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Formation Tracking Control of Unicycle-Type Mobile
Robots With Limited Sensing Ranges

K. D. Do

Abstract—A constructive method is presented to design coopera-
tive controllers that force a group of unicycle-type mobile robots
with limited sensing ranges to perform desired formation tracking
and guarantee no collisions between the robots. Physical dimen-
sions and dynamics of the robots are also considered in the con-
trol design. Smooth and times differential bump functions are
introduced and incorporated into novel potential functions to de-
sign a formation tracking control system. Despite the robot lim-
ited sensing ranges, no switchings are needed to solve the collision
avoidance problem. Simulations illustrate the results.

Index Terms—Bump function, formation tracking, mobile robot,
potential function.

I. INTRODUCTION

FORMATION control of multiple agents has received a lot
of attention from the control community over the last few

years due to its potential applications to search, rescue, cov-
erage, surveillance, reconnaissance and cooperative transporta-
tion. Formation control can be roughly understood as control-
ling positions of a group of the agents such that they stabilize/
track desired locations relative to reference point(s), which can
be another agent(s) within the team, and can either be stationary
or moving. Research works on formation control often use one
or more of leader-following (e.g., [1], [2]), behavioral (e.g., [3],
[4]), and use of virtual structures (e.g., [5], [6]) approaches in ei-
ther a centralized or decentralized manner. Centralized control
schemes (e.g., [2] and [7]) use a single controller that gener-
ates collision-free trajectories in the workspace. Although these
guarantee a complete solution, centralized schemes require high
computational power and are not robust due to the heavy depen-
dence on a single controller. A nice application of formation
control based on the potential field method [2] and Lyapunov’s
direct method [8] to gradient climbing was recently addressed
in [9]. However, the final configuration of formation cannot be
foretold. On the other hand, decentralized schemes, see, e.g.,
[10] and [11], require less computational effort and are relatively
more scalable to the team size. The decentralized approach usu-
ally involves a combination of agent-based local potential fields
(e.g., [2], [12], and [13]). The main problem with the decentral-
ized approach, when collision avoidance is taken into account,
is that it is extremely difficult to predict and control the critical
points of the controlled systems. An interesting work addressing
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geometric formation based on Voronoi partition optimization is
given in [14], but the final arrangement of the agents cannot be
foretold due to locality of Lloy’s algorithm. Recently, a method
based on a different navigation function from [15] provided a
centralized formation stabilization control design strategy pro-
posed in [7]. This work is extended to a decentralized version
in [11]. A similar result but based on different navigation func-
tion motivated by the work in [15] is given in [16]. However,
the formation is stabilized to any point in workspace instead
of being “tied” to a fixed coordinate frame. Moreover, the po-
tential function, which possesses all properties of a navigation
function (see [15]), is finite when a collision occurs. This com-
plicates the analysis of collision avoidance in the sense that
one cannot directly use the first time derivative of the poten-
tial function to prove no collisions between agents. In [7], [15],
[16], and [11], the tuning constants, which are crucial to guar-
antee that the only desired equilibrium points are asymptoti-
cally stable and that the other critical points are unstable, are
extremely difficult to obtain explicitly. In most of the above pa-
pers, point-robots with simple (single or double integrator) dy-
namics (e.g., [2], [7], [11], [13], [14], and [17]) or fully actuated
vehicles [6] (which can be converted to double-integrator dy-
namics via a feedback linearization) were investigated. It should
be mentioned that decentralized navigation of nonpoint agents
with single-integrator dynamics was also investigated in [18],
but each agent requires global knowledge of position of other
agents. Vehicles with nonholonomic constraints were also con-
sidered (e.g., [3]). However, the nonholonomic kinematics are
transformed to double-integrator dynamics by controlling the
hand position instead of the inertial position of the vehicles.
Consequently, the vehicle heading is not controlled. In addition,
switching control theory [19] is often used to design a decentral-
ized formation control system (e.g., [1], where a case-by-case
basis is proposed), especially when the vehicles have limited
sensing ranges and collision avoidance between vehicles must
be considered. Clearly, it is more desirable if we are able to de-
sign a nonswitching formation control system that can handle
the above decentralized and collision avoidance requirements.
Moreover, in the tracking control of single nonholonomic mo-
bile robots (e.g., [20]–[22]), where it seems that the backstep-
ping technique was first used in [20] to take the robot kinetic into
account in the control design, the tracking errors are often inter-
preted in a frame attached to the reference trajectory using the
coordinate transformation in [23] to overcome difficulties due
to nonholonomic constraints. If these techniques are migrated
to formation control of a group of mobile robots, it is extremely
difficult to incorporate collision avoidance between the robots.
The above problems motivate the contribution of this brief.

