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I. INTRODUCTION

MANY decentralized and distributed model predictive
control (MPC) algorithms have been recently devel-

oped, see the book [12] and the review papers [18], [3]. Most
of these methods consider the so-called regulation problem:
given a large-scale dynamical system made by a number of
(interconnected or independent) subsystems, the problem is to
asymptotically steer to zero the state of all the subsystems
by coordinating the local control actions with a minimum
amount of transmitted information. However, in this setting,
the solution of the tracking problem with distributed MPC is
much more difficult. In fact, the decentralization constraints
do not allow to follow the standard approach, based on
the reformulation of the tracking problem as a regulation
one by computing, at any set-point change of the output,
the corresponding state and control target values. For this
reason, and to the best of the authors’ knowledge, only the
cooperative distributed MPC algorithm described in [7] is
nowadays available, while a different approach based on a
distributed reference governor has been proposed in [19].

In this brief paper, a new distributed MPC method for
the solution of the tracking problem is proposed for systems
made by the collection of M subsystems. The algorithm
is developed according to the hierarchical structure shown
in Fig. 1:

1) at the higher layer, given the required output reference
signals y[i]

set−point, i = 1, ..., M , feasible trajectories
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Fig. 1. Overall control architecture.

x̃ [i], ũ[i], and ỹ[i] of the local state, input and output
variables are computed for each subsystem Si . Notably,
these trajectories are computed according to the pre-
scribed distributed information pattern, also adopted at
the lower layer;

2) at the lower layer, M regulators Ci are designed with the
distributed algorithm developed in [6] for the solution of
the local regulation problems.

The overall algorithm guarantees that the controlled outputs
reach the prescribed reference values whenever possible, or
their nearest feasible value when feasibility problems arise due
to the constraints. A preliminary version of this algorithm is
presented in [5] where, however, a less general control problem
is considered and more restrictive conditions are required.

This brief paper is organized as follows. In Section II,
the system’s structure and constraints are defined. Section
III describes the proposed control system architecture, while
the distributed MPC algorithm is presented in Section IV.
In Sections V and VI, two benchmark examples are described,
namely the control of a small fleet of unicycle robots and
the control of a simulated four-tank system. Conclusions are
drawn in Section VII. The proofs of the main results are
postponed to an Appendix.

Notation: A matrix is Schur if all its eigenvalues lie in the
interior of the unit circle. The short-hand v = (v1, . . . , vs)
denotes a column vector with s (not necessarily scalar)
components v1, . . . , vs . The symbols ⊕ and � denote the
Minkowski sum and Pontryagin difference, respectively, [16],
while

⊕M
i=1 Ai = A1 ⊕ · · · ⊕ AM . A generic q-norm ball

centered at the origin in the R
dim space is defined as follows

B(dim)
q,ε (0) := {x ∈ R

dim : ‖x‖q ≤ ε}. For a discrete-time
signal st and a, b ∈ N, a ≤ b, (sa, sa+1, . . . , sb) is denoted
with s[a:b].



II. INTERACTING SUBSYSTEMS

Consider M dynamically interacting subsystems, which, 
according to the notation used in [11], are described by

x [i]
t+1 = Aii x [i]

t + Bii u
[i]
t + Ei s

[i]
t (1a)

y[i]
t = Ci x [i]

t (1b)

z[i]
t = Czi x [i]

t + Dzi u
[i]
t (1c)

where x [i]
t ∈ R

ni and u[i]
t ∈ R

mi are the states and inputs,
respectively, of the i th subsystem, while y[i]

t ∈ R
pi is its

output, with pi ≤ mi . In line with the interaction-oriented
models introduced in [11], the coupling input and output
vectors s[i]

t and z[i]
t , respectively, are defined to characterize

the interconnections among the subsystems, i.e.,

s[i]
t =

M∑

j=1

Li j z[ j ]
t . (2)

We say that subsystem j is a dynamic neighbor of subsystem
i if and only if Li j �= 0, and we denote as Ni the set of
dynamic neighbors of subsystem i (which excludes i ).

The input and state variables are subject to the local
constraints u[i]

t ∈ Ui ⊆ R
mi and x [i]

t ∈ Xi ⊆ R
ni , respectively,

where the sets Ui and Xi are convex. Furthermore, we allow
for nc linear constraints involving the output variables of more
than one subsystem: the hth constraint inequality is

M∑

j=1

H [ j ]
h y[ j ]

t ≤ lh (3)

where H [ j ]
h ∈ R

1×p j are row vectors, which can be possibly
equal to zero, for some values of j . Without loss of generality,
the outputs involved in coupling constraints are accounted for
as coupling outputs, i.e., for all h = 1, . . . , nc and for all
j = 1, . . . , M , there exists a matrix H [ j ]z

h such that

H [ j ]
h y[ j ]

t = H [ j ]z
h z[ j ]

t (4)

under (1b) and (1c).
We say that the hth inequality is a constraint on subsystem i

if H [i]
h �= 0, and we denote the set of constraints on subsystem

i as Ci = {h ∈ {1, . . . , nc}: the hth inequality is a constraint on
i}, and with n[i]

c the number of elements of Ci . Subsystem j �=
i is a constraint neighbor of subsystem i if there exists h̄ ∈ Ci

such that H [ j ]
h̄

�= 0. For all h = 1, . . . , nc, we finally denote
with Sh the set of subsystems for which the hth inequality is
a constraint, i.e., Sh = {i : H [i]

h �= 0} and with nh = |Sh | the
cardinality of Sh .

