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On sensor fusion for airborne wind energy systems∗†

L. Fagiano‡, K. Huynh, B. Bamieh, and M. Khammash§

Abstract

A study on filtering aspects of airborne wind energy generators is presented. This class of renewable energy systems
aims to convert the aerodynamic forces generated by tethered wings, flying in closed paths transverse to the wind flow,
into electricity. The accurate reconstruction of the wing’s position, velocity and heading is of fundamental importance
for the automatic control of these kinds of systems. The difficulty of the estimation problem arises from the nonlinear
dynamics, wide speed range, large accelerations and fast changes of direction that the wing experiences during operation.
It is shown that the overall nonlinear system has a specific structure allowing its partitioning into sub-systems, hence
leading to a series of simpler filtering problems. Differentsensor setups are then considered, and the related sensor fusion
algorithms are presented. The results of experimental tests carried out with a small-scale prototype and wings of different
sizes are discussed. The designed filtering algorithms relypurely on kinematic laws, hence they are independent from
features like wing area, aerodynamic efficiency, mass, etc.Therefore, the presented results are representative also of
systems with larger size and different wing design, different number of tethers and/or rigid wings.

1 Introduction

High-altitude wind is a vast, still untapped renewable source of energy that has received an increasing attention in thelast
decade, from both industry and academia, with the ongoing development of a series of technologies that fall under the
umbrella name of airborne wind energy. While many concepts of airborne wind energy generators were present already
in patents and publications in the late 1970s [24, 19, 22], itis only in recent years that an increasing number of research
groups and companies started to develop operating prototypes to convert the energy of high-altitude wind, blowing up
to 1000 m from the ground, into electricity (see e.g. [23, 26,1, 11, 2, 3, 7, 20, 8, 27, 5, 28]). The activities carried out
worldwide in the last six years allowed to define and assess, through theoretical, numerical and experimental research,
some common grounds of airborne wind energy (see [14] for an overview), as well as its potentials to provide cheap
electricity in large quantities, available practically everywhere in the world [15, 18].

Airborne wind energy generators exploit the motion of wingsflying fast in the so-called crosswind conditions, i.e.
roughly perpendicularly to the wind flow, and linked to the ground by flexible lines. The aerodynamic forces generated by
the wing are then converted into electricity using one of several possible approaches [14]. Control engineering plays acru-
cial role in airborne wind energy technologies, since, differently from conventional wind energy based on wind turbines,
there is no passive, rigid structure that constrains the path of the wing and imposes its crosswind motion. Rather, this
task has to be accomplished by an active control system that keeps track of the wing trajectory and issues suitable control
inputs through actuators. In the last six years, the problemof control design for airborne wind energy generators has been
studied by several research groups and companies, leading to a quite significant series of theoretical and numerical studies
(see e.g. [20, 30, 8, 16, 5, 18]) as well as experimental tests, of which few works in the literature report measured data
[8, 15, 12, 17].

All of the mentioned control approaches rely on the availability of a series of variables to be used for feedback, most
notably the wing’s three-dimensional position and velocity. The problem of estimating with sufficiently good accuracy
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and limited lag these quantities is therefore of paramount importance in the field, however in the literature there are only
few works on this topic, highlighting the specific issues that need to be addressed and providing either numerical or
experimental results (see e.g. [13], concerned with the navigation algorithms of large towing kites for seagoing vessels).

In this paper, we contribute to fill this gap by providing a formulation of the estimation problem and by analyzing
two different sensor setups and the related sensor fusion algorithms. In particular, the first sensor setup implies the use
of a commercial Inertial Measurement Unit (IMU), installedon the wing and equipped with accelerometers, gyroscopes,
magnetometers, a GPS, and a barometer. We propose two algorithms for this sensor setup: the first approach is a quite
standard linear observer, while the second one introduces anonlinear correction to account for the specific kinematic
constraints of the considered application. In the second sensor setup, we consider the use of a line angle measurement
system in addition to the accelerometers, gyroscopes and magnetometers. The presented study is focused on the estimation
of the wing’s position and of its “velocity angle”, which is avariable well-suited for automatic control strategies, when
the wing is flying fast in crosswind conditions (see [17] for more details on the automatic control design). We present
experimental results obtained with a small-scale prototype operating with a fixed line length of 30 m and equipped with
an IMU and a line angle measurement system, which we developed and built ad-hoc for this application. The equations
employed in the design of the observer are based purely on kinematics, hence they are exact (i.e. they are not affected
by uncertainty in the system’s parameters) and independentfrom system’s characteristics like the wing area, aerodynamic
efficiency, mass, etc. Therefore, the presented experimental results are representative also of systems with larger wing
size and different design, including systems with different number of tethers and/or rigid wings. The paper is organized
as follows. Section 2 provides a description of the system, the related model and the considered sensor setup. The sensor
fusion algorithms are described in section 3 and the experimental results are presented in section 4. A discussion on the
results and conclusions are given in section 5.

2 System description, model equations and sensors setup

2.1 System description

The considered system is based on a small-scale prototype built at the University of California, Santa Barbara, shown
in Fig. 1 (see [4] for a short movie clip). A flexible wing (inflatable power kites are used in the experiments) is linked

Figure 1: Small-scale prototype for the control of tetheredwings built at the University of California, Santa Barbara.
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by three lines to a ground unit (GU). In normal flight conditions, the wing’s trajectory evolves downwind with respect
to the GU. The GU is fixed to the ground and it is equipped with actuators, able to influence the wing’s path: a human
operator or an automatic control algorithm commands the actuators in order to obtain “figure-eight” crosswind paths,
which maximize the generated forces [14]. This paper is devoted to the problem of estimating in real-time, in the described
flying conditions, the wing’s position as well as its “velocity angle”. In the next section, we provide a formal definitionof
these variables and we introduce the related notation and model equations.

