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Abstract—Multi-degree-of-freedom (DOF) multi-lateral haptic ~ closed-loop stability is critical for safe and effectiveetsp-
systems involve teleoperation of several robots in physit@nvi- eration. Investigation of teleoperation system stabilising
ronments by several human operators or collaborative inteaction  ~5mmon closed-loop stability analysis tools in the control

of several human operators in a virtual environment. Anm-DOF . - F
n-lateral haptic sysﬂem can be modeled as am-port network systems literature is not possible because the models bithe

where each port (terminal) connects to a termination definechy ~Man operator(s) and the environment(s) are usually unknown
m inputs and m outputs. The stability analysis of such systems uncertain, and/or time-varying. However, research hasvsho

is not trivial due to dynamic coupling across the different DOFs  that it is still possible to draw stability conditions for agtic
of the robots, the human operators, and the physicallvirtua teleoperation system under unknown “terminations” as lasig

Zﬂ\é'r&%m:nr:,tisrbr?rggnligkgxgvggrgg{]eam'gspgbﬁzﬁq.human operators they are passive. These stability conditions can be catzgbr

Llewellyn’s criterion only allows for absolute stability analysis as passivity and absolute stability criteria. .
of 1-DOF bilateral haptic systems (n = 1, n = 2), which can For stability analysis of 1-DOm-lateral haptic systems,
be modeled as two-port networks. The absolute stability of a passivity is used in [8], [9] forn = 2, in [10], [11] for

general m-DOF bilateral haptic system wherem > 1 cannot be ., _ 3° and in [12] for anyn > 2. Specifically, in [8]
obtained from m applications of Llewellyn’s criterion to each . ' . = = S o '
DOF of the bilateral system. Also, if we were to use Llewellys Raisbeck's method is useful as a passivity criterion for 1-

criterion for absolute stability analysis of a general 1-D@ n- DOF bilateral teleoperation systems based on the immigtanc
lateral haptic system wheren > 2, we would need to couple matrix of the teleoperator. Shahbaeti al. in [10] performed

n — 2 terminations of the n-port network to (an infinite number  stability analysis for a dual-user (trilateral) teleogia sys-

of) known impedances in order to reduce it to an equivalent tem pased on the passivity definition for a three-port networ

two-port network; this is a cumbersome process that involve an - . . L
infinite number of applications of Llewellyn's criterion. | n this N [11], Panzirscret al. proposed a time-domain passivity ob-

paper, we present a straightforward and convenient criteron for ~ Server/passivity controller approach for a dual-usetaeral)
absolute stability analysis of a class ofn-DOF n-lateral haptic teleoperation system. In [12], Mendez and Tavakoli presgtnt

systems for anym > 1 and n > 2. As case studies, a 1-DOF g criterion (necessary and sufficient) for passivity of gahe
trilateral and a 2-DOF bilateral haptic system are studied r n-port networks, which can model 1-DOF-lateral haptic
absolute stability with simulations and experiments confiming !
the theoretical stability conditions. system_s._ . ) . .
) ) ) Passivity of a multi-port network is a conservative coratiti
ab'sg?uetxenggm Multi-port network, multi-lateral haptic system,  for jts coupled stability. A less conservative conditiobsalute
' stability is discussed in [13], [14] for = 2, in [15], [16] for
n = 3, and in [17] for anyn > 2. Specifically, Llewellyn
. INTRODUCTION in [14] proposed an absolute stability criterion for tworpo
Multi-lateral haptic systems have recently found applicgl€tworks, which model 1-DOF bilateral teleoperation sysie
tions in tele-medicine [1], [2], cooperative robotics farhan- based on the immittance matrix of network (th(_a_teleope}ator
robot lunar exploration [3], and multi-robot systems [4]. In [15],.Khadem|aret al.ar)alyzed absolute sta.b|I|ty of a dual-
An m-DOF n-lateral haptic system can be modeled as affer (trilateral) teleqperatlon system by reducing Fheetlfport
n-port network where each port (terminal) connects to diftwork to an equivalent two-port network, paving the way
m-DOF termination. In the special case of = 1 and for the applications of Llewellyn’s criterion. Let al. in [16]
n = 2, this is a bilateral teleoperation system modeled &€sented an absolute stability criterion for a class tdtétal
a two-port network. Multi-port networks are widely used iflaptic systems. In [17], Ku studiegtport network stability if
other applications such as radio-frequency and microwallt¢ impedance matrix of the-port network conforms to the
circuits to analyze their absolute stability (sometimetieda tri-diagonal Jacobian form. The above research only addees
unconditional stability) [6], [7]. the absolute stability analys_ls of 1-DQF hapth teleopgsat
For a teleoperation system consisting of a teleoperatorln Past research, for stability analysis of multi-DOF tekat
comprised of master(s), slave(s) and controllers coupleert  [18] and tri-lateral haptic systems [19], the multi-DOF t&yss

minations consisting of human operator(s) and environtsgnt &r€ decoupled to 1-DOF systems. Then, various stability
criteria for 1-DOF n-lateral haptic systems are used. This
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section gives mathematical definitions and lemmas for amalysystems. For absolute stability, both terminations of the-t

