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Further Results on Active Magnetic Bearing Control with Input
Saturation∗

F. Mazenc†, M.S. de Queiroz‡, M. Malisoff§, and F. Gao¶

Abstract

We study the low-bias stabilization of active magnetic bearings (AMBs) subject to voltage saturation based on a
recently proposed model for the AMB switching mode of operation. Using a forwarding-like approach, we construct
a stabilizing controller of arbitrarily small amplitude and a control-Lyapunov function for the AMB dynamics. We
illustrate our construction using a numerical example.

1 Introduction

Active magnetic bearings (AMBs) are being employed in a variety of rotating machines (e.g., compressors, milling
spindles, and flywheels) in place of conventional mechanical bearings. Due to the non-contact nature of the magnetic
bearings and rotor, AMBs have the unique ability to suspend loads with no friction, operate rotors at higher speeds, and
operate in applications where the use of lubricants is prohibited. Since AMBs can be actively controlled, they offer
other potential advantages over mechanical bearings, viz., the elimination of vibration through active damping, the
adjustment of the stiffness of the suspended load, and the automatic balancing of rotors. AMBs are normally operated
with all electromagnets active at all times. An alternativemode of operation is to activate only one electromagnet
along each direction at any given time. Although posing moredifficulty to the control design, this switching operation
prevents opposing electromagnets from producing counteracting forces, and thus helps reduce power consumption.

Typically, an AMB is operated by introducing a sufficiently high, fixed magnetic flux in each electromagnet, which
is referred to as thebias flux. The bias value is normally set to a fraction of the saturation flux of the electromagnet.
This procedure facilitates the design of the AMB ‘control’ flux, which is superimposed on the bias flux. Specifically,
this conservative practice allows the system to be modeled by a controllable linear system, thus, enabling the use of
linear control design techniques; see for example [1, 7, 9].Although the bias flux facilitates the control synthesis, it
increases electric power losses in the AMB system, causing rotor heating and affecting the machine efficiency. While
lowering or eliminating the bias flux is desirable in order tominimize power losses, it enhances the AMB system
nonlinearities and may lead to a control saturation1 or singularity. Due to these conflicting objectives, the design of
AMB controllers with reduced power loss is a challenging problem.

In this paper, we consider the problem of low-bias2 control of AMBs operating in the switching mode with the
constraint that the input voltages are amplitude limited. This problem was previously addressed in [15, 16] using
the nested saturation design method of Teel [13, 14]. In addition, an optimal solution was sought to the power-loss
minimization problem under voltage saturation in [2]. (A comprehensive literature review of low-, asymptotic-zero-
, and zero-bias AMB controllerswithout voltage saturation can be found in [10, 17].) Here, we pursuea different
approach to stabilizing the AMB model of [16]. Namely, we usea forwarding-likemethod [8] to design a control law
of arbitrarily small amplitude that renders the AMB system globally asymptotically stable (GAS) to the origin. The
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1Saturation may arise due to limits on the amplitude of the output voltage of the power amplifier driving the electromagnets.
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main differences between our approach and [16] are: (i) we allow the use of different saturation functions (both ‘hard’
and ‘soft’), thus providing more flexibility in the control implementation, and (ii) we provide an explicit construction
for a ‘global’ control Lyapunov function (CLF) for the system. This contrasts with the result of [16], which relies on
the standard ‘hard’ saturation and whose Lyapunov-like function is only an ‘asymptotic’ CLF for the system, i.e., a
CLF only when the system operates in a certain region of the state space.

The rest of this paper is organized as follows. In Section 2, we introduce the AMB model and motivate our
stabilization problem. In Section 3, we prove a lemma that constructs a stabilizing controller of arbitrarily small
amplitude and a CLF for a three-dimensional chain of integrators. In Section 4, we use our lemma to construct a CLF
and corresponding stabilizing feedback for the AMB model. We provide a numerical example in Section 5, and we
close in Section 6 with a summary of our work.