Collecting the subsystems (1) for all i = 1, . . . , M , we
obtain the collective dynamical model

xt+1 = A xt + But (5a)

yt = C xt (5b)

where xt = (x [1]
t , . . . , x [M]

t ) ∈ R
n , n = ∑M

i=1 ni ,
ut = (u[1]

t , . . . , u[M]
t ) ∈ R

m , m = ∑M
i=1 mi , and yt =

(y[1]
t , . . . , y[M]

t ) ∈ R
p , p = ∑M

i=1 pi , are the collective state,
input, and output vectors, respectively. The state transition
matrices A11 ∈ R

n1×n1 , . . . , AM M ∈ R
nM ×nM of the M

Fig. 2. Distributed architecture for tracking reference signals.

subsystems are the diagonal blocks of A, whereas the dynamic
coupling terms between the subsystems correspond to the
nondiagonal blocks of A, i.e., Aij = Ei Li j Czj , with j �= i .
Correspondingly, Bii , i = 1, . . . , M , are the diagonal blocks of
B, whereas the influence of the input of a subsystem upon the
state of different subsystems is represented by the off-diagonal
terms of B, i.e., Bij = Ei Li j Dzj , with j �= i . The collective
output matrix is defined as C = diag(C11, . . . , CM M ).

Concerning system (5a) and its partition, the following main
assumption on decentralized stabilizability is introduced.

Assumption 1: There exists a block-diagonal matrix K =
diag(K1, . . . , KM ), with Ki ∈ Rmi ×ni , i = 1, . . . , M such
that: 1) F = A + BK is Schur and 2) Fii = (Aii + Bii Ki ) is
Schur, i = 1, . . . , M .

Remark 1: The design of the stabilizing matrix K can be
performed according to the procedure proposed in [6] or by
resorting to an linear matrix inequality (LMI) formulation,
see [2], based on well-known results in decentralized control,
see [20].

The following standard assumption is made.
Assumption 2:

rank

([
In − A −B

C 0

])

= n + p.

III. CONTROL SYSTEM ARCHITECTURE

The higher layer of the hierarchical scheme of Fig. 1 is itself
made by two sub-layers, as shown in Fig. 2: a reference output
trajectory layer computes in a distributed way the output
reference trajectories ỹ[i] given the ideal set-points y[i]

set−point,
while a reference state and input trajectory layer determines
the corresponding state and control trajectories x̃ [i] and ũ[i].
At the lower layer of the structure of Fig. 1, a distributed
robust MPC layer is designed to drive the real state and input
trajectories x [i]

t and u[i]
t of the subsystems as close as possible

to x̃ [i]
t , ũ[i]

t , while satisfying the constraints. Notably, at each
level, information is required to be transmitted only among
the neighboring subsystems.

A. Reference Output Trajectory Layer

At any time t , the reference trajectories ỹ[i]
t+k , k =

1, . . . , N − 1, are regarded as an argument of an optimiza-
tion problem itself (see Section IV-B) rather than a fixed



parameter, similarly to the approach in [10]. However, in the
considered distributed context, too rapid changes of the output
reference trajectory of a given subsystem could greatly affect
the performance and the behavior of the other subsystems.
Therefore, to limit the rate of variation, it is required that, for
all i = 1, . . . , M , for all t ≥ 0

ỹ[i]
t+1 ∈ ỹ[i]

t ⊕ B
(pi )
q,ε (0). (6)

The reference output trajectory management layer is also
committed to defining suitable update laws for ỹ[i]

t in such a
way that, for all time steps, (3) is verified for all h = 1, . . . , nc.

B. Reference State and Input Trajectory Layers

Given, at any time step t , the future reference trajectories
ỹ[i]

k , k = t, . . . , t + N − 1, to define the state and control
reference trajectories (x̃ [i]

t , ũ[i]
t ), consider the systems

x̃ [i]
t+1 = Aii x̃ [i]

t + Bii ũ
[i]
t + Ei s̃

[i]
t (7a)

ẽ[i]
t+1 = ẽ[i]

t + ỹ[i]
t+1 − Ci x̃ [i]

t (7b)

where similarly to (1c) and (2)

z̃[i]
t = Czi x̃

[i]
t + Dzi ũ

[i]
t (7c)

s̃[i]
t =

∑

j∈Ni

Li j z̃[ j ]
t . (7d)

Define χ [i]
t = (x̃ [i]

t , ẽ[i]
t )

Ai j=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
Aii 0
−Ci Ipi

]

if j = i

[
Aij 0
0 0

]

if j �= i

,Bi j =
[

Bij

0

]

,Gi =
[

0
Ipi

]

(7e)

and consider the control law

ũ[i]
t = Kiχ

[i]
t (7f)

where Ki = [
K x

i K e
i

]
. Letting Fi j = Ai j + Bi j K j , the

dynamics of χ
[i]
t is therefore defined by

χ
[i]
t+1 = Fii χ

[i]
t +

∑

j∈Ni

Fi j χ
[ j ]
t + Gi ỹ[i]

t+1. (8)

The gain matrix Ki is to be determined as follows: denoting
by A and B, the matrices whose block elements are Ai j and
Bi j , respectively, and K =diag(K1, . . . ,KM ), the following
assumption must be fulfilled.

Assumption 3: The matrix F = A + BK is Schur
stable. �

The synthesis of the Ki ’s can be performed provided that
Assumption 2 is verified and according to the procedures
proposed in Remark 1. Moreover, when pi > mi for some
i , the available degrees of freedom can be used to select Ki ’s
fulfilling some additional optimization criteria.

