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Indirect Adaptive Attenuation of Multiple
Narrow-band Disturbances Applied to Active

Vibration Control
Tudor-Bogdan Airimiţoaie and Ioan Doré Landau

Abstract—In this paper, an indirect adaptive control method-
ology for attenuation of multiple unknown time varying narrow-
band disturbances is proposed. The method is based on the real
time estimation of the frequency of narrow-band disturbances
using adaptive notch filters (ANF) followed by the design of
a controller using adjustable band-stop filters (BSF) for the
appropriate shaping of the output sensitivity function. A Youla-
Kučera parametrization of the controller is used for reducing
the computation load. This approach is compared on an active
vibration control (AVC) system with the direct adaptive control
scheme based on the internal model principle (IMP) proposed
in [1]. Real time experimental results are provided.

Index Terms—Indirect adaptive regulation, active vibration
control, loop-shaping, Youla-Kučera parametrization, multiple
narrow-band disturbances.

LIST OF ACRONYMS
ANF - Adaptive notch filter
AVC - Active vibration control
BSF - Band-stop filter
FIR - Finite impulse response
IIR - Infinite impulse response
IMP - Internal model principle
PSD - Power spectral density

I. INTRODUCTION

AN important problem in active vibration (or noise) control
is the compensation of disturbances without measur-

ing them. In this case, a feedback approach is considered
for disturbance attenuation. In general, one considers the
disturbances as being a white noise or a Dirac impulse
passed through a filter which characterizes the model of the
disturbance. For the purpose of this paper, the disturbances
are considered to be unknown and/or time varying multiple
narrow-band disturbances, in other words their model has time
varying coefficients1. This motivates the use of an adaptive
regulation approach since the objective is the attenuation of
unknown disturbances without measuring them.

A popular methodology for this adaptive regulation problem
is the design of a controller that incorporates the model of the
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1Throughout the paper it is assumed that the number of multiple narrow-
band disturbances is known (it can be estimated from data if necessary) but
their frequency characteristics are not known.

disturbance (internal model principle). Using the Youla-Kučera
parametrization of the controller a direct adaptation technique
can be implemented. This technique has been described in [1],
[2], [3], [4], [5], [6]. Using the IMP principle, the complete
rejection of the disturbances is attempted (asymptotically). In
the case of several narrow-band disturbances, using IMP it is
very difficult to find a controller such that the ”water bed”
effect on the output sensitivity function (amplification intro-
duced at the other frequencies than those of the disturbances)
be acceptable in terms of performance and robustness (see also
[7]).

In practice, however, we do not need a complete rejection
of the narrow-band disturbances but just a level of attenuation.
Introducing only a level of attenuation combined with an
appropriate controller design will reduce the ”water bed” effect
on the output sensitivity function improving both robustness
and performance (by reducing the unwanted amplification of
the noise). This will become particularly useful in the case of
multiple narrow-band disturbances.

In this paper, a procedure for achieving an imposed at-
tenuation (and not complete cancellation) is proposed. The
procedure is based on the shaping of the output sensitivity
function using band stop-filters (BSF) centered at the frequen-
cies corresponding to spikes in the spectrum of the disturbance.
The peculiarity of this approach is that the zeros of these BSF
are implemented in the controller while the poles of the BSF
are introduced as desired poles of the closed loop (see also
[8], [9]). In this paper, the design of the BSF for narrow-band
disturbance attenuation is further simplified by considering a
Youla-Kučera parametrization of the controller ([4], [10], [11],
[12]). By doing this, the dimension of the matrix equation
that has to be solved is reduced significantly and therefore the
computation load will be much lower. This is very important
in the perspective of using this controller design procedure in
an adaptive scheme.

In order to implement this approach in the presence of un-
known narrow-band disturbances, one needs to estimate in real
time the frequencies of the spikes contained in the disturbance.
System identification techniques can be used to estimate the
ARMA model of the disturbance ([1], [13]). Unfortunately, to
find the frequencies of the spikes from the estimated model
of the disturbance requires computation in real time of the
roots of an equation of order 2 · n, where n is the number
of spikes. Therefore this approach is applicable in the case of
one eventually two narrow-band disturbances. What is needed
is an algorithm which can directly estimate the frequencies
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of the various spikes of the disturbance. Several methods have
been proposed by the signal processing community for solving
this issue ([14]). From these, the adaptive notch filter (ANF) is
particularly interesting and has been reviewed in a number of
articles ([15], [16], [17], [18], [19], [20], [21]). In this paper,
the estimation approach presented in [22], [23] will be used.
Combining the frequency estimation procedure and the control
design procedure, an indirect adaptive regulation system for
attenuation of multiple unknown and/or time varying narrow-
band disturbances is obtained.