In this brief, cooperative controllers are designed to force a
group of unicycle-type mobile robots with limited sensing
ranges to perform desired formation tracking and to guarantee
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Fig. 1. Robot parameters.

no collisions between the robots. The physical dimensions and
dynamics of the robots are also considered. The control devel-
opment is based on novel potential functions, which attain the
minimum value when the desired formation is achieved and are
equal to infinity when a collision occurs. Moreover, smooth and

times differential bump functions are introduced and incorpo-
rated into the potential functions to avoid the use of switchings,
which are often required in literature to deal with the robot’s
limited sensing ranges.

II. PROBLEM STATEMENT

A. Robot Dynamics

We consider a group of mobile robots, of which each has
the following dynamics [21]:

(1)

where , denotes the position
, the coordinates of the middle point, , between the

left and right driving wheels, and heading of the robot co-
ordinated in the earth-fixed frame (see Fig. 1),

, where and are the angular velocities of the
wheels of the robot , , where and are the
control torques applied to the wheels of the robot . The rota-
tion matrix , mass matrix , Coriolis matrix , and
damping matrix in (1) are given by

(2)

with

(3)

where and are the masses of the body and wheel with
a motor, , , and are the moments of inertia of the body
about the vertical axis through (center of mass), the wheel
with the rotor of a motor about the wheel axis, and the wheel
with the rotor of a motor about the wheel diameter, respectively,

, , and are defined in Fig. 1, and the nonnegative constants
and are the damping coefficients.

For convenience, we convert the wheel velocities
of the robot to its linear and angular velocities by

(4)

where , and is invertible since
. With (4), we can write the robot dynamics (1) as

follows:

(5)

where

with

(6)
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Fig. 2. Formation setup.

B. Formation Control Objective

In this brief, we will study a formation control problem under
the following assumption.

Assumption 1:
1) The robot has a physical safety circular area, which is

centered at the point , has a radius , and has a circular
communication area, which is centered at the point and
has a radius (see Fig. 2). The radius is strictly larger
than , , .

2) The robot broadcasts its state and its ref-
erence trajectory in its communication area. Moreover,
the robot can receive the states and reference trajectories
broadcast by other robots , , , in the
group if the points of these robots are in the commu-
nication area of the robot .

3) The dimensional terms of the robot are known
to the robot . The terms involved with mass, inertia, and
damping, , of the robots are un-
known but constant.

4) At the initial time , each robot starts at a location that
is outside of the safety areas of other robots in the group,
i.e., there exists a strictly positive constant such that

(7)

for all , , where .
5) The reference trajectory for the robot is ,

which is generated by

(8)

where is referred to
as the common reference trajectory with being the
common trajectory parameter, and is a constant vector.
The trajectory satisfies the following conditions:

(9)

where , , and is
a strictly positive constant. Moreover, and are also
bounded. The constant vectors , , satisfy

(10)

for all , , where is a strictly
positive constant.

