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Abstract—In this paper, a novel Euclidean position estimation
technique using a single uncalibrated camera mounted on a moving
platform is developed to asymptotically recover the 3-D Euclidean
position of static object features. The position of the moving plat-
form is assumed to be measurable, and a second object with known
3-D Euclidean coordinates relative to the world frame is considered
to be available a priori. To account for the unknown camera cali-
bration parameters and to estimate the unknown 3-D Euclidean
coordinates, an adaptive least squares estimation strategy is em-
ployed based on prediction error formulations and a Lyapunov-
type stability analysis. The developed estimator is shown to recover
the 3-D Euclidean position of the unknown object features despite
the lack of knowledge of the camera calibration parameters. Nu-
merical simulation results along with experimental results are pre-
sented to illustrate the effectiveness of the proposed algorithm.

Index Terms—Euclidean position estimation, least squares esti-
mation, Lyapunov methods, nonlinear systems, perspective vision
systems.

I. INTRODUCTION

T HREE-D RECONSTRUCTION of an object, where the
Euclidean coordinates of the features on a moving or fixed

object are recovered from a sequence of 2-D images, has re-
ceived noteworthy attention over the last several years. The re-
covery of the 3-D Euclidean coordinates is usually done by
mounting a camera on a moving vehicle such as an unmanned
aerial vehicle (UAV) or a mobile robot which travels through the
environment and captures images of static objects or features.
3-D reconstruction or 3-D Euclidean position estimation has
significance in several applications such as autonomous vehicle
navigation, aerial tracking, path planning, surveillance, etc.

Although, the problem of Euclidean reconstruction is inher-
ently nonlinear, linearization based techniques, such as the ex-
tended Kalman filter (EKF) [2], [3], have been used quite fre-
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quently. However, linearized motion models can cause signifi-
cant incosistencies in solutions, as noted in [4]. Moreover, EKF
involves a priori knowledge of noise distribution. To overcome
the shortcomings of the linear model several researchers focused
on utilizing nonlinear system analysis and estimation tools to
develop nonlinear state observers for depth estimation or 3-D
reconstruction [5]–[14]. All these works utilized velocity mea-
surement of the camera or the object in order to estimate the
depth where the camera’s extrinsic calibration parameters (ro-
tational matrix and translation vector of the camera relative to its
mounting frame) were not considered, and the intrinsic calibra-
tion parameters (a matrix consisting functions of the camera’s
internal parameters; namely, focal length, scaling factors, pixel
coordinates of the principal point, and camera axes angles) were
set to unity to simplify the problem. In practice, these calibra-
tion parameters are often required to estimate the depth or the
structure of an object. In other words, the aforementioned works
require the camera to be calibrated. In [15], a valid intrinsic cal-
ibration matrix of the camera was assumed to recover the depth
of an object. Our recent work [16] utilized position measure-
ments of the camera to recover the structure of an object. How-
ever, this work assumed a calibrated camera, i.e., the intrinsic
and the extrinsic camera calibration parameters were assumed
to be known. The work in [16] was extended and evaluated
experimentally in [17] where it was realized that calibrating a
camera is tedious and complicated, especially calibration of the
camera’s extrinsic parameters.

Hartley and Zisserman in [18] discussed techniques where
the essential matrix (when intrinsic calibration parameters are
known) can be decomposed to obtain camera’s extrinsic cali-
bration parameters. This technique usually results in multiple
solutions for the rotation matrix, and the translation vector is
found up to an ambiguous scale factor; thus, making it difficult
to select the correct solution. If the intrinsic parameters are also
unknown along with extrinsic parameters, the fundamental ma-
trix can be obtained. However, the knowledge of just the funda-
mental matrix is not sufficient to estimate the depth information.
It is also noted that recovering the 3-D Euclidean coordinates of
an object from a sequence of its 2-D images with a single un-
calibrated camera is a very difficult task. In [19], Hartley pro-
posed a multiple-step algorithm for Euclidean reconstruction
from uncalibrated camera views. It was noted in [20] that a true
3-D Euclidean scene of an object using a single camera with
unconstrained motion and unknown parameters can not be re-
constructed. These issues motivated us to develop a simple and
an easily implementable estimator for 3-D Euclidean position
estimation using a single uncalibrated camera where both, the
intrinsic and the extrinsic camera calibration parameters are un-
known.
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Fig. 1. Illustration of the proposed 3-D Euclidean coordinates estimation
technique.