The prototype operates with a fixed length of the lines ofr = 30m, hence it is not able to generate electricity through
the synchronized reeling out of the three lines, as it is typical in ground-based airborne wind energy systems ([14]).
Instead, the energy needed for the operation of the system isdrawn from batteries installed on the GU. The use of a fixed,
short lines’ length (as compared with the intended operating conditions of this kind of systems, ranging from 100 to 1000
m of lines’ length) does not impair the significance of the presented study, rather it increases it, for ar least four reasons:
first, airborne wind energy systems operate with very low line reel-out speed as compared with the other components of
the wing’s velocity vector, so that the behavior of the wing does not change significantly between fixed line length and
variable line length; second, the optimal operation of airborne wind energy generators is obtained with a constant line
speed (ideally equal to one third of the wind speed [22]) and the settings considered here can be regarded to as a particular
case of such operating conditions, i.e. with constant line speed equal to zero; third, the use of fixed lines’ length yields
the largest possible forces for given wind conditions, hence the highest accelerations and angular velocities, makingthe
estimation problem more challenging; finally, the use of short lines implies that the wing’s path is contained in a small
portion of the aerial space, with consequent much more frequent changes of direction and inversions of motion, again
increasing the difficulty of the filtering problem.

2.2 Model equations

Before stating the model equations used to design our filtering algorithms, we need to introduce a series of right-handed
reference systems, as well as the transformations to convert a given vector from one reference to another. A first, inertial
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Figure 2: (a) Coordinate systemG and position of the wing~p; (b) local coordinate systemL and spherical coordinates
θ, φ; (c) wing velocity angleγ; (d) coordinate systemsG andNED and angleφG.

coordinate systemG
.
= (X,Y, Z) (Fig. 2-(a)) is centered at the GU location, with theX axis parallel to the ground,

contained in the symmetry plane of the GU and pointing downwind towards the wing. TheZ axis is perpendicular to
the ground pointing upwards, and theY axis forms a right-handed system. The wing position vector expressed in the
reference systemG is denoted by~pG = [pX , pY , pZ ]

T ∈ R
3, wherepX , pY andpZ are the scalar components of~pG

along the axesX, Y andZ, respectively, andT stands for the matrix transpose operation. The wing’s position can be
also expressed in the spherical coordinatesθ, φ (Fig. 2-(b)), whereθ ∈ [0, π

2 ] is the angle between the(X, Y ) plane and
vector~pG andφ ∈ [−π, π] is the angle between theX axis and the projection of~pG onto the(X, Y ) plane, taken to be

3



positive for a positive rotation around theZ axis. In particular, we have:

~pG =





pX
pY
pZ



 = r





cos(θ) cos(φ)
cos(θ) sin(φ)

sin(θ)



 (1)

wherer is the distance between the GU and the wing, equal to the lines’ length in our setup. We note that the angleθ
considered here is the complement toπ

2 with respect to the angle employed in previous works (see e.g. [8]), and that the
θ, φ angles are different from those used in[12].

Anglesθ, φ define also a second, non-inertial Cartesian coordinate system,L
.
= (LN , LE, LD), which we call “local”.

Vector~pG (as well as any other vector) can be expressed in systemL by using the rotation matrixR
G→L

:

~pL = R
G→L

~pG, (2)

R
G→L

=





− sin (θ) cos (φ) − sin (θ) sin (φ) cos (θ)
− sin (φ) cos (φ) 0

− cos (φ) cos (θ) − sin (φ) cos (θ) − sin (θ)



 , (3)

and the inverse transformation is given by the rotation matrix R
L→G

= R−1
G→L

= RT
G→L

. The axesLN andLE define the
tangent plane at point~pG to the sphere of radiusr, on which the wing’s trajectory is confined, and they can be interpreted
as local north and east direction relative to such a sphere. Hence,LE is always parallel to the ground (i.e. to the(X,Y )
plane). The axisLD thus represents the local down, pointing from the wing to thecenter of the sphere (i.e. to the GU
location).

We further consider the wing’s coordinate system,K
.
= (Kx,Ky,Kz), and the standard geographical North East

Down system,NED
.
= (N,E,D). SystemK is centered at~pG, it is non-inertial and fixed with respect to the wing, i.e. it

provides the wing’s orientation. In particular,Kx corresponds to the wing’s longitudinal symmetry axis, pointing from the
trailing to the leading edge,Ky is aligned with the transversal axis of the wing, pointing from the left to the right wing tip,
andKz completes a right handed system. The rotation matrixR

NED→G
is used to express a vector inNED-coordinates

intoG-coordinates:

R
NED→G

=





cos (φG) sin (φG) 0
sin (φG) − cos (φG) 0

0 0 −1



 , (4)

whereφG ∈ [0, 2π] is the angle between theN axis and theX axis, measured by a positive rotation around theD axis
(see Fig. 2-(d)). Moreover, a vector expressed in theK system can be converted into theNED system by means of the
rotation matrixR

K→NED
(q), whereq = [q1, q2, q3, q4]

T ∈ R
4 is the quaternion defining the relative orientation between

K andNED (see e.g. [21, 9]):

R
K→NED

(q) =




2(q21 + q22)− 1 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) 2(q21 + q23)− 1 2(q3q4 − q1q2)
2(q2q4 − q1q3) 2(q3q4 + q1q2) 2(q21 + q24)− 1



 ,
(5)

The matrixR
K→G

.
= R

NED→G
R

K→NED
can be used to express a vector inK coordinates intoG coordinates.

Finally, we define the wing’s velocity angleγ ∈ [−π, π] as follows (see Fig. 2-(c)):

γ
.
= arctan2 (ṗLE

, ṗLN
), (6)

wherearctan2 (ṗLE
, ṗLN

) ∈ [−π, π] is the 4-quadrant arc tangent function andṗLE
, ṗLN

are proportional to the sine
and cosine ofγ, respectively. The variableγ is the angle between the wing’s velocity vector and the localnorth axis,LN ,
measured positive for a positive rotation around the local downLD. We note that, since the considered system has fixed
line length, vector~̇p is always contained in the(LN , LE) plane, however the definition (6) is more general and holds also
in case of variable line length. Angleγ is particularly important as feedback variable for automatic control algorithms
(see e.g. [17]), since it can be easily linked to the wing’s path: as an example,γ = 0, γ = π

2 andγ = π indicate that the
wing is moving, respectively, towards the local north, parallel to the ground towards the local east, or towards the ground.

We are now in position to introduce the model equations that we consider in this work. These equations are based
entirely on the system’s kinematics, i.e. they are basically obtained by differentiating twice the vector~pG(t) with respect to
the continuous time variablet. Kinematic equations bring two important advantages: 1) they provide an exact model, i.e.