Define, for all i = 1, . . . , M and for all t ≥ 0, χ [i]ss
t =

(x [i]ss
t , e[i]ss

t ), as the steady-state condition for (8) correspond-
ing to the reference outputs ỹ[i]

t assumed constant, i.e., ỹ[i]
t+1 =

ỹ[i]
t , and satisfying for all i = 1, . . . , M

χ [i]ss
t = Fii χ

[i]ss
t +

∑

j∈Ni

Fi j χ
[ j ]ss
t + Gi ỹ[i]

t . (9)

In view of (7) and Assumption 3, Ci x [i]ss
t = ỹ[i]

t+1 and F is
Schur stable. Then, a solution to the system (9) exists and is
unique. Collectively define χ ss

t = (χ
[1]ss
t , . . . , χ

[M]ss
t ), χt =

(χ
[1]
t , . . . , χ

[M]
t ), and ỹt = (ỹ[1]

t , . . . , ỹ[M]
t ). From (7e)–(9),

we can collectively write

χ ss
t+1 − χ ss

t = (In+p − F )−1G (ỹt+1 − ỹt ) (10)

where G = diag(G1, . . . ,GM ). Therefore

χt+1−χ ss
t+1 = F (χt −χ ss

t )−(In+p−F )−1FG (ỹt+1−ỹt)

(11)

which can be rewritten as

χt+1 − χ ss
t+1 = F (χt − χ ss

t ) + w̃t (12)

where w̃t can be seen as a bounded disturbance. In fact, in
view of (6), w̃t ∈ W̃ = −(In+p − F )−1FG

∏M
i=1 B

(pi )
q,ε (0).

Under Assumption 3, for (12) there exists a possibly non-
rectangular robust positive invariant (RPI) set �χ such that, if
χt − χ ss

t ∈ �χ , then it is guaranteed that χt+k − χ ss
t+k ∈ �χ

for all k ≥ 0. This, in turn, implies that the convex sets �
χ
i

exist and can be defined in such a way that �χ ⊆ ∏M
i=1 �

χ
i ,

so that, for any initial condition χ0 − χ ss
0 ∈ �χ , for all t ≥ 0,

it holds that

χ
[i]
t − χ

[i]ss
t ∈ �

χ
i . (13)

C. Robust Distributed MPC Layer

The DPC algorithm described in [6] is used to drive the real
state and input trajectories x [i]

t and u[i]
t as close as possible

to their references x̃ [i]
t , ũ[i]

t . Specifically, by adding suitable
constraints to the distributed MPC problem formulation, for
each subsystem and for all t ≥ 0 it is possible to guarantee that
the actual coupling output trajectories lie in specified time-
invariant neighborhoods of their reference trajectories. More
formally, if z[i]

t ∈ z̃[i]
t ⊕Zi , where Zi is compact, convex and

0 ∈ Zi , in view of (7d) it is guaranteed that s[i]
t ∈ s̃[i]

t ⊕ Si ,
where Si = ⊕

j∈Ni
Li j Z j . In this way, (1a) can be written as

x [i]
t+1 = Aii x [i]

t + Bii u
[i]
t + Ei s̃

[i]
t + Ei (s

[i]
t − s̃[i]

t ) (14)

where Ei (s
[i]
t − s̃[i]

t ) can be seen as a bounded disturbance,
while Ei s̃

[i]
t+k can be interpreted as an input, known in advance

over the prediction horizon k = 0, . . . , N − 1.
For the statement of the individual MPC sub-problems,

henceforth called i -DPC problems, define the i th subsystem
nominal model associated to equation (14)

x̂ [i]
t+1 = Aii x̂ [i]

t + Bii û
[i]
t + Ei s̃

[i]
t (15)

and let

ẑ[i]
t = Czi x̂ [i]

t + Dzi û
[i]
t . (16)

The control law for the i th subsystem (14), for all t ≥ 0, is
assumed to be given by

u[i]
t = û[i]

t + Ki (x [i]
t − x̂ [i]

t ) (17)



= x [i]
t − x̂ [i]

twhere Ki satisfies Assumption 1. Letting εt
[i] 

from (14), (15), and (17) it follows that:
ε[i]

t+1 = Fii ε
[i]
t + w[i]

t (18)

where

w[i]
t = Ei (s

[i]
t − s̃[i]

t ) (19)

is a bounded disturbance since s[i]
t − s̃[i]

t ∈ Si . It follows that

w
[i]
t ∈ Wi = EiSi . (20)

Since w
[i]
t is bounded and Fii is Schur, there exists an RPI

Ei for (18) such that, for all ε[i]
t ∈ Ei , then ε[i]

t+1 ∈ Ei .
Therefore, at time t +1, in view of (1c) and (16), it holds that
z[i]

t+1 − ẑ[i]
t+1 = (Czi + Dzi Ki )ε

[i]
t+1 ∈ (Czi + Dzi Ki )Ei .

To guarantee that, at time t + 1, z[i]
t+1 − z̃[i]

t+1 ∈ Zi can be
still verified by adding suitable constraints to the optimization
problems, the following assumption must be fulfilled.