In this paper, our goal is to develop an estimator to identify the
3-D Euclidean coordinates of features on a stationary object by
mounting an uncalibrated camera on a mobile platform whose
position is measurable. To achieve this goal, first a geometric
model (see Fig. 2) is developed to relate the fixed features on the
object with the moving camera where the 3-D Euclidean coor-
dinates of the other object is considered to be available a priori.
The model is then parameterized for known and unknown ob-
ject features. A prediction error formulation is then presented
along with an auxiliary prediction error that allow us to utilize
nonlinear estimation theory to design two adaptive least-squares
estimators to compensate for the unknown camera calibration
parameters and to estimate the structure. We show that the de-
veloped structure estimator (see Fig. 1) identifies the Euclidean
coordinates of the object features upon satisfaction of a per-
sistency of excitation (PE) condition, and is not dependent on
an accurate estimation of the unknown camera calibration pa-
rameters. The proposed estimation technique can be useful in
places where a known object exists, and the 3-D Euclidean co-
ordinates of another object has to be estimated. Also, when a
camera on a mechanical system is replaced or orientation of the
camera is changed, it is not required to recalibrate the camera
if a known object is present. The developed estimator provides
good results and is robust to noise as demonstrated by the simu-
lation results. The validity of the proposed estimation technique
is demonstrated by experimental results.

II. GEOMETRIC MODEL

To develop a geometric relationship between a perspective
moving camera and features on known, and unknown static ob-
jects, we define an orthogonal coordinate frame, denoted by ,
whose origin coincides with the optical center of the camera,
an inertial coordinate frame, denoted by , and an orthog-
onal coordinate frame, denoted by (see Fig. 2). In Fig. 2,

denotes the th object feature whose unknown
3-D Euclidean coordinates relative to the world frame are

Fig. 2. Geometric relationships between the fixed objects, mechanical system,
and the camera.

denoted as the constant , and
represents the th object feature1 whose corresponding 3-D Eu-
clidean coordinates relative to the world frame are known
a priori and denoted by the constant . The 3-D co-
ordinates of the object features relative to the camera frame ,
denoted by , is defined as follows2

(1)

In the subsequent development, it is assumed that both the
objects are always in the field of view of the camera; hence,
the distances from the origin of to all the features are al-
ways positive and bounded. To relate the coordinate systems,
let and denote the measurable rota-
tion matrix and the measurable translation vector, respectively,
from to , expressed in . Let and
denote the unknown rotation matrix and the unknown transla-
tion vector, respectively, from to , expressed in . The pixel
coordinates of the object features projected on the image plane,
denoted by , is defined as follows:

(2)

where , . The projected pixel coordinates
of the features are related to the Euclidean coordinates by the
pin-hole camera model [21] such that

(3)

1Throughout the paper the subscript �� denotes the �th feature whose 3-D
coordinates relative to the frame� is unknown, and �� denotes the �th feature
whose 3-D coordinates relative to the frame� is known.

2The notation � implies � or � throughout the paper. If the left-hand
side of any expression is considered with the subscript �� then the right-hand
side of the expression is with ��, and similarly for �� .
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where is the unknown constant intrinsic camera cal-
ibration matrix of the following form [22]:

(4)

where denote camera scaling factors,
represent the pixel coordinates of the principal point, is
the angle between the camera axes, and is the camera
focal length.

III. PARAMETERIZATION OF THE MODEL

In this section, the parameterization of and the
depth variable are presented. The nonlinear static
model given in (3) is parameterized for two cases: case 1,
where the 3-D coordinates of the features relative to are
unknown (i.e., for ), and case 2, where the 3-D coordinates of
the features relative to are known a priori (i.e., for ).

