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Abstract— This paper presents a method to design efficient
automatic controllers for an irrigation canal pool, that realize
a compromise between the water resource management and the
performance in terms of rejecting unmeasured perturbations.
This mixed controller design is casted into theH∞ optimization
framework, and experimentally tested on a real canal located
in Portugal. The experimental results show the effectiveness of
the method. We also interpret classical control politics for an
irrigation canal (local upstream and distant downstream control)
using automatic control tools, and show that our method enables
to combine both classical politics, keeping the distant downstream
control water management while recovering the local upstream
control real-time performance with respect to the user.

I. I NTRODUCTION

Water demand for irrigation purposes is an increasingly im-
portant issue worldwide. In a situation of possible conflicting
water uses, it is necessary to better manage the water resource.

Most of the existing irrigation canals are operated manually
using upstream control [2]. In this case, the downstream
hydraulic structure of a pool is used to control the water level
located just upstream. Such a control method imposes many
constraints to the user, since water is distributed according to a
pre-specified schedule (the so-called “water turns”). Also, the
discharge is imposed from upstream, and cannot be changed
according to the effective demand. This leads to a possible
spillage of water.

The main research line to improve this management has
been to use automatic control to implement distant down-
stream control [31]. In that case, the upstream hydraulic
structure of a pool is used to control the downstream water
level of the pool. The upstream discharge therefore adapts to
the water demand, and may not use more water than necessary.

It should be noticed that these two main classical control
politics for irrigation canals (local upstream control and dis-
tant downstream control) lead to completely opposed water
management rules. As will be developed in the following, the
distant downstream control is parsimonious from the water
management point of view, but has a low performance with
respect to the water user. Indeed, the water released upstream
of the pool is directly linked to a downstream water demand,
but the time delay of the pool necessary implies that the user
will have to wait for some time before his demand is satisfied.
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On the opposite, the local upstream control politic is water
consuming, but leads to a very good performance with respect
to the user. In this case, the water demand in a pool is
satisfied by reducing the discharge flowing downstream. This
implies that there is enough water available and that the user
has an instantaneous access to the water resource. The local
upstream control politic has a high performance from the
water user point of view, but is very water consuming since
water demands are time-varying, and a large amount of water
entering the system is lost at the downstream end without
being used.

The main issue at stake for irrigation canal control is there-
fore a better trade-off between water resource management
and performance with respect to water users. Local upstream
and distant downstream control can be viewed as solutions to
one of the two design specifications. We show in this paper
that the limits of these controllers are linked to their specific
structures. Indeed, these are monovariable controllers that can
be easily tuned using classical control design techniques.

Irrigation canals are usually made of multiple pools. The
problem of controlling multiple pools can be considered in a
decentralized control framework: controllers are first designed
for a single pool, then feedforward filters are used to take into
account canal pool interactions [11], [29]. It can be shown
that the obtained multivariable controller inherits the stability
and robustness properties of the controllers of each pool. We
therefore focus on the design of controller for a single canal
pool, which already provides an interesting challenge.

The objective of this paper is to show that enlarging the
class of possible controllers for a canal pool, one may dra-
matically improve the trade-off water management/real-time
performance with respect to water users. This improvement is
made possible by the use ofH∞ control tools which appear
very useful to design a performing multivariable controller
with guaranteed robustness margins. Such a design method
gives to the manager a tool to balance the trade-off by using
the multivariable feature of the controller.

This approach is new compared to classical control methods
for irrigation canals (see [9] for a recent overview). Most ap-
proaches use classical control methods based on a linear model
[1], [24], [25], [28], [21], some of them use robust control
methods taking into account the uncertainties [29], [19], [20],
[26], [22], [23]. The distributed feature of the irrigation canal
has been taken into account by a semi-group approach [33],
or a Lyapunov approach [5], [6]. In these works, the control
specifications are usually expressed in terms of controlling
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the downstream water level of the canal pools. The water
withdrawals from water users are considered as unmeasured
and unknown perturbations that occur at the downstream end
of the canal. But the water resource management is seldom
considered for the control design.

Our approach explicitly considers the trade-off between
water resource management and performance with respect to
water users. The proposed design method is evaluated on
an experimental canal equipped with traditional motorized
hydraulic structures (gates and weir), to show its applicability
and robustness.

The paper is structured as follows: the model based on
Saint-Venant equations is first presented, then classical control
structures are interpreted as particular cases of a multivariable
control structure. AH∞ control structure is then proposed, that
uses both control action variables to design a multivariable
controller, able to make a compromise between real-time
performance and water management. The methodology is then
validated on a real canal located in Portugal.