Remark 1: Items 1) and 2) in Assumption 1 specify the way
each robot communicates with other robots in the group within
its communication range. In Fig. 2, the robots and are
communicating with each other since the points and
are in the communication areas of the robots and , respec-
tively. The robots and are not communicating with each
other since the points and are not in the communica-
tion areas of the robots and , respectively. Similarly, the
robots and are not communicating with each other.
Item 3) makes sense in practice because the dimensional terms
can be easily predetermined while the terms involving mass, in-
ertia, and damping are often difficult to predetermine. Moreover,
the assumptions in this item mean that the matrix is known,
while the matrices and and coefficients of the entries
of the matrix are unknown but constant. In item 5), the
constant vectors , , specifies the desired forma-
tion configuration with respect to the earth-fixed frame .
The condition (9) implies that the common reference is reg-
ular and its velocity , which specifies how the desired for-
mation, whose configuration is determined by , moves along

, is bounded and satisfies a persistent excitation condition,
i.e., the desired formation always moves along the common ref-
erence trajectory . The condition (10) specifies feasibility of
the reference trajectories , (recall from (8)
that , ) due to physical safety cir-
cular areas of the robots. Finally, all of the robots in the group
require knowledge of the common reference trajectory since
this trajectory specifies how the whole formation should move
with respect to the earth-fixed frame .

Formation Control Objective: Under Assumption 1, design
the control input and update laws for all terms involving mass,
inertia, and damping ( , , , , and ) for each
robot such that each robot asymptotically tracks its desired
reference trajectory while avoiding collisions with all other
robots in the group, i.e., for all , ,

:

(11)

where , and is a positive constant.

III. PRELIMINARIES

We here present one definition and one lemma, which will be
used in the control design in the next section.

Definition 1: A scalar function is called a times
differential bump function if it enjoys the following properties

if

if

if

is times differentiable with respect to (12)
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Fig. 3. Twice-differentiable bump function.

where is a positive integer, , and and are constants
such that . Moreover, if the function is
infinite times differentiable with respect to , then it is called a
smooth bump function.

It is noted that bump functions are not new to the control com-
munity. A nontrivial bump function was used in [24] for
obstacle avoidance in flocking cooperation control of multiple
agents with limited communication. Here, we give a construc-
tive method to construct the times differentiable and smooth
bump functions. These functions are useful when dealing with
cooperative control of multiple agents with limited communica-
tion and high-order dynamics. Construction of these bump func-
tions is given in the following lemma.

Lemma 1: Let the scalar function be defined as

(13)

where the function is defined as follows:

if and if (14)

where is a positive integer. Then, the function is a
times differentiable bump function. Moreover, if in
(14) is replaced by , then property 4) is replaced
by: 4 ) is a smooth bump function.

Proof: See Appendix A. Fig. 3 illustrates a twice-differen-
tiable bump function ( , ).

Remark 2: As specified in Lemma 1, the times differen-
tiable bump functions can be obtained explicitly, i.e., the inte-
gral (13) can be solved analytically. The smooth bump functions
cannot be obtained explicitly. Thus, a numerical procedure is
needed to solve the integral (13). However, in many applica-
tions, including the formation control of mobile robots in this
brief, the times differentiable bump functions are sufficient.

IV. CONTROL DESIGN

Since the robot dynamics (5) are of a strict feedback form [25]
with respect to the robot linear velocity and angular velocity

, we will use the backstepping technique [25] to design the
control input . The control design is divided into two main
stages. In the first stage, we consider the first three equations of
(5) with and being considered as immediate controls. In
the second stage, the actual control will be designed.

A. Stage I

Since the robot is underactuated, we divide this stage into
two steps using the backstepping technique. In the first step,
the robot heading and the robot linear velocity are used
as immediate controls to fulfill the task of position tracking and
collision avoidance. In the second step, the robot angular ve-
locity is used as an immediate control to stabilize the error
between the actual robot heading and its immediate value at the
origin. We do not use the transformation in [23] to interpret the
tracking errors in a frame attached to the reference trajectories
as is often done in literature (e.g., [20]–[22]) to avoid difficulties
when dealing with collision avoidance.

1) Step I.1: Define

(15)

where and are virtual controls of and , respectively.
With (15), the first two equations of (5) are read as

(16)

where and

(17)

To fulfill the task of position tracking and collision avoidance,
we consider the following potential function:

(18)

where and are the goal and related collision avoidance
functions for the robot specified as follows.

