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Abstract—Multi-degree-of-freedom (DOF) multi-lateral haptic
systems involve teleoperation of several robots in physical envi-
ronments by several human operators or collaborative interaction
of several human operators in a virtual environment. Anm-DOF
n-lateral haptic system can be modeled as ann-port network
where each port (terminal) connects to a termination definedby
m inputs and m outputs. The stability analysis of such systems
is not trivial due to dynamic coupling across the different DOFs
of the robots, the human operators, and the physical/virtual
environments, and unknown dynamics of the human operators
and the environments exacerbate the problem.

Llewellyn’s criterion only allows for absolute stability analysis
of 1-DOF bilateral haptic systems (m = 1, n = 2), which can
be modeled as two-port networks. The absolute stability of a
general m-DOF bilateral haptic system wherem > 1 cannot be
obtained from m applications of Llewellyn’s criterion to each
DOF of the bilateral system. Also, if we were to use Llewellyn’s
criterion for absolute stability analysis of a general 1-DOF n-
lateral haptic system wheren > 2, we would need to couple
n− 2 terminations of the n-port network to (an infinite number
of) known impedances in order to reduce it to an equivalent
two-port network; this is a cumbersome process that involves an
infinite number of applications of Llewellyn’s criterion. I n this
paper, we present a straightforward and convenient criterion for
absolute stability analysis of a class ofm-DOF n-lateral haptic
systems for anym ≥ 1 and n ≥ 2. As case studies, a 1-DOF
trilateral and a 2-DOF bilateral haptic system are studied for
absolute stability with simulations and experiments confirming
the theoretical stability conditions.

Index Terms—Multi-port network, multi-lateral haptic system,
absolute stability.

I. I NTRODUCTION

Multi-lateral haptic systems have recently found applica-
tions in tele-medicine [1], [2], cooperative robotics for human-
robot lunar exploration [3], and multi-robot systems [4], [5].
An m-DOF n-lateral haptic system can be modeled as an
n-port network where each port (terminal) connects to an
m-DOF termination. In the special case ofm = 1 and
n = 2, this is a bilateral teleoperation system modeled as
a two-port network. Multi-port networks are widely used in
other applications such as radio-frequency and microwave
circuits to analyze their absolute stability (sometimes called
unconditional stability) [6], [7].

For a teleoperation system consisting of a teleoperator
comprised of master(s), slave(s) and controllers coupled to ter-
minations consisting of human operator(s) and environment(s),
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closed-loop stability is critical for safe and effective teleop-
eration. Investigation of teleoperation system stabilityusing
common closed-loop stability analysis tools in the control
systems literature is not possible because the models of thehu-
man operator(s) and the environment(s) are usually unknown,
uncertain, and/or time-varying. However, research has shown
that it is still possible to draw stability conditions for a haptic
teleoperation system under unknown “terminations” as longas
they are passive. These stability conditions can be categorized
as passivity and absolute stability criteria.

For stability analysis of 1-DOFn-lateral haptic systems,
passivity is used in [8], [9] forn = 2, in [10], [11] for
n = 3, and in [12] for anyn ≥ 2. Specifically, in [8],
Raisbeck’s method is useful as a passivity criterion for 1-
DOF bilateral teleoperation systems based on the immittance
matrix of the teleoperator. Shahbaziet al. in [10] performed
stability analysis for a dual-user (trilateral) teleoperation sys-
tem based on the passivity definition for a three-port network.
In [11], Panzirschet al. proposed a time-domain passivity ob-
server/passivity controller approach for a dual-user (trilateral)
teleoperation system. In [12], Mendez and Tavakoli presented
a criterion (necessary and sufficient) for passivity of general
n-port networks, which can model 1-DOFn-lateral haptic
systems.

Passivity of a multi-port network is a conservative condition
for its coupled stability. A less conservative condition, absolute
stability is discussed in [13], [14] forn = 2, in [15], [16] for
n = 3, and in [17] for anyn ≥ 2. Specifically, Llewellyn
in [14] proposed an absolute stability criterion for two-port
networks, which model 1-DOF bilateral teleoperation systems,
based on the immittance matrix of network (the teleoperator).
In [15], Khademianet al.analyzed absolute stability of a dual-
user (trilateral) teleoperation system by reducing the three-port
network to an equivalent two-port network, paving the way
for the applications of Llewellyn’s criterion. Liet al. in [16]
presented an absolute stability criterion for a class of trilateral
haptic systems. In [17], Ku studiedn-port network stability if
the impedance matrix of then-port network conforms to the
tri-diagonal Jacobian form. The above research only addresses
the absolute stability analysis of 1-DOF haptic teleoperators.

