
680 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007

UAV as a Reliable Wingman: A Flight Demonstration
S. Waydo, J. Hauser, R. Bailey, E. Klavins, and R. M. Murray

Abstract—In this brief, we present the results from a flight exper-
iment demonstrating two significant advances in software enabled
control: optimization-based control using real-time trajectory gen-
eration and logical programming environments for formal anal-
ysis of control software. Our demonstration platform consisted of
a human-piloted F-15 jet flying together with an autonomous T-33
jet. We describe the behavior of the system in two scenarios. In
the first, nominal state communications were present and the au-
tonomous aircraft maintained formation as the human pilot flew
maneuvers. In the second, we imposed the loss of high-rate commu-
nications and demonstrated an autonomous safe “lost wingman”
procedure to increase separation and reacquire contact. The flight
demonstration included both a nominal formation flight compo-
nent and an execution of the lost wingman scenario.

Index Terms—Aerospace control, command and control sys-
tems, cooperative systems, fault tolerance, formal languages,
optimal control.

I. INTRODUCTION

I N JUNE OF 2004, we demonstrated two new control tech-
nologies on board two jet aircraft as part of the DARPA

Software Enabled Control (SEC) Program’s capstone demon-
stration: optimization-based control using real-time trajectory
generation and logical programming environments for formal
analysis of control systems. We tested these technologies by im-
plementing a reliable wingman scenario in which an unmanned
air vehicle (UAV) performed formation flying with a manned
aircraft. The manned aircraft was an F-15 fighter jet, while the
UAV surrogate was a T-33 jet trainer outfitted with X-45 UCAV
avionics. During formation flight, the vehicles performed a
set of coordinated actions using receding horizon control on
the UAV to demonstrate real-time trajectory generation. After
demonstrating coordinated formation flight, the UAV simulated
loss of the high data rate link between the aircraft and began
executing a “lost wingman” protocol designed to (provably)
maintain separation between the aircraft using only low-level
messages passed along the low data rate link. After safe separa-
tion was achieved, the high bandwidth link was restored and the
UAV requested a rejoin and executed a safe rejoin maneuver.
The demonstration scenario is depicted in Fig. 1.

A nonlinear optimization-based receding horizon controller
(RHC) was developed to fly the UAV in formation with the

Manuscript received May 1, 2006; revised January 16, 2007. Manuscript re-
ceived in final form April 4, 2007. Recommended by Guest Editor A. Tsourdos.
This work was supported by the DARPA SEC Program, F33615-98-C-3613.
The work of S. Waydo was supported by a Fannie and John Hertz Foundation
Fellowship.

S. Waydo and R. M. Murray are with the Control and Dynamical Systems De-
partment, California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
waydo@cds.caltech.edu).

J. Hauser and R. Bailey are with the Electrical and Computer Engineering
Department, University of Colorado, Boulder, CO 80309 USA.

E. Klavins is with the Electrical Engineering Department, University of
Washington, Seattle, WA 98195 USA.

Digital Object Identifier 10.1109/TCST.2007.899172

Fig. 1. Lost wingman scenario. At point (a), the aircraft are flying in formation.
At (b), the data link is lost and the UAV begins executing the lost wingman
maneuver. At (c), the UAV receives a confirmation message from the leader
and turns to match heading. At (d), the data link is restored and, at (e), normal
operation resumes.

human-piloted aircraft. This controller was implemented using
the nonlinear trajectory generation (NTG) software [1]–[3]. We
describe the design and implementation of this controller in
Section II. A logical programming environment (LPE) frame-
work was used to develop and verify the protocols for exe-
cuting this scenario. Temporal logic was used to specify and
reason about the desired performance and our protocol was im-
plemented using the Computation and Control Language (CCL)
[4]. In Section III, we present the LPE framework and its imple-
mentation in CCL and, in Section IV, we describe its implemen-
tation for this flight demonstration. In Section V, we describe
the integration of these technologies into the flight test platform
and the results of the demonstration.

The main contribution of this brief is to prove the feasibility
of our approach to both nonlinear receding horizon control and
formal software modeling and analysis by implementing them
on a real flight system operating in an uncertain environment.
This flight experiment built on our previous work on applying
these tools separately in simulation [5] and on smaller scale ex-
perimental testbeds [2], [6], but was the first time they have been
joined in a single system. We demonstrated how these two con-
trol technologies can work in concert to provide robustness to
uncertainty and failures in a dynamic environment and provided
a proof-of-concept for how this approach can lead to realizing
the goal of human-piloted and autonomous aircraft working to-
gether safely.

A. Related Work

Provably safe conflict resolution between aircraft has been
extensively studied in the context of air-traffic control [7], [8].