II. EXPERIMENTAL CANAL DESCRIPTION

The automatic canal used in the present study is a compo-
nent of the experimental facility of the Hydraulics and Canal
Control Center of the University of Évora (Portugal).

reservoir

u1 = q(0, t)

u2

-
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y(X, t)

6
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Fig. 1. Schematic representation of the canal

The experimental canal is a trapezoidal and lined canal, with
a general cross section of bottom width 0.15 m, sides slope
1:0.15 (V:H) and depth 0.90 m. The overall canal is 145.5
m long and the average longitudinal bottom slope is about
1.5× 10−3. The design flow is 0.09 m3s−1.

Y0

-¾
T0

P0

6K ¸

Fig. 2. Section of a trapezoidal canal

There is an offtakep at the downstream end of the pool of
the orifice type with additional external pipe, equipped with
an electromagnetic flowmeter and a motorized butterfly valve.

In order to enable the digital control in real time, a water
level sensor is installed within an offline stilling well, at the
downstream end of the pool. The sensor is of float and counter-
weight type attached by a stainless steel tape; this tape runs

over a sprocket wheel. The wheel movements are transmitted
to a potentiometer that transmits to the controller the analog
inputs correspondent to the water surface.

The canal inlet is equipped with a motorized flow control
valve, that delivers a dischargeu1 with the use of a local
slave controller (the level in the upstream reservoir is also
regulated using pumps). The downstream end of the canal pool
is controlled with a rectangular sluice gateu2 (overshot gate).

All the numerical and experimental results presented in the
paper are based on this canal.

III. M ODELLING OF AN IRRIGATION CANAL

We present in this section the linearized Saint-Venant equa-
tions, used to obtain a transfer matrix representation of the
system. A more detailed description is given in [14]. The
considered canal pool is a channel with uniform geometry.

A. Irrational model based on Saint-Venant equations

1) Linearized Saint-Venant equations:The hydraulic be-
havior of an open-channel irrigation canal is well described by
the so-called Saint-Venant equations [4], which are hyperbolic
nonlinear partial differential equations involving the average
dischargeQ(x, t) and the water depthY (x, t) along one space
dimensionx ∈ [0, X], with X the pool length.

We consider small variations of water depthy(x, t) and
dischargeq(x, t) around stationary valuesQ0(x) = Q0 (m3/s)
andY0(x) (m) defined by the backwater curve equation

dY0(x)
dx

=
Sb − Sf0(x)
1− F0(x)2

(1)

whereSb is the bed slope,F0 the Froude numberF0 = V0
C0

with V0 the average velocity (m/s) andC0 =
√

gA0
T0

the wave
celerity (m/s), withT0 the water surface top width (m),A0 the
wetted area (m2) and g the gravitational acceleration (m/s2).
Throughout the paper, the flow is assumed to be subcritical,
i.e.F0 < 1. Eq. (1) is solved for a given downstream boundary
condition Y0(X), leading to the so-called backwater curve
Y0(x).

The friction slopeSf0 is modelled with Manning-Strickler
formula [4]:

Sf0(x) =
Q2

0n
2

A0(x)2R0(x)4/3
(2)

with n the roughness coefficient (sm−1/3) and R0(x) the
hydraulic radius (m), defined byR0 = A0/P0 where P0 is
the wetted perimeter (m) (see figure 2).

The calibration and validation of the Saint-Venant model
on field data is discussed in [17]. The obtained Manning
coefficient isn = 0.017, corresponding to the roughness of
a concrete-lined channel.

Linearizing the Saint-Venant equations around these station-
ary values leads to:

T0
∂y

∂t
+

∂q

∂x
= 0 (3)

∂q

∂t
+ 2V0

∂q

∂x
− β0q + (C2

0 − V 2
0 )T0

∂y

∂x
− γ0y = 0 (4)
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with γ0 = V 2
0

dT0
dx +gT0

[
(1 + κ0)Sb − (1 + κ0 − F 2

0 (κ0 − 2))dY0
dx

]
,

β0 = − 2g
V0

(
Sb − dY0

dx

)
andκ0 = 7

3 − 4A0
3T0P0

dP0
dY .

The boundary conditions are the upstream and downstream
dischargesq(0, t) andq(X, t).