In past research, for stability analysis of multi-DOF bilateral
[18] and tri-lateral haptic systems [19], the multi-DOF systems
are decoupled to 1-DOF systems. Then, various stability
criteria for 1-DOFn-lateral haptic systems are used. This
poses difficulties in terms of decoupling a coupled haptic
system especially because the human operator(s) and the
environment(s) terminations are also coupled themselves.In
this paper, we present a criterion to analyze the absolute
stability of multi-DOF multi-lateral haptic systems directly
and without a need for decoupling. As a case study, we
consider a 2-DOF bilateral haptic system and use the proposed
absolute stability criterion to design stabilizing controllers for
the system.

The rest of the paper is organized as follows: The next
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section gives mathematical definitions and lemmas for analysis
of absolute stability. Section III introduces simple motivating
examples to show that the absolute stability criteria for 1-DOF
bilateral haptic systems fail to analyze the absolute stability
of m-DOF bilateral haptic systems. Next, in Section IV,
the proposed absolute stability criterion form-DOF n-lateral
networks is derived. Then, as a case study to show how
the resulting absolute stability criterion can be utilized, in
Section V, a 1-DOF trilateral haptic system is considered, the
absolute stability conditions in terms of system parameters
including controller gains are found, and simulations to verify
the validity of the calculated absolute stability conditions are
conducted. In another case study, in Section VI, a 2-DOF
bilateral teleoperation system with position-position control
is considered, the absolute stability conditions in terms of
system parameters including controller gains are found, and
experiments to verify the validity of the calculated absolute
stability conditions are presented. Section VII contains con-
cluding remarks.

II. M ATHEMATICAL PRELIMINARIES

Notation 1. a is a scalar,A is a vector,A is a matrix, and
A is a block matrix (i.e., with matrix elements).

Definition 1. [20] A multi-port network is passive if the total
energy delivered to the network at its ports is non-negative.

Property 1. [21] A gyration operator, which transforms one
immittance matrix to another, preserves the passivity property.

Definition 2. [22] A n × n proper rational transfer matrix
G(s) is positive real if
i) Poles of all elements ofG(s) are in Re[s] ≤ 0,
ii) Any pure imaginary polejω of any element ofG(s) is a

simple pole and the residue matrixlims→jω(s − jω)G(s)
is positive semidefinite Hermitian,

iii) For all real ω for whichjω is not a pole of any element of
G(s), the matrixG(jω)+G

T (−jω) is positive semidefinite.

Property 2. [23] The Hermitian part of a symmetric matrix
is a real matrix. A real matrix is positive semidefinite if its
principal minors are all nonnegative.

Lemma 1. [22] A linear time-invariant minimal realization
model with transfer matrixG(s) is passive ifG(s) is positive
real.

Definition 3. [24] A multi-port network is absolutely stable
if the coupled system remains bounded-input bounded-output
stable under all possible passive terminations. Otherwise, it is
potentially unstable.

Lemma 2. [25] Let Z = Z
T be the impedance matrix of a

reciprocaln-port network. Then, the network is passive if and
only if it is absolutely stable.

Lemma 3. [26] Let Z1 and Z2 be the impedance matrices
of twon-port networks. Then, ifZ1 andZ2 possess identical
principal minors of all orders, thenZ1 is absolutely stable if
and only ifZ2 is absolutely stable.

III. M OTIVATION

Llewellyn’s criterion has been used to analyze the absolute
stability of 1-DOF bilateral teleoperation systems. In the
following, using two examples, we show why it cannot be
used for coupledm-DOF (m > 1) bilateral teleoperation

systems. For absolute stability, both terminations of the two-
port network need to be passive. For a coupled 2-DOF bilateral
teleoperation system, consider the following terminationfor its
first port:

T1 =

[ 8
s+3 − 5

s+1

− 5
s+1

1
s+3

]

(1)

According to Definition 2 and Property 2, we find that al-
though the terminations8

s+3 and 1
s+3 along each of the first

two DOFs are passive, the coupled 2-DOF terminationT1 is
non-passive. Therefore, viewing the termination impedances
along each of the DOFs separately can result in misleading
results in terms of absolute stability.