1063-6536/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007 681

The distinction here is that in addition to verifying the safety of
the lost wingman maneuver, we reason about the operation of
the underlying decision mechanism (the software).

Several other research teams participated in the SEC demon-
stration, including at least two applications of receding horizon
control. Keviczky et al. developed an application programming
interface (API) for receding horizon control and demonstrated
reference trajectory tracking with the UAV [9]. Schouwenaars et
al. demonstrated the use of mixed integer linear programming
(MILP) implemented in a receding horizon fashion for trajec-
tory generation and task planning [10]. Neither of these demon-
strations included a formation flight component and no other
demonstration included an LPE component.

II. RECEDING-HORIZON CONTROL WITH NONLINEAR

TRAJECTORY GENERATION

A. Nonlinear Trajectory Generation Package

In receding horizon control (RHC), a finite-horizon con-
strained optimal control problem is solved starting from the
current state [11]. The controls of this trajectory are then
applied for some portion of the horizon length, after which
the optimization is repeated to provide the feedback necessary
for stabilization and error correction. Nonlinear Trajectory
Generation (NTG) [1], [3], [12] is an RHC software package
implementing an efficient computational method combining
nonlinear control theory, B-spline basis functions, and nonlinear
programming. There are three primary components to NTG.
The first is to determine a parameterization such that the equa-
tions of motion can be mapped to a lower dimensional space
(output space). In particular, we seek a set of differentially flat
outputs that can be used to convert dynamic constraints to alge-
braic ones [13]. The second is to parameterize each component
of the output in terms of an appropriate B-spline polynomial
[14]. Finally, nonlinear programming is used to solve for the
coefficients of the B-splines. A more complete description of
the NTG framework is described elsewhere [1], [2]. NTG has
previously been used to stabilize and perform high-performance
flight maneuvers on an indoor vectored-thrust flight experiment
[2] and planar hovercraft-like vehicles [6].

B. Aircraft System Description

A T-33 jet trainer equipped with a three-axis autopilot was
used as a UAV surrogate in the flight demonstration. The T-33
could be directed through low rate (2 Hz) commands to the au-
topilot specifying the desired altitude and heading (or heading
rate). Airspeed commands could also be sent through the same
interface, but as the T-33 was not equipped with an actuator to
manipulate the throttle these “commands” were only sugges-
tions to the pilot as to the desired airspeed. Good judgment on
the part of the pilot was essential to the safety and success of the
flight demonstration.

With the given interface and flight safety requirements (dis-
cussed in Section IV-C), we decided to restrict the desired oper-
ations to constant altitude maneuvering with airspeeds within to
a reasonable range around a nominal design point. We are thus
interested in controlling the aircraft in a 2-D plane (at constant

altitude) for the purpose of formation flying including breakup
and rejoin maneuvers. Neglecting wind, the kinematics of con-
stant altitude flight are given by

(1)

where and are north and east displacements, is the velocity,
and is the heading angle. The velocity coordinate frame is at-
tached to the aircraft center of mass and oriented so that the

-axis lines up with the velocity vector. The acceleration ex-
pressed in this frame consists of a longitudinal acceleration
and a lateral acceleration . For a conventional aircraft, the de-
sired lateral acceleration is obtained by banking the aircraft. Ide-
alizing this situation, we will suppose that the aircraft is flying
at constant altitude with zero sideslip angle (coordinated flight)
and that the (normally small) angle of attack is equal to zero.
The lateral acceleration is then given by

where is the roll angle and is the acceleration of gravity.
Fixing the velocity, we see that the lateral dynamics of this sim-
plified model includes heading and roll angles and and turn
and roll rates and . The autopilot provides tracking of the
commanded heading (or turn rate) by treating or as a
pseudo control and using a higher bandwidth regulator to pro-
vide close regulation of the roll angle and rate, enforcing limits
on the maximum roll rate and roll angle to ensure safe flight op-
erations.

For the purposes of system design and performance evalua-
tion, Boeing provided a simulation environment known as “De-
moSim” providing precisely the same interface as used in the
flight demonstration. Furthermore, an interface to the DemoSim
dynamics was provided for use within the MATLAB/Simulink
environment for dynamic analysis and control system design
work. Using this environment, we were able to explore the range
of maneuvers that would be possible in flight, verifying that the
autopilot system (or at least the DemoSim model of it) func-
tioned much as described before. A third order, local linear
model describing the mapping from commanded heading to roll,
roll rate, and heading was identified from the DemoSim model.
This model, with roll rate saturation and time delay included,
provided a fast simple model for early testing and evaluation
of our control system design. We also identified a second order
linear model mapping commanded heading to roll and heading
angles for use within the control system. This model was used
in developing a simple compensator so that could be used as
a pseudo-control.