In the present context, the hypothesis of constant dynamic
characteristics of the AVC system is made (like in [1]).
Furthermore, the corresponding control model is supposed to
be accurately identified from input/output data.

In [24], a review of available methods for the rejection of
narrow-band disturbances is given. In [4], the direct adaptive
regulation of narrow-band disturbances using IMP and the
Youla-Kučera parametrization is described and analyzed and
extended in [1] for multiple disturbances. Another method for
narrow-band disturbances rejection by feedback is based on the
use of a disturbance observer ([25], [26], [27]). In [27], the
disturbance observer is combined with a modified IMP scheme
that uses an IIR filter, which acts as a frequency selector,
to minimize the effect of the adaptive control on the output
sensitivity function.

An indirect method that combines the frequency estimator
of [17] with feedforward rejection of disturbances is presented
in [28]. The method is also compared to a direct algorithm
based on the phase-locked loop structure considered in com-
munication systems.

This paper is organized as follows. In Section II, the main
notations and equations for the indirect adaptive system are
given. The controller design based on the use of BSFs is
presented in Section III. A reduced complexity implementation
of this method using the Youla-Kučera parametrization is
then given in Section IV. The estimation method used for
tracking the variations of the disturbances’ frequencies is
briefly described in Section V. The stability analysis of the
proposed method is given in Section VI. In Section VII, an
experimental performance evaluation of the resulting indirect
adaptive regulation scheme and a comparison with the direct
regulation method using Youla-Kučera parametrization of the
controller and IMP [1] are presented. Some concluding re-
marks are given in Section VIII.

II. SYSTEM DESCRIPTION

The basic indirect adaptive control bloc diagram used is
shown in fig. 1. The process output can be written as2

y(t) = G(q−1) · u(t) + p(t), (1)

where

G(q−1) = q−d
B(q−1)

A(q−1)
(2)

2The complex variable z−1 will be used to characterize the system’s
behavior in the frequency domain and the delay operator q−1 will be used
for the time domain analysis.
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Fig. 1. Basic schema for indirect adaptive control.

is called the secondary path of the system and

p(t) =
D(ρq−1)

D(q−1)
δ(t), ρ ∈ (0, 1) is a fixed constant, (3)

is the effect of the disturbance on the measured output3.
As specified in the introduction, the hypothesis of constant

dynamic characteristics of the AVC system is considered
(similar to [1], [4]). The denominator of the secondary path
model is given by

A(q−1) = 1 + a1q
−1 + . . .+ anA

q−nA , (4)

the numerator is given by

B(q−1) = b1q
−1 + . . .+ bnB

q−nB = 1 + q−1B∗(q−1) (5)

and d is the integer delay (number of sampling periods)4.
The control signal is given by

u(t) = −R(q−1) · y(t)− S∗(q−1) · u(t− 1), (6)

with

S(q−1) = 1 + q−1S∗(q−1) = 1 + s1q
−1 + . . .+ snS

q−nS

= S′(q−1) ·HS(q−1), (7)

R(q−1) = r0 + r1q
−1 + . . .+ rnR

q−nR

= R′(q−1) ·HR(q−1), (8)

where HS(q−1) and HR(q−1) represent fixed (imposed) parts
in the controller and S′(q−1) and R′(q−1) are computed.
Under the hypothesis that the plant model parameters are
constant and that an accurate identification experiment can be
run, a reliable estimate p̂(t) of the disturbance signal can be
obtained by using the following disturbance observer

p̂(t+ 1) = y(t+ 1)− q−dB
∗(q−1)

A(q−1)
u(t), (9)

as shown in fig. 1. The disturbance estimator (p̂(t)) is followed
by a block which estimates spikes’ frequencies and computes
in real time the controller parameters.

3The disturbance passes through a so called ”primary path” which is not
represented in this figure, and p(t) is its output

4As indicated earlier, it is assumed that a reliable model identification is
achieved and therefore the estimated model is assumed to be equal to the true
model.
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III. A CONTROLLER DESIGN PROCEDURE FOR
ATTENUATION OF MULTIPLE NARROW-BAND