As another case, consider a coupled 2-DOF bilateral tele-
operator modeled as

[

Fh

Fe

]

= Z
[

Vh

Ve

]

(2)

whereFh = [fhx, fhy]
T , Fe = [fex, fey]

T , Vh = [vhx, vhy]
T ,

Ve = [vex, vey ]
T , and

Z =

[

Z11 Z12

Z21 Z22

]

=

9
s+3 − 5

s+5 − 1
s+1 − 1

s+2

− 5
s+5

9
s+3 − 1

s+3 − 1
s+1

− 1
s+1 − 1

s+3
1

s+3 − 9
s+1

− 1
s+2 − 1

s+1 − 9
s+1

1
s+3













































(3)

Assume the terminations of this teleoperator are always
passive. For using Llewellyn’s criterion once along thex
direction and once along they direction, we have to consider
the following two subsystems of (2):

[

fhx
fex

]

= Zx

[

vhx
vex

]

,

[

fhy
fey

]

= Zy

[

vhy
vey

]

(4)

where

Zx = Zy =

[ 9
s+3 − 1

s+1

− 1
s+1

1
s+3

]

(5)

While the subsystems involvingZx and Zy always satisfy
Llewellyn’s criterion (see Appendix for Llewellyn’s criterion),
as shown next, the coupled 2-DOF teleoperator (2) is not
absolutely stable. In general, for checking the absolute stability
of a two-port network such as a bilateral teleoperator, the port
#2 (environment port) can be connected to passive terminations
while the input energy at the port #1 (operator port) is
measured. The bilateral teleoperator is absolutely stableif and
only if, at all timest > 0, we have [27]:

Es(t) =

∫ t

0

FT
h (τ)Vh(τ) dτ ≥ 0. (6)

Similarly, the subsystems involvingZx is absolutely stable if
and only if, at all timest > 0, we have

Es(t) =

∫ t

0

fhx(τ)vhx(τ) dτ ≥ 0. (7)

As shown in Figure 1, which plotsEs(t) for the teleoperator
(2) (solid) and each of the two subsystems (4) (dash-dot),
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Figure 1. Simulation results for analysis of absolute stability of the 2-
DOF bilateral teleoperator (3). While the subsystems in (4)always satisfy
Llewellyn’s criterion as evidenced by the nonnegative energy plot (dash-
dot), the coupled 2-DOF teleoperator in (3) is actually potentially unstable
as evidenced by the negative energy plot (solid).
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Figure 2. Ann-port network where each port (terminal) connects to anm-
DOF termination.

simulations confirmed that each of the two 1-DOF subsystems
are absolutely stable while the 2-DOF teleoperator is not
absolutely stable (i.e., is potentially unstable). From the above
two examples, it is clear that for a 2-DOF haptic system,
using Llewellyn’s criterion twice in each DOF is not useful
as it ignores the coupling that may exist in the terminations
(i.e., human operators and environments) and the teleoperator.
While we showed that 1-DOFn-lateral teleoperator absolute
stability analysis methods do not work form-DOF n-lateral
teleoperators for the special case ofn = 2, the same holds for
any n > 2. To the best of our knowledge, no work has been
done on direct absolute stability analysis ofm-DOF (m ≥ 2)
n-lateral coupled teleoperators. Motivated by these facts,we
propose a new absolute stability criterion ofm-DOF n-lateral
haptic systems.

IV. M AIN RESULT: AN ABSOLUTE STABILITY CRITERION
FOR MULTI -DOF MULTI -LATERAL HAPTIC SYSTEMS

An m-DOF n-lateral teleoperation system can be modeled
as ann-port network where each port (terminal) connects to
an m-DOF termination as shown in Figure 2. The network
impedance model will be

F = ZV (8)

where

F = [ F1, F2, · · · , Fn ]
T (9)

V = [ V1, V2, · · · , Vn ]
T (10)

andFi andVi, i = 1, 2, · · · , n, represent them× 1 vectors of
force and velocity at theith port of the network, respectively.
The impedance matrix of the network will be

Z =









Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
... · · ·

...
Zn1 Zn2 · · · Znn









n×n

(11)

where Zij , i, j = 1, 2, · · · , n, are m × m matrices given
in (12). On the other hand, then pairs of m-dimensional
terminations are represented by

T = diag[T1,T2, · · · ,Tn] (14)

whereTi, i = 1, 2, · · · , n, represents them ×m impedance
matrix of theith m-dimensional termination.