C. Localizer Intercept

A fundamental skill in aircraft navigation is the ability to fly
the aircraft to a line in space that goes through a given point with
a desired heading , a maneuver known as a localizer intercept.
We use the localizer intercept (and maintenance) as the basis
for formation flight where the localizer specification varies as
a function of the location and heading of the lead aircraft. For
the flight demonstration, the localizer was specified as the line

682 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007

passing through the lead aircraft and oriented with the lead air-
craft’s heading so that leader–follower behavior would result.

Suppose that we would like to intercept a localizer through
the point with heading and suppose that
(through independent regulation) the velocity is constant. The
lateral dynamics are then described by

(2)

where is thought of as a control (or pseudo-control), pos-
sibly subject to actuator dynamics. Note that, with as the
control input, this system is differentially flat. With this setup,
the localizer intercept problem is to steer the aircraft lateral dy-
namics to with local exponential stability
subject to constraints on the roll angle and roll rate. We pro-
vide a solution to this problem using a receding horizon control
strategy.

To this end, suppose that we desire that the aircraft maneu-
vers with and . Based on experi-
ments with DemoSim, we chose to use rad
and rad/s. With such limitations, perfor-
mance of the localizer intercept was best when we restricted the
offset heading angle used to approach the localizer, requiring

. In practice, we found that rad
worked well, providing a good tradeoff between rapid intercept
and requiring excessive speed differential to avoid falling be-
hind the lead aircraft.

As the localizer intercept system (2) is controllable over the
intended operating region, local exponential stability may be
obtained through the use of receding horizon control with a
quadratic cost functional. Exploiting differential flatness, our
optimal control problem is the constrained calculus of variations
problem

(3)

where the constraints provide approximate satisfaction of the
physical constraints proposed above. The positive definite
symmetric weighting matrices and were chosen to obtain,
asymptotically, desirable transient dynamics. That is, we first
designed a linear controller that provided reasonable perfor-
mance with respect to a linear model (plus saturation and time
delay) of the system. We then solved the inverse optimal control
problem by convex optimization to find and matrices for
which this was the optimal controller. By using these and

matrices in the RHC formulation, we thus obtained similar
behavior away from the constraints, but with a controller that
properly respected the constraints as the system approached
them. The weight on the terminal state, , was chosen to be
consistent with and relative to the model dynamics.

In particular, is the solution of stationary Riccati equa-
tion for the corresponding infinite horizon LQR problem (for
the system linearized about straight-and-level flight). A horizon
length of seconds was found to work quite well, pro-
viding a sufficient preview to allow a smooth intercept of the
localizer while satisfying the constraints. The optimization was
recomputed at every 2 Hz computation cycle. The choice of the
horizon length and the design of the terminal cost, not to men-
tion the design of the incremental cost, remain somewhat of an
art, though theoretical notions that may help guide this process
have been developed [15]–[17].

D. Implementation

NTG relies on NPSOL [18], a numerical optimization library
that uses sequential quadratic programming to solve nonlinear
optimization problems, and PGS, the companion software to the
Practical Guide to Splines [14], both of which are implemented
in Fortran 77. These utilities were compiled into libraries that
were linked to the main executable. The optimization problem
(3) was coded in C++ within the main executable and solved by
calls to these linked libraries.

III. FORMAL METHODS FOR SPECIFICATION AND ANALYSIS

OF SOFTWARE

In this section, we introduce our approach to using formal
methods to specify and verify our reliable wingman algorithms,
particularly in the “lost wingman” scenario we implemented for
the flight demonstration. The goal of this brief is to be able
to specify desired safety and correctness properties of our pro-
grams and then write our programs in such a way that we can
formally prove they meet the specifications given a model of
the world, including aircraft and controller dynamics as well as
communications link properties, etc.

A. Computation and Control Language

The computation and control language (CCL) is a program-
ming language designed to make it easy to specify programs
together with a model of the environment in a way that makes
it possible to prove theorems about them [4], [5]. Inspired by
the UNITY formalism [19] and adapted to real-time control
systems, CCL is a specification and implementation language
for the operation of concurrent systems that interact both
through dynamics and logical protocols. The advantages of this
approach are as follows.

• The formalism of CCL and the analysis techniques allow us
to analyze the dynamical behavior and the logical behavior
each in an environment naturally suited to them.

• CCL is both a specification and implementation language,
meaning that the protocols we analyze and the code we
implement are nearly identical; in some cases they are one
and the same.

• Reasoning about CCL specifications is done using standard
logical tools amenable to the application of automated the-
orem proving software.

