1270

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 6, NOVEMBER 2009

Tuning of Multivariable Decentralized Controllers
Through the Ultimate-Point Method

Luciola Campestrini, Luiz Carlos Stevanatto Filho, and Alexandre Sanfelice Bazanella

Abstract—A successful method for tuning single-loop PID
controllers is the ultimate-point method. This method is based on
the identification of the ultimate point of the process’ frequency
response followed by its shifting, through appropriate choices of
the controller’s parameters, to a specified location of the complex
plane. This paper presents an extension of the ultimate-point
method to the tuning of decentralized controllers for multivariable
processes.

Index Terms—Characteristic loci, multivariable decentralized
control, PID control, relay-feedback experiment, stability mar-
gins, ultimate-point method, Ziegler-Nichols formulas.

1. INTRODUCTION

ESPITE SEVERAL decades of industrial PID control

practice, a large proportion of the control loops still
presents poor performance [1]. For many control loops, a good
tuning method is one that would require little information
about the process dynamics, so that this information can be
obtained by carrying out an experiment of limited complexity,
followed by the application of simple tuning rules. One of the
most successful methods is the one based on the knowledge
of the ultimate point of the process’ frequency response, i.e.,
the point at which its phase reaches —180°. The characteristics
of the frequency response at this point are usually called the
ultimate quantities of the process: the ultimate period and
gain. In single-input—single-output (SISO) control, well-known
formulas, such as Ziegler—Nichols and Tyreus—Luyben, use
these ultimate values in order to tune PI and PID controllers
[1]-[3]. Different names have been given to this method; in this
paper, we refer to it as the ultimate-point method.

In multivariable multiple-input—multiple-output (MIMO)
processes, it is common practice to use the SISO procedure and
tuning formulas, followed by a “detuning,” which consists in
reducing the controller gains by some ad hoc factor [4]. This
gain reduction tends to enhance the SISO stability margins,
so that the coupling with other loops will—hopefully—not
destabilize the loop. Better tuning can be obtained by using
sequential controller tuning [2], [5], but this procedure may
require a large number of experiments. Other techniques have
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been applied as well, mostly based on the SISO method and
experiments [4], [6]. Other methods deal with the identification
of more than one point of the frequency response followed
by the controller tuning [7], [8], but these usually apply to
cross-coupled (i.e., not decentralized) controllers. In addition,
there are tuning methods that yield more efficient controllers
but are much more demanding in terms of the data that must be
collected from the process’ operation [9].

More recently, extensions of the ultimate-point method for
decentralized control of multivariable processes have been pro-
posed [10]-[12]. In these papers, the multivariable nature of
the problem is explicitly acknowledged: The MIMO ultimate
quantities are obtained by means of multivariable experiments.
However, this information is used for tuning the controllers with
the SISO formulas, a procedure that does not seem substanti-
ated by formal multivariable analysis. Moreover, MIMO pro-
cesses have infinitely many ultimate points, and the resulting
closed-loop performance is strongly related to the particular ul-
timate point used. Hence, a better understanding of the MIMO
control problem and how to use the ultimate quantities to design
MIMO controllers is in order [13], [14].

In this paper, we provide a consistent criterion for deter-
mining the settings of decentralized PID controllers based on
the ultimate quantities identified. The tuning is made based
on a multivariable frequency-response criterion: shifting the
ultimate point to an assigned location in the complex plane.
In so doing, like in the SISO case, adequate stability margins
can be obtained, provided that the frequency response of the
process satisfies certain properties. The closed-loop perfor-
mance obtained with this method presents little sensitivity to
the particular ultimate point used for the design.

We consider MIMO square processes described by a transfer
matrix

Y(s) = G(s)U(s) ()

where Y (s) and U(s) are vectors with m components, repre-
senting the Laplace transforms of the process output and input,
respectively, and G(s) is the process’ transfer matrix. The
processes are assumed to be bounded-input-bounded-output
(BIBO) stable.

We aim at designing decentralized controllers

U(s) =C(s)E(s)

p1(s) 0 0o --- 0 e1(s)
[ w0 ]

6 0 0 . Pm(8) em'(s)
where E(s) = R(s) — Y(s), R(s) is the Laplace trans-
form of the reference signal, and p;(s), ¢ = 1,...,m,
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Fig. 1. Relay-feedback experiment.

are the—scalar—transfer functions of the decentralized
controller C(s). We deal with PID controllers, in which
pl(s) = kpi + (kii/s) + kg;s, with kpi, kii, kq; € R. Although,
in this paper, we focus on PID controllers, the method can be
applied to set the parameters of any fixed structure controller.

The outline of this paper is as follows. Section II presents
the ultimate-point method for SISO systems, and Section III
presents how the ultimate quantities are defined in MIMO pro-
cesses. The multivariable ultimate-point method is presented in
Section IV. As the method needs the knowledge of the process’
frequency response at a given frequency, Section V discusses
the practical determination of this quantity. The method is
illustrated by two examples: In Section VI, some results of its
application to a benchmark—the Wood and Berry distillation
column—are given and an additional illustrative example is
discussed in Section VII. Finally, Section VIII presents the
conclusions.