of absolute stability. Section Il introduces simple mating port network need to be passive. For a coupled 2-DOF bilatera
examples to show that the absolute stability criteria f@QF teleoperation system, consider the following terminafarits
bilateral haptic systems fail to analyze the absolute Ktybi first port:

of m-DOF bilateral haptic systems. Next, in Section IV, [ =5 -5 ]
the proposed absolute stability criterion fa-DOF n-lateral Ti=| °% 1
networks is derived. Then, as a case study to show how stl st3

the resulting absolute stability criterion can be utilizéd According to Definition 2 and Property 2, we find that al-
Section V, a 1-DOF trilateral haptic system is considerkd, tthough the terminations®; and 5 along each of the first
absolute stability conditions in terms of system paransetdwo DOFs are passive, the coupled 2-DOF terminafitnis
including controller gains are found, and simulations tdfye non-passive. Therefore, viewing the termination impeedanc
the validity of the calculated absolute stability condigoare along each of the DOFs separately can result in misleading
conducted. In another case study, in Section VI, a 2-DQEsults in terms of absolute stability.

)

bilateral teleoperation system with position-positiomiol As another case, consider a coupled 2-DOF bilateral tele-
is considered, the absolute stability conditions in terrhs operator modeled as

system parameters including controller gains are found, an

experiments to verify the validity of the calculated abselu { E ] =2z { Vi } 2)
stability conditions are presented. Section VIl containg-c Fe Ve

cluding remarks.
9 Wherth = [fh{l;?fhy]Ta F. = [fewafey]Tr Vi = ['th;'Uhy]Ta
‘/e = [Ue;mvey]Ta and
Il. MATHEMATICAL PRELIMINARIES

Notation 1. « is a scalar, A is a vector,A is a matrix, and Z = %” %12 }
A is a block matrix (i.e., with matrix elements). | A2t A2

- ‘ -
Definition 1. [20] A multi-port network is passive if the total 2 -2 . L-L
energy delivered to the network at its ports is non-negative Hs - S;fi)‘ 1 ler L. f?w
Property 1. [21] A gyration operator, which transforms one | TER isEs L TeEE s 3
immittance matrix to another, preserves the passivity eryp T LU o ®)
Definition 2. [22] A n x n proper rational transfer matrix stl] _s¥8 0 [sH3 ) eft
G(s) is positive real if - 3 - 3 3 - s

i) Poles of all elements d&(s) are in Re[s] <0, L e

i) Any pure imaginary polgw of any element o€ (s) is a L .
simple pole and the residue matfiun, .., (s — jw)G(s) Assume the terminations (?f this teleoperator are always
is positive semidefinite Hermitian, passive. For using Llewellyn’s criterion once along the

iii) For all real w for which jw is not a pole of any element ofdirection and once along thedirection, we have to consider

G(s), the matrixG (jw)+G7 (—jw) is positive semidefinite. the following two subsystems of (2):

Property 2. [23] The Hermitian part of a symmetric matrix Jha — 7. Vha Iy —7 | Yhy (4)
is a real matrix. A real matrix is positive semidefinite if its ’ fey Y
principal minors are all nonnegative.

ex Vex Vey

where
Lemma 1. [22] A linear time-invariant minimal realization 7. —7 — s% _5,% (5)
model with transfer matrixG (s) is passive ifG(s) is positive v -5 T3
real.

While the subsystems involving, and Z, always satisfy

Definition 3. [24] A multi-port network is absolutely stable Llewellyn’s criterion (see Appendix for Llewellyn’s criten),
if the coupled system remains bounded-input bounded-butpa shown next, the coupled 2-DOF teleoperator (2) is not
stable under all possible passive terminations. Otherwtse absolutely stable. In general, for checking the absolateiliy
potentially unstable. of a two-port network such as a bilateral teleoperator, tre p
#2 (environment port) can be connected to passive terrimsti
\F/i/]hile the input energy at the port #1 (operator port) is

easured. The bilateral teleoperator is absolutely siébled
only if, at all timest > 0, we have [27]:

Lemma 2. [25] Let Z = ZT be the impedance matrix of a
reciprocal n-port network. Then, the network is passive if an
only if it is absolutely stable.

Lemma 3. [26] Let Z; and Z, be the impedance matrices

t
of two n-port networks. Then, i#; and Z, possess identical E,(t) = / FhT(T)Vh (7)dr > 0. (6)
principal minors of all orders, therZ, is absolutely stable if 0
and only ifZ, is absolutely stable. Similarly, the subsystems involving, is absolutely stable if
and only if, at all timest > 0, we have
I1l. M OTIVATION .
Llewellyn’s criterion has been used to analyze the absolute Est)= [ fra(T)0na(r)dT > 0. (M
0

stability of 1-DOF bilateral teleoperation systems. In the
following, using two examples, we show why it cannot bés shown in Figure 1, which plot&(¢) for the teleoperator
used for coupledn-DOF (m > 1) bilateral teleoperation (2) (solid) and each of the two subsystems (4) (dash-dot),