• We can model and reason about portions of the system
using CCL specifications even if they will not be imple-
mented as such.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007 683

For this demonstration, we used CCL as both a modeling en-
vironment for the complete system and as our implementation
language for a portion of the software. We summarize here a few
important points about CCL; this material has been described in
considerably more detail in previous work [4], [5].

B. Structure and Semantics of a CCL Specification

A CCL specification, or program, consists of two parts
and . is a predicate on states called the initial condition.

is a set of guarded commands of the form , where
is a predicate on states and is a relation on states. In a rule,
primed variables (such as) refer to the new state and unprimed
variables to the old state. For example

is a guarded command stating: If is less than zero, then set the
new value of to be greater than the current value of . If
is not less than zero, do nothing. Note that guarded commands
can be nondeterministic, as is the previous one since it does not
specify the exact new value for , only that the new value must
be greater that .

Programs are composed in a straightforward manner: If
and , then, .

This type of composition allows us to modularize our specifica-
tions into separate programs such as one for a finite-state ma-
chine and one to model the dynamics. In the real system, then,
we can implement only the state machine and as long as the
real dynamics satisfy the CCL specification any proofs about
the original specification will remain valid.

In addition to the initial condition and the collection of
guarded commands, we need to specify the semantics we will
use to interpret the specification. The semantics determine
how commands are picked for execution. For the purposes of
this brief, where the commands are picked at very close to
the same rate, the EPOCH semantics will be sufficient [4].
Informally these semantics require that, though commands may
be chosen nondeterministically from , each command must
be chosen once before any command is chosen again. Thus,
the execution of a system is divided into epochs during which
each command is executed exactly once. This is an attempt to
capture the small-time interleaving that may occur between
processors that are essentially synchronized, as well as the
nondeterministic ordering of commands that can occur when
some are picked by some event-driven process while others are
picked by a deterministic process. We generally view epochs
as occurring at some fixed frequency, although that has not yet
been explicitly modeled.

C. Specification of Experimental System

We now turn to the task of specifying the demonstration
system. Here, we provide a few examples of the CCL speci-
fications; the full details and a partial safety proof have been
provided elsewhere [20].

1) Dynamics and Semantics: Using techniques described in
[20], we specify two programs and to keep track

of the dynamics of the F-15 and T-33, respectively, using the
subscript 1 to denote the F-15 (so for example the position of
the F-15 is) and 2 to denote the T-33. These programs
are rules that periodically update the aircraft states according to
the discrete-time version of (1). We also constrain the execution
to obey the EPOCH semantics, with the additional requirement
that each epoch begin with the execution of the command de-
scribing the dynamics. In the actual system, the execution of
each epoch is triggered by an accurate software timer every
seconds and each epoch will complete before the next trigger,
so this is a realistic model.

2) Controllers: Each aircraft runs a controller that at each up-
date uses its own data plus what is known about the other aircraft
to generate controls . We envision that this is accomplished
by some function control: (where is the state
space of a single vehicle) that we will leave unspecified aside
from basic assumptions required for proofs of safety properties
[20]. This allows us to use any number of control techniques in
the system to be implemented while retaining the correctness
of the safety proofs, provided the implemented controller sat-
isfies the safety specification. In particular, we can implement
a simple model of the controllers in CCL for analysis and test
purposes and a more complex receding-horizon controller for
the flight test and retain the validity of our analysis as long as
both meet the higher-level specifications. On the T-33 we can
implement this as a constraint on the optimization-based con-
troller described in Section II. As with the dynamics, we denote
the F-15 controller by and the T-33 controller by .

D. Communication

We suppose there are two communications links between the
two aircraft: a “high-speed” data connection for state informa-
tion and a less frequently used “low-speed” connection. The
high-speed link is implemented by the lower-level command
and control software, and because the CCL program on the T-33
interacts with this subsystem only to check if new data have ar-
rived we abstract it into a command that updates , the
next time data will be sent by the F-15, and , the next time data
will be received by the T-33. The send time is incremented
by whenever data are sent, reflecting the fact that the F-15
sends data at a regular rate, while the receive time can be any-
thing in the interval , reflecting an uncertain and
nondeterministic time delay of up to in the system. We keep
track of the status of the data link using the boolean variable

.
We model the low-speed communications link using a

mailbox with a queue and a nondeterministic time delay of up
to . When a message is sent, a record is added to the end of
the queue containing a scheduled arrival time .
We write as shorthand for the process of sending
data to vehicle . We then have the predicate which is
true if a message has arrived at vehicle .