II. ULTIMATE-POINT METHOD

The ultimate-point method for tuning SISO PID controllers
is a well-known method based on the knowledge of the ultimate
point of the process’ frequency response, which is the point at
which the process’ Nyquist diagram intersects the negative real
axis of the complex plane [1]. Associated with this point are the
ultimate quantities: the ultimate gain (K,,) and ultimate period
(T.) of the process. If the process is put under purely propor-
tional control, the ultimate gain is the gain for which the loop is
at its stability boundary. The ultimate frequency (w,, ) is the fre-
quency at which the crossing of the negative real axis happens,
and the ultimate period is given by T;, = 27 /w,,. The ultimate
quantities are more conveniently obtained by the relay-feed-
back experiment [1]. This experiment consists of a closed-loop
bang—bang control, as shown in Fig. 1. The control function 7(-)
is described as

u = n(e) = —d sign(e) + bias 3)

where the bias term should be chosen as bias = r/G(0) and
the relay amplitude is given by d = (u — @)/2[1]. Then, if
the ultimate point does exist, a symmetric oscillation will be
observed, and this oscillation presents the properties as follows.

Fact 1 [1]: Let wegc be the frequency of the oscillation ob-
served in the relay experiment and a be its amplitude at the relay
input. Since the ultimate frequency is such that /G(jw,,) = —,
wosc gives an estimate for the ultimate frequency, so that both
ultimate quantities can be obtained by means of the relay exper-
iment. Then

Wy = Wosc (4)
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TABLE I
ZIEGLER-NICHOLS AND TYREUS-LUYBEN FORMULAS
Ziegler-Nichols kp T; Ta
PI 0.4Ky 0.8T% 0
PID 0.6 Ky, 0.5T,  0.125T%
Tyreus-Luyben kp T Ta
PI Ky/3.2 22T, 0
PID K,/2.2 22T, T,/6.3
TABLE II

DIFFERENT POINTS TO WHICH THE ULTIMATE POINT IS MOVED USING
ZIEGLER—NICHOLS AND TYREUS-LUYBEN FORMULAS

Ziegler-Nichols PI —0.4 4 0.087
PID || —0.6—0.28;
Tyreus-Luyben PI —0.31 + 0.023y
PID —0.45 — 0.42y
4d
K, =—. )
T™a

Once the ultimate quantities are determined, the PID is tuned
according to given formulas. Different sets of tuning rules have
been proposed over the years, aiming at different performance
criteria. We will explore two sets of formulas in this paper: the
originally proposed Ziegler—Nichols formulas [3], which typi-
cally provide fast but oscillatory behavior, and the more conser-
vative Tyreus—Luyben formulas [15]. These formulas are given
in Table I where the transfer function of the PID controller is
given by

C(s) =k, <1 + ;s + Tds> . 6)

The PID controller dislocates the ultimate point into a stable
region, which is away from the point —1 + 07 and closer to the
origin of the complex plane. Each set of formulas corresponds
to moving the ultimate point to a given location in the complex
plane. A PI controller with Ziegler—Nichols tuning, for example,
has k, = 0.4K,, and v, T; = (27/T,)0.8T,, = 5.02. Then, the
PI controller transfer function, at the ultimate frequency, is

1 J
= K,(0.4 — 0.08y)

which results in the loop transfer function
L(jwu) = C(jwu)G(gwa) = —0.4 4 0.08).

That is, the ultimate point has been moved to —0.4 + 0.08.
Table II shows the points to which different formulas move a
process ultimate point.

A. Stability Margins

From the Nyquist stability criterion, it follows that if the
whole frequency response is kept away from —1, then the
closed-loop system will be stable and present adequate stability
(gain and phase) margins. This means that if the ultimate point
is away from —1 and closer to the origin, nearby points of the
frequency response will also be away and, provided that the
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Fig. 2. Bode diagram of a PID controller for a system with K, = 2 andw,, =
27 /10 rads.

frequency response is “sufficiently smooth,” adequate stability
margins are obtained. Different smoothness assumptions on
the frequency response have been made in order to associate
stability margins to the ultimate-point method [1], [2], [16].

If, for instance, the Ziegler—Nichols tuning is used in a PID
controller, then

1 0.25
C(s) =0.6K, <1 + + Ms)

ST [wy Wy,
L 0157K, (s + 2w,)’

Wa s

)

That is, the controller presents a double zero at the frequency
—(2/m)wy, at which frequency its magnitude is minimal and
equal to |C'(y(2/m)wy)| = 0.6K,. Hence, the frequency re-
sponse of the controller has the form shown in Fig. 2.

Stability in closed loop is obtained if the loop transfer func-
tion C'(yw)G(yw) satisfies

|C(gw1)G(w1)| <1 8)
LC(Jwo)G(ywo)| > — 180° )

where w; and wy are defined as /C(jw;)G(jw1)| = —= and
|C(ywo)G(ywo)| = 1, respectively. With the Ziegler—Nichols
tuning, we have by definition C'(jw,, )G (jw,) = —0.6—0.28) =
0.66/ — 25.02°. If the process’ module drops faster than the
growth of the controller’s module for all frequencies above w,,
and its phase drops faster than the growth of the controller’s
phase for all frequencies below w,,, then it is clear that condi-
tions (8) and (9) will be satisfied. We have thus established the
following fact.