10 - where Z;;, i,j = 1,2,--- ,n, are m x m matrices given
o I in (12). On the other hand, the pairs of m-dimensional
5 0= 1 terminations are represented by
@ .
LICJ -10 T = dlag[Tla T2a e aTn] (14)
‘‘‘‘‘ Absolutely stable . :
Potentiall whereT;, i = 1,2,--- ,n, represents then x m impedance
y unstable . th . . . .
-20 s m i 20 matrix of the:"* m-dimensional termination.
Time (s) Theorem 1. An m-DOF n-lateral haptic system with

impedance matrixZ in (11) satisfying the symmetrization

Figure 1. Simulation results for analysis of absolute &tgbbf the 2- conditions
DOF bilateral teleoperator (3). While the subsystems ingkjays satisfy - Lo

Llewellyn's criterion as evidenced by the nonnegative gyeplot (dash- A) 2i,j %4 k%k,i = 24,17k, %0 ks wherei, j, k=1,2,--- ,m xn,
dot), the coupled 2-DOF teleoperator in (3) is actually po&dly unstable i1#£ 5 #k,andi # k.

as evidenced by the negative energy plot (solid). B) Z,, is symmetric, wheré =1,2,--- n.
R LV, is absolutely stable if and only if
T, +_F. F T, C) The elements of matrix in (12) have no poles in the
right-half plane (RHP).
Z D) Any poles of the elements of tl# matrix in (13) on the
Y Vi imaginary axis are simple, and the principal minors of the
T, K F. Toy residues matrix of the&Z’” matrix at these poles are greater
- than or equal to zero.
E) For all real values of frequencies, the principal minors

of the real part of theZ’ matrix in (13) are greater than

Figure 2. Ann-port network where each port (terminal) connects tonan or equal to zero, or equivalently
DOF termination.
Re(z;) >0, i=1,2,---nxm (15a)
simulations confirmed that each of the two 1-DOF subsystems |z1,222.1] + Re(z1,222,1)
are absolutely stable while the 2-DOF teleoperator is not Re(z1,1)Re(22,2) — D) >0 (15b)

absolutely stable (i.e., is potentially unstable). From @lhove
two examples, it is clear that for a 2-DOF haptic system, :
using Llewellyn’s criterion twice in each DOF is not useful det(Re(2')) > 0 (15c¢)
as it ignores the coupling that may exist in the terminations -
(i.e., human operators and environments) and the teletmperd]
g:t')lie”tW:nsahloggdrggﬁoﬁ'ggoﬁggie\%r}(eLﬁ?ggaéor_iﬁz(ggtemoof. Consider a linear time-invariant system with impulse

y y . E responsei(t). The system’s transfer function is the Laplace
teleoperators for the special casenof 2, the same holds for :

transform ofh(t) defined as

any n > 2. To the best of our knowledge, no work has been
done on direct absolute stability analysismfDOF (m > 2) Y st
n-lateral coupled teleoperators. Motivated by these fagés, H(s) = ) h(t)e™* dt (16)
propose a new absolute stability criterionrafDOF n-lateral

haptic systems. wheres = o + jw. H(s) is stable if every bounded input pro-

duces a bounded output and this happens if the polés(ej
i have negative real parts. This stability definition is eglént
IV. MAIN RESULT. AN ABSOLUTE STABILITY CRITERION to the absolute convergenoglefined below) ofH (s) in the
FORMULTI-DOF MULTI-LATERAL HAPTIC SYSTEMS region Re(s) > 0. If h is locally integrable, therH (s) is
An m-DOF n-lateral teleoperation system can be modeleshid to converge if the limitf(s) = lim, o for h(t)e~stdt
as ann-port network where each port (terminal) connects tgxists. Also,H (s) is said to converge absolutely if the integral
an m-DOF termination as shown in Figure 2. The networlfo00 |h(t)e—*t|dt exists. The set of values offor which H (s)
impedance model will be converges is known as the region of convergence (ROC) and is
of the formRe(s) > a, wherea is a real constant. Importantly,

F =2V (8) if H(s) converges at = sq, then it automatically converges
where for all s with Re(s) > Re(sp). The above means that for
T stability analysis it suffices to focus on the convergence of
F=[F,Fy By (9  H(s) whenRe(s) = 0, i.e., on thejw axis. This is sometimes
V=[V,Va,--,V, ]T (10) referred to as real-frequency stability. Thus, as a lingae+t
invariant system, the stability of am-DOF n-lateral haptic
andF; andV;, i =1,2,--- ,n, represent then x 1 vectors of system coupled to am-DOF termination at each of its ports
force and velocity at theé'™ port of the network, respectively. needs to only be analyzed fer= jw.
The impedance matrix of the network will be An n-port network is stable if the port currents
Zi Zio - Z4 Ii,I,---,I, are zero under all passive terminations
ZQZ 21,29, -+ , 2y fOr ports [25]. In other words, an-port network

z_ Ly Zx» (11) with an impedance matri¥,, «,, is stable if and only if the
: ; equation(Z + Zo)I = 0, wherel = [I,,I,,---,1,]” and

z;ﬂ Z;lz z;m Zy = diag[z1, 22, -+ , 2, has only the trivial solutiod = 0

nxn



Z(i—1)m+1,Gi—-1)m+1  26—1)m+1,G—1)m+2 " Z(i—1)m+1,jm
Z(i—1)m+2,j—1)m+1  2(i—1)m+2,(j—1)m+2 " Z@i—1)m+2,jm