Theorem 1. An m-DOF n-lateral haptic system with
impedance matrixZ in (11) satisfying the symmetrization
conditions

A) zi,jzj,kzk,i = zj,izk,jzi,k, wherei, j, k = 1, 2, · · · ,m× n,
i 6= j 6= k, and i 6= k.

B) Zℓℓ is symmetric, whereℓ = 1, 2, · · · , n.

is absolutely stable if and only if

C) The elements ofZ matrix in (12) have no poles in the
right-half plane (RHP).

D) Any poles of the elements of theZ ′ matrix in (13) on the
imaginary axis are simple, and the principal minors of the
residues matrix of theZ ′ matrix at these poles are greater
than or equal to zero.

E) For all real values of frequenciesω, the principal minors
of the real part of theZ ′ matrix in (13) are greater than
or equal to zero, or equivalently

Re(zi,i) ≥ 0, i = 1, 2, · · ·n×m (15a)

Re(z1,1)Re(z2,2)−
|z1,2z2,1|+Re(z1,2z2,1)

2
≥ 0 (15b)

...

det(Re(Z ′)) ≥ 0 (15c)

�

Proof. Consider a linear time-invariant system with impulse
responseh(t). The system’s transfer function is the Laplace
transform ofh(t) defined as

H(s) =

∫

∞

0

h(t)e−stdt (16)

wheres = σ+ jω. H(s) is stable if every bounded input pro-
duces a bounded output and this happens if the poles ofH(s)
have negative real parts. This stability definition is equivalent
to the absolute convergence(defined below) ofH(s) in the
region Re(s) ≥ 0. If h is locally integrable, thenH(s) is
said to converge if the limitH(s) = limr→∞

∫ r

0
h(t)e−stdt

exists. Also,H(s) is said to converge absolutely if the integral
∫

∞

0
|h(t)e−st|dt exists. The set of values ofs for whichH(s)

converges is known as the region of convergence (ROC) and is
of the formRe(s) ≥ a, wherea is a real constant. Importantly,
if H(s) converges ats = s0, then it automatically converges
for all s with Re(s) > Re(s0). The above means that for
stability analysis it suffices to focus on the convergence of
H(s) whenRe(s) = 0, i.e., on thejω axis. This is sometimes
referred to as real-frequency stability. Thus, as a linear time-
invariant system, the stability of anm-DOF n-lateral haptic
system coupled to anm-DOF termination at each of its ports
needs to only be analyzed fors = jω.

An n-port network is stable if the port currents
I1, I2, · · · , In are zero under all passive terminations
z1, z2, · · · , zn for ports [25]. In other words, ann-port network
with an impedance matrixZn×n is stable if and only if the
equation(Z + Z0)I = 0, where I = [I1, I2, · · · , In]T and
Z0 = diag[z1, z2, · · · , zn] has only the trivial solutionI = 0
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Zij =









z(i−1)m+1,(j−1)m+1 z(i−1)m+1,(j−1)m+2 · · · z(i−1)m+1,jm

z(i−1)m+2,(j−1)m+1 z(i−1)m+2,(j−1)m+2 · · · z(i−1)m+2,jm
...

... · · ·
...

zim,(j−1)m+1 zim,(j−1)m+2 · · · zim,jm









m×m

(12)

Z ′ =









z1,1 γ1
√
z1,2z2,1 · · · γm×n−1

√
z1,m×nzm×n,1

γ1
√
z1,2z2,1 z2,2 · · · γ2m×n−3

√
z2,m×nzm×n,2

...
... · · ·

...
γm×n−1

√
z1,m×nzm×n,1 γ2m×n−3

√
z2,m×nzm×n,2 · · · zm×n,m×n









(13)

where, γi = ±1, i = 1, 2, · · · , (m× n)(m× n− 1)

