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Multivariable Repetitive-predictive Controllers
using Frequency Decomposition

Liuping Wang, Shan Chai, Eric Rogers and Chris T. Freeman.

Abstract—Repetitive control is a methodology for the
tracking of a periodic reference signal. This paper
develops a new approach to repetitive control systems
design using receding horizon control with frequency
decomposition of the reference signal. Moreover, design
and implementation issues for this form of repetitive
predictive control are investigated from the perspectives
of controller complexity and the effects of measurement
noise. The analysis is supported by a simulation study on
a multi-input multi-output robot arm where the model
has been constructed from measured frequency response
data, and experimental results from application to an
industrial AC motor.

I. I NTRODUCTION

Repetitive control [1] is concerned with the tracking
of a periodic reference signal and has many applica-
tions, such as robotics [2] and power electronics [3].
This requirement can be formulated by using the inter-
nal model control principle [4] (expressed in transfer-
function terms) which states that to track a reference
signal with zero error the generator polynomial of this
signal must be included as part of the controller de-
nominator. In the design of repetitive control systems,
the control signal is often generated by a controller
that is explicitly described by a transfer-function with
appropriate coefficients, see, for example, [1] [5] [6].

If the reference signal for an applications contains
multiple frequencies, the repetitive control system will
contain all periodic modes, and the number of these
is proportional to the period length and inversely
proportional to the sampling interval. The result could
be a very high order control system, especially under
fast sampling, and hence the possibility of numerical
sensitivity, noise amplification, sensitivity to modeling
errors, and other undesirable problems in practical
applications.

An alternative to including all the periodic modes in
the repetitive control system is to embed fewer periodic
modes at a given time, and when the frequency of
the reference signal changes, the coefficients of the
controller change accordingly. Previous work [7], [8]
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has taken this approach, where the frequency compo-
nents of a given reference signal are analyzed and its
reconstruction performed using a frequency sampling
filter model, from which the significant frequencies
are identified and error analysis is used to justify the
selections.

Once the significant frequency components have
been selected, thez-transform of the reference signal to
be used in design is formed and by the internal model
principle the denominator polynomial of this transfer-
function must be included in the feedback controller. In
this paper, the denominator polynomial model together
with the plant description is used to construct an aug-
mented state-space model. Receding horizon control
applied to this augmented model results in a feedback
controller for the system considered.

For a multi-input multi-output (MIMO) system, the
frequency components of all reference signals are
analyzed via Fourier analysis and the dominant fre-
quencies are identified based on reconstruction of the
reference signals with a pre-defined accuracy. A major
reason for considering model predictive control is the
ability to impose input, state and output constraints.
Using the receding horizon control setting of this
paper, input constraints can be imposed in the design
and implementation, and the extension to state and
output constraints is noted as a future research topic.
Moreover, it is shown through a simulation example
that the sensitivity of the repetitive-predictive control
system in the presence of measurement noise is related
to the frequencies included in the design.

This paper is organized as follows. In Section II, the
reference trajectory is decomposed using a frequency
sampling model to enable selection of the dominant
frequencies to be used in controller design. In Sec-
tion III, the signal generator model is formulated and
embedded into a state-space model, which is used for
controller design. Section IV, uses the receding horizon
control principle to design the repetitive control law. To
support the development, the last two sections of the
paper give the results of application of the procedure
in simulation to a robot arm configured as a two-
input and two-output system where the plant model has
been constructed from measured frequency response
data, and the results from experimental application to a
single-input single-output (SISO) industrial AC motor,
respectively.
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II. FREQUENCY DECOMPOSITION OF THE

REFERENCESIGNAL

It is shown in this section that the frequency sam-
pling filter model [9] is another representation of a
periodic signal. This representation provides insight
into the characteristics of the periodic signals and the
construction of the signal generator that will be em-
bedded in the structure of repetitive-predictive control
system.