Fact 2: Let G(s) be the transfer function of a BIBO-stable
SISO process, and let this process be controlled by a PID con-
troller (6) with the Ziegler—Nichols tuning as given in Table I. If
the Bode plot of the process’ frequency response lies completely
outside the shaded area as shown in Fig. 3, then the closed-loop
system is BIBO stable.

The constraints on the frequency response of the process
in the fact above have clear physical interpretation. Although
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Fig. 3. Stability boundaries for the process’ frequency response.

these conditions can usually not be directly checked for a given
process (checking them would require a rough model of the
process), they give a guideline to the class of processes to
which Ziegler—Nichols tuning can be successfully applied. For
instance, a delay-free stable transfer function with no zeros will
always satisfy these constraints provided that its poles are not
too far apart from each other. On the other hand, several classes
of processes are excluded, such as systems with dominant
time-delay and oscillatory systems with natural oscillation
frequency close to the ultimate frequency. For these systems,
stability cannot be guaranteed, and for many among them, the
closed-loop system will indeed be unstable if a Ziegler—Nichols
tuning is applied.

Different sufficient conditions, with different degrees of con-
servatism, can be obtained for the Ziegler—Nichols tuning, as
well as for other tuning rules [1], [16]. The same considerations
will apply regarding the closed-loop stability when applying the
multivariable ultimate-point method.

III. ULTIMATE QUANTITIES IN MIMO PROCESSES

In multivariable processes like (1), the ultimate quantities can
be defined similarly to the SISO case [14].

Definition 1: Let a BIBO-stable square process with m in-
puts be controlled by purely proportional controller u = — Ky,
with gain K = diag{ky ko, ..., kn}, ki € [0,00). Since
the process is BIBO stable, the feedback system is BIBO stable
for sufficiently small K. Assume that there exists a constant
matrix K, such that the closed-loop system is BIBO stable
VK = aK,,0 < a < 1, and unstable for K = K, (1+¢), with
€ an arbitrarily small positive scalar; this value K, is called an
ultimate gain of the process. On the other hand, for K = K,
the closed-loop system is on the verge of stability, and hence, a
sustained oscillation will be observed; the frequency of this os-
cillation is called an ultimate frequency w,,. ]

The stability of MIMO square systems can be analyzed
through the Nyquist criterion, as in the SISO case. Denote
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Fig. 4. Ultimate gains in the TITO case form a curve in the parameter space.

Ai(s), 7 =1,2,...,m, the eigenvalues of G(s)K. The graphs
of \;(s) as s goes round the Nyquist contour are called the
characteristic loci. With these definition, the Nyquist theorem
for MIMO systems can be stated as follows.

Theorem 1 (Generalized Nyquist Theorem) [8]: If G(s)
has Py unstable (Smith—-McMillan) poles, then the closed-loop
system with return ratio —G(s)K is stable if and only if the
characteristic loci of G(s) K, taken together, encircle the point
—1 Py times counterclockwise, assuming that there are no
hidden unstable modes. O

Therefore, for a BIBO stable G(s), the closed-loop system
is stable if and only if none of the characteristic loci of G(s)K
encircles the point —1. As the gain matrix K is varied, the sta-
bility limit is reached when at least one of the characteristic loci
equals —1 for some frequency. The gain for which this happens
is an ultimate gain.

The ultimate quantities are usually unique in the SISO case;
even when they are not unique, they are countable. The situation
is quite different in the MIMO case, since the gain matrix K
can be increased from zero in infinite different directions in the
parameter space. It can be expected that a different K, and w,,
will be found for each different direction, as shown in Fig. 4. The
set of all the ultimate gains is a curve in the parameter space. In
the more general (m > 2) case, these gains will form a surface
of dimension m — 1; this surface will be called the ultimate
surface[14].

If decentralized PID tuning is determined based on the
ultimate quantities using Ziegler—Nichols-like formulas, as in
[10]-[12], and [17], then two things must be realized. First,
all PIDs will be tuned based on the same ultimate frequency.
Second, the tuning will be dependent on which pair of the
ultimate quantities has been identified.

For simplicity, let mm = 2. Consider that the gain K is in-
creased in the direction K = diag{k; 0}, i.e., the second loop
is kept open, and the proportional gain in loop one is increased.
The ultimate gain that will be obtained in this case is the SISO
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Fig. 5. DRF experiment.

ultimate gain k&, of the first loop. Then, if the PID is tuned ac-
cording to these ultimate quantities, then this tuning is the “cor-
rect” one for the first SISO loop. On the other hand, if the gain
K is increased as K = diag{0 k2}, then the “correct” SISO
tuning for the second loop is obtained. If a different direction
in the parameter space is picked to increase the gain K, then it
is expected to find a tuning that will not be optimal for any of
the two loops but will represent some sort of “average” of the
two. The closer this direction is to either one of the two SISO
directions defined earlier, the closer the tuning is expected to be
to the corresponding “correct” SISO tuning for that loop [10].

Once the ultimate quantities are identified, a gain sufficiently
smaller than the ultimate one should guarantee stability and
enough stability margins. However, this is not necessarily true
in the MIMO case. If the ultimate curve in the parameter space
is convex, then adequate stability margins are guaranteed by
taking a gain K = aK,, for sufficiently small o. However, it
is not possible to guarantee that the ultimate surface is convex
or even smooth. As a matter of fact, there are cases in which the
ultimate surface is not convex, like in the benchmark studied in
Section VL.