2

for every passive choice ofZ0; this happens if and only if
det(Z+Z0) 6= 0. On the other hand, according to [26], if two
n× n matricesZ1 andZ2 have identical principal minors of
all orders, then

det(Z1 + Z0) = det(Z2 + Z0) (17)

for any Z0 = diag[z1, z2, · · · , zn]. This implies that the
stability of two n-port networks with impedance matricesZ1

andZ2 will happen at the same time (Lemma 3).
Now, if there exists a reciprocaln-port network with

impedance matrixZ ′ that has the same stability characteristics
as the original nonreciprocaln-port network with impedance
matrix Z, then

det(Z ′ + T ) = det(Z + T ) (18)

for any passiveT in (14). The above is to hold foranypassive
T . By induction, it is easy to show that calculating the two
determinants and equating the coefficients ofT1,T2, · · · ,Tn

gives the matrixZ ′ in (13) as well as the symmetrization
conditions A and B.

On the other hand, according to Lemma 2, the reciprocal
n-port network with impedance matrixZ ′ is absolutely stable
if and only if it is passive. In turn, according to Lemma 1,
Z ′ is passive if and only if it is positive real, which can be
verified through Definition 2.

From the above, we conclude that the original nonreciprocal
n-port network with impedance matrixZ is absolutely stable
if and only if the equivalent reciprocaln-port network’s
impedance matrixZ ′ is positive real. Obviously, the Hermitian
part of Z’ is a real symmetric matrix. In this context, it is
straightforward to show that Conditions C and D in Theorem 1
are the same as Conditions i) and ii) in Definition 2. Also,
according to Condition iii) of Definition 2, the Hermitian part

Z ′(jω) + Z ′T (−jω) = 2Re(Z ′(jω)) (19)

needs to be positive semidefinite for then-port network with
impedance matrixZ to be absolutely stable. Using Property 2
[28], and simplifying the conditions by

(Re(
√
zi,jzj,i)) =

√

|zi,jzj,i|+Re(zi,jzj,i)

2
(20)

where i, j = 1, 2, · · · ,m × n, we arrive at conditions (15a)-
(15c). This concludes the proof.

Remark 1. Theorem 1 holds not only for the impedance
matrix of a general network but also for its other immittance

(admittance, hybrid, and transmission) matrices. The reason
for this is that according to Property 1, a gyration operators
transform one immittance matrix to another and preserves
passivity.

Remark 2. Whenm = 1 andn = 2, Theorem 1 is the same
as Llewellyn’s absolute stability criterion. Also, for thecase
m = 1 andn ≥ 2, the matrixZij will reduce to a scalar, which
is always symmetric, meaning that Condition B of Theorem 1
is always satisfied.

V. CASE STUDY 1: ABSOLUTE STABILITY OF A 1-DOF
TRILATERAL HAPTIC SYSTEM

In this section, the aim is to apply the proposed absolute
stability criterion for a 1-DOF trilateral haptic system. In the
following, we begin by reviewing a dual-user teleoperation
system in position-position control structure.

A. A 1-DOF dual-user teleoperation system

In a linear time-invariant (LTI) 1-DOF dual-user teleopera-
tion control system, the goal is that two users collaboratively
control a robot to perform a desired task on a remote environ-
ment. Such a system consists of two master robots for the two
users and one slave robot that is in contact with the environ-
ment. As elaborated by [15], a Masters Correspondence with
Environment Transfer (MCET) dual-user teleoperation system
creates for training purposes a correspondence between the
masters positions while transferring the environment dynamics
to the two users. As seen in Figure 3, this is done via a weight
parameterα ∈ [0, 1] that specifies the relative authority of each
operator over the slave robot’s reference position.

In such a system, the dynamics of the two masters and the
slave in contact with the two users and the environment are

zmivhi = fhi + fcmi (21a)
zsve = fe + fcs (21b)

where zmi (i = 1, 2) and zs are the impedances of the
two masters and the slave, respectively. Also,fhi denotes
the interaction force between each user and its corresponding
master andfe denotes the interaction force between the slave
and the environment. Lastly,vhi, andve are the users and the
environment velocities andfcmi andfcs are the control signals
for the two masters and the slave, respectively.