DISTURBANCES

The purpose of this method is to allow the possibility of
choosing the desired attenuation and bandwidth of attenuation
for each of the estimated narrow-band disturbances. Choosing
the level of attenuation and the bandwidth allows to preserve
acceptable characteristics of the sensitivity functions outside
the attenuation bands and this is very useful in the case of
multiple narrow-band disturbances. This is the main advantage
with respect to classical internal model methods which in the
case of several narrow-band disturbances, as a consequence
of complete cancellation of the disturbances, may lead to
unacceptable values of the modulus of the output sensitivity
function outside the attenuation regions. The controller design
technique uses the shaping of the output sensitivity function
for imposing the desired attenuation of narrow-band distur-
bances. It will be used for computing the parameters of the
adjustable controller. The controller’s parameters computation
procedure will be presented considering, temporarily, constant
and known frequencies of the narrow-band disturbances. The
design uses BSFs to shape the output sensitivity functions.
Following [8], [9], there exists a digital filter SBSFi

(z−1)

PBSFi
(z−1) with

the numerator included in the controller and the denominator
as a factor of the desired closed-loop characteristic polynomial,
which will assure the desired attenuation of a narrow-band
disturbance (index i ∈ {1, . . . , n}).

The BSFs have the following structure

SBSFi(z
−1)

PBSFi
(z−1)

=
1 + βi1z

−1 + βi2z
−2

1 + αi1z
−1 + αi2z

−2
(10)

resulting from the discretization of a continuous filter (see also
[8], [9])

Fi(s) =
s2 + 2ζni

ωis+ ω2
i

s2 + 2ζdiωis+ ω2
i

(11)

using the bilinear transformation. This filter introduces an
attenuation of

Mi = −20 · log10

(
ζni

ζdi

)
(12)

at the frequency ωi. Positive values of Mi denote attenuations
(ζni

< ζdi ) and negative values denote amplifications (ζni
>

ζdi )
5.

Remark: The design parameters for each BSF are the desired
attenuation (Mi), the central frequency of the filter (ωi) and the
damping of the denominator (ζdi ). The denominator damping
is used to adjust the frequency bandwidth of the BSF. For
very small values of the frequency bandwidth the influence
of the filters on frequencies other than those defined by ωi is
negligible. Therefore, the number of BSFs and subsequently
that of the narrow-band disturbances that can be compensated
can be large.

For n narrow-band disturbances, n BSFs will be used

HBSF (z−1) =
SBSF (z−1)

PBSF (z−1)
=

∏n
i=1 SBSFi(z

−1)∏n
i=1 PBSFi(z

−1)
(13)

5For frequencies bellow 0.17fS (fS is the sampling frequency) the design
can be done with a very good precision directly in discrete time ([8]).

As stated before, the objective is that of shaping the output
sensitivity function. S(z−1) and R(z−1) are obtained as
solutions of the Bezout equation

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1), (14)

where

S(z−1) = HS(z−1)S′(z−1), R(z−1) = HR1(z−1)R′(z−1),

and P (z−1) is given by

P (z−1) = P0(z−1)PBSF (z−1). (15)

In the last equation, PBSF is the product of the denomi-
nators of all the BSFs, (13), and P0 defines imposed poles
of the closed loop system in the absence of the disturbances
(allowing also to satisfy robustness conditions). The fixed part
of the controller denominator HS is in turn factorized into

HS(z−1) = SBSF (z−1)HS1
(z−1), (16)

where SBSF is the combined numerator of the BSFs, (13), and
HS1

can be used if necessary to satisfy other control specifi-
cations (in Section VII it is equal to 1). HR1

is similar to HS1

allowing to introduce fixed parts in the controller’s numerator
if needed (like opening the loop at certain frequencies). It is
easy to see that the output sensitivity function becomes

Syp(z
−1) =

A(z−1)S′(z−1)HS1
(z−1)SBSF (z−1)

P0(z−1)PBSF (z−1)
(17)

and the shaping effect of the BSFs upon the sensitivity
functions is obvious. The unknowns S′ and R′ are solutions
of

P (z−1) =P0(z−1)PBSF (z−1) = A(z−1)HS(z−1)S′(z−1)+

+ z−dB(z−1)HR1(z−1)R′(z−1). (18)

and can be computed by putting (18) into matrix form (see
also [8]). The size of the matrix equation that needs to be
solved is given by

nBez = nA + nB + d+ nHS1
+ nHR1

+ 2 · n− 1, (19)

where nA, nB , and d are respectively the order of the
plant’s model denominator, numerator, and delay (given in (4)
and (5)), nHS1

and nHR1
are the orders of HS1

(z−1) and
HR1(z−1) respectively and n is the number of narrow-band
disturbances. Eq. (18) has an unique minimal degree solution
for S′ and R′, if nP ≤ nBez , where nP is the order of the
pre-specified characteristic polynomial P (q−1). Also, it can
be seen from (18) and (16) that the minimal orders of S′ and
R′ will be:

nS′ = nB + d+ nHR1
− 1, nR′ = nA + nHS1

+ 2 · n− 1.