A. Frequency Sampling Filter (FSF) Representation of
Periodic Signals

Suppose that a periodic reference signal with period
T is uniformly sampled with interval∆t to give the
corresponding discrete sequencer(k), k= 0,1, . . . ,M−
1. HereM is defined asT

∆t , and is assumed to be an odd
integer for the reason explained below. We also assume
that the periodic reference signal contains no frequency
components higher than12∆t . By Fourier analysis, this
discrete periodic signal can be uniquely represented by
the inverse discrete Fourier transform (DFT) as

r(k) =
1
M

M−1

∑
i=0

R(ej 2πi
M )ej 2πik

M , (1)

where the R(ej 2πi
M ), i = 0,1,2, . . . ,M − 1, are the

frequency components contained in the periodic
signal. Note that the discrete frequencies are at
0, 2π

M , 4π
M , . . . , (M−1)2π

M . For notational simplicity, the
fundamental frequency is expressed asω = 2π

M . The
z-transform of the signalr(k) is defined as

Rm(z) =
M−1

∑
k=0

r(k)z−k. (2)

Also, by substituting (1) into (2) and interchanging the
order of the summation, thez-transform representation
of the periodic signalr(k) is obtained as

Rm(z) =

M−1
2

∑
l=−M−1

2

R(ejl ω)H l (z), (3)

whereH l (z) is termed thel th frequency sampling filter
and has the form

H l (z) =
1
M

1− z−M

1−ejl ωz−1

=
1
M
(1+ejl ωz−1+ ...+ej(M−1)lωz−(M−1)).

The assumption thatM is an odd number is used
to include the zero frequency. Moreover, the frequency
sampling filters are bandlimited and are centered atlω.
For example, atz= ejl ω, H l (z) = 1, and also (3) can
be written in terms of real (denoted Re) and imaginary

Fig. 1. Block diagram representation of a frequency sampling filter.

(denoted Im) parts of the frequency componentR(ejl ω)
as

Rm(z) =
1
M

1− z−M

1− z−1 R(ej0)

+

M−1
2

∑
l=1

[Re(R(ejl ω))F l
R(z)+ Im(R(ejl ω))F l

I (z)],

whereF l
R(z) andF l

I (z) are thelth second order filters
given by

F l
R(z) =

1
M

2(1− cos(lω)z−1)(1− z−M)

1−2cos(lω)z−1+ z−2 ,

and

F l
I (z) =

1
M

2sin(lω)z−1(1− z−M)

1−2cos(lω)z−1+ z−2 ,

respectively.
The FSF representation of a periodic signal is il-

lustrated in the block diagram of Fig. 1, where each
frequency sampling filter is in series with the corre-
sponding weighting of the DFT coefficients, and the
outputs of all of them summed to generate the output.

If the filters are assumed to have zero initial condi-
tions, the output is a periodic signal when the input
to the discrete-time model is a unit impulseδ(k),
where δ(k) = 1 for k = 0 and δ(k) = 0 for k ∕= 0.
Due to the series structure, if the DFT coefficients
of some particular frequencies are insignificant, the
corresponding coefficients can be neglected and the
number of filters required is reduced.

B. The Signal Generator for the Repetitive Controller

Once the significant frequency components in a
periodic signal have been obtained, thez-transform of
the reference signalRm(z) is approximated as

Rm(z)≈ Ra(z) =
1
M

1− z−M

1− z−1 R(ej0)

+[Re(R(ejl1ω))F l1
R (z)+ Im(R(ejl1ω))F l1

I (z)]+ . . .