Assumption 4: For all i = 1, . . . , M , there exists a positive
scalar ρi such that

(Czi + Dzi Ki )Ei ⊕ Bq,ρi (0) ⊆ Zi . (21)
If Assumption 4 is fulfilled define, for all i = 1, . . . , M , the
convex neighborhood of the origin �z

i satisfying

�z
i ⊆ Zi � (Czi + Dzi Ki )Ei (22)

and consider the constraint ẑ[i]
t+1 − z̃[i]

t+1 ∈ �z
i , in such a way

that

z[i]
t+1 − z̃[i]

t+1 = z[i]
t+1 − ẑ[i]

t+1 + ẑ[i]
t+1 − z̃[i]

t+1

∈ (Czi + Dzi Ki )Ei ⊕ �z
i ⊆ Zi (23)

as required at all time steps t ≥ 0.

IV. DISTRIBUTED PREDICTIVE CONTROL ALGORITHM

The overall design problem is composed by a preliminary
centralized off-line design and an on-line solution of the M
i -DPC problems, as now detailed.

A. Off-Line Design

The off-line design consists of the following procedure:

1) compute the matrices K and K satisfying Assumptions
1 and 3 (see Remark 1);

2) define B
(pi )
q,ε (0), compute �χ [an RPI for (12)] and �

χ
i

(for the computation of RPIs see [16]);
3) compute the RPI sets Ei for the subsystems (18) and the

sets �z
i satisfying (22) and (23);

4) compute X̂i ⊆ Xi � Ei , Ûi ⊆ Ui � KiEi , the positively
invariant set �i for

δx [i]
t+1 = Fii δx [i]

t (24)

such that

(Czi + Dzi Ki )�i ⊆ �z
i (25a)

and the convex sets Yi such that
[

Ini 0
K x

i K e
i

] (
�i (In+p − F )−1G

∏M
j=1 Y j ⊕ �

χ
i

)

⊕
[

Ini

Ki

]

�i ⊆ X̂i × Ûi

(25b)

where �i is the matrix, of suitable dimensions, that selects the
subvector χ [i]

t out of χt . Specifically, Yi is the set associated
to ỹ[i]

t such that the corresponding steady-state state and input
satisfy the control and state constraints defined by X̂i and
Ûi . Concerning the set-theoretical conditions guaranteeing the
design of the control scheme, it is worth mentioning that, at
the price of a more conservative scheme and slower settling
times (e.g., small parameter ε), (25) can always be verified.
On the other hand, it is not always possible to select sets Zi

such that (21) is verified; as investigated in [6] it consists in
a network-wide small gain condition.

B. On-Line Design

The on-line design is based on the solution of the follow-
ing distributed and independent optimization problems. It is
worth remarking that the reference output layer and the MPC
problem consist in two independent optimization problems.
This enhances the reliability of the approach and reduces its
computational load, at the price of limiting the rate of variation
of the output reference to the value that guarantees constraint
satisfaction in all possible conditions, contrarily to [10].

1) Computation of the Reference Outputs: The output refer-
ence trajectories ỹ[i]

t+N are computed to minimize the distance
from the ideal set-points y[i]

set−point and to fulfill the constraints,
including the coupling ones (3). Concerning the latter, define

l̃h = lh −
∑

j∈Sh

{

max
χ∈�

χ
j

H [ j ]
h

[
C j 0

]
χ + max

z∈Z j

H [ j ]z
h z

}

(26)

and, for all t ≥ 0

kh,t+N−1 =
∑

j∈Sh

H [ j ]
h ỹ[ j ]

t+N−1. (27)

Then, it is possible to show (see the Appendix) that

H [i]
h ỹ[i]

t+N ≤ l̃h −
∑

j∈Sh\{i}
H [ j ]

h ỹ[ j ]
t+N−1

− (nh − 1)

nh
(l̃h − kh,t+N−1) (28)

guarantees that (3) holds and recursive feasibility. Therefore,
(28) can be used in place of (3) in the following optimization
problem associated with the reference output trajectory layer:

min
ȳ[i]

t+N

V y
i (ȳ[i]

t+N , t) (29)

subject to

ȳ[i]
t+N − ỹ[i]

t+N−1 ∈ B
(pi )
q,ε (0) (30)

ȳ[i]
t+N ∈ Yi (31)

and (28), where

V y
i (ȳ[i]

t+N ) = γ ‖ȳ[i]
t+N − ỹ[i]

t+N−1‖2 + ‖ȳ[i]
t+N − y[i]

set−point‖2
Ti

.



The weight Ti must verify the inequality

Ti > γ Ipi (32)

while γ is an arbitrarily small positive constant.
2) Computation of the Control Variables: The i -DPC prob-

lem solved by the i th robust MPC layer unit is defined as
follows:

min
x̂ [i]

t ,û[i]
[t :t+N−1]

V N
i (x̂ [i]

t , û[i]
[t :t+N−1]) (33)

where

V N
i (x̂ [i]

t , û[i]
[t :t+N−1]) =

∑t+N−1

k=t
‖x̂ [i]

k −x̃ [i]
k ‖2

Qi
+‖û[i]

k − ũ[i]
k ‖2

Ri

+‖x̂ [i]
t+N − x̃ [i]

t+N ‖2
Pi

(34)

subject to (15) and, for k = t, . . . , t + N − 1

x [i]
t − x̂ [i]

t ∈ Ei (35a)

ẑ[i]
k − z̃[i]

k ∈ �z
i (35b)

x̂ [i]
k ∈ X̂i (35c)

û[i]
k ∈ Ûi (35d)

and to the terminal constraint

x̂ [i]
t+N − x̃ [i]

t+N ∈ �i . (36)

The weights Qi and Ri in (34) must be taken as positive
definite matrices while, in order to prove the convergence
properties of the proposed approach, select the matrices Pi as
the solutions of the (fully independent) Lyapunov equations