From Fig. 2, can be written as follows [16]:

(5)

After substituting (5) into (3), the pixel coordinates for the ob-
ject features can be written as follows:

(6)

and the corresponding depth can be written as follows:

(7)

where is the last row of .
Case 1: For the object features that have unknown 3-D coor-

dinates relative to , is parameterized as follows:

(8)

where

(9)

(10)

In (8)–(10), and are the constant vectors
containing all the camera parameters [23], the variable is a
matrix of appropriate dimension containing the combinations of
the elements of the measurable signals and ,

, are regression matrices, and is an
unknown constant parameter vector, which is defined as

(11)

where 1, 2, 3, is the unknown Euclidean coordi-
nate of the th feature for the unknown object relative to .

Case 2: For known 3-D coordinates of the features relative
to , is parameterized as follows [23]:

(12)

where , are known regression
matrices ( is a matrix of appropriate dimension containing
combinations of the measurable signals and structure informa-
tion of the known object).

It should be noted that is assumed to satisfy the fol-
lowing inequalities:

(13)
where denotes the denominator of ,

is a positive function and is a
positive constant . The objective of this work is to identify
the 3-D Euclidean coordinates of the features on an unknown
object in the presence of unknown camera parameters

.3 It is to be noted that our novel structure estimation
technique guarantees the estimation of the 3-D Euclidean
coordinates upon the satisfaction of a PE condition, and it does
not require an accurate estimation of the camera parameters.

IV. EUCLIDEAN STRUCTURE ESTIMATION

In this section, a prediction error formulation for the param-
eterized model given in (8) is presented along with an auxil-
iary prediction error formulation which accounts for the un-
known camera parameters. A structure estimator is then pre-
sented along with the stability analysis.

A. Prediction Error Formulation

To proceed with the error development, the term is
multiplied to the both sides of (8) that results in the following
expression:

(14)

The estimate of (14) can be written as follows:

(15)

where and are the estimates of
and , respectively, and denote and

, respectively, where
are the estimates of and , respectively. To facilitate
the development, the terms and are added and
subtracted from the right-hand side and the left-hand side of
(14), respectively, that yields the following expression:

(16)

After subtracting (15) from (16), the following expression is
obtained:

(17)

where is the prediction error for the th

feature point , is the
structure estimation error, and denotes , where

. After adding and subtracting the

3The estimates of �, � , and � can be obtained from the estimates of
� � � (see [23] for a detailed explanation).
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term to the left-hand side of (17) and simplifying, the
following expression can be obtained:

(18)

where denotes and . To
ease the subsequent analysis, we combine these individual vec-
tors to obtain their respective compact forms. The combined
form of the pixel coordinates and their estimates for all the fea-
ture points on the unknown object, denoted by

, respectively, are defined as follows:

(19)
and the prediction error is defined as follows:

(20)

Based on (18), the prediction error can be written as

(21)

where is a measurable signal defined as fol-
lows:

(22)

and is an auxiliary matrix defined as

(23)

where is a zero matrix. In (21),
, and is an aux-

iliary matrix defined as

(24)

where . The combined form of the
structure estimation errors of the features, denoted by

, is defined as follows:

(25)

The expression given in (21), can be rewritten as follows:

(26)

where . After utilizing (18), for
the th object feature can be written as follows:

(27)

which can be further written as follows:4

(28)
where , , and

.
In order to make the structure estimation error go to

zero, we seek to make the prediction error given in (26)
go to zero.

B. Auxiliary Prediction Error Formulation

To further facilitate the development and to account for the
unknown intrinsic and extrinsic camera parameters, both sides
of (12) are multiplied with the term to obtain the fol-
lowing expression:

(29)

The estimate form of (29) is written as follows:

(30)

where is the pixel estimate of the th feature. After
subtracting (30) from (29), and then adding and subtracting the
term to the left-hand side results in the following
expression:

(31)

where is the prediction error for the th
feature point . Based on (31), the combined form
of the prediction errors, denoted by

, can be written as follows:

(32)

In (32), , and are defined as
follows:

(33)

and is an auxiliary matrix defined as follows:

(34)

where . The expression given
in (32) can be further simplified as follows:

(35)

where is defined as follows:

(36)

4The reader is referred to [24] for the matrix property.
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To account for the unknown camera parameters, the following
update law is designed [23]:

(37)

where ensures the positiveness of the term
(see [25] for a detailed description) and is a positive
function defined as follows:

(38)

where is a positive function and

is a positive constant. In (37), is

the covariance matrix, designed as follows:5

(39)

where is the time instant at which the minimum eigen-
value of is less than or equal to (i.e., the covariance ma-
trix is reset each time when its minimum eigenvalue becomes
less than ) and are positive constants satisfying
the inequality .