• The goal function is designed such that it puts penalty on
the tracking error for the robot and is equal to zero when
the robot is at its desired position. A simple choice of this
function is

(19)

• The related collision function should be chosen such that
it is equal to infinity whenever any robots come in contact
with the robot , i.e., a collision occurs, and attains the
minimum value when the robot is at its desired location
with respect to other group members belonging to the set
of robots, where is the set that contains all of the
robots in the group except for the robot . This function is
chosen as follows:

(20)
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where the function is a function of with
and enjoys the following properties:

1) and if
2) if
3) and if

4) if
5) and

.
6) is at least three times differentiable with respect to

if (21)

where , is a strictly positive constant
such that , ,

, and are positive constants, and , , and
are defined as follows: , ,
if , ,

, and if
.

Remark 3: Properties 1)–4) imply that the function is pos-
itive definite, is equal to zero when all of the robots are at their
desired locations, and is equal to infinity when a collision be-
tween any robots in the group occurs. Moreover, Property 1) and
the function given in (19) ensure that the function attains
the (unique) minimum value of zero when all of the robots are
at their desired positions. Also, Property 3) ensures that the col-
lision avoidance between the robots and is only taken into
account when they are in their communication areas. Property
5) is used to prove stability of the closed-loop system. Prop-
erty 6) ensures that we can use techniques such as the backstep-
ping and direct Lyapunov design methods [25], [26] for control
design and stability analysis for continuous systems instead of
techniques for switched, nonsmooth and discontinuous systems
[19], [27] to handle the collision avoidance problem under the
robot’s limited sensing ranges.

There are many functions that satisfy all properties of
given in (21). An example is

(22)

where is a times differentiable
bump function defined in Definition 1 with and

, and . The time
derivative of along the solutions of (16) satisfies

(23)

where we have used , ,
, , and

(24)

From (23), we choose a bounded control designed as follows:

(25)

where denotes a vector of bounded functions of elements
of in the sense that with and

the first and second rows of , i.e., . The
function is a scalar, at least three-times differentiable and
bounded function with respect to and satisfies

1) ;
2) if if ;
3) ;
4)

for all , , where , , are strictly posi-
tive constants. Some functions that satisfy the above properties
are and . The strictly positive constant is
chosen such that

(26)

The above condition ensures that and are solvable from
. We now need to solve for and from the expression

of in (25) and (17). From (25) and (17), we have

(27)

where we have used
and

since and (see
Assumption 1). The left-hand sides of (27) are actually the
coordinates of in the and directions. Now, multiplying
both sides of the first equation of (27) with and both
sides of the second equation of (27) with and then
adding the resulting equations together yields

(28)

On the other hand, multiplying both sides of the first equation
of (27) with and both sides of the second equation of
(27) with and then subtracting the resulting equations
gives

(29)

From (28) and (29), we solve for and as shown
in (30), shown at the bottom of the next page. It is noted
that (30) is well defined since

, where the
condition (26) has been used. Moreover, it is of interest to note
that and are at least twice-differentiable functions of

, , , , and with , .
Remark 4: When defined in (24) is substituted into (25),

the control can be written as

(31)
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It is seen from (31) that the argument of consists of two
parts. The first part, or , referred to
as the attractive force, plays the role of forcing the robot to
its desired location. The second part, or

, referred to as the repulsive force, takes
care of collision avoidance for the robot with the other robots.
Moreover, the immediate control of the robot given in (25)
depends on only its own state and reference trajectory and the
states of other neighbor robots if the points of these robots
are in the circular communication area of the robot , since out-
side this area [see Property 3) of ].

Now, substituting (25) into (23) results in

(32)

Substituting (25) into (16) results in

(33)

2) Step I.2: In this step, we view as an immediate control
to stabilize at the origin. As such, we define

(34)

where is a virtual control of . To prepare for designing
, let us calculate . Differentiating both sides of the first

equation of (15) along the solutions of (34), the third equation
of (5) and the second equation of (30) results in

(35)

To design the virtual control , we consider the function

(36)

whose derivative along the solutions of (32) and (35) satisfies

(37)

It is noted that is well defined since
and are

smooth functions for all . From (37), we choose the
virtual control as

(38)

where is a positive constant. It is of interest to note that
is an at least once-differentiable function of , , , ,