FT
ii Pi Fii − Pi = −(Qi + K T

i Ri Ki ). (37)

At time t , (x̂ [i]
t |t , û[i]

[t :t+N−1]|t , ȳ[i]
t+N |t ) is the solution to the

i -DPC problem and û[i]
t |t is the input to the nominal

system (15).
Remark 2: Note that the problems (29) and (33) are inde-

pendent of each other. In fact, (29) does not depend on x̂ [i]
t

and û[i]
[t :t+N−1]. Moreover, both the cost function V N

i and the

constraints (35) are independent of ȳ[i]
t+N |t . �

According to (17), the input to the system (1a) is

u[i]
t = û[i]

t |t + Ki (x [i]
t − x̂ [i]

t |t ). (38)

Moreover, set ỹ[i]
t+N = ȳ[i]

t+N |t and compute the references

ẽ[i]
t+N and x̃ [i]

t+N+1 with (7b) and (7a), respectively. Finally,
set ũ[i]

t+N = K x
i x̃ [i]

t+N + K e
i ẽ[i]

t+N from (7f).
Denoting by x̂ [i]

k|t the state trajectory of system (15) stem-

ming from x̂ [i]
t |t and û[i]

[t :t+N−1]|t , at time t it is also possible

to compute x̂ [i]
t+N |t . The properties of the proposed distributed

MPC algorithm for tracking can now be summarized in the
following result.

Theorem 1: Let Assumptions 1–4 be verified and the tuning
parameters be selected as previously described. If at time
t = 0 a feasible solution to the constrained problems (29), (33)
exists and kh,N−1 ≤ l̃h [see (26) and (27)] for all
h = 1, . . . , nc then, for all i = 1, . . . , M

1) Feasible solutions to (29), (33) exist for all t ≥ 0, i.e.,
constraints (28), (30), (31), (35), and (36), respectively,

are verified. Furthermore, the constraints (x [i]
t , u[i]

t ) ∈
Xi × Ui and for all i = 1, . . . , M , and (3) for all
h = 1, . . . , nh , are fulfilled for all t ≥ 0.

2) If coupling constraints (3) are absent, then the result-
ing MPC controller asymptotically steers the i th sys-
tem to the admissible set-point y[i]

feas.set−point, where

y[i]
feas.set−point is the solution to

y[i]
feas.set−point =argmin

y[i]∈Yi

‖y[i] − y[i]
set−point‖2

Ti
. (39)

When coupling static constraints are present, the conver-
gence to the nearest feasible solution to the prescribed set-
point may be prevented for some initial conditions. These
situations are denoted deadlock solutions in [19]. Future work
will be specifically devoted to this issue.

V. CONTROL OF UNICYCLE ROBOTS

In this section, the proposed algorithm is applied to the
problem of positioning a number of mobile robots in specified
positions, while guaranteeing collision avoidance.

The dynamics of a single robot is described by a modified
version of the first-order kinematic model [15]

ẋ = v cos φ (40a)

ẏ = v sin φ (40b)

φ̇ = ω (40c)

v̇ = a (40d)

where (x, y) is the Cartesian position of the robot, φ is
its orientation angle, and v is its linear velocity. The linear
acceleration a and the angular velocity ω are inputs.

By resorting to a feedback linearization procedure (see [15])
a linear model of the robots can be used to describe the
system’s dynamics. Namely, define η1 = x , η2 = ẋ , η3 = y,
η4 = ẏ, and the dynamics resulting from (40) is

η̇1 = η2 (41a)

η̇2 = a cos φ − vω sin φ (41b)

η̇3 = η4 (41c)

η̇4 = a sin φ + vω cos φ. (41d)

Now define two new fictitious input variables ax = a cos φ −
vω sin φ and ay = a sin φ + vω cos φ. From (41), the
model (40) is transformed in a set of two decoupled double
integrators with inputs ax and ay .

To recover the real inputs, (ω, a) from (ax, ay) compute
[
ω
a

]

= 1

v

[− sin φ cos φ
v cos φ v sin φ

] [
ax

ay

]

. (42)

Note that, for obtaining (42), it is assumed that v �= 0. This
singularity point must be accounted for when designing control
laws on the equivalent linear model [15]. In discrete time,
from (41) and with sampling time τ = 5 s, we obtain

Aii = A =

⎡

⎢
⎢
⎣

1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1

⎤

⎥
⎥
⎦ , Bii = B =

⎡

⎢
⎢
⎣

τ 2

2 0
τ 0

0 τ 2

2
0 τ

⎤

⎥
⎥
⎦ .



Fig. 3. Sketch of the experimental set-up.

The measured variables are x and y, i.e., η1 and η3 in
(41). Note that, this case study is characterized by: 1) no
dynamically coupling terms, i.e., Ei = 0 and Li j = 0 for
all i, j = 1, . . . , M and 2) static coupling constraints on the
position variables guaranteeing collision avoidance. Therefore,
set Czi = Ci and Dzi = 0.

The experimental setup consists of three e-puck mobile
robots [14]. To simplify the application of the algorithm, the
control law is designed on a portable computer communicating
with the e-puck robots through wireless connection. The
measurement system consists of a camera, installed on the top
of the 130 ×80 cm2 working area. Position and orientation of
each robot are detected using two colored circles, placed on
the top of each agent, see Fig. 3.

The fact that no coupling terms are present (i.e., Ei = 0
and Fi j = 0 for all i, j ) greatly simplifies the design phase.
More specifically, with reference to the off-line design steps
outlined in Section IV

1) Assumptions 1 and 3 correspond to solve centralized
small-scale (e.g., eigenvalue assignment) problems.