The ultimate gains can be more conveniently obtained by
a decentralized relay-feedback (DRF) experiment [10], shown
in Fig. 5, and different ultimate points are identified with dif-
ferent relay amplitudes [13], [14]. In DRF, only one experi-
ment is performed, with all control loops in relay feedback, i.e.,
u; = n(e;) Vi. Since all the input—output pairs are connected,
the behavior of the whole multivariable system is observed in
this single experiment.

IV. DESIGN BASED ON THE MIMO
ULTIMATE QUANTITIES

The multivariable ultimate-point method is an extension of
the ultimate-point method to multivariable systems. The main
idea is to dislocate the ultimate point of the process to another
point in the complex plane, moving it to a position that is away
from the point —1 + 07 and closer to the origin [13]. Let us first
present the two-input—two-output (TITO) case.

A. TITO Case

Consider a 2 x 2 or TITO system. Then, the loop transfer
function for K = K, is given by

Gw) Ky = 911 (jw) gn(]@d)} [kul 0 }

g21(Jw)  g22(yw) 0 ku (10)

Let A1 (yw) and A2(yw) be the eigenvalues of the loop transfer
matrix G(jw)K,,. Then, by the very definition of critical gain
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K, and critical frequency w,,, at least one of these eigenvalues
is equal to —1 for w = w,, i.e., either \;(jw,) = —1 or
A2(ywy) = —1 or both. Replacing the proportional controller
with a decentralized dynamic controller in (10), we have

912(360)} [Pl(]w) 0 ]

) = g11(yw)
G(w)C(yw) go2(yw) 0 p2() (11

B 921(]w)

The ultimate point is to be dislocated to a previously chosen
position in the complex plane, i.e., at the ultimate frequency w,,;
the eigenvalues of the loop matrix in (11) must be located at
these previously chosen locations. From (11), the characteristic
loci at the ultimate frequency are given by

det ()‘(JWU)I - G(JWU)C(]‘-‘JU)) =0. (12)

The ultimate-point design consists in finding the controller’s
transfer functions p;(s) and p2(s) such that the eigenvalues
A(yw,,) in (12) have the desired values, for example, A; and
Aq; this is the core aspect of the MIMO ultimate-point method.
Let us give a more detailed treatment for a particular way
of choosing these locations in the complex plane, namely,
A1 = Ay = A. With this choice, expanding (12) and defining
g1, = gu(wu), g2, = g120wu), 921, = 9g21(Jwu),
922, = g22(Jwu), 1, = P1(Jwu), and p2, = p2(jw.) in order
to simplify the notation, we have

AN =(g11,p1, +922,P2,) A (911, 922, — 912, 921, ) P1. P2, =0.

(13)
If the roots of (13) are given by A, then the characteristic equa-
tion is given by A\? — 2A\ 4+ A2, which yields

2A =g11,p1, + 922, D2, (14)
A% = (911,922, — 912,921, ) P1. D2, - (15)
From (14), we have
2A
po, = —— = Iy (16)
922, 922,
and substituting (16) into (15), we have
2A A2
a2 22, + =0. (17
922, 922, 911,922, — 912,921,

Since (17) is a second-order polynomial, we can get two dif-

ferent tunings for p;, . Note that p;, is a complex quantity.

Then, by solving (17), we have the setting of the tunings for

p1,,> and, substituting into (16), two different tunings for po ,

also complex, are obtained. Therefore, we have two different

controllers that move the ultimate point to the desired location.
For PI controllers, from the solution of (17), we have

kpl =Re {plu,} (18)

kiv = —Im{p1, } w, (19)
and p», gains are given by

k‘p2 =Re {pQu } (20)
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kio = —Im{ps, } w. (21)

For PID controllers, we obtain p;, in the same way [from (17)],

but in this case
1
T’ilwu J

P, = kpl (1 + (lewu -

and we have

kpl =Re {plu}

1
=1 .

A 1 DOF still exists in the choice of T;; and T;;. A possible
choice is to set Ty; = T;1/4, which is usual also in SISO de-
sign, causing the two zeros of the controller to be equal, which
guarantees smoothness of the controller’s frequency response.
In this case, (23) becomes

(22)

kpl (T’dlwu - (23)

kp, (Tiiwa)? — 4lm {p1, } Tiiw, — 4kp1 = 0. (24)

Thus, from (24), we have two solutions for 7} w,,, which are
always real and with opposite signs. We choose the solution
where T;;w,, > 0, and from the relations k;; = k,1/T;1 and
ka1 = kp1Ti1/4, we obtain the gains of the controller p; . Con-
troller po, is obtained from (16), and then, its parameters T;o
and kpo from (24)mutatis mutandis. As for PI controllers, we
find two different PID controllers that dislocate both character-
istic loci to the desired point.

B. General Case

For the general MIMO case, where m may be different from
two, the same reasoning holds and the same procedure can be
applied. Of course, the equations become more complex. Con-
sider again the case in which all characteristic loci are dislocated
to the same desired point A; for a TITO process, the controllers
are obtained through (14) and (15). For a process of order m,
the equations used to obtain the controllers are given by

tm—iN =" M; (G(jwa)C(jwa)) (25)
where M, are the ith-order principal minors of the matrix
G(jwy)C(jwy), and each sum is taken over all principal mi-
nors of the order <. We note that, in each term, there are always
C: = m!/i!(m — i)! such minors, where C:  stands for the
combination of m elements taken ¢ at a time.