2) Linearized Saint-Venant transfer matrix:Using Laplace
transform, one can deduce from equations (3–4) the frequency
response of the Saint-Venant equations in terms of a transfer
matrix linear model that can be used for control purposes
[14]. This model relates the upstream and downstream water
elevations to the upstream and downstream discharges of the
canal pool:(

y(0)
y(X)

)
=

(
p11(s) p12(s)
p21(s) p22(s)

)(
q(0)
q(X)

)
(5)

Figure 3 presents the Bode plots of the continuous models
p21(s) and p22(s) for the Évora canal relating the upstream
and downstream discharges to the downstream water elevation.
Their rational approximations are also plotted on the same
graph. The frequency response of the canal shows that it
behaves as an integrator for low frequencies. This is coherent
with the physical interpretation: the canal is similar to a
reservoir whose level varies according to the input discharge.
The transferp21(s) includes a time-delay, which makes its
phase decrease towards−∞. The system has a non zero
gain for high frequencies, expressing a direct influence of
the discharges on the water levels, and there are oscillating
modes that correspond to the interactions of waves propagating
upstream at speedC0−V0 and downstream at speedV0 + C0

[14].
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Fig. 3. Bode plots of the irrational transfer functionsp21(s) and p22(s)
(—) for Q0 = 45 l/s, Y0(X) = 0.6 m, and their rational approximations (–
–).

We have shown in [14] that the transfer functions obtained
from Saint-Venant model have the following inner-outer fac-
torization [10]:

p21(s) = p21o(s)e−τ1s

p22(s) = p22o(s)

with τ1 the time-delay for downstream propagation and where
p21o andp22o are outer.

In the general case, the delayτ1 is obtained as:

τ1 =
∫ X

0

dx

V0(x) + C0(x)
(6)

where C0 is the gravity waves celerity andV0 is the flow
velocity. For the considered experimental canal, the time-delay
is equal to 60 s forQ = 45 l/s and a downstream boundary
conditionY0(X) = 0.6 m.

The linear Saint-Venant model needs to be completed with
the linearized hydraulic structures equations in order to get the
model for control design.

3) Linearized hydraulic structures equations:The equa-
tions describing hydraulic structures interactions with the flow
are linearized and added to the model. The hydraulic structure
(over shot gate) is modelled using the linearized equations
[13]:

q(X, t) = k1y(X, t) + k2u2(t) (7)

with q(X, t) the discharge through the structure,y(X, t) the
water depth upstream of the structure,u2(t) the gate opening.
Coefficientsk1, k2 are obtained by linearizing the structure
equation around a given functioning point, corresponding to
the hydraulic stationary regime.

4) Complete linear model:In the following, we denote by
y the controlled water level (downstream of the pool),G1(s)
andG2(s) respectively the transfer functions fromu1 andu2

to y, and G̃(s) the transfer function from the perturbationp
to y. The canal pool is therefore represented by:

y = G1(s)u1 + G2(s)u2 + G̃(s)p (8)

wherey is the downstream water level,u1 the upstream control
(the upstream dischargeq(0, t)), u2 the downstream control
(the downstream gate opening), andp is the downstream
perturbation (corresponding to the unknown withdrawal).p
acts as an additive perturbation on the downstream discharge
q(X, t), therefore the transfer function is given bỹG(s) =
G2(s)/k2, with G1(s) = p21(s)

1−k1p22(s)
andG2(s) = k2p22(s)

1−k1p22(s)
.

As shown above, the local transferG2 (relating the down-
stream controlu2 to the outputy) is outer, while the distant
oneG1 (relating the upstream controlu1 to the outputy) has
an inner part which is a pure time-delay. This remark, which
may seem obvious for hydraulic engineers has important
implications in terms of control, as will be demonstrated
below.

In a first approximation, a canal pool can be viewed as a
delayed integrator. Including the interaction with the hydraulic
structure, a simple approximation is therefore:

G1(s) ≈ e−τ1s

Ads+k1
and G2(s) ≈ − k2

Ads+k1
(9)

whereAd is the inverse sensitivity of the downstream water
level to the input discharge and the time delay is obtained by
equation (6).

This simplified model captures the main low frequency
characteristics of the system. However, for advanced control
methods, it is preferable to have an accurate rational model.
Such an approximation can be obtained numerically.
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B. Rational model approximation

The difficulties to use the linearized Saint-Venant equations
associated to (5) is mainly linked to the facts thatpij(s),
the solutions of (5) are irrational transfer functions and that
system (5) has in general not closed-form solution. These two
difficulties can be nevertheless bypassed. Indeed, in the one
hand, it is possible for any value ofs ∈ C to obtain the
numerical value associated topij(s). Let us note that the
numerical resolution of (5) is not so easy, and thus it has
been necessary to develop an efficient algorithm to compute
the transfer functions (see [16]). In the other hand, an accurate
rational transfer representation of the system in the finite band
of frequency is sufficient to control the system. Let us recall
that this band of frequency is finite since at least constrained
by actuators bandwidth.

Following these two points, the approximation of solution
of system (5) leads for example to solve this problem: given a
set of frequency response data for specified frequency points,
we search a rational approximation with an error as small as
possible on a given bandwidth and a fixed upper bound for
high frequencies.