2) similarly to the previous step, �
χ
i can be computed as

the RPI set for χ [i]
t+1 −χ [i]ss

t+1 = Fii (χ
[i]
t −χ [i]ss

t )+ w̃[i]
t ,

with w̃
[i]
t = −(I6 − Fi )

−1FiGiB
(2)
q(0),ε with ε = 5 cm.

3) Since Ei = 0, w[i]
t = 0 in (18), Ei is an arbitrarily small

positively invariant set, and �z
i can be chosen arbitrarily.

4) Since, in (25b), �i (In+p − F )−1G
∏M

i=1 Y j = (I6 −
Fi )

−1GiYi , this step can be verified in a decentralized
fashion. �

Collision avoidance constraints are in principle nonconvex
and described using nonlinear inequalities. To circumvent this
problem, suitable linear constraints are defined to replace non-
convex ones and are obtained by tracing a line stemming from
the center of each robot and corresponding to a tangent line to
the circumference of the neighboring ones. For all i = 1, 2, 3,
in the cost functions V y

i and V N
i we set γ = 1, Ti = 4I2 and

Qi = I4, Ri = 0.01I2, respectively.
In the reported real experiment, the three robots are initially

placed (at time t = 1s) at positions (28, 52), (39, 16), and
(90, 39)-all coordinates are in cm. Fig. 4 shows the evolution
of their motion in reaching the goal positions-i.e., (86, 13),
(77, 55), and (20, 39)-at time t = 45 s while fulfilling collision
avoidance constraints.

Fig. 4. Plots of the robot trajectories. Robot 1: �. Robot 2: ©. Robot 3: �.
Symbols with white surface denote the position of the robots, while symbols
with black surface denote the goal positions. Large circles with gray dashed
line denote the area occupied by the robots.

Fig. 5. Schematic representation of the four-tank system.

VI. CONTROL OF DYNAMICALLY COUPLED SUBSYSTEMS

Consider now the four-tank system (see Fig. 5) described in
[9] and used as a benchmark to test several control algorithms,
both centralized and distributed, e.g., in [1], [4], [8], and [13].
The goal is to control the water levels h1 and h3 of tanks
1 and 3 using the pump command voltages v1 and v2. The
variables x [i], i = 1, ..., 4 and u[ j ], j = 1, 2 are the
variations of the levels hi and of the voltages v j with respect
to the corresponding nominal working points. The obtained
linearized and discretized system with sampling time τ = 0.5 s
has the form (5) with n = 4, p = m = 2 where

A =

⎡

⎢
⎢
⎣

0.9921 0 0 0.0206
0 0.9835 0 0
0 0.0165 0.9945 0
0 0 0 0.9793

⎤

⎥
⎥
⎦

B =

⎡

⎢
⎢
⎣

0.0417 2.47 · 10−4

0.0156 0
1.30 · 10−4 0.0311

0 0.0235

⎤

⎥
⎥
⎦

C =
[

1 0 0 0
0 0 1 0

]

.

The system is decomposed into two subsystems: the first one
is composed by tanks 1 and 2, and the second one by tanks



Fig. 6. Trajectories of the output variables y[1] (above) and y[2] (below)
(black solid lines) and reference outputs ỹ[1] (above) and ỹ[2] (below) (black
dashed lines). Gray dash-dotted lines: desired set-points y[1,2]

set−point .

3 and 4. We set x [1] = (x1, x2), u[1] = u1, y[1] = y1, x [2] =
(x3, x4), u[2] = u2, and y[2] = y2. The constraints on the
system’s variables are

x [1]
min = [−12.4 −1.4

]T
, x [1]

max = [
27.6 38.6

]T

x [2]
min = [−12.7 −1.8

]T
, x [2]

max = [
27.3 38.2

]T

u[1]
min = −3, u[1]

max = 3, u[2]
min = −3, u[2]

max = 3.

The matrices Ki and Ki fulfilling Assumptions 1 and 2 have
been computed as described in Remark 1.

The weights used are Q1 = Q2 = I2, R1 = R2 = 1,
T1 = T2 = 1, γ = 10−6, N = 3. In the simulations,
the reference trajectories y[i]

set−point, i = 1, 2 are piecewise
constant, see Fig. 6. The results achieved are shown in Fig. 6.
Notably, the set-point y[1]

set−point = 2.5 results infeasible to our

algorithm, and hence the system output y[1]
t converges to the

nearest feasible value.

VII. CONCLUSION

In this brief paper, a novel distributed scheme for tracking
reference signals is proposed. As in all existing noncooperative
schemes, a degree of conservativity is brought about when
addressing couplings among the subsystems and for obtaining
simple problems at the reference generator level. On the
other hand, the main advantages are: scalability of the online
implementation, limited transmission and computational load
(also in view of the fact that the reference generator layer
is independent from the robust MPC layer, and hence com-
putations can be performed in a parallelized fashion), and
simplicity of implementation. The algorithm has also proven
to be very flexible, i.e., in the unicycle robot application,
where it has already been successfully used for the solution
of leader-following and/or formation control problems. Further
generalizations will require the development of a distributed
real time optimization scheme for the generation of the ideal
set-point output trajectories and the definition of coupling
constraints guaranteeing convergence to the optimal feasible
solution.