Note that in an indirect adaptive regulation scheme, the Dio-
phantine equation (18) has to be solved either at each sampling
time (adaptive operation) or each time when a change in
the narrow-band disturbances’ frequencies occurs (self-tuning
operation).
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IV. REDUCING THE COMPUTATIONAL LOAD OF THE
DESIGN BY USING THE YOULA-KUČERA

PARAMETRIZATION

The computational complexity related to the Bezout equa-
tion (18) is significant (in the perspective of its use in adaptive
regulation). In this section, we show how the computation load
of the design procedure can be reduced by the use of the Youla-
Kučera parametrization.

As before, a multiple band-stop filter, (13), should be
computed based on the frequencies of the multiple narrow-
band disturbance. In what follows it will be shown that
using a Youla-Kučera parametrization of the controller [12]
a significant reduction of the computational load will be
obtained.

Suppose that a nominal controller

R0(z−1) = HR1(z−1)R′′(z−1), (20)

S0(z−1) = HS1(z−1)S′′(z−1) (21)

that assures nominal performances for the closed loop system
in the absence of narrow-band disturbances is available. This
controller satisfies the Bezout equation

P0(z−1) = A(z−1)S0(z−1) + q−zB(z−1)R0(z−1). (22)

Since PBSF (z−1) will define part of the desired closed
loop poles, it is reasonable to consider a Youla-Kučera filter
of the form Q(z−1)

PBSF (z−1) (which will automatically introduce
PBSF (z−1) as part of the closed loop poles). For this purpose,
the controller polynomials are factorized as

R(z−1) =R0(z−1)PBSF (z−1)+

+A(z−1)HR1
(z−1)HS1

(z−1)Q(z−1), (23)

S(z−1) =S0(z−1)PBSF (z−1)−
− z−dB(z−1)HR1

(z−1)HS1
(z−1)Q(z−1), (24)

where Q(z−1) is a FIR filter computed in order to satisfy (14)
for P (z−1) = P0(z−1)PBSF (z−1), and R0(z−1), S0(z−1)
are given by (20) and (21) respectively. It can be seen from
(23) and (24) that the new controller polynomials conserve the
fixed parts of the nominal controller.

Taking into account (14), (16), (17), and (18), it remains to
compute Q(z−1) such that

S(z−1) = SBSF (z−1)HS1
(z−1)S′(z−1). (25)

Turning back to eq. (24) one obtains6

S0PBSF = SBSFHS1S
′ + z−dBHR1HS1Q. (26)

and taking into consideration also (21) it results

S′′PBSF = SBSFS
′ + q−dBHR1

Q. (27)

In the last equation, the left side of the equal sign is known
and on its right side only S′(z−1) and Q(z−1) are unknown.
This is also a Bezout equation which can be solved by finding
the solution to a matrix equation of dimension

nBezY K
= nB + d+ nHR1

+ 2 · n− 1. (28)

6The argument (z−1) has been dropped to simplify the writing of the
equation.

As it can be observed, the size of the new Bezout equation
is reduced in comparison to (19) by nA + nHS1

. For systems
with large dimensions, this has a significant influence on the
computation time (in Section VII, nA = 14 and nHS1

= 0).
Taking into account that the nominal controller is an unique
and minimal degree solution of the Bezout equation (22), we
find that the left hand side of (27) is a polynomial of degree

nS′′ + 2 · n = 2 · n+ nB + d+ nHR1
− 1, (29)

which is equal to the quantity given in (28). Therefore, the
solution of the simplified Bezout equation (27) is unique and
of minimal degree. Furthermore, the order of the Q FIR filter
is equal to 2 · n− 1.

Fig. 2 summarizes the implementation of the Youla-Kučera
parametrized indirect adaptive controller.
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Fig. 2. Youla-Kučera schema for indirect adaptive control.

V. FREQUENCY ESTIMATION USING ADAPTIVE NOTCH
FILTERS

In order to use the presented control strategy in the presence
on unknown and/or time varying narrow-band disturbances,
one needs an estimation in real time of the spikes’ frequencies
in the spectrum of the disturbance. In the framework of
narrow-band disturbance rejection, it is usually supposed that
the disturbances are in fact sinusoidal signals with variable
frequencies. As specified in the introduction, it is assumed
that the number of narrow-band disturbances is known (similar
to [1], [4], [27]). A technique based on ANFs will be used
to estimate the frequencies of the sinusoidal signals in the
disturbance (more details can be found in [16], [23]).