2 AMB Model and Problem Statement

The original nonlinear electromechanical model of the one degree-of-freedom AMB system shown in Figure 1 below
can be subdivided into the mechanical subsystem dynamics, the magnetic force equation, and the electrical subsystem
dynamics. The mechanical subsystem is governed by

mÿ =
2

∑

i=1

Fi(Φi) , (1)

wherem is the rotor mass,y ∈ R represents the position of the rotor center,Φi ∈ R is the magnetic flux in theith
electromagnet,Fi (Φi) ∈ R denotes the force produced by theith electromagnet, given by [18]

Fi =
(−1)

i+1
Φ2

i

µ0A
, i = 1, 2, (2)

µ0 is the permeability of air, andA is the cross-sectional area of the electromagnet. The electrical subsystem is
governed by the equations [18]

N Φ̇i +RiIi = vi, i = 1, 2, (3)

whereN denotes the number of coil turns in the electromagnet,Ri is the resistance of theith electromagnet coil,
vi ∈ R is the input control voltage of theith electromagnet,Ii ∈ R is the current in theith electromagnet which is
related to the flux according to [18]

Ii =
2
(

g0 + (−1)
i
y
)

Φi

µ0AN
, i = 1, 2, (4)

andg0 is the nominal air gap.
In this paper, we use the new form proposed in [16, 17] for the AMB dynamics in the switching mode of operation.

We only outline the model derivation here, and refer the reader to [17] for the details and justification. Consider that
the flux is given by

Φi = Φ0 + φi, i = 1, 2 (5)

whereΦ0 > 0 is the constantbiasflux andφi is thecontrolflux. Let thegeneralizedcontrol flux be defined as

φ = φ1 − φ2, (6)

and consider the voltage switching strategy

v1 = v, v2 = 0 if φ ≥ 0
v1 = 0, v2 = −v if φ < 0

(7)

wherev is thegeneralizedcontrol voltage. Based on (5)-(7), the AMB model (1)-(3) hasthe equivalent form

ÿ =
1

mµ0A

(

2Φ̄0φ+ φ |φ|
)

, φ̇ =
v

N
, (8)
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whereΦ̄0 = Φ0 +min {φ1(0), φ2(0)} and the coil resistance was neglected for simplicity.
Now, consider that the input voltages to the original AMB model are amplitude limited, i.e.,|vi| ≤ vmax, i = 1, 2

wherevmax is the known limit. Defining the statesx1 = y, x2 = ẏ, andx3 = φ and the change of inputv = Nu, the
above model becomes

ẋ1 = x2, ẋ2 = β0x3 + β1x3 |x3| , ẋ3 = u, (9)

whereβ0 = 2Φ̄0/(mµ0A) andβ1 = 1/(mµ0A), with the input constraint|u| ≤ vmax/N .
Our goal in this work is to design a feedback control lawu(x), satisfying the above saturation constraint, such

thatx = 0 is GAS wherex = (x1, x2, x3)
⊤. The GAS property means there is a continuously differentiable (C1)

functionV : R3 → [0,∞) that is radially unbounded and zero only at the origin, and for which the derivativėV along
all trajectories of the system in closed-loop with the controlleru(x) is negative definite. A functionV satisfying these
requirements for some feedbacku(x) is called a CLF for (9) [5]. See [17] for a discussion on the relation between the
global asymptotic stability ofx and the stability of the original AMB states.

3 Preliminary Result

In the following lemma, we use a forwarding-like approach based on [8] to construct a CLF and corresponding stabi-
lizing state feedback of arbitrarily small amplitude for a three-dimensional chain of integrators. We letσ denote the
standard saturation projectingR onto[−1,+1], i.e.,σ(s) = s when|s| ≤ 1 andσ(s) = sign(s) otherwise. However,
see Remark 1 below for a version of our construction where thehard saturationσ is replaced by a smoother function.

Lemma 1 Consider the chain of integrators

ξ̇1 = ξ2, ξ̇2 = ξ3, ξ̇3 = µ, (10)

whereµ ∈ R is the control input. Letc1, c2 > 0 be given and

δ ≤ min

{

4

3
, c1

}

. (11)

Define the change of variables

z1 = δ (c1ξ1 + ξ2) +
δ

c1
ξ3, z2 = c1ξ2 + ξ3, z3 = ξ3 (12)

and the functions

U(z2, z3) =
1

2
z23 +

∫ z2

0

σ(s)ds (13)

g(z1, z2, z3) =
δ

c1
σ(z1) + 4 (1 + U(z2, z3))

× (z3 + σ(z2))−
δ

2
(z2 + z3) . (14)

Then the function

V (ξ1, ξ2, ξ3) = 4U(z2, z3) + 2U2(z2, z3)

−
δ

2
z2z3 +

∫ z1

0

σ(s)ds (15)

is a CLF for (10) since its derivative along the trajectoriesof system (10) in closed loop with the control