4



there are no neglected dynamics even for flexible wings, and 2) they do not depend on any of the system’s characteristics,
like mass, shape, moments of inertia and aerodynamics of thewing. Indeed these features influence the motion of the wing
through complex, infinite dimensional nonlinear dynamics,whose inputs are the steering command given by the control
system and the (unmeasured) wind, yet such dynamics are totally irrelevant for our scope if a measure or estimate of the
acceleration~̈pG(t), which is the input to our model, is available. However, while the kinematics in the inertial frameG are
given by linear operators (i.e. derivatives), we still end up with nonlinear model equations, due to the fact that we measure
the involved variables in different reference frames. In order to facilitate the observer design, we split the model into five
interconnected subsystems, as shown in Fig. 3. The involvedvariables are the wing position, velocity and accelerationin
the inertial referenceG, ~pG(t), ~̇pG(t), ~̈pG(t), the wing acceleration in the non-inertial referenceK, ~̈pK(t), the quaternion
q(t), finally the wing angular velocity in the referenceK, ~ωK(t). Referring to Fig. 3, the model equations are:

L :






d~pG(t)

dt
d~̇pG(t)

dt




 =

[
03 I3
03 03

] [
~pG(t)
~̇pG(t)

]

+

[
03
I3

]

~̈pG(t) (7a)

N : q̇(t) =
1

2







0 −ωKx
−ωKy

−ωKz

ωKx
0 −ωKz

ωKy

ωKy
ωKz

0 −ωKx

ωKz
−ωKy

ωKx
0













q1
q2
q3
q4







(7b)

f1 : ~̈pG(t) = R
NED→G

(φG)RK→NED
(q(t)) ~̈pK(t) (7c)

f2 :

{

θ(t) = arcsin
(

pZ(t)
r

)

φ(t) = arctan2 (pY (t), pX(t))
(7d)

f3 :

{
~̇pL = R

G→L
~̇pG

γ(t) = arctan2 (ṗLE
(t), ṗLN

(t))
(7e)

where03 is a 3×3 matrix of zeros, andI3 is the 3×3 identity matrix. Thus, the considered model has~̈pK , ~ωK(t) as inputs

Figure 3: Scheme of the considered kinematic model.

and~pG(t), ~̇pG(t), q(t) as states, and it is composed by a linear dynamical system,L, a nonlinear one,N , and three static
nonlinear functions,f1, f2, f3. The only involved parameters are the constant angleφG, giving the orientation of the GU
with respect to the geographical North, and the lengthr of the lines. Both these parameters can be measured accurately
and are assumed to be known exactly here. In the next section,we will describe the different considered sensor setups and
indicate the corresponding measured variables.

2.3 Sensors setup

Several sensors are installed on the GU and onboard the wing,giving a range of different possibilities for the design
of observers for~pG(t) andγ(t). A GPS and three magnetometers are installed on the GU, providing its geographical
location inNED as well as the angleφG. Moreover, the GU is equipped with a line angle measurement system (shown
in Fig. 4), which provides a direct measurement of the angle between the main line connecting the wing to the GU and
the axes of the inertial reference systemG. This sensor has been developed and built ad-hoc for this application and it
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Figure 4: Line angle sensor

employs two incremental encoders. The encoders are connected to the center line via a metal rod and a small pulley which
allows the center line to slide with low friction with respect to the rod while the wing is flying. The first encoder measures
the angle between the metal rod and the(X,Y ) plane, while the second one measures the angle between theX axis
and the projection of the metal rod onto(X,Y ). The incremental encoders provide accurate absolute anglemeasurements
through a quite standard integration algorithm that sums the encoder’s counts, after computing their sign (i.e. the direction
of motion) based on two quadrature signals shifted by 90◦ in phase. The obtained angle measurements are very robust
against noise and drift, since they are based on discrete impulses. Moreover we used an additional index impulse to re-set
a standard position each time the encoders went through it. Driven by the movement of the center line, the metal rod
rotates following the wing’s path, and the encoders measuresuch rotations in terms of the above-mentioned angles. More
specifically, the readings from the two incremental encoders, denoted asθB andφB, can be converted into measurements
of θ andφ via the following equations (see Fig. 5):

L =
√

L2
1 + L2

2 (8a)

θ
′

B = θB − arctan

(
L1

L2

)

(8b)

l
′

1 = L sin (θ
′

B) (8c)

l
′

2 = L cos (θ
′

B) cos (φB)− l2 (8d)

l
′

3 = L cos (θ
′

B) sin (φB) (8e)

θ = arctan

(

l
′

1 + l1
√

l
′2
2 + l

′2
3

)

(8f)

φ = arctan2

(

l
′

3, l
′

2

)

, (8g)

whereL1 andL2 are, respectively, the lengths of the metal rod and the pulley on top of it, andl1, l2 are the distances
between the encoders’ positionP2 and the attachment point of the center line on the GU,P1. The quantitiesL1, L2, l1, l2
are fixed and known. Each encoder has a resolution of2π

400 rad, i.e. 400 counts for each full revolution. With the considered
line length of30m, this translates in about 0.2 m of resolution in each direction.

As to the onboard sensors, the wing is equipped with an Inertial Measurement Unit (IMU) manufactured by SBG
Systemsr, comprising three accelerometers, three gyroscopes, three magnetometers, a barometer, and a GPS. A 900 MHz
radio is also installed on the wing and transmits the measurements collected by the IMU to a receiver on the GU, at a rate
of 115200 Baud. The inertial sensors of the IMU are calibrated after production. The accelerometers have a bandwidth of
50 Hz, a measurement range of±5 g (where g is the gravity constant), a bias of±4 10−3 g, nonlinearity< 10−2 g, and
noise density of2.5× 10−4g/

√
Hz. The gyroscopes have a bandwidth of 40 Hz, a measurement range of±300 ◦/s, a bias

of ± 10−1◦/s, nonlinearity< 3 10−1◦/s, and noise density of5 10−2◦/(s
√

Hz). The magnetometers have a bandwidth of
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(a)

(b)

Figure 5: Diagram of the line angle sensor: (a) side view withφ = 0 and (b) top view. Dash-dotted line: center line of the
wing; thick solid lines: metal rod and pulley linking the encoders to the center line.

500 Hz, a measurement range of±1.2Gauss, a bias of±5 10−4 Gauss, nonlinearity< 2.4 10−3 Gauss, and noise density
of 1 10−5×Gauss/

√
Hz. The barometer provides a measurement of barometric altitude at 9 Hz with a resolution of0.2m.