, , , , , and , with , . Moreover, it
should be noted that the virtual control contains only the
state and reference trajectory of the robot , and the states of
other neighbor robots if the points of these robots are in
the communication area of the robot , because outside this area

thanks to Property 3) of . Substituting (38)

(30)

(39)
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into (37) results in (39), shown at the bottom of the previous
page, after some manipulation. Substituting (38) into (35) gives

(40)

To prepare for the next section, let us compute the term
, where . From the second equation of

(15), (34), and the last equation of (5), we have

(41)

where

(42)

(43)

where , . Again, and
contain only the state and reference trajectory of the robot

, and the states of other neighbor robots if the points
of these robots are in the communication area of the robot ,
because outside this area , , and

, thanks to Property 3) of .

B. Stage II

In this stage, we design the actual control input vector and
update laws for unknown system parameter vector for each
robot . To do so, we consider the following function:

(44)

where and is an estimate of , and is a
symmetric positive definite matrix. Differentiating both sides of
(44) along the solutions of (41) and (39) yields

(45)

which suggests that we choose (46), shown at the bottom of the
page, where , and is a symmetric
positive definite matrix. Substituting the first equation of (46)
into (41) gives

(47)
By construction, the control and the update given in (46) of
the robot contain only the state and reference trajectory of the
robot , and the states of other neighbor robots if these robots
are in a circular area, which is centered at point of the robot

(46)
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Fig. 4. Simulation results with ten robots.

and has a radius no greater than . Now, substituting (46) into
(45) results in

(48)
For convenience, we rewrite the closed-loop system consisting
of (33), (40), (47), and the second equation of (46) as follows:

(49)

We now state the main result of our brief in the following
theorem.

Theorem 1: Under Assumption 1, the control and the up-

date law given in (46) for the robot solve the formation
control objective. In particular, no collisions between any robots

can occur for all , the closed-loop system (49) is for-
ward complete, and the position and orientation of the robots
track their reference trajectories asymptotically in the sense of
(11).

Proof: See Appendix B.

V. SIMULATIONS

Here, we simulate formation tracking control of a group of
identical mobile robots to illustrate the effectiveness

of the proposed controller. The physical parameters of the robot
are taken from [21]: , , ,

, , , , ,
, , , and , .

The robots are initialized as follows: ,
, , , where for

, and for . The initial values of
, , are taken as random numbers between 0 and
. The initial values of are taken as half of their true values.

The reference trajectories are taken as ,
and . This

choice of the reference trajectories means that the common ref-
erence trajectory forms a sinusoidal trajectory and that the
desired formation configuration is a polygon whose vertices uni-
formly distribute on a circle centered on the common reference
trajectory and with a radius 10. The functions , ,

, are taken as in (22) with , , and .
The function is taken as . The control gains and up-
date gains are chosen as , , , and

, where is a -dimensional identity matrix. Indeed, the
above choice of satisfies condition (26). Simulation results
are plotted in Fig. 4. It is seen that all robots nicely track their
reference trajectories. During the first four seconds, the robots
quickly move away from each other to avoid collisions then
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track their desired reference trajectory in Fig. 4(a), where the
trajectory of the robot is plotted in the thick line. For clarity,
only the control inputs of the robot are plotted in
Fig. 4(b). Fig. 4(c) plots the tracking errors , ,
and of the robot . Indeed, these errors tend to zero
asymptotically. The distances between the robot and other
robots are plotted in Fig. 4(d). Clearly, these distances are al-
ways larger than , , i.e., there
are no collisions between the robot and all other robots in the
group. Moreover, in Fig. 4(e), we plot the product of all gaps
between robots: . It
is seen that is always larger than zero. This means that

, , , i.e., no collisions
between any agents occurred. For clarity, we only plot the re-
sults for the first 20 s in Fig. 4(b)–(e).