µ(ξ1, ξ2, ξ3) = −c1σ(z2)− c2σ(g(z1, z2, z3)) (16)

is negative definite. In particular, the bounded control (16) renders (10) GAS to the origin.
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Remark 2 The saturation functionσ from Lemma 1 is Lipschitz continuous but not continuously differentiable. We
chose this hard saturation for simplicity of analysis. However, one can prove a similar result with smoother saturation
functions. For example, if one instead chooses theC1 function

σ(s) =

{

s if |s| ≤ 1

sign(s)
[

1 + 1
π
tan−1 (π (|s| − 1))

]

if |s| > 1,

then the only change in the statement of Lemma 1 is to the right-hand side of the inequality (11). The proof for this
saturation is similar to the proof we give below.

Remark 3 Condition (11) in Lemma 1 allows cases wherec1 is arbitrarily large andδ is as small as desired, as well
as cases wheremax{c1, c2, δ} is arbitrarily small, including the case wherec1 = c2 = δ ∈ (0, 4/3].

Proof. We use (12) andµ = −c1σ(z2) + α, whereα is the new control input, to transform (10) into

ż1 = δ (z2 − σ(z2)) +
δ
c1
α

ż2 = c1z3 − c1σ(z2) + α
ż3 = −c1σ(z2) + α.

(17)

We first perform a Lyapunov-type analysis on the(z2, z3)-subsystem using the function

V1(z2, z3) = 4U(z2, z3) + 2U2(z2, z3)−
δ

2
z2z3, (18)

whereU(z2, z3) was defined in (13). By separately considering the cases where |z2| > 1 and|z2| ≤ 1, one can easily
verify that (18) is positive-definite and radially unbounded for δ < 2. In fact, if |z2| ≤ 1, then

V1(z2, z3) ≥ 4U(z2, z3)− |z2z3| ≥ 2z23 + 2z22 − |z2z3|

≥
3

2

(

z22 + z23
)

. (19)

On the other hand, if|z2| > 1, then
∫ z2

0 σ(s)ds = 1/2 + (|z2| − 1) ≥ |z2| /2, so

V1(z2, z3) ≥ 4

(

1

2
z23 +

1

2
|z2|

)

+ 2

(

1

2
z23 +

1

2
|z2|

)2

− |z2z3|

≥ 2z23 + 2 |z2|+
1

2
z22 − |z2z3| ≥

3

2
z23

+2 |z2| . (20)

The time derivative of (18) along the trajectories of the(z2, z3)-subsystem is given by

V̇1 = 4 (1 + U(z2, z3))
(

−c1σ
2(z2) + (z3 + σ(z2))α

)

−
δ

2
(c1z3 − c1σ(z2) + α) z3

−
δ

2
z2 (−c1σ(z2) + α)

= −4c1 (1 + U(z2, z3))σ
2(z2)−

δc1
2

z23

+
δc1
2

σ(z2)z3 +
δc1
2

z2σ(z2)

+ [4 (1 + U(z2, z3)) (z3 + σ(z2))

−
δ

2
z3 −

δ

2
z2

]

α. (21)
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Since|σ(z2)| ≤ |z2| and|z2σ(z2)| = z2σ(z2) give

−
1

4
z23 +

1

2
σ(z2)z3 ≤

1

4
σ2(z2) ≤

1

4
z2σ(z2), (22)

(21) becomes

V̇1 ≤ −4c1 (1 + U(z2, z3)) σ
2(z2)−

δc1
4

z23

+
3

4
δc1z2σ(z2)

+ [4 (1 + U(z2, z3)) (z3 + σ(z2))

−
δ

2
z3 −

δ

2
z2

]

α. (23)

We now distinguish between two cases:

1. |z2| ≤ 1. Thenσ(z2) = z2, z2σ(z2) = σ2(z2), and sinceδ ≤ 4/3, we get

V̇1 ≤ −3c1 (1 + U(z2, z3)) σ
2(z2)−

δc1
4

z23

+ [4 (1 + U(z2, z3)) (z3 + σ(z2))

−
δ

2
z3 −

δ

2
z2

]

α. (24)

2. |z2| > 1. Thenσ(z2) = sign(z2), z2σ(z2) = |z2|, and

(1 + U(z2, z3))σ
2(z2) ≥ 1 +

∫ z2

0
σ(s)ds

≥ 1 +
∫ sign(z2)

0 sds+
∫ z2

sign(z2)
σ(s)ds

= 1 +
∫ sign(z2)

0 sds+ sign(z2)
∫ z2

sign(z2)
ds

= 1
2 + |z2|.