This problem is in general difficult to solve. We investigated
three different methods:
• When the poles of the system are known, the problem is

a convex optimization, which is easy to solve;
• Since we know the inner part of the transfer functions, we

can approximate the modulus of the transfer functions,
and approximate the delay with a Padé approximation.
This is still a convex problem, but leads to a higher order
for the rational model (see e.g. [27]);

• We can also directly approximate the transfer function
frequency response. This leads to a lower order than
the second point, but this is not convex, and the result
depends on the initialization point.

Remark 1:The use of Remez type algorithms, classically
used in the filter design (see e.g. [3], [30]) allows for methods
1 and 2 to avoid the difficulties of a priori choice of frequency
sampling. Even if it is necessary to evaluate more frequency
points in this case, this allows to decrease the numerical
difficulties linked to undamped oscillating modes.

We used in this paper the first option, since for a prismatic
channel, it is relatively easy to compute the poles of the
linearized Saint-Venant equations [14]. The rational model of
the canal used in the paper is of order 11, with five oscillating
modes (see figure 3). Figure 4 presents the Bode plots of
the continuous modelsG1(s) relating the upstream discharge
to the downstream water elevation andG2(s) relating the
downstream discharge to the downstream water elevation for
a set of discharges, and their rational approximations.

The rational approximations fit very well the linearized
Saint-Venant model up to a rather high frequency (0.2 rad/s,
corresponding to the fifth oscillating mode).

IV. M IXED CONTROLLER DESIGN

A. Control specifications

A naive analysis of the control problem for irrigation canals
would be to consider that the control specifications can be
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Fig. 4. Bode plots of the continuous modelsG1(s) and G2(s) (—) and
their rational approximations (– –) forQ0 = 45 l/s, Y0(X) = 0.6 m.

reduced to rejecting unmeasured perturbations by controlling
the downstream water level. To reduce the problem to this
classical control problem leaves apart an essential aspect of
the specifications: the water resource management.

As will be shown below, there is a conflict between the wa-
ter resource management and the real-time performance with
respect to the user. The main issue at stake for irrigation canal
control is therefore a better trade-off between these two points.
The main objective of the paper is to propose a methodology
that gives to the manager the ability to tradeoff between real-
time performance and water resource management.

Before presenting our control design method, let us first
discuss classical control politics for irrigation canals.

B. Classical control politics vs. specifications

1) Distant downstream control of a canal:Distant down-
stream regulation of a canal pool consists in controlling the
downstream water level using the upstream control variable
u1. The closed-loop system is given by:




e = r − y
u1 = K1(s)e
y = G1(s)u1 + G̃(s)p

with r the reference water level ande the tracking error.
When water is withdrawn from the canal pool, the down-

stream level drops, since the downstream discharge is sup-
posed to stay constant. Then, the controller reacts by increas-
ing the upstream discharge to compensate for this withdrawal,
to maintain the downstream water level to its setpoint. In that
case, the upstream control variable adapts to the consumed
discharge in the pool, therefore uses only the necessary water
to satisfy the effective water demand.

The water user sees the real-time performance as the ability
of the controller to reject unmeasured perturbations acting in
the pool. It is characterized by the modulus of the following
transfer function

e =
G̃(s)

I + G1(s)K1(s)
p = G̃(s)S1(s)p (10)
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where S1 is the sensitivity functionS1 = (1 + G1K1)−1.
The design consists in designing a monovariable controller
K1(s) such that|S1(jω)| is minimum on the largest frequency
bandwidth.

We recall here an implication of a time-delay in the model.
It is well-known that a pure time-delay limits the maximal
achievable performance of a controlled system. Let us define
the real-time performance of the controlled system as the
highest frequencyωs such as|S1| stays below 1, or:

ωs = max{ω1 : |S1(jω)| < 1, ∀ω < ω1} (11)

Following the line of [18] and [12], it can be shown that

ωs ≤ π

3τ1
≈ 1

τ1

The downstream control structure is therefore parsimonious
in terms of water resource management, but has a limited real-
time performance with respect to the user.

2) Local upstream control of a canal:Local upstream
regulation of a canal pool therefore consists in controlling the
downstream water level using the downstream control variable
u2. In this case, the closed-loop system is given by:





e = r − y
u2 = K2(s)e
y = G2(s)u2 + G̃(s)p

and the sensitivity is given by

e =
G̃(s)

I + G2(s)K2(s)
p = G̃(s)S2(s)p (12)

When a water withdrawal occurs in the pool, the down-
stream level drops. Then, the controller reacts by decreasing
the downstream discharge by the amount of the discharge
withdrawn. This is possible only if there is enough water
flowing downstream (the linear model assumes variations
around a given reference flow). Therefore, the local upstream
control structure does not link the control to the water resource
management: in order to be able to control water levels in
this case, one needs to let the maximum discharge flow in the
canal (or to constrain the possible withdrawals, by specifying a
rotational schedule). The perturbations are always propagated
downstream.