+[Re(R(ejlnω))F ln
R (z)+ Im(R(ejlnω))F ln

I (z)],

(4)

where l1, l2, . . . , ln correspond to the indices for the
significant frequency components. The denominator of
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TABLE I
DFT COEFFICIENTS OF THE REFERENCE SIGNALS

freq. comp. 0 1st 2nd 3rd
R1

m 167.1810 -195.6558 61.6788 29.1642
R2

m 679.8660 -115.2289 -146.4782 -12.6684

TABLE II
MEAN SQUARED ERROR OF RECONSTRUCTED SIGNAL

freq. components 0 0-1st 0-2nd 0-3rd
mse of channel 1 0.5344 0.0583 0.0110 0.0004
mse of channel 2 0.4394 0.02743 0.0074 0.0054

the z-transform of the zero frequency filter is 1− z−1,
which is the integrator factor used in discrete-time
feedback control systems to, for example, reject con-
stant disturbances or eliminate unknown system bias.
Also a pair of filters for an arbitrary frequency, say
l iω. introduces the term 1− 2cos(l iω)z−1 + z−2 into
the denominator.

The signal generator polynomial, denoted byD(z),
to be included in the repetitive controller is the com-
mon denominator of those for the terms inRa(z) and
can be written as

D(z) = (1− z−1)
n

∏
i=1

(1−2cos(l iω)z−1+ z−2). (5)

For a MIMO example, the procedure given above
generalizes in a natural manner, that is, the above
procedure is applied to each entry and thenD(z)
is formed as the least common denominator of the
resulting polynomials.

C. Frequency Decomposition Examples

To illustrate frequency decomposition of periodic
reference signals, consider the pair shown over one
period (M = 400 samples with sampling interval of
0.05 sec) in Figs 2 (a) and (b), respectively. Table I
shows the first four DFT coefficients of each signal,
which are the dominant components among all the
coefficients. For this pair of signals, the imaginary parts
of the corresponding DFT coefficients are zero, and (4)
can be applied to constructRa(z) using the coefficients
given in Table I. Figures 2(a) and 2(b) compare the
reconstructed signal, which is the impulse response
of the corresponding model, with the reference signal
by selecting different dominant frequency components.
The degree of approximation of the reconstructed
signal is reflected by the mean square error (mse), as
shown in Table II, between reference signal and its
reconstruction. These results confirm that for these two
example only a few dominant frequency components
are required to reconstruct the reference signals.

III. E MBEDDING THE SIGNAL GENERATOR

The repetitive controller is to be designed to follow
the reference trajectory and hence, by the internal
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(a) First reference signal reconstruction example

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
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Reconstruction with 0 freq.
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Reconstruction with 0−3rd freq.

(b) Second reference signal reconstruction example

Fig. 2. Reference signal reconstruction using a limited number of
frequencies.

model principle, the requiredD(z) must be included in
the denominator of itsz transfer-function description.
One way satisfying this requirement is by adding a
vector term to the state dynamics in the plant state-
space model as detailed next.

Suppose that the plant to be controlled hasp inputs
andm outputs and consider the state-space model

xm(k+1) = Amxm(k)+Bmu(k)+µ(k),

y(k) = Cmxm(k), (6)

wherexm(k) is then1×1 state vector,u(k) is the p×1
input vector,y(k) is m×1 output vector, and then1×1
vectorµ(k) is detailed next.

Given the polynomialD(z) of (5), each entry inµ(k)
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is given by the inversez-transform of 1
D(z) , and also

D(z) = (1− z−1)
n

∏
i=1

(1−2cos(l iω)z−1+ z−2)

= 1+d1z
−1+d2z−2+d3z

−3+ . . .+dγz
−γ.