(25)

Sinceδ ≤ 4/3, applying (25) to (23) again yields (24). Thus (24) holds forall z2.

Finally, we perform a Lyapunov-type analysis on the whole system (17) using the positive definite radially un-
bounded functionV from (15). SinceV (z1, z2, z3) = V1(z2, z3) +

∫ z1

0 σ(s)ds, whereV1(z2, z3) was defined in (18),
it follows from (24) that the time derivative of (15) along the system trajectories satisfies

V̇ ≤ −3c1 (1 + U(z2, z3))σ
2(z2)−

δc1
4

z23

+δ|z2 − σ(z2)|

+

[

δ

c1
σ(z1) + 4 (1 + U(z2, z3)) (z3 + σ(z2))

−
δ

2
z3 −

δ

2
z2

]

α. (26)

We again distinguish between two cases:

1. |z2| ≤ 1. Thenz2 − σ(z2) = 0, so (26) gives

V̇ ≤ −2c1 (1 + U(z2, z3))σ
2(z2)−

δc1
4

z23

+

[

δ

c1
σ(z1) + 4 (1 + U(z2, z3))

× (z3 + σ(z2))−
δ

2
z3 −

δ

2
z2

]

α. (27)
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2. |z2| > 1. Then (25) holds and since|z2 − σ(z2)| ≤ |z2| andδ ≤ c1, we again get (27).

Thus, (27) holds for allz2. Usingα = −c2σ(g(z1, z2, z3)) and (14), (27) becomes

V̇ ≤ −2c1 (1 + U(z2, z3))σ
2(z2)−

δc1
4

z23

−c2σ(g(z1, z2, z3))g(z1, z2, z3)

≤ −2c1σ
2(z2)−

δc1
4

z23

−c2σ
2(g(z1, z2, z3)) (28)

by separately considering the cases|g| ≥ 1 and|g| < 1, i.e., V̇ is negative definite. One can easily verify that the
origin is a unique equilibrium point of (17) in closed loop with α = −c2σ(g(z1, z2, z3)). Thus,(z1, z2, z3) = 0 is
GAS [3]. It follows from (12) that(ξ1, ξ2, ξ3) = 0 is GAS, and that (15) is a CLF for (10).

4 Main Result

We are now ready to state our main result on the global asymptotic stabilization of (9) with control saturation.

Theorem 4 The control law

u(x) =
µ(x1, x2, X3)

β0 + 2β1|x3|
, (29)

whereµ(·) was defined in (16) and
X3 = β0x3 + β1x3|x3|, (30)

in closed loop with (9) ensuresx = 0 is GAS, and has arbitrarily small amplitude. Moreover, withthe choice (15), the
functionx 7→ V (x1, x2, X3) is a CLF for (9).

Proof. We use the change of variable (30) and the change of input (29) to transform (9) into the chain of integrators

ẋ1 = x2, ẋ2 = X3, Ẋ3 = µ. (31)

After settingµ to (16) withξ1 = x1, ξ2 = x2, andξ3 = X3, we can invoke Lemma 1 to conclude(x1, x2, X3) = 0
is GAS for (31). It then follows from (30) thatx = 0 is GAS for the system (9) in closed loop with the feedback
(29)-(30). The fact thatx 7→ V (x1, x2, X3) is a CLF for the AMB dynamics follows from the proof of Lemma 1.

Remark 5 Notice that the control law (29) has arbitrarily small amplitude since along the closed-loop trajectories,

|u(x(t))| ≤
|µ(x(t))|

β0
≤

c1 + c2
β0

∀t ≥ 0. (32)

Thus, one can choosec1, c2 such that

c1 + c2 ≤
β0vmax

N
(33)

to ensure the AMB voltages satisfy the voltage constraint|vi(t)| ≤ vmax, i = 1, 2 ∀t ≥ 0. From (33), one can also see
that the control gains can be adjusted to accommodate sufficiently small bias levels due to the direct dependency ofβ0

on the bias fluxΦ0 (i.e., a low-bias control). However, one cannot setΦ0 = 0 since the control may have a singularity.