Zij = (12)
Zim,(j—1)m~+1 Zim,(j—1)m+2 T Zim,jm mxm
21,1 Y14/%1,2%22,1 ce TYmxn—14/21,mxn?mxn,1
, Y14/%1,2%22,1 22,2 U V2mxn—34/22,mxnimxn,2
Z'= _ . : (13)
Tmxn—14/Z1,mxnmxn,1  V2mxn—34/22mxnimxn,2 " Zmxn,mxn
(mxn)(mxmn—1)

where, v; =41, i=1,2,---,

2

for every passive choice af; this happens if and only if (admittance, hybrid, and transmission) matrices. Theoreas
det(Z + Zp) # 0. On the other hand, according to [26], if twofor this is that according to Property 1, a gyration opeator
n X n matricesZ; andZ, have identical principal minors of transform one immittance matrix to another and preserves
all orders, then passivity.
Remark 2. Whenm = 1 andn = 2, Theorem 1 is the same
det(Z1 + Zo) = det(Z2 + Zo) (A7) as Llewellyn’s absolute stability criterion. Also, for thrase

for any Z, = diag[z1, 22, ,2,). This implies that the m =1 andn > 2, the matrixZ;; will reduce to a scalar, which
stability of two n-port networks with impedance matricss 1S @lways symmetric, meaning that Condition B of Theorem 1
and Z, will happen at the same time (Lemma 3). is always satisfied.

Now, if there exists a reciprocah-port network with
impedance matrixZ’ that has the same stability characteristics V. CASE STUDY 1: ABSOLUTE STABILITY OF A 1-DOF

as the original nonreciprocal-port network with impedance TRILATERAL HAPTIC SYSTEM
matrix Z, then In this section, the aim is to apply the proposed absolute
det(Z' + T) = det(Z + T) (18) stability criterion for a 1-DOF trilateral haptic systenm the

following, we begin by reviewing a dual-user teleoperation
for any passivel in (14). The above is to hold fanypassive system in position-position control structure.
7. By induction, it is easy to show that calculating the two

determinants and equating the coefficientdpf Ts, .-, T A A 1-DOF dual-user teleoperation system
gives the matrixZ’ in (13) as well as the symmetrization ) i ) )
conditions A and B. In a linear time-invariant (LTI) 1-DOF dual-user teleopera

On the other hand, according to Lemma 2, the reciprodign control system, the goal is that two users collaboedfiv
n-port network with impedance matrig’ is absolutely stable control a robot to perform a desired task on a remote environ-
if and only if it is passive. In turn, according to Lemma 1Ment. Such a system consists of two master robots for the two

2" is passive if and only if it is positive real, which can bé!Sers and one slave robot that is in contact with the environ-
verified through Definition 2. ' ment. As elaborated by [15], a Masters Correspondence with

From the above, we conclude that the original nonreciprodaivironment Transfer (MCET) dual-user teleoperationeyst
n-port network with impedance matrig is absolutely stable Créates for training purposes a correspondence between the
if and only if the equivalent reciprocah-port network’s masters positions while transferring the environment dyina
impedance matrig’ is positive real. Obviously, the Hermitian© the two users. As seen in Figure 3, this is done via a weight
part of Z is a real symmetric matrix. In this context, it isParameten € [0, 1] that specm,es the relative authority of each
straightforward to show that Conditions C and D in Theorem@Perator over the slave robot's reference position.
are the same as Conditions i) and ii) in Definition 2. Also, !N Such a system, the dynamics of the two masters and the
according to Condition iii) of Definition 2, the Hermitian pa slave in contact with the two users and the environment are

Z'(jw) + 2" (—jw) = 2Re(Z' (jw)) (19) ZmiVhi = fhi + femi (21a)

.. e . ZsVe = fe + fes (21b)
needs to be positive semidefinite for theport network with

impedance matrix to be absolutely stable. Using Property avhere z,,; (i = 1,2) and z, are the impedances of the
[28], and simplifying the conditions by two masters and the slave, respectively. Algp; denotes
the interaction force between each user and its correspgndi

|zi52j,i] + Re(zi25,4) master andf. denotes the interaction force between the slave

(Re(y/zi2.0)) = \/ 9 (20)  and the environment. Lastly;,;, andv, are the users and the
o . . environment velocities angl.,.,; and f.; are the control signals

wherei,j = 1,2,--- ,m x n, we arrive at conditions (15a)- Wi Jes 9

for the two masters and the slave, respectively.
Since in (21) the impedances relate force to velocity (and
Remark 1. Theorem 1 holds not only for the impedancé&ot position), modeling each robot by a mass-spring-damper
matrix of a general network but also for its other immittanceesults inz,; = Zmis dbmisthni gngz, = mesdbosthe  For

(15c). This concludes the proof.