Concerning the real-time performance with respect to the
user, contrarily to the distant downstream case, there is no
delay in the transfer functionG2(s) and no right half-plane
zeros. Then, the achievable bandwidth has no structural limita-
tion even if it is in practise limited by the actuators, transmis-
sion delays and high frequency dynamic uncertainties. This
explains why the local upstream control is more performing
than distant downstream control from a monovariable point of
view in terms of rejecting downstream perturbations. But this
control structure is not satisfactory in terms of water resource
management.

C. Multivariable structure: a mixed control politic

The two classical control structures presented above are
widely used mainly because they are monovariable control
structures, where controller design can be done with classical

tools. We now examine the multivariable control problem,
where both control action variablesu1 and u2 are used to
control the downstream water levely. The controller design
problem leads to finding a controllerK(s) that relates the
tracking errore to the control vector(u1, u2):

K(s) =
(

K1(s)
K2(s)

)

Using equation (8), the open-loop transfer matrix is given by:

G(s)K(s) = G1(s)K1(s) + G2(s)K2(s)

Let us now examine the design specifications with respect to
the control structure. If the required performance with respect
to the user can be satisfied by a distant downstream controller,
then there is no need to mix the control methods. However,
if the distant downstream controller cannot satisfy the real-
time performance specification, it is possible to use the local
upstream control for this purpose. It is then necessary to add
a constraint onu2. Since the discharge needs to come from
upstream, we would like to useu2 only for transients, and that
in steady state, onlyu1 has an effect ony.

The control objectives are therefore threefold:

• maintain the downstream water level by rejecting unmea-
sured perturbations induced by water users,

• ensure that the effect of perturbations on the downstream
discharge are only transient,

• ensure robustness with respect to static gain error of
actuators (at least 6 dB of gain margin).

The second objective ensures that, in steady state, a water
demand in the pool can only be satisfied by the upstream
discharge.

This can be viewed as a problem of actuators substitution,
and can be taken into account with an input cascade framework
[32]. The (rapid) upstream controlu2 is used to control the
outputy:

u2 = K2(s)(r − y)

And the (slow) distant downstream controlu1 is used to
regulateu2 to a referenceru2 (ru2 = 0 in steady state).

u1 = K1b(s)(ru2 − u2)

The controller structure can be schematized as in figure 5.

r +

−

ru2

−
- -

-

+ u1

u2

y

K2

K1b

-

canal pool
6

-

--

6

?

p

Fig. 5. Cascade architecture with two control variables(u1, u2) to control
one outputy
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If ru2 = 0, one obtains a multivariable controller as noted
above withK1 = −K1bK2.

The advantage of this method is that it decouples the
controllers design. One may successively design in such a
way two SISO controllers. However, it is generally difficult
to specify robustness margins in this case.

We keep a similar structure in the following, but recasting
the problem as anH∞ optimization problem, which can
naturally take into account performance and robustness issues.
In our case, we need to ensure robustness with respect to static
gain actuators uncertainties, which can be done by ensuring
sufficient real input gain margins.

D. Expression of design specifications asH∞ constraints

We propose a multivariable design method usingH∞ opti-
mization, in order to give a solution to the trade-off between
real-time performance and resource management.

Following the approach used in [15], design specifications
are formulated using aH∞ 4-blocks type criterion. Let the
system be described by:[

y
u2

]
= Ga

[
u1

u2

]
+ G̃ap

with Ga =
(

G1 G2

0 1

)
and G̃a =

(
G̃
0

)
.

In order to constrain the downstream controlu2 to go
asymptotically to zero,ru2−u2 is feed back into the controller
as a tracking error. For usual functioning,ru2 is zero. There-
fore, imposing a low gain in low frequencies for the transfer
function that links the referenceru2 to the errorru2 −u2 will
impose a low value foru2 at these frequencies.

The closed-loop system which links the referencer̄ =
[r , ru2 ]

T and the perturbationp to the tracking error̄e =
[r − y , ru2 − u2]T and the controlled inputu = [u1 , u2]T is
given by

[
ē
u

]
=

(
Sa SaG̃a

KaSa KaSaG̃a

) [
r̄
p

]
(13)

whereKa is the controller for the augmented systemGa and
Sa = (I +GaKa)−1 is the sensitivity function for systemGa.

The design specifications are then formulated using the
following criteria, where the goal is to find the smallestγ > 0
and the stabilizing controllerKa such that∥∥∥∥∥

(
W1Sa W1SaG̃aW3

W2KaSa W2KaSaG̃aW3

)∥∥∥∥∥
∞
≤ γ (14)

with W1 = diag(W11,W12), W2 = diag(W21,W22),
Wik,W−1

ik ∈ RH∞ and W3 ∈ R is a scaling factor acting
on the perturbation.