(7)

In the steady-state,µ(k), k≥ k0, is described by the
following difference equation in the backward shift
operatorq−1

D(q−1)µ(k) = 0, (8)

where k0 corresponds to an initial sampling instant.
Also define the following auxiliary variables using the
disturbance model

xs(k) = D(q−1)xm(k), us(k) = D(q−1)u(k),

wherexs(k) andus(k) are the filtered state and control
vectors, respectively. Then multiplying the state equa-
tion in (6) by D(q−1) gives

D(q−1)xm(k+1) = AmD(q−1)xm(k)+BmD(q−1)u(k),

or
xs(k+1) = Amxs(k)+Bmus(k),

where (8) has been used. Multiplying output equation
in (6) by D(q−1) gives

D(q−1)y(k+1) = Cmxs(k+1)

= CmAmxs(k)+CmBmus(k), (9)

and expanding the right-hand side of (9) gives

y(k+1) =−d1y(k)−d2y(k−1)− . . .−dγ−1y(k− γ+1)

−dγy(k− γ)+CmAmxs(k)+CmBmus(k).

Introduce the state vector

x(k)=
[

xs(k)T y(k)T y(k−1)T . . . y(k− γ)T
]T

,

to obtain the following augmented model of the plant
and disturbance to be used in controller design

x(k+1) = Ax(k)+Bus(k)

y(k) = Cx(k) (10)

Also introduce the matrix

Ad =

⎡

⎢

⎢

⎢

⎣

−d1I −d2I . . . −dγ−1I −dγI
0 I 0 . . . 0
...

...
.. .

. . .
...

0 0 . . . I 0

⎤

⎥

⎥

⎥

⎦

.

where from this point onwards 0 andI denote the zero
and identity matrices, respectively, with compatible
dimensions. Then

A=

[

Am 0
Ĉ Ad

]

where

Ĉ=

[

CmAm

0

]

The characteristic equation of the state matrix in (10)
is

det(zI−A) = det(zI−Am)det(zI−Ad) = 0

and the roots of this equation are the union of the poles
of the original plant model and those ofD(z).

IV. D ISCRETE-TIME REPETITIVE-PREDICTIVE

CONTROL

Given the augmented state-space model, the next
task is to synthesize the filtered control signalus(k)
using model predictive control, which is a well es-
tablished area, see for example, [10], [11], and [12].
Hence only the main steps required for the current task
are given.

Consider sampling instantki , ki > 0, and assume that
the state vectorx(ki), and hence current plant informa-
tion, is available through measurement. Moreover, the
future control trajectory can be written in vector form
as

Us =
[

us(ki) us(ki +1) . . . us(ki +Nc−1)
]T

,

whereNc is the control horizon dictating the number of
parameters used to capture the future control trajectory.
Given x(ki), the future state vectors are predicted for
Np samples, whereNp is termed the prediction horizon
and it is assumed thatNc ≤ Np. Let the predicted state
vectors be denoted byx(ki + j∣ki), 1 ≤ j ≤ Np, and
introduce, for computational purposes,

X =
[

x(ki +1 ∣ ki)
T . . . x(ki +Np ∣ ki)

T
]T

.

In this design, the control horizon is selected to
be less than the prediction horizon to reduce the
computational load. It is assumed that afterNc samples
the filtered control signalus(ki + k) is zero for all
future samples (k ≥ Nc). Using the augmented state-
space model (10), the future state vectors are computed
sequentially usingUs as

X = Fxx(ki)+ΦsUs, (11)

where

Fx=

⎡

⎢

⎢

⎣

A
A2

...
ANp

⎤

⎥

⎥

⎦

Φs=

⎡

⎢

⎢

⎢

⎢

⎣

B 0 .. 0
AB B .. 0
A2B AB .. 0

...
... ..

...
ANp−1B ANp−2B .. ANp−NcB

⎤

⎥

⎥

⎥

⎥

⎦

,

The design criterion for the repetitive-predictive con-
troller is to find the control parameter vectorUs such
that the following cost function is minimized

J = XTQ̄X+UT
s R̄Us,
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where Q̄ is a block diagonal matrix of the formQI,
whereQ is a symmetric positive semi-definite matrix
(with (Q,A) detectable), and̄R is of the formRI, where
R is a symmetric positive definite matrix. Substituting
(11) into the cost function gives

J =UT
s (Φ

T
s Q̄Φs+ R̄)Us+2UT

s ΦT
s Q̄Fxx(ki)