On the other hand, a,,,_; are the coefficients of the charac-
teristic equation (s — A)™, which can be obtained using the
Newton’s binomial formula, for 2 = 1,...,m. Therefore, we
have

; m!
Um_i =C. = m (26)

Like in the TITO case, this will result in a system of equations
with the controllers’ values as unknowns.
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We present the case where m = 3 for illustration. The coef-
ficients of the characteristic equation are given by (26)

i:l—»azA:C:,{A:?)A
i:2—>a1A2:C§A2:3A2
i=3— apA3 = C3A3 = A3,

27

Equating (27) with (25) results in the following set of equa-
tions:

3A =g11,p1, + 922,P2, + 933,P3, (28)
3A% = (911,922, — 912,921, ) P1. P2,
+ (911,933, — 913, 931.) P1., D3,
+ (922,933, — 923.932.) P2.P3. (29)

® = [(g11, 922, 933, + 921, 913, 932, + 931, 912, 923,)
— (911,923, 932, + 921,912, 933, + 931,913,922, )]
X p1,P2,D3, - (30)

The controller is obtained by solving (28), (29), and (30) for
the unknowns p14,, p2u, and ps3,,. This results in six different so-
lutions—in contrast to the two solutions for the TITO case—and
it is not clear how to choose among them. Other design choices
also become significantly more involved for systems of dimen-
sion larger than two. The handling of these choices is by no
means straightforward, so this is a topic that should be further
developed to make our method more practical for systems with
more than two inputs, although it is, in principle, applicable to
systems of any dimension.

V. PRACTICAL DETERMINATION OF G (jw,,)

In the SISO ultimate-point method, the design of the con-
troller requires the knowledge of the process’ frequency
response at the ultimate point, an information that is provided
by the relay-feedback experiment. Accordingly, the MIMO
ultimate-point method, as presented in the previous section,
requires knowledge of the transfer matrix at the ultimate fre-
quency. However, the DRF does not provide the whole transfer
matrix but only the ultimate quantities of the process, which for
MIMO processes is not equivalent. There are different ways of
determining G(jw,, ), and the more accurate ones will be more
demanding. The aim of this section is to present a convenient
procedure to apply in operating systems, although the develop-
ment of optimized procedures remains an open issue.

Consider a TITO process. When the DRF is applied, (%),
uz(t), y1(t), and yo(¢) are periodic signals. Let uy, ug, y1, and
1o be the complex coefficients of the first harmonics of these
signals. Then, we have

{Ul = g11(jw
Y2 = g21(Jw
As we have two equations and four unknowns, it is not possible

to determine G(jw,, ). Therefore, an additional experiment is
necessary. From the DRF test, we know the ultimate frequency

u) Uz

u)u2~

w)U1 + g12(Jw

u)ul + g22(y D
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wy of the system. Therefore, if we apply an input uq(t) =
sin(w,t) and us(t) = O to the system, we have
Y1 = g11(Jwu)u1 (32)
Y2 = g21(Jwu)u1

and it is easy to determine ¢11(jw, ) and g21 (jw., ). Substituting
these quantities in (31), we determine G(jw,, ). However, this
additional experiment is an open-loop test, which is usually in-
convenient in real applications. In many situations, it is difficult
to apply this signal to the input of the process depending on the
software and hardware structure in the control system imple-
mentation.

A more convenient solution is to apply a second DRF test on
the system, changing one relay’s amplitude in such a way that
the oscillation frequency does not change significantly. Thus,
we have

Yl =gn (]wu) U1 + 912 (701 ) u
U% =021 (]wu) u1 + 922 ( wu) U
y{I =g11 (i) u I ult

1 + 912 (7‘%
ysl = go1 (.]wu ) 1+ 922 (7 i )

I
2
I
2 (33)

where the indexes I and /] mean the first and the second DRF
tests in the plant and the two oscillating frequencies w! and w?
are close to each other. If we make the approximation w{t w{tl ,

we have four equations and four unknowns, and we can estimate

G(jw) by
[f]n f]m} [U{ U{I]:[yf yfl}
g21 922 Ué Uél ?/é ygl
U=Y

(34)

Having these information, the multivariable ultimate-point
method can be used in order to obtain the controller. The
difference between the two frequencies will introduce an error
in the estimation of G(jw.,), but as the oscillation frequencies
are quite similar, we can expect this error to be small [16]. The
case studies presented in the sequel show that this is indeed
the case and that this procedure can, in many cases, be used to
obtain the matrix G(jw, ).