The system augmented with weighting functions is de-
scribed in figure 6.

The weighting functionsWik are chosen of the first order.
In order to facilitate the frequency tuning, we use the form
proposed by [7], but other forms are available [32]:

Wik(s) =
Gik,∞

√
|G2

ik,0 − 1|s + Gik,0ωik,c

√
|G2

ik,∞ − 1|
√
|G2

ik,0 − 1|s + ωik,c

√
|G2

ik,∞ − 1|

-

W22

canal pool

W11

W3

u2

u1
-

e

r
-

-

W21

-

W12

?

-

z4

Ka

p

z3

-

?

ru2

-

−
?

-

- z1

z2

-
-

−

- -

Fig. 6. Augmented system forH∞ optimization

where 


|Wik(j0)| = Gik,0

limω→∞ |Wik(jω)| = Gik,∞
|Wik(jωik,c)| = 1

The performance requirements are easy to specify with these
weighting functions:

• W11 specifies the overall performance of the system with
respect to the users requirement. This specification has
to be compatible with bandwidth constraints associated
to the upstream control actuator. The system bandwidth
is closely related to the frequencyω11,c where the gain
of W11 equals 1.

• W12 corresponds to the substitution specification between
downstream and upstream actuators. It has to be chosen
in order to be compatible with the time-delay, i.e.ω12,c ≤
1/τ1.

• W21 allows to impose roll-off on the upstream control
actuator and it has to be compatible with the substitution
specification associated toW12. Following the chosen
parametrization of the weighting function,ω21,c ≈ 10×
ω12,c.

• W22 allows to impose strong roll-off on the downstream
control actuator and it has to be compatible with the
performance specification associated toW11. Following
the chosen parametrization of the weighting function,
ω22,c ≈ 10 × ω11,c. Let us finally note that this roll-off
is necessary in order to avoid any active control of canal
oscillating modes by the downstream control actuator.

It appears more difficult to directly specify robustness
requirements, since the chosen criteria does not explicitly
consider robustness constraints. We show below that an input
margin constraint can be specified by a careful choice of
weighting functions. Let us recall that the input margin is given
by [32]:

∆G ∈
[
1− 1

‖Tu‖∞
, 1 +

1

‖Tu‖∞

] ⋃ [
1

1 + 1
‖Su‖∞

,
1

1− 1
‖Su‖∞

]
(15)

whereSu andTu are the input sensitivity and complementary
sensitivity functions, respectively.
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In our case, due to the specific structure of the controller,
the input sensitivity functions have the following expressions:

Su = Sy

(
1 + G2K2 −G2K1

−G1K2 1 + G1K1

)

and

Tu = Sy

(
G1K1 G2K1

G1K2 G2K2

)

with Sy = (1 + G1K1 + G2K2)−1.
Let us evaluate the structured singular value ofTu with

respect to a diagonal complex uncertainty∆. In the case of a
2 × 2 matrix A, the structured singular valueµ∆ is equal to
the upper bound [34]:

µ∆(A) = inf
D∈D

σ(DAD−1)

with D = {diag(d, 1) : d ∈ R, d > 0}.
After tedious but straightforward manipulations, the struc-

tured singular value ofTu is obtained as:

µ∆(Tu) = |Sy|(|G1K1|+ |G2K2|)
We are therefore able very efficiently to impose the input

margin under the parameterG11,∞ of W11, which allows to
constrainSy, and the parametersG21,∞ of W21 and G22,∞
of W22, which allow to constrainK1 andK2.

The weighting functions are tuned sequentially: firstW22 is
tuned to specify the maximum bandwidth for local upstream
control, thenW11 is tuned to specify the global real-time
performance, thenW12 is used to specify the actuators sub-
stitution. W21 and the scaling factorW3 are used to specify
control effort and robustness requirements.

V. EXPERIMENTAL RESULTS

A. H∞ controllers design

Three differentH∞ controllers are designed and tested on
the canal, to show the ability of the proposed control scheme
to provide a compromise between real-time performance and
water management issues. The first controller is a pure distant
downstream controller, where the control actionu2 is not
operated, therefore its real-time performance with respect to
the user is rather low, as it is limited by the time delay. The
second controller is a mixed controller, usingu2 to increase the
real-time performance. And the third one is a mixed controller
with a high real-time performance, close to the one obtained
by a pure local upstream controller. For the three controllers,
the optimization resulted inγ ≈ 1. The parameters for the
weighting functions of the three controllers are given in tables
I–III. The parameterωc for weighting functionW11 gives
a good approximation of the controlled system bandwidth.
This parameter is increased from5 × 10−3 rad/s for the first
controller to2.5 × 10−2 rad/s for the second, and5 × 10−2

rad/s for the third controller, i.e. 10 times the bandwidth of
the first one. This illustrates the ability of the control scheme
to “tune” the real-time performance with respect to the user.