As will be seen in the following, the nature of the messages
we send is such that we are only interested in the most recent
message received. We use to denote setting the
new value of msg to the data field of the most recent record in

684 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007

Fig. 2. State machine describing the mode changes and variable updates for the
T-33 control system. This machine describes the behavior of the CCL program
running on the T-33.

for which and then deleting from all
messages for which .

All of these communications are specified by the program
.

Program

Initial
Commands

IV. LOST WINGMAN PROTOCOL

The lost wingman protocol consists of two parts: a CCL state
machine managing the T-33 and a detailed flight procedure for
the pilot of the F-15. The flight procedure can also be written as
a state machine, and so, for purposes of analysis, we can model
the pilot’s behavior using CCL as well.

A. T-33

The state machine running on the T-33 is depicted in Fig. 2.
The system has four modes denoted by the variable in the
following programs:

• normal, for normal formation flight, abbreviated ;
• , for the case where the T-33 has ceased receiving state

data from the F-15 and has not yet received a confirmation
of lost status, abbreviated . In this mode the T-33 executes
a turn away from the F-15’s last known heading (with right
or left determined by the relative positions of the two air-
craft);

• , for the case where lost confirmation has been re-
ceived from the F-15, abbreviated . In this mode the T-33
matches the speed and heading sent by the F-15 in the con-
firmation message;

• found, for the case where the state data link has been reac-
quired but normal formation flight has not resumed, abbre-

viated . In this mode the T-33 matches heading and speed
with the F-15.

This flight demonstration was designed to test what happens
when the T-33 enters mode from normal mode. The por-
tion of the state machine specification involving this portion of
operation is

Program

Initial
Commands

send

lost

B. F-15

The F-15 state machine consists of just two modes (denoted
by in the specifications): normal, for normal formation
flight, and lost, for the lost wingman scenario. In normal mode
the pilot is free to fly at will within a predefined performance
envelope that ensures safe formation flight is possible. If the
pilot receives a “lost” message from the T-33, the procedure
is to transition to straight and level flight and transmit to the
T-33 the resulting speed and heading (using a button on the
test conductor’s control interface to do so automatically). Upon
receiving and acknowledging a rejoin request and observing
that the T-33 has rejoined formation safely, the pilot can resume
normal operation.

C. Safety

The safety specification we were concerned with in the lost
wingman scenario was simple: the aircraft must not collide in
the event of a loss of the high data rate link. In [20], we provide
a detailed proof that, provided the nominal controller maintains
formation within a certain level of accuracy, the T-33 will safely
pass through mode. That is, the T-33 will either make it to

mode, in which it can match speed and heading with the
F-15, or to found mode in the event that high-rate communica-
tion is restored. A highly useful byproduct of constructing this
proof is that it yields performance constraints that can be used in
the nominal control design. These performance constraints, ex-
pressed as bounds on the allowable station-keeping error, also
suggest bounds on the allowable uncertainties, but for the pur-
pose of this demonstration all measurements (and shared state
data) were assumed to be accurate (a very good assumption for
our particular test platform). In principle, it would be straight-
forward to extend the analysis of [20] to explicitly model uncer-
tainty (or other performance requirements) as well.

D. Implementation

While we may reason about specifications in which the rules
are arbitrary relations on states, any code we write will be deter-
ministic, meaning that all rules will be assignments. In this case

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007 685

Fig. 3. Screen capture depicting the experiment controller interface on the UAV computer. Results from a portion of a simulation including the lost wingman
behavior are shown. The path of the F-15 is marked with dark circles (plotted at 10-s intervals) while the path of the T-33 is marked with lighter circles. Depicted
area is about 40-km wide.

there exists a CCL interpreter known as CCLi [4], [21] that can
be used to execute CCL code. The implementation code for all
of the programs described here is available online [22].

Because we have modularized the different aspects of our
CCL specification into different programs, we are free to
implement these specifications in whatever manner is most
appropriate for each. For this demonstration, the T-33 state
machine and low-speed communications protocols were im-
plemented directly in CCL programs updated by the primary
executable, while the high-speed communications and re-
ceding-horizon control were implemented in the main C++
source code.

For development and testing of our algorithms, we imple-
mented a simulation of the system and our controllers in CCL
in addition to the state management code used for the flight
test. This allowed us to quickly iterate and test our designs in a
simple desktop environment prior to integrating with the com-
plex system required to fly the actual aircraft. When it came
time to integrate CCL with the flight system, the CCLi library
was linked with the flight code so our CCL protocols could be
periodically updated from within the demonstration executable.
Implementing the CCL code in this way rather than recoding it
in C++ (the language of the flight code) had two significant ad-
vantages. First, we could have a very high level of confidence
that our flight protocols would execute just as those we analyzed
and tested because the code was identical—any mismatch would
be due to differences in hardware and operating conditions and

would most likely be very small. Second, because the version of
CCL we used is interpreted rather than compiled, this strategy
allowed us to modify our protocols and retest without having to
go through the time consuming process of recompiling the main
executable.