Remark 6 It is worth comparing our construction from Theorem 4 with the AMB controller from Section VI of [16],
where the stabilizing controller took the form of nested hard saturations. In [16], the proof that the control stabilizes
the AMB system is based on the method of [13], which uses the hardness of the saturationσ in an essential way.
The argument shows that the nested hard saturations cause the AMB dynamics (9) to assume a simplified form after
sufficiently large time. Then one shows that this new system of ‘asymptotic’ equations is GAS using a Lyapunov-like
analysis. Unfortunately, the Lyapunov function used in theanalysis of [16] is not a CLF for the AMB dynamics (9).
On the other hand, our construction is not restricted to the standard hard saturation as explained in Remark 1, and thus
can lead to smoother stabilizing controllers. Also, the Lyapunov function from Theorem 4 is negative definite along
the closed-loop AMB trajectories with the feedback (29)for all time, and thus is a CLF for the AMB dynamics (9).
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Remark 7 Knowing a global CLFV (x) and corresponding globally stabilizing feedbacku(x) for the AMB dynamics,
we can construct a feedbackK(x) that renders the system input-to-state stable (ISS) to exogenous disturbances [11].
ChoosingV (x) andu(x) from our theorem, and lettinġx = F (x, u) denote the open-loop AMB dynamics, it follows
from [9, Theorem 1] that the systeṁx = F (x,K(x)+d) is ISS relative to relative to any measurable locally essentially
bounded (e.g., locally bounded piecewise continuous), exogenous disturbanced(t) under the combined feedback
K(x) = u(x) − ∂V (x)/∂x3. This is because the term∂V (x)/∂x3 in the feedback is the Lie derivative ofV in
the direction of the constant vector fieldx 7−→ (0, 0, 1)⊺ that multiplies the input in the AMB dynamics. Note that
in this case the feedbackK(x) is not necessarily saturated. This is because ifK(x) were any saturated feedback
renderingẋ = F (x, d) ISS, and ifK̄ were a positive global bound onK(x), then the third component of the dynamic
ẋ3 = K(x) + d would have unbounded trajectories when the disturbance is for exampled(t) ≡ 2K̄ , thus violating
the ISS requirement. Hence, there is no globally saturated feedback that renders the AMB dynamics ISS to exogenous
disturbances. Moreover, the CLF allows us to construct a feedbackK̃(x) rendering the noisy systeṁx = F (x, K̃(x+
e) + d) ISS with respect to the disturbanced for small measurement errorse(t) in the controller [12]. In the context
of AMBs, d could represent rotor unbalance or vibrations transmittedthrough the bearing foundation whilee could
represent inaccuracies in sensing displacement, velocity, and/or flux.

5 Numerical Example

The proposed control law from Theorem 4 above was simulated on the same high-fidelity model of the one degree-of-
freedom magnetic levitation system [4, 6] used in [16]. The model includes flux leakage, magnetic material saturation,
coil resistance, voltage saturation, and flexible modes, and thus is a fairly accurate representation of the actual system
test rig [6]. We refer the reader to [6] for a complete description of the system model.

As in [16], the system was simulated withΦ0 = 10 µWb, vmax = 10 V, and initial conditions set toy(0) = 0.15
mrad,ẏ(0) = 0 mrad/s,Φ1(0) = 20 µWb, andΦ2(0) = 60 µWb. The above flux values are for thetotal flux in the
magnetic levitation system, i.e., including gap flux and fluxleakage. The control parametersc1, c2, δ were selected
according to (33) and (11) to yield the fastest convergence possible for the statey. This resulted in the following
parameter values:c1 = 5465, c2 = 5300, andδ = 4/3. The simulation results for the system statesy, ẏ, andΦgi

(i = 1, 2), and for the control voltagesvi (i = 1, 2) are shown in Figure 2 below, whereΦgi denotes the gap flux.
When compared with the simulation of the controller from Section VI of [16] (see Figure 8 of [16]), the our control
yields similar closed-loop performance although it can be tuned to produce a faster response as seen from Figure 2.

6 Conclusion

We constructed a stabilizing controller and control-Lyapunov function for low-bias active magnetic bearings (AMBs)
with voltage saturation. The AMB dynamics used in the construction is borrowed from a recently-developed model for
AMBs operating with only one electromagnet active at any given time. Our construction is based on a new forwarding-
like approach to stabilizing a three-dimensional chain of integrators with input saturation. The proposed AMB control
law has arbitrarily small amplitude and the flexibility of being implemented with different saturation-like functions.
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Figure 2: State trajectories and control voltages.
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