Figure 7 presents the transfer functions appearing in the
H∞ criteria with associated constraints for controller 2. Each
transfer is indeed below the associated constraint, showing that
the obtainedγ is smaller than 1.

TABLE I

PARAMETERS OF THE WEIGHTING FUNCTIONS, CONTROLLER 1

W11 W12 W21 W22 W3
G0 1000 1 0.9 0.5 0.48
G∞ 0.4 0.9 1000 1000

ωc 5 × 10−3 rad/s 5 × 10−5 rad/s 10−2 rad/s 10−5 rad/s

TABLE II

PARAMETERS OF THE WEIGHTING FUNCTIONS, CONTROLLER 2

W11 W12 W21 W22 W3
G0 1000 10000 0.9 0.2 0.69
G∞ 0.8 0.2 1000 1000

ωc 2.5 × 10−2 rad/s 5 × 10−3 rad/s 10−2 rad/s 10−1 rad/s

Figure 8 depicts the singular values of the three controllers.
It is clear that the first controller uses only one control input
(corresponding to the distant downstream control politics) and
controller 3 has a larger bandwidth than controller 2.

This better real-time performance is obtained to the expense
of some robustness. Indeed, let∆G denote the real multi-
variable gain margin (static gain margin). Using eq. (15), we
obtain:

∆Gmin ≤ ∆G ≤ ∆Gmax

with ∆Gmin and ∆Gmax given in table IV for the three
controllers.

The controllers have been obtained with the robust control
toolbox of Matlab. The order of the controllers is 15, i.e.
the order of the system augmented by the order of the
weighting functions. The controllers have been discretized at
a sampling time 0.125 s, and we used a balanced realization
for implementation.
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TABLE III

PARAMETERS OF THE WEIGHTING FUNCTIONS, CONTROLLER3

W11 W12 W21 W22 W3
G0 1000 10000 0.9 0.2 0.34
G∞ 0.8 0.2 1000 1000

ωc 5 × 10−2 rad/s 5 × 10−3 rad/s 2 × 10−2 rad/s 2 × 10−1 rad/s
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B. Experimental results

We now compare the three controllers tested on the real
canal, with the same scenario: an unpredicted downstream
withdrawal of 10 l/s stopped after stabilization.

Figure 9 gives the experimental results obtained with the
distant downstreamH∞ controller 1. A downstream with-
drawal of 10 l/s (0.01 m3/s) is done at timet = 20 s and
stopped at timet = 700 s. In that case, the downstream action
variable is not operated, and only the upstream discharge is
used to compensate for the water withdrawal.

Figure 10 gives the experimental results obtained with the
mixed H∞ controller 2. The downstream outlet is opened at
time t = 110 s and stopped at timet = 650 s. The controller
reacts as expected: first the downstream overshot gate is closed
in order to maintain the outputy at the targetyc = 0.6 m,
then occurs the substitution with the upstream control; the
downstream gate opens gradually while the upstream discharge
increases in order to compensate for the withdrawal. In steady
state (between 300 and 900 s), the upstream discharge is 10 l/s
higher than the initial one, which corresponds exactly to the
withdrawal. This ensures that the water needed downstream
comes from the resource, located upstream, and is not taken
from the water needed downstream.

Figure 11 gives the experimental results obtained with the

TABLE IV

ROBUSTNESS MARGIN OF THE THREE CONTROLLERS

Controllers 1 2 3
∆Gmin (dB) −∞ -5 -4.2
∆Gmax (dB) 10.2 8.8 8

mixed H∞ controller 3. The downstream outlet is opened at
time t = 150 s and stopped at timet = 850 s. Here also,
the controller reacts as expected, and quicker than the mixed
controller 2.

The multivariableH∞ controllers enable to recover the real-
time performance of a pure local upstream controller while
ensuring that in steady state, the discharge is delivered by
the upstream control (as for a distant downstream controller).
In addition, one observes that the linear simulation reproduces
rather accurately the dynamic behavior of the closed-loop sys-
tem. The main discrepancy concerns the downstream actuator
u2, which has a 2 mm dead band which is not modelled here.
This, together with the important measurement noise explains
the differences between the experiment and the simulation.
The response times are however very close and the controller
reacts as expected.
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Fig. 9. Experimental response of the distant downstreamH∞ controller 1
to a downstream withdrawal, comparison with a linear simulation
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Fig. 10. Experimental response of the mixedH∞ controller 2 to a
downstream withdrawal, comparison with a linear simulation

Finally, the proposed solution appears to stabilize a large set
of stationary linearizations of the canal. This is not surprising,
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Fig. 11. Experimental response of the mixedH∞ controller 3 to a
downstream withdrawal, comparison with a linear simulation

since the change of functioning point has a slow dynamics in
the case of a canal. Therefore, the gain scheduling heuristic
is fulfilled: the parameters defining the linearizations vary
very slowly compared to the system’s dynamics [8]. This is
coherent with a widespread engineers’ practice, using gain-
scheduling heuristics to design efficient controllers.