APPENDIX

A. Proof of Recursive Feasibility of Problem (28)–(31)

Assume that, at step t , a solution ȳ[i]
t+N |t to (29) exists for

all i = 1, . . . , M and that kh,t+N−1 ≤ l̃h for all h = 1 . . . , nc.
First note that, since kh,t+N−1 ≤ l̃h ,

∑
j∈Sh

H [ j ]
h ỹ[ j ]

t+N−1 ≤ l̃h .

Recall that, in view of the relationship between the matrices
H [i]

h , H [i]z
h , and Ci used in (23), for all i = 1, . . . , M

H [i]
h y[i]

t+N−1 = H [i]z
h z[i]

t+N−1 ∈ H [i]z
h z̃[i]

t+N−1 ⊕ H [i]z
h Zi .

Since, in view of (4), H [i]z
h z̃[i]

t+N−1 = H [i]
h Ci x̃ [i]

t+N−1, we
obtain

H [i]
h y[i]

t+N−1 ∈ H [i]
h Ci x̃ [i]

t+N−1 ⊕ H [i]z
h Zi .

Recall that Ci x̃ [i]
t+N−1 = [Ci 0]χ [i]

t+N−1 and that, from (13),
[Ci 0]χ [i]

t+N−1 ∈ [Ci 0](χ [i]ss
t+N−1 ⊕�

χ
i ). Since [Ci 0]χ [i]ss

t+N−1 =
ỹ[i]

t+N−1, it follows that

H [i]
h y[i]

t+N−1 ∈ H [i]
h ỹ[i]

t+N−1 ⊕ H [i]
h

[
Ci 0

]
�

χ
i ⊕ H [i]z

h Zi .

From the definition of l̃h , it is easy to see that the tightened
constraint kh,t+N−1 ≤ l̃h implies (3). Furthermore, the fulfill-
ment of (28) at time t implies that

kh,t+N =
∑

i∈Sh

H [i]
h ỹ[i]

t+N

≤ −(nh −1)kh,t+N−1+nhl̃h −(nh −1)(l̃h −kh,t+N−1)

≤ l̃h (43)

which, in turn, implies that (3) will be verified also at time
t + N . Finally, we prove that a solution to (29) exists at step
t + 1 for all i = 1, . . . , M . In fact taking ȳ[i]

t+N+1 = ȳ[i]
t+N |t =

ỹ[i]
t+N one has ȳ[i]

t+N |t − ỹ[i]
t+N = 0 ∈ B

(pi )
q,ε (0) and ȳ[i]

t+N |t ∈ Yi ,
hence verifying (30) and (31), respectively. Furthermore

H [i]
h ỹ[i]

t+N+1 = H [i]
h ỹ[i]

t+N

≤ l̃h −
∑

j∈Sh\{i}
H [ j ]

h ỹ[ j ]
t+N − (nh −1)

nh
(l̃h −kh,t+N ).

In fact, kh,t+N ≤ l̃h − (nh−1)
nh

(l̃h − kh,t+N ) in view of the fact

that kh,t+N ≤ l̃h , as it is proved in (43).

B. Proof of Convergence for the Reference Management
Layer

In the absence of coupling constraints (3), since at time
t + 1, ȳ[i]

t+N+1 = ỹ[i]
t+N is a feasible solution, in view of the

optimality of the solution ȳ[i]
t+N+1|t+1

V y
i (ȳ[i]

t+N+1|t+1, t + 1) ≤ V y
i (ȳ[i]

t+N |t , t + 1)

≤ ‖ȳ[i]
t+N |t − y[i]

set−point‖2
Ti

. (44)

In view of the fact that ȳ[i]
t+N+1|t+1 = ỹ[i]

t+N+1 for all t , write

V y
i (ȳ[i]

t+N+1|t+1, t + 1) = γ ‖ỹ[i]
t+N+1 − ỹ[i]

t+N ‖2 + ‖ỹ[i]
t+N+1 −

y[i]
set−point‖2

Ti
, and rewrite (44) as ‖ỹ[i]

t+N+1 − y[i]
set−point‖2

Ti
≤

‖ỹ[i]
t+N − y[i]

set−point‖2
Ti

− γ ‖ỹ[i]
t+N+1 − ỹ[i]

t+N‖2. From this we

infer that, as t → ∞, ỹ[i]
t+N+1 − ỹ[i]

t+N → 0 and

‖ỹ[i]
t+N − y[i]

set−point‖2
Ti

→ const. (45)

Assume, by contradiction, that ‖ỹ[i]
t+N − y[i]

set−point‖2
Ti

→ c̄i ,
with c̄i > co

i , where

co
i = ‖y[i]

feas.set−point − y[i]
set−point‖2

Ti
. (46)



Note that, this implies that ỹt
[i
+
] 
N

�= y[i]
feas.set−point.

Assume that, given t̄ , for all t ≥ t̄ the optimal solution
to (29) is ȳ[i]

t+N |t = ȳ[i], where ‖ȳ[i] − y[i]
set−point‖2

Ti
= c̄i .

It results that V y
i (ȳ[i]

t+N |t , t) = c̄i . On the other hand, an

alternative solution is given by ¯̄y[i]
t+N , where ¯̄y[i]

t+N = λi ȳ[i] +
(1−λi )y[i]

feas.set−point, with λi ∈ [0, 1). This solution is feasible

provided that: 1) ¯̄y[i]
t+N − ȳ[i] ∈ B

pi
q,ε(0), which can be verified

if (1−λi ) is sufficiently small and 2) ¯̄y[i]
t+N ∈ Yi , which is also

satisfied if (1 − λi ) is sufficiently small (since Yi is convex
and ȳ[i] �= y[i]

feas.set−point).
According to this alternative solution

V y
i ( ¯̄y[i]

t+N , t) = γ ‖ ¯̄y[i]
t+N − ȳ[i]‖2 + ‖ ¯̄y[i]

t+N − y[i]
set−point‖2

Ti
.