The mentioned sensors are suitable for the considered application, where the main motion components lie in the range
0.15-1 Hz, angular velocities are contained in the range±200 ◦/s, and accelerations lie in the range±4.5 g.
The signals of all sensors mentioned so far are acquired witha sampling time ofTs = 0.02 s to be used in the estimation
algorithms.

The onboard GPS has a nominal horizontal accuracy (i.e. on the (N,E) plane) of±2.5m and a sampling time of
0.25 s. The delay between the GPS readings and the measurements given by the other sensors on the IMU is compensated
by synchronizing the time stamps of each signal, which are also available.

Finally, an anemometer is also installed on the GU and provides wind speed and direction measurements at 4 m above
the ground. Although the wind measurements are not directlyused in the filtering algorithms, they are useful to analyze
the obtained results, as we show in section 4.

The complete measurement, estimation and control system was implemented on a real-time machine by SpeedGoatr,
programmed using MatLabr and xPC Targetr.

In the following, we implicitly assume that:

• the line angle sensor provides a measure of theθ, φ angles;

• the GPS provides a measure of the position~pG;

• the barometer provides a measure ofpZ ;

• the IMU is fixed with respect to the kite, hence the accelerometers, gyroscopes and magnetometers provide mea-
surement of, respectively,~̈pK , ~ωK , andq.
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These assumptions imply that the wing’s lines are parallel to its position vector~pG, that the position of the IMU coincides
with ~pG and that the IMU itself is fixed to the wing, so that the measured accelerations and angular speeds corresponds
to those of the wing. Given the short length of the wing’s lines and high forces developed in crosswind motion (typically
ranging from 500 N to 3000 N in our experiments), the hypotheses above are reasonable in the considered application.
We provide some considerations on the validity of such assumptions in the presence of longer lines in the discussion in
section 5.

3 Sensor fusion algorithms

In this section we present different algorithms to estimatethe wing’s position and its velocity angle,~pG(t) andγ(t). In the
following, we use the notation ‘˜’ to indicate noise-corrupted measurements and unfiltered estimates of a given variable,
e.g. ~̃pG is the measurement of the position vector seen from systemG, ~pG. Moreover, we indicate with ‘̂’ the estimated
variables, i.e. the outputs of the observer.

As a first step, we exploit the structure of the considered kinematic model to separate the problem of estimating the
wing orientation (i.e. the quaternionq(t)) from the one of estimating its position and velocity. In fact, since the nonlinear
systemN is known and the IMU provides a measurement of both its input and its state, i.e.~̃ωK(t) andq̃(t), an extended
Kalman filter (EKF) approach can be employed to obtain the value of q̂(t). The use of EKFs for the absolute orientation
of rigid bodies using gyroscopes and magnetometers is well-studied in the literature (see e.g. [25]), and most commercial
IMUs have already an EKF implemented. In particular, the IMUemployed in this study already includes its own EKF
for this purpose, and the filter has been calibrated on a vibrational and rotational testbed after production. The obtained
attitude estimate have a range of360◦ around all three axes(Kx,Ky,Kz) with static accuracies of±0.5◦ aroundKx and
Ky and±1◦ aroundKz, a dynamic accuracy of±1◦ RMS, resolution< 5 10−2◦ and repeatability error< 2 10−1◦. Such
performance are sufficient to capture the rotational motionof the wing during crosswind flight with high accuracy. We
indicate the EKF filter asNEKF .

With the estimatêq(t) provided byNEKF , we can then compute the rotation matrixRK→NED(q̂(t)) by using (5).

Then, we compute an estimate~̂p̈G(t) of ~̈pG(t) through the static nonlinear function̂f1 given by:

f̂1 :
~̂
p̈G(t) = R

NED→G
(φG)RK→NED

(q̂)~̃̈pK(t) +





0
0
g



 . (9)

f̂1 is obtained fromf1 (7c) by using the estimated rotation matrixRK→NED(q̂(t)) instead of the “true” one, and then by
removing the bias given by the gravity acceleration g. The latter is present in our setup due to the characteristics of the
employed MEMS accelerometers. The approach described so far is used as a preliminary step for any of the observers
described in the following sections, whose goal is to estimate the wing’s position and velocity. In particular, consider that

the estimate~̂̈pG(t) can be re-written as:
~̂̈pG(t) = ~̈pG(t) + ~ηp(t), (10)

where~ηp(t) ∈ R
3 is some estimation error that we consider as process noise. Then, the estimate~̂̈pG(t) can be regarded to

as a noise-corrupted input for the linear systemL (see Fig. 3). Following this idea, we will use a steady-stateKalman filter,

based onL, to compute~̂pG(k) and ~̂ṗG(k). In order to do so, we discretizeL by forward difference with the employed
sampling timeTs: [

~pG(k + 1)
~̇pG(k + 1)

]

=

[
I3 Ts I3
03 I3

]

︸ ︷︷ ︸

A

[
~pG(k)
~̇pG(k)

]

+

[
03
TsI3

]

︸ ︷︷ ︸

B

(

~̈pG(k) + ~ηp(k)
)

~̃pG(k) =
[
I3 03

]

︸ ︷︷ ︸

C

[
~pG(k)
~̇pG(k)

]

+ ~ηm(k),

(11)

wherek ∈ Z is the discrete time variable and~ηm ∈ R
3 represents the output measurement noise. In classical Kalman

filtering theory,~ηp and~ηm are assumed to be independent white Gaussian processes withcovariance matricesQ andR,
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respectively [29]. Here, the measurement and process noises can be reasonably assumed to be independent, since they

pertain to completely different sensors (accelerometers,gyroscopes and magnetometers for the input~̂
p̈G(k) and either

GPS and barometer or line angle sensor for the output~̃pG(k)), yet they are not white Gaussian processes, since the
measurements are the result of algorithms likeNEKF or the GPS. However, the matricesQ andR can still be tuned on
the basis of the characteristics of the employed sensors by following rather simple guidelines, described in section 4.1.
The Kalman Filter is then obtained by the following equations [29, 6]:
Time update:

[
~̂p−G(k)
~̇̂p−G(k)

]

= A

[
~̂pG(k − 1)
~̇̂pG(k − 1)

]

+B
~̂
p̈G(k) (12)

Measurement update:
[
~̂pG(k)
~̇̂pG(k)

]

=

[
~̂p−G(k)
~̇̂p−G(k)

]

+K

(

~̃pG(k)− C

[
~̂p−G(k)
~̇̂p−G(k)

])

(13)

where~̂p−G(k),
~̂
ṗ−G(k) are the a-priori state estimates at stepk given the knowledge of the process prior to stepk, while

~̂pG(k),
~̇̂pG(k) are the a-posteriori state estimates at stepk given the knowledge of the measurement~̃pG(k). The steady-

state Kalman gainK is computed off-line as:

K = AP∞CT (CP∞CT +R)−1, (14)

whereP∞ satisfies the following Algebraic Riccati Equation:

P∞ =
AP∞AT −AP∞CT (CP∞CT +R)−1CP∞AT +BQBT .