+ x(ki)
TFT

x QFxx(ki). (12)

In the absence of constraints, the optimal control
vector is

Us =−(ΦT
s Q̄Φs+ R̄)−1ΦT

s Q̄Fxx(ki). (13)

Using receding horizon control, only the components
in Us corresponding tous(ki) are used and the actual
control signal applied to the plant is computed using

D(q−1)u(ki) = us(ki),

or, using (7) and noting that the leading coefficient in
the polynomialD(q−1) is unity,

u(ki) = us(ki)−d1u(ki −1)− . . .−dγu(ki − γ) (14)

where both the current optimal controlus(ki) and past
values are used.

When the repetitive-predictive controller is used
for disturbance rejection, the control objective is to
maintain the plant in steady-state operation, and the
filtered state vectorxs(ki) has zero steady-state whilst
the steady-state of the plant output is a constant (vector
in the MIMO case). When the repetitive-predictive
controller is used for tracking a periodic input signal,
the reference signal will enter the computation through
the augmented output variables. Note that the state
vectorx(ki) contains the filtered state vectorxs(ki), and
the outputy(ki), y(ki −1), . . ., y(ki − γ), and hence at
the sampling instantki , the feedback errors are

[y(ki)− r(ki) . . . y(ki − γ+1)− r(ki − γ+1)]T

= [e(ki) e(ki −1) . . . e(ki − γ+1)]T.

These error signals will replace the original output
elements inx(ki) to form the state vector for use
in (11).

The repetitive control law given by (13) and (14)
is in the form of state feedback control. The closed-
loop performance of the repetitive control system is
determined by the choice of the weighting matricesQ
andR. In common with other repetitive control systems
designed using transfer-function models [1] [5] [6],
this control system can be applied to track periodic
reference signals and reject periodic disturbances.

Model predictive control enables the placing of
constraints on the plant input and output variables. As
a first step in this respect for the repetitive-predictive
controller developed in this paper the application of
input constraints is considered, where the constrained
control system minimizes the cost functionJ (12)

in real-time subject to the constraints imposed. In
particular, we consider control amplitude constraints
imposed at the sampling instantk written in the form
of a set of linear inequalities

umin ≤ u(k)≤ umax, (15)

whereumin andumax areq×1 data vectors containing
the required lower and upper limits of the control
amplitude for each input signal, respectively. Also, the
incremental changes in the control signal (∆u(k) =
u(k)−u(k−1) ) are limited in practical applications.
Consequently in the final form of the constrained
repetitive-predictive control problem, the constraints
are written in the form

∆umin ≤ ∆u(k)≤ ∆umax. (16)

The repetitive-predictive controller is then obtained by
minimizing the cost function (12) subject to (15) and
(16) by direct application of quadratic programming
algorithms in, for example, [13] and [12].

V. DESIGN EXAMPLES

A. A Simulation Study with Constrained Control

This case study is for a two-input and two-output
model obtained from frequency domain tests on an-
thropomorphic robotic arm undertaking a pick and
place operation. The robot arm has been configured to
perform ‘pick and place’ tasks in a horizontal plane
using two joints and is shown in Fig. 3. Its end-
effector travels between the pick and place locations in
a straight line using joint reference trajectories which
minimize the end-effector acceleration. Having reached
the place location, the robot then returns back to the
starting location.

Repetitive control is often applied in what is termed
‘plug-in’ mode, that is, a stabilizing control law is first
applied to the plant and then the repetitive control
is applied to the resulting system. In this example,
position and velocity control loops have been imple-
mented around each joint to provide the first layer
of control system and the control scheme operates at
20 Hz. The overall system model has been identified
by combining experimentally-derived models of its
constituent components as described by the transfer-
function matrix description (17).