Remark 1: It is to be noted that due to resetting, is
guaranteed to be positive definite for all . At the resetting
time , ; therefore,

and between the discontinuities (i.e.,
, ). Thus, it can be easily

inferred that , . Because of the resetting,
is always lower bounded by , ; therefore, the

following inequalities are always guaranteed [26]:

(40)

C. Euclidean Structure Estimator

Based on the subsequent stability analysis, the following up-
date law is designed to estimate the Euclidean coordinates of the
unknown object features relative to

(41)

where ensures the positiveness of the term
(see [25] for a detailed description), and is a positive
scalar function defined as follows:

(42)

where is a positive function defined as

(43)

and is a positive constant defined as follows:

(44)

5Throughout the paper, � will be used to denote a � � � standard identity
matrix.

In (41), is the least-squares estimation gain ma-
trix, designed as follows:

(45)

The Euclidean structure estimator given in (41) is run simulta-
neously with the adaptive update law given in (37). The latter
updates the camera parameters for which is used in the
structure estimator. See Fig. 1 for an illustration of the estima-
tion technique.

Remark 2: It should be noted that if is selected to be
positive definite and symmetric then is also positive defi-
nite and symmetric. Therefore, it follows that both and

are positive definite and symmetric. The following expres-
sion can be obtained from (45):

(46)

It can be easily seen from (46) that is negative semidefi-
nite; therefore, is always constant or decreasing; hence, it
follows that is bounded (for more details, the reader is re-
ferred to [27]).

Remark 3: The projection algorithm utilized in (37), and (41)
ensures that is bounded . Furthermore, it
satisfies the following inequalities (see [17] for a detailed de-
scription):

(47)

(48)

where and .

D. Stability Analysis

Theorem 1: The update law defined in (41) ensures that
as provided that the following PE

condition [26] holds:

(49)

where are positive constants.
Proof: See [28].

Remark 4: The parameter vector provides a scaled esti-
mate of the Euclidean coordinates of the object features relative
to the world frame. Since the last element in the unknown con-
stant parameter vector is equal to 1 as defined in (11), the scale
factor can be computed as

(50)

where is the scale factor for the th feature and
is the last entry of . It should be noted that

is always nonzero which is guaranteed by the projection
algorithm introduced in (37). The estimates of the Euclidean co-
ordinates of the th feature can now be recovered as follows:

(51)
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where 1, 2, 3, is the th element of the estimated
parameter vector for th feature.

Remark 5: It should be noted that the camera parameters’ up-
date may affect the convergence speed of the Euclidean structure
estimator; however, subsequently presented simulations and ex-
periments confirm that as long as the second term in (26) goes
to zero, the structure estimation is purely dependent on the pre-
diction error and the structure estimator.

Remark 6: The PE condition given in (49) can be fulfilled
by guaranteeing that the signals in the regression matrix vary
in a sufficient independent manner within a time-window. The
reader is referred to [29] for a detailed description.

V. SIMULATION AND EXPERIMENTAL RESULTS

The reader is referred to [28] for detailed simulation and ex-
perimental results.

VI. CONCLUSION

A novel technique for estimation of 3-D Euclidean coordi-
nates of features on a static object with an uncalibrated camera
mounted on a moving mechanical system was presented. The
position information of the mechanical system was available
and information of a second object was assumed to be known.
Two adaptive update laws were presented utilizing formulations
of a prediction error and an auxiliary prediction error, respec-
tively, that facilitated the 3-D Euclidean coordinates estimation
and compensation for the unknown camera calibration parame-
ters. It was proven that the Euclidean distance estimation error
signals were driven to zero.
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