(15)

We will describe next the three different approaches considered in this study. All three of them employ the described

procedure to obtain~̂̈pG(k) and then the Kalman filter (12)-(13) to estimate position andvelocity, but they use different
strategies and sensors to obtain the position measurement~̃pG(k). A scheme of each of the three approaches is shown in
Fig. 6, where we indicate the Kalman filter asLKF .

3.1 First approach: GPS and barometer

We design a first observer (Fig. 6-(a)) by using the GPS to obtain the measurements̃pX , p̃Y , and the barometer for̃pZ .
Hence, the two sensors together provide the position measurement~̃pG(k) to be used with the Kalman filter (12)-(13).
While the GPS can also provide a measurement of the altitude,the related error (about±50 m in our setup) is too large to
be used in the considered application. The barometer, on theother hand, is quite accurate provided that an initial tuning
procedure is carried out for each test to remove the bias induced by the weather conditions. The GPS measurements are
obtained by computing the difference of the readings between the onboard GPS and the one placed on the GU. Since
the accelerometers have a sampling frequency of50Hz, while the GPS provides measurements at a4Hz rate, we use a
multi-rate Kalman filter in this first approach, which consists in performing the time update (12) at each sampling time of
Ts = 0.02 s, and the measurement update (13) every0.25 s, i.e. when the new GPS measurement is available.

3.2 Second approach: GPS and barometer with geometric correction

The filter designed in the second approach employs the same sensors as the previous one, but it also carries out a correction
of the variables̃pX , p̃Y given by the GPS, in order to project the measured position onthe sphere of radiusr. This
correction is based on two observations: 1) the wing motion is constrained on such a sphere, 2) the measurementsp̃X , p̃Y ,
given by the GPS, are less reliable than the measurementp̃Z provided by the barometer. GiveñZ, by using (7d) we
compute a measurẽθ of angleθ, then, we correct̃pX , p̃Y by re-scaling them in order to match with the line lengthr
projected onto(X, Y ), i.e. r cos(θ̃) (compare (1) and Fig. 2-(b)):

p̃X,c = p̃X
r cos(θ̃)√
p̃2

X
+p̃2

Y

p̃Y,c = p̃Y
r cos(θ̃)√
p̃2

X
+p̃2

Y

(16)
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(a)

(b)

(c)

Figure 6: Schemes of the designed observers for the first, second and third approach ((a), (b) and (c), respectively).

Then, we use the vector~̃pG,c = [p̃X,c, p̃Y,c, p̃Z ]
T as position measurement for the multi-rate Kalman filter. This second

approach is shown in Fig. 6-(b), where the correction (16) isindicated asNθ.

3.3 Third approach: line angle sensor

The third observer we consider (Fig. 6-(c)) employs the lineangle sensor to obtain the position measurement. Hence, in
this approach we move away from using the GPS and barometer measurements. By using (7d) we have:

p̃X(k) = r cos(θ̃(k)) cos(φ̃(k))

p̃Y (k) = r cos(θ̃(k)) sin(φ̃(k))

p̃Z(k) = r sin(θ̃(k)),

(17)

whereθ̃(k), φ̃(k) are the measurements provided at50Hz by the line angle sensor. Due to the use of incremental en-
coders, the measurement noise onθ̃(k), φ̃(k) is basically given just by the quantization error resultingfrom the encoders’
resolution (see section 2.3).

The three approaches presented above differ by two main aspects: the use of different sensors for the position mea-
surements, which differentiate the first and second approaches (GPS and barometer) from the third one (line angle), and
the inclusion of the known kinematic constraint given by thetether, which forces the wing to move on a sphere of radius
r. The latter aspect is not considered in the first approach, while it is accounted for in the second one (where we project
the measured position on the sphere of radiusr before doing the measurement update inLKF ) and in the third one (where
we directly compute the position from the spherical coordinates, hence automatically obtaining a measured position that
lies on the sphere). It can be noted that we do not include the tether constraint directly in the model (7), rather we enforce
it on the measured output~̃pG. Adding the constraint to (7) would still yield an exact model (i.e. without model uncer-
tainty), at least as long as the straight line assumption holds (see section 5 for some discussion in this regard). However,
the filtering algorithm would then have to take such constraints into account, hence standard linear techniques like the

10



Kalman filter could not be used anymore, and ad-hoc modifications would have to be implemented. We tried one such
approach by projecting the state on the constraint for the time update (12), before implementing the measurement update
(13). This strategy did not yield any advantage with respectto the algorithms presented above for approaches 2 and 3,
nor did a combination of the two techniques, i.e. projectingthe state on the constraint in (12) and then use projected
measurements in (13). In summary, the inclusion of the tether constraint in the model used inLKF does not yield any
advantage w.r.t. enforcing the constraint on the position measurements and using a “free particle” linear model inLKF .
The latter approach, which we presented here, has the advantage of simplicity and well-understood theory for the stability
of the estimation error dynamics.

3.4 γ filter

In order to obtain an estimate of the velocity angleγ (6), we first use (7d) to obtain the anglesθ̂, φ̂ from the filtered

position ~̂pG. The latter is obtained, together with the velocity estimate ~̂
ṗG, using one of the observers presented in the

previous sections. Then, we estimate the rotation matrixR
G→L

(θ̂, φ̂) by using (3), and we compute an estimate of the

velocity vector in theL frame,~̇̂pL, as:
~̂
ṗL = R

G→L
(θ̂, φ̂)

~̂
ṗG. (18)

Using ~̇̂pL, we compute an unfiltered variableγ̃ ≃ γ as (using the definition (6)):

γ̃ = arctan2

(

ˆ̇pLE
, ˆ̇pLN

)

, (19)

Then, we employ a standard Luenberger observer [10] to obtain a filtered version of̃γ, based on the following state-space
model: [

γ(k + 1)
γ̇(k + 1)

]

=

[
1 Ts

0 1

] [
γ(k)
γ̇(k)

]

In particular, the state-space equations of the Luenbergerobserver are:

[
γ̂(k + 1)
ˆ̇γ(k + 1)

]

=

[
1 Ts

0 1

] [
γ̂(k)
ˆ̇γ(k)

]

+Kγ (γ̃(k)− γ̂(k)) . (20)

Hence, the observer yields a filtered estimate of the velocity angleγ̂, as well as of its ratė̂γ. The former is required in
order to have a smooth signal, suitable to be used for feedback control, the latter can be used as a feedback variable, too,
and it is useful to study the turning dynamics of the wing in response to a steering deviation (see e.g. [17]). The only
tuning parameter for the Luenberger observer is its static gainKγ ∈ R

2: in section 4.1, we provide guidelines on how to
choose this gain in light of the considered application.