Table |
Environment THE CONTROLLERS GAINS OF THE POSITIONPOSITION DUAL-USER
TELEOPERATION SYSTEM USED IN SIMULATIONS
A A Master #1 Master #2 Slave
. . A | Fpm1_ 160 Epmz 120 | Fps 150
Je o l-a Je Komi 64080 | kums 48 | ke 85
2 (fa1, var) (h2, Vi) 2
\ \
Vil - Analysis of the residues leads to
User 1 Vio User 2 ki1 = kp'rnl >0 (26)
- koo = kpma > 0 (27)
Figure 3. Masters Correspondence with Environment Tran@#CET) bk — k1zkay =0 (29)
architecture dual-user haptic teleoperation. ki1kss — kigks1 =0 (30)
kookss — kogkso = kpmikps > 0 (31)
this dual-user teleoperation system, the four-channetrabn k11kookss — k11koskss — kooki3kss — kaskioko1
laws can be written as [15]: 4 kyskor ks + krokasks, = 0 (32)
Fons = it~ Comithsd oo eoniSua(222) Condions (20 (32) e st e choose hepropodt |
fcs = —CsVe + C1Ved — CSfe + CBfed (22b) g J ) '

Theorem 1 are readily fulfilled. Witk = jw, it is possible to

. see that the conditions (15a)-(15c) become
wherec,,; andc, are local position controllersg,,; andcs

are local force controllers, and;, comi, ¢3, and cqm; are kym1 >0 (33)
feedforward and feedback compensators. Alsg, and veq kyma > 0 (34)
are reference velocities anf;; and f.4 are references forces k >_0 (35)

for the two masters and the slave selected according to ve = )
- (kvml kme - kpmlkvm2> Z 0 (36)
VUhld = Vh2, VUh2d = Uhl komikes > 0 (37)
1 kv'rrﬂkvs Z 0 (38)

Ved = aUp1 + (1 — @)vp2,  fria = = fe

2 - kvs (kvml kme - kaYle’l)77L2)2 Z 0 (39)

1
fr2a = Sfe, fea=afm+ (1 —a)fix (23) Clearly, condition (36) and (39) will be fulfiled for all
frequenciesv if we choose the derivative control gains to be

For simplicity, let us consider the position-position qoht Nonnegative and
laws as a special case of the above four-channel control. We Epmi  kpma
will have ¢; = ¢;, cam1 = —¢m1, aNd cama = —cma. Also, % =% (40)
€3, C5, Cami, @ndce,,; are zero. Also, let us model each robot vmd vm32
by a mass only. Again, since in (21) the impedances reldt®, a necessary and sufficient, frequency-independant
force to velocity, normally PDpositioncontrollers show up as compact condition for absolute stability of the above-diésd

PI velocity controllers: position-position dual-user teleoperation systems iemily
(40), where all control gains are nonnegative. Note that the
kpmi1 + kpmas Epm2 + Eoma2s ratios in (40) are merely artifacts of our presentation @& th
Cm1 =" — » Cm2= absolute stability conditions meaning that division byawzean
koo 4 koos be avoided.
cg = 22— (24)

S
B. Simulations

The position-position dual-user teleoperation system has
been simulated in MATLAB/Simulink. There is no time delay
in the communication channel between the masters and the
slave. Three 1-DOF robots as the two masters and the slave are

To get the impedance matrix of position-position contrcdldu
user teleoperation system, first substitute (23) in (22)taed
substitute the result in (21) to get

fm Cm1 + Zm1 Cam1 0 Un1 modeled by masses,,1 = 0.7, My = 0.5, andm, = 1.5,
fr2 | = Cam2 Cm2 + Zm2 0 Un2 respectively. According to (40), the stability of the pasit
e —aa —(I—a)a s+ 2 Ve position dual-user teleoperation system should dependhen t

(25)  controllers gains. In the simulations, the controllersngai
kpm1s Kvm1, kpm2, kuvme2, kps, andk,s were chosen according
Now, let us perform the stability analysis via Theorem 1p Table I. Evidently, (40) is satisfied fot,,,; = 64 and
wherem = 1 andn = 3. Evidently, for the impedance matrix violated for k,,,1 = 80. Also, a € [0, 1].
(25), the symmetrization condition A and B of Theorem 1 In simulations, to check the absolute stability of the three
holds for any o becausez;3z01230 — 212223231 IS identical port network, the master #2 and the slave ports are connected

to zero. All poles from elements of (25) are equal to zerto LTI terminations with transfer function%, which are



_ Mps?+Bns+Kny _ M.,s’4+B.s+K,
02l — — Absolutely stable o] where Zm. = %‘, andZ, = ~Fett2eitRe
Potentially unstable . ",«* are2 x 2 impedance matrices of the master and the slave,
0.1f AT . respectively. Assume
S .11-\A—bf‘lrv“"“*"’&'"
chlj 0 Mz _ Miyy  Miyz , BZ _ bzyy bzyz ,
01 Miyz  Mizz bzyz 122
_02 1 1 1 1 . .
20 40 60 80 100 e ThEE
Time (s) where i = m,s correspond to the master and the slave,

respectively. The subscripts are chosen to correspondeto th

Figure 4. Simulation results for the dual-user teleoperatsystem. Input § — 2 plane while any other plane can be chosen. Also,
energy at tt?]e master #1;5 portis Showk%- Slmulﬁlon parasces "tStetF’ o Eh = [fny» frnz]T denotes the interaction force vector between
aple | Tor the absolute stapility case wi 1= , ana tor the potentially _ T
unstable case Withy 1 — S0. " the user and the master aid = [f.,, f..]" denotes the
0.2 interaction force vector between the slave and the enviestim