Since in (21) the impedances relate force to velocity (and
not position), modeling each robot by a mass-spring-damper
results inzmi =

mmis
2+bmis+kmi

s
andzs = mss

2+bss+ks

s
. For
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Figure 3. Masters Correspondence with Environment Transfer (MCET)
architecture dual-user haptic teleoperation.

this dual-user teleoperation system, the four-channel control
laws can be written as [15]:

fcmi = −cmivhi − c4mivhid + c6mifhi − c2mifhid (22a)
fcs = −csve + c1ved − c5fe + c3fed (22b)

wherecmi and cs are local position controllers,c6mi and c5
are local force controllers, andc1, c2mi, c3, and c4mi are
feedforward and feedback compensators. Also,vhid and ved
are reference velocities andfhid andfed are references forces
for the two masters and the slave selected according to

vh1d = vh2, vh2d = vh1

ved = αvh1 + (1− α)vh2, fh1d =
1

2
fe

fh2d =
1

2
fe, fed = αfh1 + (1− α)fh2 (23)

For simplicity, let us consider the position-position control
laws as a special case of the above four-channel control. We
will have c1 = cs, c4m1 = −cm1, and c4m2 = −cm2. Also,
c3, c5, c2mi, andc6mi are zero. Also, let us model each robot
by a mass only. Again, since in (21) the impedances relate
force to velocity, normally PDpositioncontrollers show up as
PI velocitycontrollers:

cm1 =
kpm1 + kvm1s

s
, cm2 =

kpm2 + kvm2s

s
,

cs =
kps + kvss

s
(24)

To get the impedance matrix of position-position control dual-
user teleoperation system, first substitute (23) in (22) andthen
substitute the result in (21) to get

[

fh1
fh2
fe

]

=

[

cm1 + zm1 c4m1 0
c4m2 cm2 + zm2 0
−αc1 −(1− α)c1 cs + zs

] [

vh1
vh2
ve

]

(25)

Now, let us perform the stability analysis via Theorem 1,
wherem = 1 andn = 3. Evidently, for the impedance matrix
(25), the symmetrization condition A and B of Theorem 1
holds for any α becausez13z21z32 − z12z23z31 is identical
to zero. All poles from elements of (25) are equal to zero.

Table I
THE CONTROLLERS GAINS OF THE POSITION-POSITION DUAL-USER

TELEOPERATION SYSTEM USED IN SIMULATIONS.

Master #1 Master #2 Slave
(A) kpm1 160 kpm2 120 kps 150

kvm1 64 or 80 kvm2 48 kvs 85

Analysis of the residues leads to

k11 = kpm1 ≥ 0 (26)
k22 = kpm2 ≥ 0 (27)
k33 = kps ≥ 0 (28)
k11k22 − k12k21 = 0 (29)
k11k33 − k13k31 = 0 (30)
k22k33 − k23k32 = kpm1kps ≥ 0 (31)
k11k22k33 − k11k23k32 − k22k13k33 − k33k12k21

+ k13k21k32 + k12k23k31 = 0 (32)

Conditions (26)-(32) are satisfied if we choose the proportional
control gains to be nonnegative, thus, Conditions C and D of
Theorem 1 are readily fulfilled. Withs = jω, it is possible to
see that the conditions (15a)-(15c) become

kvm1 ≥ 0 (33)
kvm2 ≥ 0 (34)
kvs ≥ 0 (35)

− (kvm1kpm2 − kpm1kvm2)
2 ≥ 0 (36)

kvm1kvs ≥ 0 (37)
kvm2kvs ≥ 0 (38)

− kvs(kvm1kpm2 − kpm1kvm2)
2 ≥ 0 (39)

Clearly, condition (36) and (39) will be fulfilled for all
frequenciesω if we choose the derivative control gains to be
nonnegative and

kpm1

kvm1
=

kpm2

kvm2
(40)

So, a necessary and sufficient, frequency-independent, and
compact condition for absolute stability of the above-described
position-position dual-user teleoperation systems is given by
(40), where all control gains are nonnegative. Note that the
ratios in (40) are merely artifacts of our presentation of the
absolute stability conditions meaning that division by zero can
be avoided.

B. Simulations

The position-position dual-user teleoperation system has
been simulated in MATLAB/Simulink. There is no time delay
in the communication channel between the masters and the
slave. Three 1-DOF robots as the two masters and the slave are
modeled by massesmm1 = 0.7, mm2 = 0.5, andms = 1.5,
respectively. According to (40), the stability of the position-
position dual-user teleoperation system should depend on the
controllers gains. In the simulations, the controllers gains
kpm1, kvm1, kpm2, kvm2, kps, andkvs were chosen according
to Table I. Evidently, (40) is satisfied forkvm1 = 64 and
violated forkvm1 = 80. Also, α ∈ [0, 1].