The F-15 state machine was implemented by the detailed
flight procedures provided to the test crew specifying what ac-
tions to take upon receiving messages from the autonomous
wingman. Messages from the F-15 to the T-33 were either au-
tomatic (in the case of the detailed state information) or sent by
the test conductor pressing buttons on a laptop computer inter-
face (described in Section II). For the testing of our algorithms
a keyboard controllable model of the F-15 was written in CCL
and used to demonstrate the lost wingman scenario.

V. FLIGHT DEMONSTRATION

A. Demonstration Overview

The main objectives of the flight experiment were to do the
following:

1) demonstrate the use of NTG to perform coordinated for-
mation flight; and

2) demonstrate the use of CCL to manage the lost wingman
scenario.

As described, the UAV test platform was a T-33 jet aircraft out-
fitted with the avionics package of the X-45 UCAV unmanned
aircraft. To interface with the test system, we were required

686 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007

Fig. 4. Flight test results from Flight Test 6 on June 25, 2004. (a) Flight paths. Diamonds mark the position of the F-15 at 60-s intervals. Dashed box is area of
interest for Fig. 6. Points of interest: 1) Experiment start; 2) divert maneuvers; 3) lost wingman start; 4) lost wingman complete; 5) experiment finish. (b) Aircraft
heading. Time lag between F-15 and T-33 trajectories is the result of both inherent time delay in the flight system (communications delay, etc.) and the large
(> 1 mi) separation distance between the aircraft.

to integrate our technologies with the Open Control Platform
(OCP) [23], [24], a middleware development platform devel-
oped at Boeing as part of the SEC program. The OCP comprised
the main structure of the control code, collecting the aircraft’s
state information and providing hooks through which our soft-
ware could process this data and generate control inputs. The
OCP also handled communications between the two aircraft, au-
tomatically providing the transfer of state information needed
for formation flight and allowing us to pass other information
such as that required to execute the lost wingman scenario.

On both aircraft the test engineer (riding in the aircraft rear
seat) interacted with the control software using a Java-based
“experiment Controller” interface. This interface is shown with
simulation data generated by running our scenario in DemoSim
in Fig. 3. On the T-33 side the test engineer had buttons to cut
off and restore the high-speed data link to test the lost wingman
performance. On the F-15 side, the test engineer had a button to
confirm the lost wingman status upon receipt of a lost message
from the T-33 and another button to approve a formation rejoin
request from the T-33 upon restoration of normal state commu-
nications.

Our test scenario proceeded in three stages. First, the F-15
pilot was instructed to fly a nondeterministic path within the test
range to test the station-keeping performance of the NTG-based
controller. In the second stage, the test conductor eliminated the
high-rate data link between the aircraft and the lost wingman
behavior was observed. Finally, the high-rate link was restored
and the T-33 was allowed to execute a rejoin maneuver and
resume station-keeping. At all times the aircraft maintained at
least a 1-mi separation for safety reasons; for the purposes of
the demonstration a violation of this separation would be con-
sidered a “collision.” A test pilot on board the T-33 handled
flying the aircraft to and from the test area and was available to
intervene in the case of problems with the autonomous system.

B. Flight Test Results

The flight control experiment was executed seven times over
five flights between June 17 and June 25, 2004. We here de-
scribe the results from Tests 6 and 7 on June 25, in which the
aircraft had to be diverted away from other traffic, resulting in
an unplanned set of maneuvers that nicely stressed the forma-
tion keeping capabilities of the T-33. Test 6 included an execu-
tion of the lost wingman protocol. Figs. 4(a) and 5(a) provide an
overview of the flight paths of both aircraft taken over the ex-
periments. Separation between the aircraft was generally main-
tained at about 1.5 mi, and at no point did the aircraft approach
the 1-mi minimum separation limit.

C. Control Performance

As can be seen from Figs. 4(a) and 5(a), these flight tests
included several maneuvers induced by the avoidance of other
traffic in the test airspace. The execution of the lost wingman
scenario occurred 4–6 min into Test 6 [in the dashed box in
Fig. 4(a)] and was the only occasion in which the T-33 deviated
significantly from the flight path of the F-15 (by design of the
protocol).

Figs. 4(b) and 5(b) depict the heading of the two aircraft
during Tests 6 and 7, respectively. The T-33’s heading matched
that of the F-15, subject to a significant time delay incurred by
the control and communications software. The significant devi-
ations at about 300 and 380 s in Test 6 correspond to the lost
wingman divert and rejoin maneuvers. The other small devia-
tions were caused by the F-15 making tighter turns than the au-
topilot of the T-33 would allow the controller to follow.