: Lastly, Vi, = [vny, v;LZ]T_a_dee = [Vey, vez]T are the user and
0.15} 1 the environment velocities.
Similar to the previous case study, let us consider position

Angular position (rad)

0.1} 1  position control laws [29]:
oot /== gaai:’rs Fem = =CpVi + CmVe (422)
05 2 4 6 8 10 Fow = ~Ca¥e + Cabi (420)

Time (s) where the normally PD position controllers show up as Pl

velocity controllers:

Figure 5. Simulation results for the dual-user teleoperatsystem. The

desired and actual positions for the slave are shown. A sidakforce was kpmyytkomyys — Fpmyzthkvmyz$

applied to the master #1 while the master #2 and the slave emmeected Cn=1| & g s k g s (43a)
pmzytKomzy pmzztKomes

to passive terminations. Simulation parameters are ligte@able | for the 5 3
absolutely stable case éf,,,1 = 64. ’

C, = (43b)

passive because, for= jw, we haveRe(17) = g > 0.

Port 1 is open and a sine-wave inpfjt; is applied to the o ) ) )

master #1. The input energy, () in (6) is plotted in Figure 4 By substituting (42) in (41), the impedance matrix represen
for. kym1 = 64 f%”d kym1 = 80 while the rest of the coptrol tation of the 2-DOF teleoperator is found as

gains are listed in Table I. As it can be seen, if the controiga [ Py } _ [ c,+7, -G, ] [ v, ] )

S S
kpszytkoszys kpszztkvszzs
S S

kpsyythkvsyys — kpsyztkvsyzs ]

are selected according to (40), e.g., as listed in Table h wit r " C C.+7 v
kvm1 = 64, then the input energy at port 1 is non-negative € s s s ¢
at all times, indicating the absolute stability of the t&l&l  Now, let us investigate the absolute stability of the teleop
haptic system. However, when we charigg, to 80, which  erator via Theorem 1 for the case of = 2 andn = 2.

violates (40), the input energy,(¢) will become negative at \wjth s = jw, the symmetrization conditions of A and B boils

least for a period of time, indicating potential instalildf the  gown to the following four conditions involving the control
trilateral haptic system. For the caselof,, = 64, Figure 5 gains and the frequency:

depicts the linear combination of the two masters positions

based on authority factar (i.e., the desired position for the 1 ok n J(kpmzy = kpmyz) 0 (453)
slave) versus the slave position. The above show that tkere i vmyz - Tomzy w o
agreement between the theoretical absolute stabilityitond J(kpszy — kpsyz)
(40) and the simulations. kvsyz = bvszy + = ——— =0 (45b)
W2 (kv'myz kvsyy - k'usyz k'u’myy) + jw(kvsyz kp'rnyy
VI. CASE STUDY 2: ABSOLUTE STABILITY OF A 2-DOF + kpsyzkomyy :

- k'u’myz kpsyy - kp’myz k'usyy)
—k

In this section, the aim is to apply th d absolute o= e Komupen = 0 (450)
n this section, the aim is to apply the proposed absolute 2 B .

stability criterion to a coupled 2-DOF bilateral hapticetel W (Romzzkosys = Kuszzkomys) + jw(Ruszzkpmy-
operation system. Then, experiments will be conducted for T KpszzFomyz = Komzzkpsyz — FpmzzFosy=)

verifying the theoretical absolute stability conditions. + kpszzkpmyz — kpmzzkpsyz = 0 (45d)

BILATERAL HAPTIC SYSTEM

Conditions (45) will be fulfilled for all frequencies if the
A. A 2-DOF bilateral teleoperation system gains of the PD controllers (43) satisfy

In a 2-DOF LTI bilateral teleoperation system, the dynamics kpmyz = kpmzys  Komyz = Komezy (46a)
of the master and the slave in contact with the user and th% ok i % 46b
environment, respectively, are psyz — pszyy  wsyz T Rwszy (46b)

kvmyy kvmyz kpmyy kpmyz kvmzz kpmzz

Zth :F}L—’—ch (413) kvsyy - kvsyz - kpsyy - kpsyz - kvszz - kpszz

Z,V.=F,+ F_ (41b) (46c¢)




It is easy to see that, under (46), all the elements of the
impedance matrix (44) have only a simple pole on the imagi

nary axis, thus satisfying Condition C. Defikg, i,7 =1,2,3
as the elements of residues matkX analysis of the residues
according to Condition D leads to the following constraints

kmyy + kpmyy = 0 (473)
kEmzz + Epmzz >0 (47b)
Ksyy + kpsyy = 0 (47c)
kszz + kpszz >0 (47d)
Qm + Qpm + Winpm >0 (47¢e)
Qm (ksyy + kpsyy) + me(ks?!y + kmyy)
+ ksyyWmpm > 0 (47f)
Q’m(kszz + kpszz) + Qp’m(kszz + k'rnzz)
+ kszxWinpm > 0 (479)
Qs(Qm + Qpm + Winpm) + Qun(Qps + Waps)
1 Ko g Wy > 0 (47h)
kl)s'!/'!/
where Wipm = Kmyykpmzz + kmzzkpmyy — 2kmyzkpmyz,