VI. CASE STUDY-DISTILLATION COLUMN

Aiming at demonstrating the use of the proposed design
method, this section presents some results obtained for the con-
trol of the Wood and Berry distillation column, whose transfer
matrix is presented in (35). This process has been widely used
as a benchmark [11], [18]

12.8¢~°  —18.9¢~°°
— 16.7s+1 21s+1
G<s) 6.6e7°  —19.4e"3 : 35)
10.9s5+1 14.45+1

Since the process is 2 x 2, we have infinite different combina-
tions of k1 and ko that lead the process to the stability limit,
each one corresponding to a different ultimate point.
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R TABLE III
G(yw )FOR TWO DIFFERENT FREQUENCIES OF WOOD AND BERRY COLUMN

experiment | |uz|/|u1] Wy G(gwu) AG e (%)
1 1.9371 0.4946 Gy = —0.5554 — 1.42957 1.7820 + 0.3223) 29 06
09489 04931 | “1 7 | 0.1784 + 1.1898)  2.6252 + 0.5941) : :
3 3.5303 0.5228 o — —0.5843 — 1.36637 1.7265 4 0.2054) 70 6.6
4 0.6659 0.5106 27 1 0.2131 4 1.14387  2.5441 + 0.4183y ’ ’

In order to illustrate the results, we have tested different ulti-
mate points. As the multivariable ultimate-point method needs
the knowledge of G(jw,, ), we have to find two different but very
close ultimate points and then estimate é( Jwy,) by (34). We have
estimated G (ywy,) for two different frequencies, which are pre-
sented in Table III, where

16 () = & (),
1G (I,

is the variation of GG due to the difference of the oscillation fre-
quencies obtained in each DRF test and

e ety -, .
A TETEw AN 7

is the estimation error of G (ywn.) related to G(jJwy,); w,y, is ob-
tained from the first DRF test performed.

AG =

(36)

A. PID Controller Obtained Using the Ziegler—Nichols
Formulas

This section presents some results obtained for the Wood and
Berry distillation column using the ultimate quantities of the
process and Ziegler—Nichols formulas. This tuning procedure is
adopted in several papers [10], [11], [18]. We show the results
for references r(¢) = [1 0] and r(¢) = [0 1]'.

Fig. 6 shows the behavior of the system with a PID controller
tuned through the Ziegler—Nichols formulas and the ultimate
quantities K,, = [0.42 — 0.30] and w,, = 0.4882 rad/s. Note
that the transient performance obtained is very good. However,
for a PID controller tuned based on another point of the ultimate
surface, K, = [1.27 —0.25] and w,, = 0.5129 rad/s, the system
became unstable, as shown in Fig. 7. These results show that
the SISO tuning is too risky, due to the nonexistence of a full
multivariable analysis to justify the tuning procedure.

B. PID Controller Obtained With Multivariable
Ultimate-Point Method

Next, we have found a PID controller that moves the charac-
teristic loci to the point —0.45 — 0.42, which is the equivalent
of Tyreus—Luyben point for the SISO ultimate-point method. As
(23) yields two solutions, Fig. 8 shows the characteristic loci of
the system with each one of the controllers inserted.

The outermost characteristic loci of both systems—system
controlled by PID 1 and system controlled by PID 2—cross
the circle of unitary radius approximately at the same point. At
every point of this circle, the magnitude of the system’s response

—]
--y2
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A
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t(s)

Fig. 6. Step response of the system with PID tuned using Ziegler—Nichols for-
mulas and ultimate point K, = [0.42 — 0.30] and w,, = 0.4882 rad/s.
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Fig. 7. Step response of the system with PID tuned using Ziegler—Nichols for-
mulas and ultimate point &, = [1.27 — 0.25] and w,, = 0.5129 rad/s.

is equal to one, and the phase margin is given by the angle be-
tween the crossing of the outermost characteristic locus with the
circle of unitary radius and the negative real axis. This means
that the phase margin of both systems is the same. Table IV
presents the controllers’ gains and the stability margins, and
Fig. 9 shows both systems’ responses for different references.
As can be seen in Table IV, the phase margins are almost the
same for the two controllers—close to 33°—but PID 2 presents
a worse gain margin. The effect of this fact can be seen in the
step responses of the systems shown in Fig. 9, in which y2(t) of
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TABLE IV
PID CONTROLLERS’ GAINS OF THE SYSTEMS SHOWN IN Fig. 9
Controller kp1 ki1 ka1 kp2 ki2 ka2 Gm M
PID 1 0.5823  0.2247 0.3773  -0.0860  -0.0135 -0.1374 2571  33.25°
PID 2 0.1435 0.0623  0.0826 -0.3123 -0.0434 -0.5617 1.231  32.59°
TABLE V
PID CONTROLLERS’ GAINS THAT DISLOCATE THE ULTIMATE POINT TO—0.2 — 0.3
G Controller kp1 ki1 ka1 kp2 kio kao Gum Dar
1 PID 1 0.3663 0.1102 0.3044 -0.0432 -0.0051 -0.0912 3.8760I  42.50°
1 PID 2 0.0929  0.0311 0.0693 -0.1510 -0.0155 -0.3671 1.8975I  45.78°
2 PID 1 0.3803  0.1149 0.3147 -0.0416 -0.0045 -0.0952  3.24571  43.05°
2 PID 2 0.0968 0.0315 0.0742  -0.1493 -0.0147 -0.3796  1.83251  47.09°
1+ I I __-I__“‘ —Icharac.locus1—P|[|)1_ : . :
.- T ~._|= = charac. locus 2—-PID 1 —_—y1-G1
T : —— charac. locus 1—PID 2 - y2-G1Q
- charac. locus 2 - PID 2 —y1-G2
| ® -045-042(TL) y2 - G2f|
) k circle of unitary radius 4
0.5 - 7
0 | 70 80 90 100
S o6l //,/" ]
-0.5 i o, ot
% 0.4r ]
bt /
0.2+ ¢ J
/
O Il . L n
L RS RN Al At et ; - ] 0 10 20 30 40 50 60 70 80 90 100

-0.5 0

Fig. 8. Characteristic loci of the distillation column with both PID controllers,
designed with the proposed method.
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Fig. 9. Step responses of the system with PID 1 and PID 2, obtained based on
Tyreus—Luyben point.

the system controlled by PID 2 presents a significant overshoot
for reference r = [0 1]". Fig. 9 shows the step responses of the
system with the controllers obtained with G 1(Jwy).