Clearly, the three different approaches presented above toestimate the wing’s position and velocity yield estimates
of γ with different accuracy. In sections 4.2 and 4.3, we discussthe performance obtained with the considered filters in
experimental tests.

4 Tuning guidelines and experimental results

We designed three different observers for~̂pG, according to the approaches described in section 3, and consequently three
observers for̂γ. Throughout this section, we use the superscripts1, 2, 3 to indicate the filtered position obtained with
the approach of section 3.1, 3.2 and 3.3, respectively. We employed different wings in the experiments, in order to
demonstrate that the proposed approaches are independent from system’s features like wing area, mass, efficiency, etc.In
particular, we used three different Airush Oner inflatable power kites, with 12 m2, 9 m2 and 6 m2 area. The length of the
lines isr = 30m.

Before presenting the results of the experimental tests, weprovide some considerations on the tuning of the algorithms
described in section 3.
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4.1 Tuning guidelines

For a chosen sampling time (i.e.Ts = 0.02 s in our case), the parameters to be tuned in the presented approaches are
three: the matricesQ andR that define the gainK of LKF (12)-(13), and the gainKγ of the Luenberger observer (20).

Kalman filter. For the choice ofQ andR, a rather simple analysis can be made in this specific case. Infact, in
the inertial frame the position componentspX , pY andpZ are the outputs of three double integrators that are decoupled
(compare (7a)). Hence, ifQ andR are chosen to be diagonal, i.e.:

R =





R11 0 0
0 R22 0
0 0 R33



 Q =





Q11 0 0
0 Q22 0
0 0 Q33



 ,

then the filterLKF enjoys a similar structure, so that one can carry out the analysis by considering just one of the three
directions, and the considerations hold also for the other two components. Let us consider for example theX direction.
The related system has the accelerationp̈X as input, the positionpX as output, and the gain of the observer is determined
by the ratioλ = Q11/R11, which is the only tuning parameter. We can then analyze the transfer functions ofLKF from
each of its two inputs, i.e. the accelerationˆ̈pX and the position measurẽpX , to its output, for example the filtered position
p̂X :

p̂X(z) = FKF
u (z)ˆ̈pX(z) + FKF

y (z)p̃X(z),

wherex(z) is thez-transform of the discrete-time signalx(k). Fig. 7 shows the Bode plot of the magnitude of the discrete-
time transfer functionsFKF

u andFKF
y as a function ofλ. Both functions are low-pass filters, with similar bandwidth. Let

us first consider functionFKF
y . For “low” frequencies, this function is close to 1 (showed as thick dashed line in Fig. 7)
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Figure 7: Bode plot of the magnitude of the discrete-time transfer functionsFKF
u (z)

.
= p̂X(z)/ ˆ̈pX(z) (solid lines) and

FKF
y

.
= p̂X(z)/p̃X(z) (dashed lines) for different values of weighting ratioλ

.
= Q/R, together with their respective

asymptotic behaviors (thick lines).

irrespective ofλ, as one would expect since the filter outputp̂X and the measurementp̃X correspond to the same physical
quantity. As regards functionFKF

u (z), it can be noted that for “high” frequencies its magnitude isthe same as that of

function T 2

s

(z−1)2 (showed as thick solid line in Fig. 7), irrespective ofλ. This is also expected, since the latter function
corresponds to a double integrator and indeed the positionpX is obtained (less the initial conditions) by integrating twice
the acceleration (i.e. the input ofFKF

u ). The frequency ranges where these equivalences hold true depend onλ: the smaller
this value, the larger the frequency range whereFKF

u corresponds to a double integrator and the smaller the rangewhere
FKF
y ≈ 1, and vice-versa. A similar analysis can be done for the transfer functions from the two inputs to the estimated

velocity ˆ̇pX . The considerations above, combined with the characteristics of the employed sensors, provide quite intuitive
guidelines on how to tuneλ (henceQ andR). If the sensors used to measure the position have good bandwidth and low
high-frequency noise, a higher value ofλ should be chosen, hence relying on the position sensors for alarger range of
low frequencies, and on the integration of the accelerationfor higher frequencies. This is the case of the line angle sensor
in approach 3, for which we setλ = 500 (see Fig. 7). If, on the contrary, the employed position sensor has poor dynamic
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performance, a lower value ofλ can be used, in order to try to rely on the integration of the acceleration also for low
and mid-range frequencies. This is the case of the GPS of approaches 1 and 2, for which we choseλ = 10. Clearly,
these guidelines do not have an absolute validity, since they have to be applied by considering the relative quality of the
employed sensors.

Luenberger observer. The observer (20) is a dynamical system with one input, i.e.the unfiltered velocity anglẽγ (19),
and two outputs, i.e. the filtered velocity angleγ̂ and its derivativê̇γ. By changing the gainKγ , different bandwidths and
zero-pole locations of the transfer functions between the input and each of the outputs can be obtained. Fig. 8 shows the
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Figure 8: Bode plot of the magnitude of the discrete-time transfer functionsF LO
y1

(z)
.
= γ̂(z)/γ̃(z) (solid lines) and

F LO
y2

(z)
.
= ˆ̇γ(z)/γ̃(z) (dashed lines) obtained with the observer’s gainKγ = [0.4 0.9]T , and magnitude of the fast Fourier

transform of the input signal̃γ(z) (gray line).