C. Performance indicators

The controllers’ performance is evaluated using various
indicators. The real-time performance is evaluated using clas-
sical indicators, the Integrated Absolute Error (IAE) and the
Maximum Absolute Error (MAE), defined as follows:

IAE =
100
T

∫ T

0
|y(t)− yc|dt

yc

and

MAE = 100
max[0,T ](|y(t)− yc|)

yc

whereyc is the setpoint for the downstream water elevation.
These indicators are dimensionless, and evaluate the real-
time performance of the control system: the lower they are,
the better the system is controlled. Indeed, these indicators
evaluate the performance of the control, in terms of water
delivery: the lower they are, the better the water users’ demand
is satisfied, since the delivered discharge is directly linked to
the downstream water level for gravity offtakes.

The water management is evaluated using two indicators,
the Water Efficiency (WEF)

WEF = 100

∫ T

0
qp(t)dt

∫ T

0
q1(t)dt

whereq1 is the upstream discharge of pool 1 andqp the dis-
charge delivered to the outlet, and the Maximum Downstream
Perturbation (MDP)

MDP = 100
max[0,T ](q2(t))
max[0,T ](q1(t))

whereq2 is the upstream discharge of pool 2, i.e. the down-
stream discharge of pool 1.

These indicators are also dimensionless. The Water Effi-
ciency evaluates the volume of water delivered to the outlet
relatively to the volume of water taken from the upstream
reservoir. The closer this indicator is to 100, the better the
water management.

The Maximum Downstream Perturbation indicator evaluates
the impact of the first pool on the other pools downstream. If
this indicator is higher than 100, it means that the control
system generates higher discharge perturbations than it is
necessary.

These indicators are computed for the three controllers.
Results are given in table V.

TABLE V

PERFORMANCE INDICATORS FOR THE THREE CONTROLLERS

Controllers 1 2 3
IAE 1.23 0.50 0.25
MAE 3.33 2.0 1.61
WEF 78.85 91.51 87.20
MDP 92.8 101.6 105.8

As could be expected, the “best” controller in terms of real-
time performance is the controller 3 since it has an IAE of
0.25, which is twice better than controller 2, and 5 times better
than controller 1. The MAE for controller 3 is close to the best
achievable real-time performance, taken into account actuators
and sensors limitations.

Also, this very good real-time performance induces a good
water management, since the Water Efficiency is much higher
for controllers 2 and 3 than for controller 1. The WEF is
slightly lower for controller 3 than for controller 2 because
of the system nonlinearity: due to the dead-band in the
downstream actuator, the system final steady state necessitated
a higher input discharge to match with the downstream water
elevation. This supplementary discharge has lowered the Water
Efficiency indicator for controller 3.

The use of the downstream actuator induces larger pertur-
bations propagated downstream, compared to the controller
1. The perturbation are amplified with controller 3 (105.8
%, corresponding to an amplification of about 6 %) and the
amplification is more limited for controller 2 (101.6 %). In the
case of controller 1, the perturbation is attenuated, but part of
the perturbation affects the water delivery.

Depending on the downstream canal pool hydraulic charac-
teristics, this amplification can be attenuated when propagating
downstream. Therefore, the choice between these controllers
has to be done by the manager, according to his objectives
and to the canal characteristics.

In conclusion, the manager can choose between these con-
trollers the one suited for the specific canal control problem.
The proposed method enables to easily obtain a controller from
a classicalH∞ optimization.

VI. CONCLUSION

The paper has exposed and validated a method to design
efficient automatic controllers for an irrigation canal pool, that
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realize a compromise between the water resource manage-
ment and the performance in terms of rejecting unmeasured
perturbations. This mixed controller design is casted into the
H∞ optimization framework, and experimentally tested on a
real canal located in Portugal. Classical control politics for
an irrigation canal (local upstream and distant downstream
control) have been interpreted using automatic control tools.
The proposed mixed control politics enables to combine both
classical politics, keeping the distant downstream control water
management while recovering the local upstream control real-
time performance with respect to the user. Such a design
method gives to the manager a tool to balance the trade-off
by using the multivariable feature of the controller.

To the best of the authors’ knowledge, this paper is among
the first applications ofH∞ control to a real canal. It opens
interesting perspectives for the modernization of irrigation
canals management. Ongoing research deals with the problem
of controlling multiple canal pools using a similar approach.
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