The general form of an ANF is

Hf (z−1) =
Af (z−1)

Af (ρz−1)
, (30)

where the polynomial Af (z−1) is such that the zeros of the
transfer function Hf (z−1) lie on the unit circle. A necessary
condition for a monic polynomial to satisfy this property is
that its coefficients have a mirror symmetric form

Af (z−1) = 1+af1z
−1 + . . .+ afnz

−n + . . .+

+ af1z
−2n+1 + z−2n. (31)

Another requirement is that the poles of the ANF should
be on the same radial lines as the zeros but slightly closer to
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the origin of the unit circle. Using filter denominators of the
general form Af (ρz−1) with ρ a positive real number smaller
but close to 1, the poles have the desired property and are in
fact located on a circle of radius ρ ([16]).

The estimation algorithm will be detailed next. It is assumed
that the disturbance signal (or a good estimation) is available.

A cascade construction of second order ANF filters is
considered. Their number is given by the number of narrow-
band signals whose frequencies have to be estimated. The main
idea behind this algorithm is to consider the signal p̂(t) as
having the form

p̂(t) =

n∑
i=1

ci sin(ωi · t+ βi) + v(t), (32)

where v(t) is a noise affecting the measurement and n is the
number of narrow-band signals with different frequencies.

The ANF cascade form will be given by (this is an equiv-
alent representation of eqs. (30) and (31))

Hf (z−1) =

n∏
i=1

Hi
f (z−1) =

n∏
i=1

1 + afiz−1 + z−2

1 + ρafiz−1 + ρ2z−2
. (33)

Next, the estimation of one spike’s frequency is considered,
assuming convergence of the other n − 1, which can thus
by filtered out of the estimated disturbance signal, p̂(t), by
applying

p̂j(t) =

n∏
i=1
i 6=j

1 + afiz−1 + z−2

1 + ρafiz−1 + ρ2z−2
p̂(t). (34)

The prediction error is obtained from

ε(t) = Hf (z−1)p̂(t) (35)

and can be computed based on one of the p̂j(t) to reduce
the computation complexity. Each cell can be adapted inde-
pendently after prefiltering the signal by the others. Following
the Recursive Prediction Error (RPE) technique, the gradient
is obtained as

Ψj(t) = −∂ε(t)
∂afj

=
(1− ρ)(1− ρz−2)

1 + ρafjz−1 + ρ2z−2
p̂j(t). (36)

The parametric adaptation algorithm can be summarized as

âfj (t) = âfj (t− 1) + F (t− 1) ·Ψj(t) · ε(t) (37)

F (t) =
F (t− 1)

λ+ F (t− 1)Ψj(t)2
. (38)

where âfj are estimations of the true afj , which are con-
nected to the narrow-band signals’ frequencies by ωfj =

fs · arccos(−a
fj

2 ), where fs is the sampling frequency.

VI. STABILITY ANALYSIS OF THE ADAPTIVE SCHEME

The frequency estimator used (Section V, eqs. (30) through
(38)), provided that the number of sinusoidal narrow-bands
(n) is known and equal to the number of ANFs (persistence

of excitation assumption) and that a decreasing gain adaptation
algorithm is used, has the properties, [23],

lim
t→∞

f̂i(t) =fi, (39)

lim
t→∞

(
f̂i(t)− f̂i(t− 1)

)
=0, ∀i ∈ {1, . . . n}. (40)

Lets assume that the disturbance can be modelled by7 [22]

p(t+ 1) =
D(ρq−1)

D(q−1)
δ(t+ 1) =

D(ρ)

D
δ(t+ 1)

=−D∗p(t) +D∗(ρ)δ(t) + δ(t+ 1), (41)

where D(q−1) has complex zeros on the unit circle, ρ ∈ (0, 1)
is an a priori fixed constant, and δ(t) is a Dirac impulse. The
polynomials D(q−1) and D(ρq−1) are given by

D(q−1) =

n∏
i=1

(
1 + αiq

−1 + q−2
)
, (42)

D(ρq−1) =

n∏
i=1

(
1 + ραiq

−1 + ρ2q−2
)
, (43)

where n is the number of sinusoidal narrow-bands,

αi = −2cos

(
2πfi
fs

)
. (44)

Define also the estimate of D(q−1) obtained from the
estimate of αi at time t

D̂(t, q−1) =

n∏
i=1

(
1 + α̂i(t)q

−1 + q−2
)
, (45)

α̂i(t) =− 2cos

(
2πf̂i(t)

fs

)
. (46)

For the stability of the full adaptive control scheme, one has
the following result:

Theorem 6.1: Consider the indirect adaptive regulation for
the plant model (1), given in eqs. (20) through (27), where
the estimates of the spikes’ frequencies are given by the
estimator given in eqs. (30) through (38) using a decreasing
gain parametric adaptation algorithm.