VI. CONCLUSION

We have presented a method to design cooperative forma-
tion tracking controllers for a group of unicycle-type mo-
bile robots with limited sensing ranges. The control design was
constructed in such a way that the robots asymptotically track
their reference trajectories and avoid collisions among them.
The novel potential functions with embedded smooth or/and
times differential bump functions are attractive parts of the brief
since they do not require the use of switching control theory de-
spite the robot limited sensing ranges. These functions can cer-
tainly be modified to solve other cooperative control problems
such as flocking and consensus of mobile agents. In addition,
the method of constructing the virtual controls and is
also attractive, since they are derived directly from the position
tracking errors instead of transforming the robot kinematics to
a body frame as often done in the literature. Future work is an
extension of the proposed techniques in this brief and those for
single underactuated ocean vessels in [28] and [29] to achieve a
desired formation for a group of underactuated vessels.

APPENDIX A
PROOF OF LEMMA 1

We need to verify that the function given in
(13) satisfies all properties defined in (12). Property 1)
holds because, by (14), for all , we have

. Property 2) holds since, by (14),

we have for
all . Property 3) holds because it is not hard to show that

for all . To prove Property 4), we just need to
show that is times differentiable. We first note
that is smooth except at . Hence, we only need
to verify that for any
positive integer . Clearly, since

, . On the other hand, since ,
we have . Since both left- and

right-hand limits are equal to 0, we have . Hence,
Property 4) holds. Now we turn to the case where
in (14) is replaced by . Properties 1)–3) can be
proven without difficulty. We focus on proof of Property 4 ).
We first note that ,
where is a polynomial function of , and is

any positive integer. We will prove Property 4 ) by induc-
tion. First of all, we check that . It is clear that

.
On the other hand,

where and
we have used l’Hopital’s rule. Since both left- and right-hand
limits are equal to 0, we have . Now assume that

. We now compute . The left-hand limit is
equal to 0 as above. The right hand limit is

(by l’Hopital’s rule), where
and is another polynomial of . Since
both left- and right-hand limits are equal to 0, we have

, which completes the proof of Property 4 ).

APPENDIX B
PROOF OF THEOREM 1

We first prove that no collisions between the robots can
occur, the closed-loop system (49) is forward complete and that
the robots asymptotically approach their target points or some
critical points. We then investigate stability of the closed-loop
system (49) at these points and show that the position and
orientation of the robots asymptotically track their reference
trajectories.

Proof of No Collisions and Complete Forwardness of Closed
Loop System: From (48) and properties of the function [see
(26)], we have , which implies that ,

. With definition of the function in (44) and its
components in (36), (18), (19), and (20), we have

(50)

for all . From the condition specified in item 4)
of Assumption 1, Property 5) of , and the definition of ,

, the right-hand side of (50) is bounded by a positive con-
stant depending on the initial conditions. The boundedness of
the right-hand side of (50) implies that the left-hand side of (50)
must be also bounded. As a result, must be smaller than
some positive constant depending on the initial conditions for
all . From properties of [see (21)],

must be larger than some positive constant depending
on the initial conditions denoted by , i.e., there are no colli-
sions for all . Boundedness of the left-hand side
of (50) also implies that of , , , and

Authorized licensed use limited to: University of Western Australia. Downloaded on July 21,2010 at 00:08:00 UTC from IEEE Xplore.  Restrictions apply. 



536 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 3, MAY 2008

for all . This in turn implies by construc-
tion that , , , , and do not escape to
infinity in finite time. Therefore, the closed-loop system (49) is
forward-complete.

Equilibrium Points: Since we have already proved that there
are no collisions between any robots, an application of [26, The-
orem 8.4] to (48) yields

(51)

By noting that as specified in item 5) of
Assumption 1, the limit equation (51) implies that

By construction, and
imply that . Moreover, from the
definition of in (24), means

(52)

The limit equation (52) implies that
can tend to

since (Property 1) of

), or some vector denoted by as
the time goes to infinity, i.e., the equilibrium points can be
or . It is noted that some elements of can be equal to that
of . However, for simplicity, we abuse the notation, i.e., we
still denote that vector as . Indeed, the vector is such that

(53)

To investigate properties of the equilibrium points, and , we
consider the first equation of the closed-loop system (49), i.e.,