Using the reference trajectories given in Fig. 2
and (7), a repetitive-predictive controller has been
designed, where the weighting matrixQ is selected
such that the sum of squared output errors is used in
the cost function, i.e., all entries in this matrix are zeros
except for a 2×2 identity matrix corresponding to the
outputs; the weighting matrixR is the identity matrix;
the prediction horizon is 30, the control horizon for
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[

y1

y2

]

=

[

G11G12

G21G22

][

u1

u2

]

, (17)

where

G11(s) =
0.16s9+14.51s8+578.2s7+1.392e4s6+2.26e5s5+2.58e6s4+2.09e7s3+1.17e8s2+4.21e8s+7.6e8

5.25e−5s12+0.01463s11+0.91s10+31.2s9+714.1s8 +1.19e4s7+1.45e5s6+1.4e6s5+1.01e7s4+5.7e7s3+2.3e8s2+5.9e8s+7.6e8
,

G12(s) =
−0.022s7 −3.24s6−88.3s5−1347s4−1.06e4s3−4.52e4s2

5.25e−5s10+0.014s9+0.72s8+20s7+363s6+4645s5+4.3e4s4+2.9e005s3+1.4e6s2+4.18e6s+6.323e6
,

G21(s) =
−0.16s7−8.7s6−194s5−2498s4−1.78e4s3−6.64e4s2

5.25e−5s10+0.014s9+0.67s8+17.9s7 +316s6+3963s5+3.6e4s4+2.42e5s3+1.1e6s2+3.5e6s+5.3e6
,

G22(s) =
0.027s9+4.95s8+264s7+7394s6+1.3e5s5+1.69e6s4+1.5e7s3+9.4e7s2+3.8e8s+7.6e8

5.25e−5s12+0.014s11+0.9s10+31s9+714.1s8+1.19e4s7+1.48e5s6+1.4e6s5+1.04e7s4+5.7e7s3+2.3e8s2+5.9e8s+7.6e8
.

Fig. 3. Robot arm with th3e pick and place locations shown.

both inputs is selected asNc = 6. The constraints for
the operation of the robot arm are specified as

−1≤ u1(k)≤ 3.8 −3.8≤ u2(k)≤ 3

−0.5≤ ∆u1 ≤ 0.5 −0.5≤ ∆u2 ≤ 0.5.

In the simulation studies, all initial conditions are set
to zero, and att = 2.5 secs, two step input disturbances
enter the system, where the first of these has amplitude
0.5 and the second−0.8. The quadratic programming
algorithm in [12] was used to solve the constrained
control problem.

Figure 4 shows comparisons of the closed-loop
outputs with the reference signals, Fig. 5 the control
signals used to generate the outputs of the repetitive-
predictive control system, and Fig. 6 the incremental
control signals, respectively. In this case the repetitive
control system has produced the outputs which follow
the reference signals with all constraints satisfied. The
sum of the squared error between the reference signal
r1 and the outputy1 is 0.59 and betweenr2 andy2 is
0.9.

To assess the sensitivity of the controller structure
to measurement noise, two independent white noise
signals with variance 0.05 were added to the system
outputs. The first four frequencies are embedded in
the controller. Figure 7 shows a comparison of the
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closed-loop outputs and reference signals. In this case,
the measurement noise has been amplified and clearly
affects the closed-loop performance. The mean squared
error between the reference signalr1 and the outputy1

is 0.5192 and betweenr2 andy2 is 1.429. Both values
are much larger than the mean squared errors resulted
from the approximation shown in Table II, which were
0.0004 and 0.0054, respectively. To demonstrate that



7

0 5 10 15 20
-1

0

1

0 5 10 15 20
-1

0

1

u
D

Time (sec)

2
u

D
1

Fig. 6. Incremental control signals. The top is∆u1 and the bottom
∆u2.