Wsps = ksyykpszz + kszzkpsyy - kayzkpsyzv ms
k'rnyykszz + k'rnzzksyy - kayzksyz: A|SO, Qz = kiyykizz -
k% ., wherei = m,s,pm,ps. It is easy to see that, the

condition set (47) holds if

kiyykizz Z kfyza (48)

i = m)s)pm)ps

Table Il

THE CONTROLLERS GAINS OF THE2-DOFBILATERAL TELEOPERATION
SYSTEM USED IN EXPERIMENTS (A1) AND (A2) ABSOLUTELY STABLE,
(B) POTENTIALLY UNSTABLE.

[ Al A2 B

kpmyy 500 1000 500

vmyy 300 800 300

Master | kpm.> 500 800 500
vmzz 300 600 250

kpmyz 450 50 550

vmyz 250 25 300

kpsyy 500 1000 500

vsyy 300 800 300

Slave pszz 500 800 500
vszz 300 600 250

kpsyz 450 50 550

vsyz 250 25 300

So, asufficient, frequency-independeaind compact condi-
tion set for absolute stability of the above-described 2FDO
bilateral teleoperator is

bmyybmzz > bfnyzv bsyybszz > bzyz (563)
kiyykizz > kfyy i =m,s,pm,ps,vm,vs (56b)
kpmyz = kpmzy; kvmyz = kvmzy (56C)
kpsyz = kpszy7 k'usyz = k'uszy (56d)
kvmyy _ kvmyz _ kpmyy _ kpmyz _ komzz _ kpmzz
kvsyy kvsyz kpsyy kpsyz kyszz kpszz
(56€)

Now, let us deal with Condition E of Theorem 1. ConditioRvhere all control gains are nonnegative. Again, the ratips i

(15a) turns out to state

binyy + Komyy > 0 (49a)
bimzz + kumzz 2 0 (49b)
bsyy + kusyy > 0 (49c)
bszz + kvszz > 0 (49d)

Under (46) and (48), the second principal minor conditio
i.e., (15b), gives

Um + va + bmyykvmzz + bmzzkvmyy >0 (50)
Us + Q’US + bsyykvszz + bszzk'usyy >0 (51)
where Um = b'rnyyb'rnzz - bgnyzv US = bsyybszz - bgyz,
st = kvsyykvszz - k?)syzl andva = kvmyykvmzz - k?)'rn/yz‘

Similarly, the third principal minor condition requires

bmyy kv'rnyy Q'Um

Urn(k'usyy + bsyy) + + bsymeU'rn >0

(52)

k’USyy

bs kvs Vs
M + bmyysts Z 0 (53)

vmyy
Where Wrrw'rn = k'rnyykv'rnzz + k’rnzzkv'rnyy - 2k'r.nyzk'u’rnyz
and WS’US. :_ksyykv_szz + kszz.kZUsyy o kayzk'usyz- Flna”y, the
fourth principal minor condition, i.e., (15c), mandates

Us(kvmyy + bMyy) +

2
vmyy

k2

VSYY

All in all, one can see that conditions (49)-(54) will b
fulfilled for all frequenciesv if

kvm

Euvsyy

Us(Un + Qs (54)

bmyymeZ Z b72nyzﬂ kvmyykvmzz Z kgmyz (553)
bsybeZZ 2 b?yz? kvsyykvszz Z k?)syz (55b)

€

(56) are merely artifacts of our presentation of the absolut
stability conditions meaning that division by zero can be
avoided. An alternative to the above stability analysi®isige
the extended Z-W criterion [30]. However, in that approach,
the stability conditions often need to be evaluated nuradlyic
rather than being in closed form.

'B. Experiments

We use a 2-DOF bilateral teleoperation system comprising
two 3-joint Phantom Premium 1.5A robots (Sensable Tech-
nologies/Geomagic, Wilmington, MA) as the master and as
the slave. Out of the three joints of each robot, the second
(y) and the third £) joints, which form a vertical plane, are
considered. The first jointz), which corresponds to rotation
of the vertical plane about an axis, is locked using high-
gain control. The experimental setup is shown in Figure 6,
where a human user interacts with the master while the slave
is physically connected via a 2D passive spring array to a
stiff wall. The stiffness of the springs were chosen such tha
sufficient displacements result as the robot end-effeqiplies
forces. Given the limited maximum continuous output force
of 1.4N of the Phantom Premium the stiffness was selected
to be 45 N/m. Even though we will only implement position-
position teleoperation control, the master is equippedh \&it
JR3 6-DOF force/torque sensor (product model: 50M31, JR3,
Inc., Woodland, CA) for measuring the applied forces sueilh th
E,(t) in (6) can be guantified. With knowledge of Phantom
1.5A robot dynamics from [31], gravity compensation forleac
robot arm is performed by calculating the gravity vector at
each point within the workspace and feeding it forward. All
data logging and robot control actions occurred with a 1 kHz
sampling frequency.