The performance of the system can be improved through the
choice of another point in the complex plane, more conservative

t(s)

Fig. 10. Step response of the system with PID 1 controller that dislocates the
ultimate point to —0.2 — 0.3y

than Ziegler—Nichols and Tyreus—Luyben ones. Several con-
trollers were designed for different points in the complex plane
(A’s), and Figs. 10 and 11 show the step responses of the system
with PID 1 and 2, respectively, that dislocate the ultimate point
to —0.2 — 0.3y. Table V presents the controllers’ gains and sta-
bility margins. In this case, we present the controllers obtained
with G4 (Jwy) and G (jw,, ), which correspond to two different
ultimate points. Different controllers were designed with dif-
ferent ultimate points, and all these controllers yield similar re-
sults.

The system performances corresponding to e (yw.,,) and
Go (yw.,) are not visually distinguishable, reinforcing the fact
that the choice of the “right” ultimate point loses importance
when the MIMO ultimate-point method is applied. This is also
verified by the controllers’ gains obtained for different ultimate
points, which are very similar.

In addition, as the point in the complex plane chosen is more
conservative than the one used before, there is a significant in-
crease in the stability margins; step responses just validate that.

C. PI Controller Obtained With Multivariable Ultimate-Point
Method for One Characteristic Locus

Let us present a simpler alternative to the previous choice of
dislocation for the ultimate point. The stability limit is usually
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Fig. 11. Step response of the system with PID 2 controller that dislocates the
ultimate point to —0.2 — 0.3.

T
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Ao T + 0] (stability fimit)

: = = = charact. locus 1 — Pl controller
- = charact. locus 2 — PI controller
- : ® —0.4+0.08j(Z-N)

RS : —-_circle of unitary radius

Fig. 12. Characteristic loci of the distillation column with the ultimate gains
and with PI controller designed with the proposed method for one characteristic
locus.

reached when only one characteristic locus crosses the point
—1 4 40. If we assume that the other characteristic loci are far
enough from —1, then the insertion of a controller in the loop,
however changing the size and shape of them, should not make
them involve —1. In this case, we may concern ourselves only
with the “critical” characteristic locus, i.e., the one that crosses
—1, and move only this one to a specified location in the com-
plex plane [13].

We apply this idea to the case study to find a controller that
moves the ultimate point of the characteristic locus that crosses
the point —1 + 03 to —0.40 + 0.083, which is the equivalent of
Ziegler—Nichols point for SISO ultimate-point method using PI
control. Fig. 12 shows the characteristic loci of the system with
the ultimate gain and with the PI controller inserted; Fig. 13
shows the step response of the system with the controller ob-
tained using G 1(ywy,); Table VI presents the controller’s gains.

The step responses shown in the results present good perfor-
mance: The overshoot is less than 10%, and the settling time is
around 40 s. As shown in Fig. 12, the outermost characteristic

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 6, NOVEMBER 2009

e —————-

0 10 20 30 40 50 60 70

Fig. 13. Step response of the system with PI controller obtained through the
multivariable ultimate-point method based on Ziegler—Nichols point.

TABLE VI
PI CONTROLLER’S GAINS OF THE SYSTEM SHOWN IN Fig. 13
kp1 ki1 kp2 ki2
0.1840  0.0151 -0.1214  -0.0100

locus from the system with PI crosses the circle of unitary ra-
dius far from the point —1 + 30, and the stability margins can
be easily calculated from the Nyquist diagram shown in Fig. 12

by =38.53° Gy = 2.081.

VII. CASE STUDY—PROCESS II

In this section, we present some results obtained for another
process, whose matrix transfer function is presented in (38).
This process was also used in [17] and [18] and is considered to
have strong coupling

05 ____

G(s) = (o.1s+1)21(0.2s+1)2

(0.15+1)(0.25+1)2

—1
(0. Ts+1)(0-25+1)2
2.4

(0-15+1)(0.25+1)2(0.55+1) (38)

First of all, we have estimated G/(jw,,) for different ultimate
frequencies through DRF tests. Two of them are presented in
Table VIL.

The controller design for Wood and Berry distillation column,
in the previous section, presented better results with the applica-
tion of the method that tunes a PID which dislocates both char-
acteristic loci to a desired point. This is mainly due to the fact
that, regardless of the ultimate point used, similar performances
are obtained, i.e., similar stability margins. The choice of the de-
sired point in the complex plane is what determines how large
these margins are.