0 10 20 30 40
-5

0

5

y 
 , 

r

0 10 20 30 40
-5

0

5

e

Time (sec)

1
1

1
2

2
2

Fig. 7. Comparison between output and reference. The first two
give y1 and r1, ande1, respectively, and the bottom twoy2 and r2,
ande2 respectively.

this sensitivity is related to the number of frequencies
embedded in the repetitive-predictive controller, a re-
duced order disturbance model is used, where

D(z) = (1− z−1)(1−2cos(2π/400)z−1+ z−2).

Given this disturbance model, Fig. 8 shows the closed-
loop output response fory1 and the error signal. The
mean squared error between the reference signalr1

andy1 is 0.0185 and between the referencer2 andy2

is 0.0342.

B. Experimental Verification

One general application area for repetitive con-
trol is electric motors, such as a Permanent Magnet
Synchronous Motor (PMSM), a brushless DC motor
(BLDC), and the induction motor (IM). In these a
repetitive task can be performed by position control
of the motor with a periodic reference trajectory. As a
first experimental validation of the new design in this
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ande2 respectively.

paper, it has been implemented on a laboratory test-bed
for the purpose of controlling a PMSM. A schematic of
the control system for the testbed is shown in Fig. 9.
The drive of a PMSM consists of an Insulated-Gate
Bipolar Transistor (IGBT) inverter controlled by Sinu-
soidal Pulse Width Modulation (SPWM). The three-
phase currents are measured by the current sensors and
transformed into a d-q axis representation by abc/dq
transformation.

Fig. 9. Schematic of Repetitive-predictive control of a PMSM motor

The current loop control is Proportional and Integral
(PI), and by maintaining theid component of feedback
current at zero, the algorithm can utilize the linear me-
chanical model of PMSM to optimize theiq component
using

[

ω̇r

θ̇r

]

=

[

−B
J 0

1 0

][

ωr

θr

]

+

[

1
J
0

]

Te,

Te = Kt iq, ωe = Pωr ,
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where the load torqueTL is assumed to be zero,J(=
0.94Kg.cm2) is the moment of inertia,B(= 0.0012)
is the viscous coefficient,Kt(= 0.51) is the torque
constant,P(= 2) is the number of pair of poles andθr

and θe represent the mechanical and electrical angles
of the rotor position,ωr andωe are the mechanical and
electrical velocities of the rotor, respectively.

A periodic signalθ∗r =3.14+3sin(2π
6 t) with a period

of 6 seconds was used as the reference signal of
position and the state variables in this case are rotor
speedωr and angleθr respectively, which can be di-
rectly measured and calculated from encoder feedback.
The model was developed in MATLAB Simulink and
downloaded to a XPC target kernel on a target PC
with a sampling time of 150(µs). Figure 10 shows
the tracking performance of the repetitive-predictive
controller with two dominant frequency components
included and the required control signal (theq axis
current command).
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Fig. 10. Controlled system responses for the PMSM motor. The
top plot gives the reference and output, respectively, and the bottom
the control signal required.

VI. CONCLUSIONS

This paper has developed a repetitive-predictive con-
troller for multivariable systems with structure de-
termination. Firstly, a set of candidate frequencies

is obtained through the frequency analysis of the
reference trajectories; secondly, the set of candidate
frequencies is examined in terms of their effect on the
improvement of tracking performance and amplifica-
tion of measurement noise. A case study on a two-input
two-output robot arm has demonstrated that including
fewer dominant frequencies can provide highly accu-
rate tracking ability without greatly increasing system
order and amplification of measurement noise. In a
second example, the algorithm has been applied to
a PMSM motor giving measured results that confirm
that simulation-based performance can be achieved in
physical application.

A key strength of model predictive control is the
ability to include constraints and there is a clear
need to extend this feature to the repetitive-predictive
controller developed in this paper. As a first step in
solving this problem, it has been demonstrated that
constraints on the control signal can be included and
the resulting design problem solved by well known
techniques. This area requires further research on, for
example, the inclusion of state and output constraints.
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