For the purpose of safe and intuitive (to the pilot) operation,
the autopilot restricts the aggressiveness of the maneuvers that
it attempts. For example, experiments with DemoSim indicated
that the autopilot would restrict the roll rate to approximately 4

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007 687

Fig. 5. Flight test results from Flight Test 7 on June 25, 2004. (a) Flight paths. Diamonds mark the position of the F-15 at 60-s intervals. Points of interest:
1) experiment start; 2) experiment finish. (b) Aircraft heading.

Fig. 6. Flight path of the two vehicles for the lost wingman portion of Flight
Test 6 on June 25, 2004. Points of interest: 1) lost maneuver start (Lost 1
mode); 2) lost heading established (Lost 2 mode); 3) rejoin maneuver start
(found mode); 4) rejoin maneuver complete (normal mode).

or 5 degrees per second. In flight, we observed typical roll rates
of 5 to 6 degrees per second with a maximum of approximately
9 degrees per second.

D. Lost Wingman Performance

Fig. 6 depicts the portion of Test 6 in which the lost wingman
protocol was executed. At point (1) the high-rate state commu-
nications were cut off and the T-33 automatically transitioned
to its lost state upon detecting this condition. From point (1)
to point (2), the T-33 executed a tight turn to ensure it would
stay clear of the F-15 while broadcasting its lost status via the
low speed link. At point (2), the lost confirmation message was
received by the T-33, having been sent by the F-15 test engi-

neer pressing a confirmation button on the laptop interface after
straight and level flight was achieved. At this time the T-33
turned to match the heading commanded by the F-15. At point
(3), the state communications were restored and the T-33 auto-
matically requested a formation rejoin, which was granted by
the F-15. At point (4), the T-33 completed its rejoin maneuver
and nominal operation resumed. As can be seen from the simi-
larity between this plot and the schematic of Fig. 1 and the sim-
ulation results of Fig. 3 the lost wingman procedure executed
exactly as designed.

VI. LESSONS LEARNED

Much of the success of this flight demonstration can be at-
tributed to our control design properly respecting the perfor-
mance constraints on the flight system imposed by having to
command the aircraft through the autopilot. The RHC frame-
work allowed us to explicitly capture these constraints in our
control design, resulting in achieving the best performance that
could be expected given the capabilities of our UAV surrogate.
We found that we obtained the best performance when we en-
sured that the constraints were appropriately conservative, that
is, when we made sure our controllers would not attempt to push
the flight performance too close to the allowable limits.

As previously described, the choice of parameters for the
RHC problem (horizon length, costs, etc.) is still in large part
an art requiring significant expertise and extensive simulation.
The tactic we used here, namely choosing desired dynamics for
the simplified unconstrained system and solving an inverse op-
timal control problem, was found to be a very effective approach
to this problem.

These successes depended heavily on the accuracy of the De-
moSim environment provided by Boeing for experiment devel-
opment. The entire flight test program took place over about two
weeks after extensive testing of our control software in simula-
tion. Because of the required testing and the flight demonstra-
tion schedule, no revision of our control software after the start

688 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 4, JULY 2007

of flight tests was feasible. This meant that our control design
was entirely based on the system identification we were able to
do on the DemoSim model. Much more than in laboratory en-
vironments where iteration based on “flight” tests is the norm,
a highly accurate simulation environment was critically impor-
tant. It is within this environment, for example, that the need for
conservative constraints on flight performance mentioned be-
fore first became clear (by observing poor performance under
more relaxed constraints), enabling us to tailor our controllers
appropriately to ensure a successful demonstration.

On top of the accuracy of the simulation module, the ability to
implement our controllers and interact with DemoSim first in a
MATLAB environment and later in a full OCP software environ-
ment was crucial. The MATLAB interface to DemoSim enabled
the system identification upon which our controller design was
based, a process which would have been massively more cum-
bersome had we needed to operate the full flight software to
do experiments for identification. This interface also allowed us
to more quickly iterate on our control design without the over-
head involved in the flight software implementation. Because
the MATLAB simulation was one and the same as the simulation
used with the flight software, we were able to implement our
final control design in the OCP with high confidence in its suc-
cess.

ACKNOWLEDGMENT

The authors would like to thank B. Mendel and J. Rossen at
the Boeing Company for their extensive help with the integra-
tion of our software with the Open Control Platform.

REFERENCES

[1] M. Milam, “Real-time optimal trajectory generation for constrained dy-
namical systems,” Ph.D. dissertation, Control Dynamical Syst. Dept.,
California Inst. Technol., Pasadena, 2003.

