
is significantly low in comparison to the experimental standard
deviation at frequencies which are close to 50, 100, 150, and
250 Hz. This proves the presence of strong 50 Hz power line in-
terference. Next, we compare the standard deviation of the con-
strained estimate (which uses the boundary conditions at the free
end) with the standard deviation of the unconstrained estimate
in Fig. 3(d) and (e). In Fig. 3(d), we have compared the standard
deviations of the real parts of the complex modulus estimates. A
similar comparison for the imaginary part is shown in Fig. 3(e).
Here we see that the constrained estimate always outperforms
the unconstrained estimate. The validity of the expression (48)
is checked in Fig. 3(f), where the experimental standard devia-
tion of the imaginary part of the constrained complex modulus
estimate is compared with the analytically predicted standard
deviation.4 It can be seen that the experimental standard devi-
ation is very well in accordance with the analytical prediction.
Finally, in Fig. 3(a), (b), (d), and (e) we see that the standard de-
viation of the estimates increases rapidly with frequency. This
indicates that the excitation at the higher frequencies is not of
sufficient magnitude, and must be improved in order to obtain
better estimates at higher frequencies.

VI. CONCLUSION

In this brief we have considered the estimation of complex
Young’s modulus from transverse wave experiment. The main
goal has been to modify the usual least squares estimate so that
additional information provided by the boundary conditions can
be incorporated in the estimation algorithm. Special precautions
must be taken in designing the experiment so that one boundary
can be set free. The main idea presented here is to exploit two
additional relationships provided by the boundary conditions
at the free boundary. As a result, it is required to solve a con-
strained least squares problem instead of an unconstrained least
squares problem. We have shown that the resulting constrained
least squares problem can be reduced to an equivalent uncon-
strained variable projection problem. The resulting estimates
are significantly better than the conventional least squares esti-
mate. The expressions for the variances of the estimates are also
given. All analytical results are validated using experimental
data. The constrained least squares estimate outperforms the un-
constrained estimate by a significant margin.

4It was not possible to compute the analytical standard deviation of the con-
strained estimate accurately for the whole frequency range due to numerical
problems. Therefore, a part of the frequency range is considered in Fig. 3(f).
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