Bode plot of the magnitude of transfer functionsF LO
y1

(z)
.
= γ̂(z)/γ̃(z) andF LO

y2
(z)

.
= ˆ̇γ(z)/γ̃(z), obtained with the gain

Kγ = [0.4 0.9]T that we chose for our tests. The same figure also shows the magnitude of the fast Fourier transform of
the signal̃γ(z) (i.e. the input to the observer), computed from the experimental data collected during more than four hours
of autonomous flight in crosswind conditions. From the latter, the main frequency component can be easily identified at
around 0.16 Hz, corresponding to the frequency of a full figure-eight path (whose period is typically around 5-6 s in our
experimental setup, see e.g Fig. 12 in section 4.3). Anotherpeak at around 0.54 Hz can be also noted, as well as a third
one at 0.9 Hz. As a general guideline, the gainKγ shall be chosen such that the important components of the input signal
are not distorted in magnitude nor in phase. With the chosen value ofKγ = [0.4 0.9]T , the transfer functionF LO

y1
(z) is

such that the frequency components up to around 1.5 Hz pass the filter with little magnitude distortion and phase lag (see
Figure 8, solid line). As to functionF LO

y2
(z), it can be noted that in a similar range of frequencies this filter behaves like

the discrete-time derivativez−1
Ts

, hence providing an estimate of the turning rateγ̇ (Fig. 8, dashed line). Both filters then
attenuate signal components with frequencies >2-3 Hz.

4.2 Experimental results: first and second approaches

The third approach resulted to be the most accurate one, thanks to the use of the line angle sensor, which practically yields
exact position readings. Hence, in this section we take the estimates~̂p3G andγ̂3, obtained with the third approach, as “true
values”, and we evaluate the performance of the first two approaches with respect to the third one. Referring to section 4.1,
we employedλ = 10 for all three motion directions, andKγ = [0.4, 0.9]T . An example of the courses of the position
components along theX andZ axes are shown in Figs. 9-10. It can be noted that the error betweenp̂1X , p̂2X andp̂3X can
be quite high (of the order of 10 m), witĥp2X being generally better than̂p1X . This shows that the correction (16) that we
introduced in the second approach indeed improves the estimate with respect to using the plain GPS reading (compare the
dash-dotted and dashed lines in Fig. 9). Moreover, bothp̂1X andp̂2X are affected by some delay with respect top̂3X . Such a
delay, together with the quite poor accuracy on the(X,Y ) plane, give rise to significant errors in theγ estimates. Similar
results are obtained for theY axis, while the estimateŝp1Z , p̂

2
Z result to be more accurate and they are not affected by

delays, thanks to the use of the barometric altitude insteadof the GPS, see Fig. 10. We note that for the componentpZ , the
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Figure 9: Experimental results. Estimates of the position along theX axis,pX(t), obtained with the first (dash-dotted
line), second (dashed) and third (solid) approaches, and raw data provided by the GPS (gray line).

1965 1970 1975 1980 1985
12

14

16

18

20

22

24

26

time (s)

p Z
 (

m
)

Figure 10: Experimental results. Estimates of the positionalong theZ axis, pZ(t), obtained with either the first and
second (dashed line) or the third (solid) approach.

first two approaches are equivalent, hence resulting in the same filtered values. The considerations above are confirmed
by the analysis of extensive experimental data. Table 1 shows the root mean square errors (RMSE) between the first two
approaches and the third one, for all of the estimated variables, grouped in different ranges of wind speeds measured at
4 m from the ground with the anemometer. The results of Table 1account for about 5 hours of operation at different wind
speeds. Considering that a single figure-eight loop has a period of 5-6 seconds, the data in the table correspond to about
3300 complete figure-eight paths. The results in the Table confirm that the second approach is generally better than the
first one in estimating the wing’s position, especially at larger wind speeds (see Table 1 for 3 m/s and above), while the
two approaches give similar errors on theγ estimates, which deviate significantly from the third approach. Moreover,
it can be noted that the accuracy of the first two approaches gets worse as the wind speed increases. Since the wing’s
speed depends linearly on the wind speed (see e.g. [16]), this results indicate that the GPS performance get worse as the
wing movements get faster and changes of direction are more frequent. Indeed the provided GPS accuracy (±2.5 m in the
(N,E) plane) is valid for steady state conditions only. Finally, it can be noted that also the estimates ofpZ get generally
worse with larger wind speed. The reason for this result is that the barometric altitude reading is influenced by the change
of air pressure due to the increased wing speed and hence increased airflow on the barometer, which is tuned in static
conditions. This phenomenon can be compensated by implementing a correction e.g. based on the wing’s speed or line
force, which are related to the airflow.
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Table 1: Experimental results. Root mean square errors between the estimates obtained with either the first or second
approach and the third one, for different wind speeds measured at 4 m above the ground.

Wind speed (m/s) <2 2-3 3-4 >4

p1X (m) 7.73 14.11 16.36 46.23

p2X (m) 5.05 7.03 9.12 13.63

p1Y (m) 10.32 12.81 15.40 24.53

p2Y (m) 10.10 10.15 10.33 10.65

p1Z (m) 1.68 2.98 4.27 7.70

p2Z (m) 1.68 2.98 4.27 7.70

γ1 (rad) 1.35 1.44 1.57 2.24

γ2 (rad) 1.44 1.47 1.79 2.34

4.3 Experimental results: third approach

We now focus on the results obtained with the third approach.Referring to section 4.1, we choose the tuning parameters
asλ = 500 andKγ = [0.4, 0.9]T . We first show an example of the time courses of the filtered velocity angleγ̂ and its
rate ˆ̇γ, see Fig. 11. It can be noted that the estimates are quite smooth, hence they are suitable to be used for feedback
control, and that the derivativė̂γ has a rather small lag with respect toγ̂. In order to assess the contribution provided
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Figure 11: Time courses of the filtered velocity angleγ̂ (solid line), and its derivativė̂γ (dashed line). Design parameters:
λ = 500, Kγ = [0.4, 0.9]T . Wing size: 12 m2, wind speed: 2.3 m/s at 4 m from the ground.

by the inertial sensors to the estimated quantities, we shownext, in Fig. 12, the course of̂γ obtained either with the IMU