Assume that:
H1) The disturbance p(t) is bounded ∀ t.
H2) The number of sinusoidal narrow-bands is known.
H3) The sinusoidal narrow-bands have unknown but fixed

frequencies.
H4) Convergence properties (39) and (40) hold (persistence

of excitation and decreasing adaptation gain).
H5) The disturbance model is of the form of eq. (41), where

D(q−1) has complex zeros on the unit circle.
H6) The estimates of D(q−1), D̂(t, q−1), are computed from

the estimation of the spike frequencies using eqs. (45)
and (46).

H7) The BSFs introduced in the output sensitivity function,
for a priori fixed constants ρn, ρd ∈ (0, 1), are given by

HBSF (q−1) =
D(ρnq

−1)

D(ρdq−1)
. (47)

7The argument (q−1) will be dropped in some of the following equations.
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H8) A(q−1), B(q−1) and the integer time delay d are known.
H9) B(q−1) does not have zeros on the circle of radius ρn.

H10) The assigned closed loop poles P̂ (t, q−1) are inside the
unit circle, ∀ t.

Then:

(1) The sequences u(t) and y(t) are bounded.
(2)

lim
t→∞

[
P̂ (t)y(t)− Ŝ(t)Āp(t)

]
=0, (48)

lim
t→∞

[
P̂ (t)u(t) + R̂(t)Āp(t)

]
=0. (49)

Note that the quantities in the square brackets of eqs. (48) and
(49) are zero in the case of known parameters.

The proof can be found in Appendix A.

VII. EXPERIMENTAL RESULTS

A. An Active Vibration Control System Using an Inertial
Actuator

Figures 3 and 4 represent an AVC system using an inertial
actuator for reducing the residual acceleration. The system
consists of 5 metallic plates connected by springs. The plates
M1 and M3 are equipped with inertial actuators. The one
on M1 serves as disturbance generator (inertial actuator 1 in
fig. 4), the one on M2 serves for disturbance compensation
(inertial actuator 2 in fig. 4). The system is equipped with
a measure of the residual acceleration (on plate M3). The
path between the disturbance (in this case generated by the
inertial actuator on top of the structure), and the residual
acceleration is called the primary path. The path between the
inertial actuator for compensation and the residual acceleration
is called the secondary path (G(q−1) in Section II) and it
characterizes the dynamics from the control signal to the
residual acceleration measurement (amplifier + actuator +
dynamics of the mechanical system). Its orders have been
estimated as being nAG = nBG = 14.

The disturbance is the position of the mobile part of the
inertial actuator located on top of the structure (see figs. 3
and 4). The input to the compensator system is the position of
the mobile part of the inertial actuator located on the bottom
of the structure. A sampling frequency, fs, of 800 Hz has been
used.

Fig. 3. An AVC system using a feedback compensation - photo.

Fig. 4. An AVC system using a feedback compensation - schema.
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B. Attenuation of Multi-sinusoidal Disturbance

An experimental comparison of the proposed algorithm
with the direct adaptive controller of [1] which uses IMP
is presented. A multi-sinusoidal signal has been used as
disturbance (input to the primary path).

In all of the following experiments, for the design using
Youla-Kučera parametrized BSF’s, ζd has been chosen equal
to 0.04 and an attenuation of 60 dB has been imposed
on all of the spikes. The nominal controller’s characteristic
polynomial, P0(z−1), contains all the poles of the secondary
path model and 15 additional real poles at 0.42 for robustness.
Furthermore, the fixed part of the controller’s numerator has
been chosen as HR1(z−1) = 1 − z−2, thus opening the loop
at 0 Hz and 400 Hz (half the sampling frequency), while the
fixed part of the controller’s denominator was HS1

(z−1) = 1.
The Youla-Kučera IMP design uses the same central controller.

Remark: for the rejection of 3 sine with the adaptive
IMP algorithm, 3 pairs of fixed poles with damping 0.2
located within the range of variation of the disturbance spikes’
frequencies have been added to the nominal closed loop poles
in order to improve robustness outside the attenuation band.
For the minimality of the solution, the number of real poles
at 0.42 has been reduced to 9.