[2] M. Milam, R. Franz, J. Hauser, and R. Murray, “Receding horizon con-
trol of a vectored thrust flight experiment,” in Proc. IEE Proc. Control
Theory Appl., 2005, pp. 340–348.

[3] R. Murray, J. Hauser, A. Jadbabaie, M. Milam, N. Petit, W. Dunbar, and
R. Franz, Eds., “ch. Online Control Customization via Optimization-
based Control,” in Software-Enabled Control: Information Technology
for Dynamical Systems. New York: Wiley, 2003, pp. 149–174.

[4] E. Klavins, “A language for modeling and programming coopera-
tive control systems,” in Proc. Int. Conf. Robot. Autom., 2004, pp.
3403–3410.

[5] E. Klavins and R. M. Murray, “Distributed algorithms for cooperative
control,” IEEE Pervasive Comput., vol. 3, no. 1, pp. 56–65, 2004.

[6] J. Chauvin, L. Sinegre, and R. Murray, “Nonlinear trajectory gener-
ation for the Caltech multi-vehicle wireless testbed,” presented at the
Eur. Control Conf., Cambridge, U.K., 2003.

[7] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict
resolution maneuvers,” IEEE Trans. Intell. Transport. Syst., vol. 2, no.
2, pp. 110–120, Feb. 2001.

[8] Z.-H. Mao, E. Feron, and K. Billimoria, “Stability and performance
of intersecting aircraft flows under decentralized conflict avoidance
rules,” IEEE Trans. Intell. Transp. Syst., vol. 2, no. 2, pp. 101–109,
Jun. 2001.

[9] T. Keviczky, A. Packard, O. Natale, and G. Balas, “Application pro-
gramming interface for real-time receding horizon control,” in Proc.
Conf. Dec. Control Eur. Control Conf., 2005, pp. 1331–1336.

[10] T. Schouwenaars, M. Valenti, E. Feron, and J. How, “Implementation
and flight test results of milp-based UAV guidance,” in Proc. IEEE
Aerosp. Conf., 2005, pp. 1–13.

[11] R. Findeisen and F. Allgö, “An introduction to nonlinear model predic-
tive control,” presented at the 21st Benelux Meet. Syst. Control, Veld-
hoven, The Netherlands, 2002.

[12] California Inst. Technol., Pasadena, “Nonlinear trajectory generation,”
(2002). [Online]. Available: http://www.cds.caltech.edu/~ntg/

[13] M. Fliess, J. L’evine, P. Martin, and P. Rouchon, “Flatness and defect of
nonlinear systems: Introductory theory and examples,” Int. J. Control,
vol. 6, pp. 1327–1360, 1995.

[14] C. D. Boor, Ed., A Practical Guide to Splines. New York: Springer,
2001.

[15] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, pp.
789–814, 2000.

[16] A. Jadbabie, J. Yu, and J. Hauser, “Unconstrained receding-horizon
control of nonlinear systems,” IEEE Trans. Autom. Control, vol. 46,
no. 5, pp. 776–783, May 2001.

[17] A. Jadbabie and J. Hauser, “On the stability of receding horizon control
with a general terminal cost,” IEEE Trans. Autom. Control, vol. 50, no.
5, pp. 674–678, May 2005.

[18] Stanford Business Software, Inc., Mountain View, CA, “NPSOL,”
(2006). [Online]. Available: http://www.sbsi-sol-optimize.com/asp/
sol_product_npsol.htm

[19] K. Chandy and J. Misra, Parallel Program Design: A Foundation.
Reading, MA: Addison-Wesley, 1988.

[20] S. Waydo and E. Klavins, “Verification of an autonomous reliable
wingman using CCL,” California Inst. Technol., Pasadena, Tech. Rep.
CaltechCDSTR:2006.001, 2006.

[21] Univ. Washington, Seattle, “The computation and control language
(CCL),” (2004). [Online]. Available: http://sveiks.ee.washington.edu/
ccl/

[22] California Inst. Technol., Pasadena, “Verification of an autonomous re-
liable wingman using CCL,” (2004). [Online]. Available: http://www.
cds.caltech.edu/~waydo/lost_wingman/

[23] J. Paunicka, B. Mendel, and D. Corman, “The OCP - an open middle-
ware solution for embedded systems,” in Proc. Amer. Control Conf.,
2001, pp. 3445–3450.

[24] “Open Control Platform: A software platform supporting advances in
UAV control technology,” in Software-Enabled Control: Information
Technology for Dynamical SystemsJ. Paunicka, B. Bendel, and D.
Corman, Eds. New York: Wiley, 2003, pp. 38–62.