(solid line) or without, i.e. considering~̂̈pG = 0. It can be noted that in the second case, a quite significant lag is present
in the estimate. Although the control system (designed according to [17]) can still operate satisfactorily in this case, its
performance get worse. This conclusion is confirmed by the data reported in Figs. 13-14, which show the same flown
path, together with its filtered position in the(φ, θ) plane and the estimated velocity angles, again obtained either with or
without the IMU. The raw position data given by the line anglesensor are reported in both figures as well. By comparing
these two plots, it can be noted that the use of the IMU yields abetter accuracy not only of the velocity angle estimate
(compare the two figures e.g. forφ ≃ −0.75, θ ≃ 0.7), but also of the filtered position, as shown by the larger errors
between the raw data and the filtered ones in Figure 14. The reason of such a difference lies in the fact that the inertial
sensors of the IMU allow to anticipate the wing’s movement, hence reducing the lag in the filtered variables. In summary,
while the third approach provides estimates that are good enough for feedback control also if the IMU is not used, the
fusion of the inertial sensors of the IMU with the line angle measurement system yields the best performance. In Fig. 13,
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Figure 12: Time courses of the filtered velocity angleγ̂ obtained in the third approach with the IMU (solid line) and
without (dashed line). Design parameters:λ = 500, Kγ = [0.4, 0.9]T . Wing size: 12 m2, wind speed: 2.3 m/s at 4 m
from the ground.
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Figure 13: Filtered position in the(φ, θ) plane obtained with the third approach with the IMU (solid line and ‘◦ ’) and
related velocity angle estimates (arrows). The raw position data is shown with gray ‘∗ ’. Design parameters:λ = 500,
Kγ = [0.4, 0.9]T . Wing size: 12 m2, wind speed: 2.3 m/s at 4 m from the ground.

it can be noted that the estimated velocity angle is quite accurate, with the gradient being almost always tangent to the
estimated flying path. The length of the arrows in Fig. 13 is proportional to the wing’s speed with respect to the ground.
Similar good results have been obtained with all the three different wings, and in different wind conditions (see Fig. 15for
some examples), hence showing the robustness of the approach, deriving from the use of kinematic equations to design
the filters. These features make the use of the proposed filtering technique and of̂γ3 most suited for feedback control, see
[4] for a short movie clip concerned with autonomous flights carried out using such estimation algorithm.

5 Discussion and conclusions

We presented a study on the problem of sensor fusion for tethered wings to be used in airborne wind energy systems,
focusing in particular on crosswind flight conditions. We designed three algorithms to estimate the wing’s position and
velocity angle, using different sensors, and we applied them in experimental tests.

The approaches and the results presented in this paper are directly significant for small-scale airborne wind energy
systems when operating with relatively short lines. Moreover, as already mentioned, the use of a kinematic model renders
the approaches suitable for virtually any size and type of wing. The main underlying assumption for the validity of the

16



−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75
0.4

0.5

0.6

0.7

0.8

0.9

1

φ (rad)

θ 
(r

ad
)

Figure 14: Filtered position in the(φ, θ) plane obtained with the third approach without the IMU (solid line and ‘◦ ’) and
related velocity angle estimates (arrows). The raw position data is shown with gray ‘∗ ’. Design parameters:λ = 500,
Kγ = [0.4, 0.9]T . Wing size: 12 m2, wind speed: 2.3 m/s at 4 m from the ground.

approaches is the presence of a straight tether linking the wing to the ground. In our experimental setup, with 30-m-
long lines and force values ranging typically from 500 N to 3000 N in crosswind conditions, this was always the case.
In such conditions, our results indicate that the techniques based on GPS are not usable in practice for the purpose of
feedback control in crosswind motion. This holds in particular for the first approach for the position estimate, and for both
the first and second approaches for theγ estimate. Hence, our results suggest that the use of accurate and fast position
measurement devices, like the line angle sensor, are essential to obtain high accuracy when the lines are relatively short
w.r.t. the wing speed. More specifically, the GPS is affectedby poor accuracy (which can be partially improved by
exploiting the kinematic constraint given by the tether) and by a (time-varying) delay, typically about 0.2 s but up to 1 s
in some cases. Finally, we also showed with experimental results that the fusion of inertial sensors with the position
measurements yields the best performance in estimating theposition, velocity and velocity angle of the wing, also when
an accurate line angle sensor is used.

This situation is likely to change when longer lines are used, so that the additional line drag and weight might reduce
the traction force exerted by the wing, giving rise to line sagging. Clearly, at which length of the lines this might happen
depends on the wing size, efficiency and wind speed. In such conditions, the accuracy of the line angle sensor decreases,
hence making the third approach less effective, however on the other hand we expect the performance of the first and
second approach to improve. In fact, it is reasonable to assume that the accuracy of the GPS would be the same in
absolute values also with longer tether length, hence yielding smaller errors in terms of angular positions, which are the
ones that matter for feedback control in several approaches[12, 17]. This would hold particularly if the span of the flying
path increases with the length of the lines (e.g. if the same trajectory in the(φ, θ) plane is kept). Such a consideration
suggests that the capability of tracking the wing with sufficiently good accuracy might be a design constraint for the
size of the flown trajectories. Moreover, the use of GPS sensors with higher performance (e.g. differential GPS) can
certainly improve the accuracy obtained with the first two approaches, which then could be mixed with the third one. This
represents an interesting line of research, that can be pursued only with a larger testing setup with full reel-out capabilities.

Focusing again on the third approach, eventual line sag could be also detected and corrected by exploiting the baro-
metric altitude reading and the measure of the forces actingon the lines, as well as other additional measurements like
onboard airspeed, which is also related to the generated force: from our own experience and from discussions with several
researchers working in the field of airborne wind energy, line sag is almost absent during crosswind flight if the forces
are large enough. This aspects provides further design and operation criteria for AWE systems: the chosen length of the
tethers and reel-out speed should be matched with the characteristics of the wing (like size and efficiency) and with the
wind conditions, in order to make sure that the load on the lines is large enough, relative to their length, to allow good
position measurements from the ground with a line angle sensor. This point provides also a further reason to investigate
the phenomenon of line sag, not only for the sake of deriving more accurate models for numerical simulations, but also
for the purpose of estimation.

Last, we think that the use of larger and heavier wings would also yield better accuracy with the first two approaches,
due to larger flight paths (whose radius increases approximately linearly with the wing span) and higher inertia that should
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Figure 15: Experimental results. Examples of wing paths (solid lines with ‘◦’) and velocity angles (arrows) obtained with
a (a) 6 m2, (b) 9 m2 and (c) 12 m2 wing and with about 2 m/s (left) and 4 m/s (right) wind speed measured at 4 m above
the ground.

lead to an improvement in the relative GPS accuracy.
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