Now, if (32) is verified, then V y
i ( ¯̄y[i]

t+N , t) < V y
i (ȳ[i], t). This

contradicts the assumption that ‖ỹ[i]
t+N − y[i]

set−point‖2
Ti

→ c̄i ,
with c̄i > co

i . Therefore, the only asymptotic solution compat-
ible with (29), is that corresponding with ỹ[i]

t+N = y[i]
feas.set−point.

It is now proved that ỹ[i]
t → y[i]

feas.set−point for t → ∞. In

view of Assumption 2, this implies that Ciχ
[i]
t = Ci x̃

[i]
t →

y[i]
feas.set−point for all i = 1, . . . , M .

C. Proof of Recursive Feasibility of the i -DPC Problem

Assume that, at step t , a solution to (33) exists for all
i = 1, . . . , M , i.e., (x̂ [i]

t |t , û[i]
[t :t+N−1]|t ). Next, we prove that,

at step t + 1, a solution to (33) exists for all i = 1, . . . , M . To
do so, we prove that the tuple (x̂ [i]

t+1|t, û[i]
[t+1:t+N]|t ) satisfies

the constraints (15), (35a)–(36) and is therefore a feasible
(possibly suboptimal) solution to (33). Here, û[i]

[t+1:t+N]|t is
obtained with

û[i]
t+N |t = ũ[i]

t+N + Ki (x̂ [i]
t+N |t − x̃ [i]

t+N ). (47)

First, note that, in view of the robust positive invariance of
sets Ei with respect to (18), i = 1, . . . , M , x [i]

t+1 − x̂ [i]
t+1|t ∈ Ei ,

and therefore (35a) is verified. Furthermore, in view of the
feasibility of (35b)–(35d) at step t , it follows that (35b)–(35d)
are satisfied at step t + 1 for k = t + 1, . . . , t + N − 1 and,
from (36) and (25a)

ẑ[i]
t+N |t − z̃[i]

t+N = (Czi + Dzi Ki )(x̂ [i]
t+N |t − x̃ [i]

t+N )

∈ (Czi + Dzi Ki )�i ⊆ �z
i .

Hence, constraint (35b) is verified for k = t + N . Furthermore
[

x̂ [i]
t+N |t

û[i]
t+N |t

]

∈
[

x̃ [i]
t+N

ũ[i]
t+N

]

⊕
[

Ini

Ki

]

�i

where from (13)
[

x̃ [i]
t+N

ũ[i]
t+N

]

∈
[

Ini 0
K x

i K e
i

] (
χ [i]ss

t+N ⊕ �
χ
i

)
. (48)

In turn, in view of (9) and similarly to (10)

χ [i]ss
t+N ∈ �i (In+p − F )−1G

M∏

i=1

Y j . (49)

This eventually implies that, in view of (25b)
[

x̂ [i]
t+N |t

û[i]
t+N |t

]

∈
[

Ini 0
K x

i K e
i

](

�i (In+p − F )−1G
M∏

i=1

Y j ⊕ �
χ
i

)

⊕
[

Ini

Ki

]

�i ⊆ X̂i × Ûi

which verifies constraints (35c) and (35d) for k = t + N . Note
that, in view of (7a), (15), and (47)

x̂ [i]
t+N+1|t − x̃ [i]

t+N+1 = Fii (x̂ [i]
t+N |t − x̃ [i]

t+N ) (50)

and therefore x̂ [i]
t+N+1|t − x̃ [i]

t+N+1 ∈ �i in view of the definition
of �i as a positively invariant set for (24), hence verifying
(36). Therefore, also the constraint (36) is verified at step t+1.

D. Proof of Convergence for the Robust MPC Layer

At time t the pair (x̂ [i]
t |t , û[i]

[t :t+N−1]|t ) is a solution to (33),

leading to the optimal cost V ∗N
i (t). Since (x̂ [i]

t+1|t , û[i]
[t+1:t+N]|t )

is a feasible solution to (33) at time t + 1, by optimality
V ∗N

i (t + 1) ≤ V N
i (x̂ [i]

t+1|t , û[i]
[t+1:t+N]|t ) and, by applying

standard arguments in MPC [17] V ∗N
i (t + 1) ≤ V ∗N

i (t) −
(‖x̂ [i]

t |t − x̃ [i]
t ‖2

Qi
+‖û[i]

t |t − ũ[i]
t ‖2

Ri
), so that, for all i = 1, . . . , M ,

x̂ [i]
t |t → x̃ [i]

t and û[i]
t |t → ũ[i]

t as t → ∞. Now, consider (5a)
and, collectively, the model (7a) and equation (17). We have
that

xt+1 = A xt + B
(
ût |t + K(xt − x̂t |t)

)

x̃t+1 = A x̃t + Bũt + BK(x̃t − x̃t)
(51)

for all t ≥ 0. Denote �xt = xt−x̃t , �x̂t = x̂t |t−x̃t , and �ût =
ût |t −ũt . From (51), �xt+1 = F�xt +B

(
�ût − K�x̂t

)
. Since

B
(
�ût − K�x̂t

) → 0 as t → ∞, in view of Assumption
1, it holds that �xt → 0 as t → ∞, which implies that
asymptotically Ci x

[i]
t → Ci x̃

[i]
t .
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