Two types of disturbances have been considered: a) with 2
spikes (fig. 6) having a magnitude of 0.1 each and b) with 3
spikes (figs. 7) having a magnitude of 0.04 each, in order to
avoid saturation of the control input with the direct adaptive
controller of [1] (the system is not well suited for using this
method - the actuator does not have enough power). In figs. 6
and 7, the signals on top represent the effect of the disturbance
upon the residual acceleration in open loop operation, the ones
in the middle correspond to the residual acceleration in closed
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loop with the proposed BSF algorithm and the ones on the
bottom are the residual accelerations obtained with the direct
adaptive regulator of [1] using IMP.

Three sequences of multi-sinusoidal disturbances have been
applied to the primary path. Their corresponding frequencies
are indicated in each of the figures. The first sequence starts
at 3 sec, and the duration between step changes in frequencies
is 10 sec.
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Fig. 6. Performance comparison in the presence of a two sine wave
disturbance.

It should be observed that the proposed algorithm has very
good stationary disturbance rejection properties but the one of
[1] is better with regard to the transient behavior. For 3 sine,
the BSF outperforms the IMP controller in term of steady
state performance (after the adaptation converges). This can
be further confirmed by looking at the power spectral density
(PSD) estimates (computed after the adaptation process has
converged toward an almost constant controller). In fig. 8, the
PSD for 63 and 88 Hz disturbance are shown. It should be
observed that the direct adaptive algorithm of [1] introduces
a larger attenuation of the spikes but an amplification of
10 to 20 dB, with respect to the open loop signal, can be
observed between 185 and 230 Hz. This influences the global
attenuation of the algorithm. A better global attenuation is
obtained by the proposed algorithm (65 dB) in comparison to
the direct adaptive algorithm of [1] (54 dB).

Remark: the attenuation of the BSF algorithm at each of
the two disturbance frequencies in fig. 8 is of 60 dB but, due
to the small number of points of the window used to compute
the PSD, this is not visible in the figure.

VIII. CONCLUDING REMARKS

The technique of BSF for shaping the output sensitivity
function [9] is very appropriate for the attenuation of multiple
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narrow-band disturbances. This design method has been trans-
formed into an adaptive procedure by adding an estimator of
the spikes’ frequencies characterizing unknown time varying
multiple narrow-band disturbances. The experimental results
show the potential of this approach for solving practical
problems related to attenuation of narrow-band disturbances.

APPENDIX A
PROOF OF THEOREM 6.1

Proof: First, let denote

εp(t) =
(
D(ρn)− D̂(t, ρn)

)
p(t). (50)
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Looking at the properties of the ANF estimator, it can be
observed that under hypotheses H1 through H6,

lim
t→∞

[
D − D̂(t)

]
= 0, (51)

lim
t→∞

[
D̂(t)− D̂(t− 1)

]
= 0, (52)

D̂(t) has bounded coefficients, (53)

from which it results also that

lim
t→∞

εp(t+ 1) = 0, (54)

εp(t+ 1) is bounded. (55)

To prove property (1), one has to write an equation for
the evolution of y(t) and u(t). At each time t, the following
Bezout equation is solved when using BSFs

P̂ (t) = P0D̂(t, ρd) = AD̂(t, ρn)Ŝ′(t) + q−dBR̂(t). (56)

The notations AD(ρn) = Ā, AD̂(t, ρn) = ˆ̄A(t), and B̄ =
q−dB are introduced to simplify the equations. Considering
the augmented model of the secondary path, the system’s
output becomes

y(t) =
B̄

ˆ̄A(t)
ū(t) + p(t), (57)

where the control signal is given by

ū(t) = − R̂(t)

Ŝ′(t)
y(t), (58)

while the real plant input is u(t) = 1
D̂(t,ρn)

ū(t). Eq. (57) can
be written also as

ˆ̄A(t)y(t) =B̄ū(t) + ˆ̄A(t)p(t)± Āp(t), (59)
ˆ̄A(t)y(t) =B̄ū(t)−Aεp(t) + Āp(t). (60)

Therefore,

y(t) =−
nĀ∑
i=1

ˆ̄ai(t)y(t− i) +

nB̄∑
i=1

b̄iū(t− i)−

−Aεp(t) + Āp(t) (61)

=θ̂T (t)φ(t− 1)−Aεp(t) + Āp(t), (62)

where

θ̂T (t) =
[
−ˆ̄a1(t), . . .− ˆ̄anĀ

(t), b̄1, . . . b̄nB̄

]
(63)

φT (t) = [y(t), . . . y(t− nĀ + 1),

ū(t), . . . ū(t− nB̄ + 1)] . (64)

Similarly, from (58) and (62),

Ŝ′(t)u(t) =− R̂∗(t)y(t− 1)− r̂0(t)
[
θ̂Tφ(t− 1)

]
+

+ r̂0(t)Aεp(t)− r̂0(t)Āp(t). (65)