Another important point to study is the influence of the error
in the estimation of G(jw,). Fig. 14 shows the Nyquist dia-
grams of the systems controlled by PID 1, obtained with G (jw,)
directly from the transfer function (38) and with G (jw,,) and
Go (jw..), which presents a larger estimation error. The design
aims to dislocate the ultimate point to —0.45 — 0.42j. Although
the tuning that uses el (jw.,) does not reach exactly the desired
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R TABLE VII
G (jw. ) FOR TWO DIFFERENT FREQUENCIES OF (38)
experiment | |uz|/|u1| Wy, G(ww) AG e (%)
1 4.0947 4.4366 On = —0.1520 — 0.17433  0.1502 + 0.48907 0.7 0.7
0.7544 44211 1 —0.1531 — 0.48453 —0.5012 — 0.0631y : :
; SO0 T . [F0.1736 - 017207 0.1758 4 0.4491 84 83
: : 27 1-0.1460 — 0.49817 —0.4537 — 0.01429
TABLE VIII
PID CONTROLLERS’ GAINS FOR PROCESS II THAT DISLOCATES THE ULTIMATE POINT TO—0.45 — 0.423
G Controller kpl ki1 ka1 k:pz kio ka2 Gum Prr
G(ywu) PID 1 5.0803 11.4042 0.5658 0.2066 0.8948 0.0119 | 2.441 24.16°
G(gwu) PID 2 0.1156 2.4170 0.0014 1.7771 17969  0.4394 | 2.66I 40.47°
G1(ywu) PID 1 5.1997  11.5929  0.5830 0.2097 0.9036 0.0122 | 2.41I 24.77°
G'1(gwuy) PID 2 0.1244 24665 0.0016 1.7836  1.7843  0.4457 | 2.60I  39.85°
G2 (ywu) PID 1 49476 104319 0.5866 0.2372 1.0516 0.0134 | 2.50I 16.40°
G2 (Jwu) PID 2 0.1033 24329 0.0011 1.8223 1.6191 0.5127 | 2.841 42.36°
0.2 . : ; ; ; 0.2 r . . . :
! gaih margin : : ! : gain margin v ‘
\ 57
| O L , "‘ﬁ .
L e
\ /"0 :
| 02F - e S .
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08 Sigo | 2D Chatact locus 2 - {61, PID 1) -0.8 < W — charact. locus 2 - {G1, PID 2} H
~oo :\ \ mmm charact. locus 1 - {G2, PID 1} <3 ANY mmm charact. locus 1 - {G2, PID 2}
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~A) O - 045-0.42j(T-1) S ] O D045 - 042 (T-)
: | ; “‘? == circle of unitary radius __ 1 | | \ ; L circle of unitary radius___
- -08 -0.6 -0.4 -0.2 0 0.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
Fig. 15. Characteristic loci of Process II with PID 2, when using the real

Fig. 14. Characteristic loci gf Process 11 yvith PID 1, when using the real
G(jw. ) and the estimations G (jw,, ) and G2(Jw.,,).

point, the resulting stability margins are indistinguishable from
the ones obtained with the real G(jyw,, ). The tuning obtained for
G (yw. ) places the ultimate point even farther from the desired
location. In this case, the gain margin has been unchanged, but
the phase margin has been decreased significantly for PID 1.
Besides, Fig. 15 shows the Nyquist diagrams for the same de-
sign, but in this case, we compare the design results when PID
2 is applied. It can be seen that the estimation error has a large
influence in the tuning method, which is unable to reach the de-
sired point in the complex plane, but in the other hand, the sta-
bility margins have not been changed significantly. Table VIII
presents the controller gains, obtained with G(jwy, ), G1(Jwa),
and G (jw,, ), as well as the stability margins obtained with each
controller. It can be seen that PID 2 seems to be the best con-
troller whatever estimation of G(jyw,, ) is used for this process.
Thus, if we choose PID 2, there is no significant influence of
the estimation error in the performance of the system. This is

G(jw.) and the estimations Gy (jw.) and G’Q(]w‘,,,).

also shown in Figs. 16 and 17, which present the system re-
sponse when the controller PID 2 is applied and the estimations
G1(yw,) and Ga(jwy, ), respectively.

VIII. CONCLUSION

An extension of the ultimate-point method for multivariable
systems has been proposed, which consists in dislocating the
ultimate point to a given location on the complex plane. Dif-
ferent locations on the complex plane can be chosen. In the
SISO case, this chosen location is related to the stability mar-
gins of the closed-loop system, provided that some assumptions
are satisfied by the frequency response of the process. The same
assumptions, when made for the characteristic loci of a MIMO
process, will imply the same properties of stability margins. The
method proposed inherits the virtues that has made the SISO
ultimate-point method very successful but also its shortcom-
ings. Although we have applied this method successfully to a
number of relevant examples, it is not clear at this point for
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Fig. 16. Step response of Process Il with PID 2 obtained with the real G (Jw)
and G1(jw..).
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Fig. 17. Step response of Process I with PID 2 obtained with the real G/(jw..)
and G2 (jw.,).

which classes of MIMO systems these assumptions are satis-
fied and how generic these properties are. This is an important
area of future research.

On the other hand, previously reported tuning methods for
MIMO systems based on the MIMO ultimate quantities are
strongly dependent of the particular ultimate point identified.
These designs can fail if a “bad” ultimate point is identified, and
there are no guidelines to prevent this situation. Our method
does not suffer from this drawback, as the use of different ulti-
mate points for the design leads to quite similar performance,
as can be seen by the stability margins presented in Tables V
and VIII.
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