According to the condition set (56), the absolute stabaity
the 2-DOF bilateral teleoperator should depend on the obntr



Figure 6. Experimental setup where the master is contraijed human user
and the slave is physically connected via a 2D passive sptiray to a stiff
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£ W\\
ie]
= LW
§ N A\’I T

10 Time (s) 20 30
50 - —
Joint 3 (% direction) |- —-—: Master
JR3 force/torque 25} »l“, o n N Slave

sensor

Position (mm)

o

|
n
;]

Time (s)
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150 Figure 8. Experimental results for the 2-DOF bilateral dpleration system.
‘‘‘‘‘ Absolutely stable (A1) The master and slave positions in terms of their second amdhifd joints
100 - —o—- . are shown when using the control gains listed in Table II(Adhich amount
- Absolu.tely stable (A2) Y o bnihind ot to absolute stability of the bilateral teleoperator.
8 . Potentially unstable (B) |, ceeee=*” 20
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Figure 7. Experimental results for the 2-DOF bilateral apleration system. 0 10 Time (s) 20 30
Input energy at the master's port is shown while the slave hgsigally
connected via a 2D passive spring array to a stiff wall. Thetrob gains 20 - —
are listed in Table II(A1) and (A2) for the absolutely stallase and in | = ~° Master Joint 3 (z direction)
Table 1I(B) for the potentially unstable case. =
£
. . . <
gains. In the experiments, the control gains were chos&n
according to either case Al, A2 or case B listed in Table £
For these cases, the input enerBy(t) in (6) is plotted in

Figure 7. As it can be seen, if the control gains are selected %, 10 _ 20 30
according to (56), i.e., as listed in Table 1I(A1) and (A2), Time (s)
then the input energy,(¢) in (6) at the master’s port are
non-negative at all times, indicating the absolute styboif sults fc _ ys
the bilateral teleoperator. However, when the control gaire The master and slave positions in terms of their second aadhiid joints
. . . are shown when using the control gains listed in Table ll(A@)ich amount

selected as Table I1(B), which violates (56), the input g§er (o absolute stability of the bilateral teleoperator.
E,(t) in (6) will become negative at least for a period of time,
indicating the potential instability of the bilateral tefgerator. pantic system by terminating some of its terminals such

Figure 8 and 9 depicts the master position versus the slaygt | lewellyn's absolute stability criterion can be used i
position for each of the two joints for the parameters listed ,mpersome. This paper presented a closed-form and easy-
Table 1I(A1) and (A2). The above show that there is agreemeglyse absolute stability criterion for multi-DOF muléiteral
between the theoretical absolute stability condition (863 hantic systems. Through two case studies, we elaborated on |
the experiments. Note that as long as the control gainssatignjication in absolute stability analysis of a 1-DOF tekal
(56), the system will be stable. However, the exact valuggg a 2-DOF bilateral haptic system. Through simulations
of such stabilizing control gains influence position ratki ang experiments, the proposed absolute stability criterio
performance shown in Figure 8 and 9. Also, the force trackiRghs yalidated. In the future, a possible investigation is th
performance is shown in Figure 10, where the master-siggyility-transparency trade-offs for haptic systems ight
forces are measured by a JR3 force sensor, while the slaye-the” proposed stability criterion. Also, investigatinget
side forces are calculated through multiplying the st&ef  ggapility of multi-dof muiti-lateral haptic systems in vehi
the springs by the slave robot's displacement. multiple master robots control a higher-DOF slave robot for
performing a dexterous task through collaboration of saver
human operators is an interesting direction for futureasse

Figure 9. Experimental results for the 2-DOF bilateral dpkeration system.

VIlI. CONCLUSIONSAND FUTURE WORKS

In the beginning of this paper, it was shown via an ex-
ample that applying Llewellyn’s absolute stability criter VIl A PPENDIX
once in each DOF of a multi-DOF bilateral haptic system Llewellyn’s criterion: If p, = Tmn + jTmn, m,n = 1,2,
cannot guarantee the absolute stability as this methodégnorepresents any of the four immittance parameteyg(h, and
the coupling between DOFs that may exist in the system) of a two-port network, for all real values of frequencies
Also, reducing a multi-lateral haptic system to a bilaterahe network is absolutely stable if and only if
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Figure 10. Experimental results for the 2-DOF bilateratdpleration system.
The master and slave forces in terms of their second and ihikjdints are
shown when using the control gains listed in Table 11(A2),iskhamount to

abs

olute stability of the bilateral teleoperator.

(6]

(7]

(8]

El

[20]

[11]

(12]

[13]
(14]

[15]

1) TheP matrix elements have no poles in the right-half plan[%]

(RHP).

2) Any poles of theP matrix elements on the imaginary axis

3)

(1]

(2]

(3]

(4]

(5]

are simple with residues that satisfy

kmm > 0; m = 172

kiikoo — kioko1 >0,  ki2 = k3, (57)
where k,,,, denotes the residue qf,,,, and &}, is the

complex conjugate ok,,,,.

The real and imaginary parts of the matrix elements
satisfy

r > 0 (583)
ro2 > 0 (58b)
R
Fiires — |p12p21] +2 e(p12p21) >0 (58¢)
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