Let denote

ˆ̄ri(t) =r̂i(t)− r̂0(t)ˆ̄ai(t), ∀i ∈ {1, . . . nĀ} (66)
ˆ̄si(t) =ŝ′i(t) + r̂0(t)b̄i, ∀i ∈ {1, . . . nB̄}. (67)

With these notations, (65) becomes

u(t) =−
nB̄∑
i=1

ˆ̄si(t)u(t− i)−
nĀ∑
i=1

ˆ̄ri(t)y(t− i)+

+ r̂0(t)Aεp(t)− r̂0(t)Āp(t). (68)

Combining now (61) and (68) as in (12.38) of [29], one
obtains a state space equation for φ(t)

φ(t) = L(t)φ(t− 1) + z(t), (69)

where the R(nĀ+nB̄)×(nĀ+nB) matrix L(t) is given by

−ˆ̄a1(t). . . −ˆ̄anĀ
(t) b̄1(t) . . . b̄nB̄

(t)

1 0 0 . . . 0 0

. . . 0
...

. . .
...

0 1 0 0 . . . 0 0

−ˆ̄r1(t). . . −ˆ̄rnĀ
(t) −ˆ̄s1(t). . . −ˆ̄snB̄

(t)

0 . . . 0 0 1 0

...
. . .

...
. . .

...
0 . . . 0 0 . . . 1 0


(70)

and
zT (t) =

[
zTy (t) zTu (t)

]
(71)

is a vector in RnĀ+nB̄ , where

zTy (t) =
[
Āp(t)−Aεp(t) 0 . . .

]
∈ RnĀ , (72)

zTu (t) =
[
r̂0(t)Aεp(t)− r̂0(t)Āp(t) 0 . . .

]
∈ RnB̄ . (73)

To prove the boundedness of φ(t), Lemma 12.1 of [29] will
be used. The first condition of the lemma is evident since the
coefficients of L are finite for all t. Taking into account the
fact that the eigenvalues of the matrix L(t), (70), are given
by λnĀ+nB̄−1P̂ (t, λ) = 0 (see [29]) and knowing that the
poles of the closed loop are chosen inside the unit circle, the
eigenvalues of the matrix L(t) are also inside the unit circle,
hence the second condition is also satisfied. The last condition
is satisfied under hypothesis H4 which will imply

lim
t→∞

[L(t)− L(t− 1)] = 0. (74)

It results that ∃ t∗, s.t. ∀ t ≥ t∗:

‖φ(t+ 1)‖2 ≤

≤ C ′1 + C ′2 max
0≤τ≤t

[(
1− r̂0(τ)2

) (
Āp(τ)−Aεp(τ)

)2]
≤ C1 + C2 max

0≤τ≤t
εp(τ)2. (75)

since p(t) is bounded. Therefore, ∀ t ≥ t∗, φ(t+1) is bounded
since εp(t) is bounded and since u(t) = 1

D̂(t,ρn)
ū(t), u(t) and

y(t) are also bounded.
To prove property (2), one has to write the expressions of

the quantities mentioned in eqs. (48) and (49). We introduce
the notations:

∆11(t) = ˆ̄A(t)Ŝ(t)− Ŝ(t) ˆ̄A(t), ∆12(t) =Ŝ(t)B̄ − B̄Ŝ(t),

∆21(t) =R̂(t) ˆ̄A(t)− ˆ̄A(t)R̂(t), ∆22(t) =B̄R̂(t)− R̂(t)B̄.
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From (56) and (60),

P̂ (t)y(t) =Ŝ(t)
(
B̄ū(t)−Aεp(t) + Āp(t)

)
+

+ B̄R̂(t)y(t) + ∆11(t)y(t) (76)

and taking into account (58)

B̄R̂(t)y(t) + B̄Ŝ(t)ū(t) = 0, (77)

one obtains

P̂ (t)y(t) =Ŝ(t)Āp(t)− Ŝ(t)Aεp(t)+

+ ∆11(t)y(t) + ∆12(t)ū(t). (78)

Similarly,

P̂ (t)ū(t) = ˆ̄A(t)Ŝ(t)ū(t) + R̂(t) ˆ̄A(t)y(t)− R̂(t)Āp(t)+

+ R̂(t)Aεp(t) + ∆22(t)ū(t) (79)

=− R̂(t)Āp(t) + R̂(t)Aεp(t)+

+ ∆22(t)ū(t) + ∆21(t)y(t). (80)

Which lead to eqs. (48) and (49). Taking into account that
the various ∆ij as well as εp(t) go to zero, the second property
of Theorem 6.1 is also true.
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