(54)

Since we have already proved that the closed-loop system
(49) is forward complete, and and

imply from the expressions of and
[see (17)] that , we treat

as an input to (54) instead of a state.
Moreover, we have already proved that the trajectory can
approach either the set of desired equilibrium points denoted
by or the set of undesired equilibrium points denoted by

“almost globally.” The term “almost globally” refers to the
fact that the agents start from a set that includes both condition
(7) and that does not coincide at any point with the set of the
undesired saddle point . Therefore, we now need to prove
that is locally asymptotically stable and that is locally
unstable. Once this is proved, we can conclude that the trajec-
tory approaches from almost everywhere except for from
the set denoted by the condition (7) and the set denoted by ,
which is unstable.

Properties of Equilibrium Points: The system (54) can be
written in a vector form as

(55)

where ,
, and

. Therefore, near an equilibrium
point , which can be either or , we have

(56)

where the element of the matrix is
, , where is the

set of all agents. A simple calculation shows that

(57)

for all , , , where denotes the
identity matrix of size . Let be the set of the agents such
that, if the agents and belong to the set , then .
Next, we will show that is asymptotically stable and that
is unstable.

Proof of Being Asymptotic Stable: Using properties of
and listed in (21) and (26), we have from (57) that for all

,

(58)

where and , with
. We consider the function

(59)

whose derivative along the solutions of (56) with replaced by
, using (58), and noting that satisfies

(60)

since [see Property 1) in (21)]. The last inequality
of (60) implies that is asymptotically stable because
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, and we have already proved that
.

Proof of Being Unstable: Again, using properties of
and in (21) and (26), we have from (57) that

(61)

for all , , where ,
, and . Since the related collision

avoidance functions [see (20)] are specified in terms of rel-
ative distances between agents and it is extremely difficult to
obtain explicitly by solving (53), it is very difficult to use
the Lyapunov function candidate to investi-
gate stability of (56) at . Therefore, we consider the Lyapunov
function candidate

(62)

where and

.
Differentiating both sides of (62) along the solution of (56)
with replaced by gives

(63)

where and (61) has been used. To investigate stability
properties of based on (63), we will use (53). Define

, , where
[see (53)]. Therefore, . Hence,
, , which, by using (53), is expanded to

(64)

where . The sum is strictly negative
since, at the point, say , where , , ,
all attractive and repulsive forces are equal to zero, while at the
point, say , where , , the sum of
attractive and repulsive forces are equal to zero (but attractive

and repulsive forces are nonzero). Therefore, the point, say ,
where , , , must locate between the
points and for all , , i.e., there exists a
strictly positive constant such that ,
which is substituted into (64) to yield

(65)

Since , , , there exists a nonempty
set such that, for all , ,
is strictly negative, i.e., there exists a strictly positive constant

such that , , . We
now write (63) as

(66)

where . We now define a subspace such that ,
and , , .

In this subspace, we have

(67)

Using , , , we can write
(67) as

(68)

Now assume that is a stable equilibrium point, i.e.,
, , where is a

nonnegative constant. Noting that , we have
, , which im-

plies that ,
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, , where is a nonnegative con-
stant, since and . We now
consider two cases: and

.
Case I: : Since

(Assumption 1) and we have already
shown that , , in (68) is
divergent. Therefore, cannot
tend to a constant but must be divergent. This contradicts

, i.e., cannot be a
set of stable equilibrium points but must be a set of an unstable
ones in this case.

Case I: : There would
be no contradiction. However, this case is never observed in
practice since the ever-present physical noise would cause

to be different from zero at the
time . We now need to show that, once the sum

is different from zero, this sum will
not come back zero again for all , i.e., the set of undesired
equilibrium points is not attractive. To do so, consider (68)
with the initial time instead of , i.e.,

(69)

for and , where is
a positive constant. Since (Assumption 1)
and we have already shown that , ,
in (69) is divergent for . Therefore,

, for , cannot tend to a constant but must be divergent.
This contradicts , i.e.,

must also be a set of unstable ones point in this case. The
proof of Theorem 1 is completed.
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