In simulations, to check the absolute stability of the three-
port network, the master #2 and the slave ports are connected
to LTI terminations with transfer functions1

s+1 , which are
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Figure 4. Simulation results for the dual-user teleoperation system. Input
energy at the master #1’s port is shown. Simulation parameters are listed in
Table I for the absolute stability case withkvm1 = 64, and for the potentially
unstable case withkvm1 = 80.
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Figure 5. Simulation results for the dual-user teleoperation system. The
desired and actual positions for the slave are shown. A sinusoidal force was
applied to the master #1 while the master #2 and the slave wereconnected
to passive terminations. Simulation parameters are listedin Table I for the
absolutely stable case ofkvm1 = 64.

passive because, fors = jω, we haveRe( 1
s+1 ) =

1
ω2+1 > 0.

Port 1 is open and a sine-wave inputfh1 is applied to the
master #1. The input energyEs(t) in (6) is plotted in Figure 4
for kvm1 = 64 and kvm1 = 80 while the rest of the control
gains are listed in Table I. As it can be seen, if the control gains
are selected according to (40), e.g., as listed in Table I with
kvm1 = 64, then the input energy at port 1 is non-negative
at all times, indicating the absolute stability of the trilateral
haptic system. However, when we changekvm1 to 80, which
violates (40), the input energyEs(t) will become negative at
least for a period of time, indicating potential instability of the
trilateral haptic system. For the case ofkvm1 = 64, Figure 5
depicts the linear combination of the two masters positions
based on authority factorα (i.e., the desired position for the
slave) versus the slave position. The above show that there is
agreement between the theoretical absolute stability condition
(40) and the simulations.

VI. CASE STUDY 2: ABSOLUTE STABILITY OF A 2-DOF
BILATERAL HAPTIC SYSTEM

In this section, the aim is to apply the proposed absolute
stability criterion to a coupled 2-DOF bilateral haptic tele-
operation system. Then, experiments will be conducted for
verifying the theoretical absolute stability conditions.

A. A 2-DOF bilateral teleoperation system

In a 2-DOF LTI bilateral teleoperation system, the dynamics
of the master and the slave in contact with the user and the
environment, respectively, are

ZmVh = Fh + Fcm (41a)
ZsVe = Fe + Fcs (41b)

where Zm = Mms2+Bms+Km

s
, and Zs = Mss

2+Bss+Ks

s
,

are 2 × 2 impedance matrices of the master and the slave,
respectively. Assume

Mi =

[

miyy miyz

miyz mizz

]

, Bi =

[

biyy biyz
biyz bizz

]

,

Ki =

[

kiyy kiyz
kiyz kizz

]

where i = m, s correspond to the master and the slave,
respectively. The subscripts are chosen to correspond to the
y − z plane while any other plane can be chosen. Also,
Fh = [fhy, fhz]

T denotes the interaction force vector between
the user and the master andFe = [fey, fez ]

T denotes the
interaction force vector between the slave and the environment.
Lastly,Vh = [vhy, vhz]

T andVe = [vey , vez ]
T are the user and

the environment velocities.
Similar to the previous case study, let us consider position-

position control laws [29]:

Fcm = −CmVh +CmVe (42a)
Fcs = −CsVe +CsVh (42b)

where the normally PD position controllers show up as PI
velocity controllers:

Cm =

[

kpmyy+kvmyys

s

kpmyz+kvmyzs

s
kpmzy+kvmzys

s

kpmzz+kvmzzs

s

]

(43a)

Cs =

[

kpsyy+kvsyys

s

kpsyz+kvsyzs

s
kpszy+kvszys

s

kpszz+kvszzs

s

]

(43b)

By substituting (42) in (41), the impedance matrix represen-
tation of the 2-DOF teleoperator is found as

[

Fh

Fe

]

=

[

Cm + Zm −Cm

−Cs Cs + Zs

] [

Vh

Ve

]

(44)

Now, let us investigate the absolute stability of the teleop-
erator via Theorem 1 for the case ofm = 2 and n = 2.
With s = jω, the symmetrization conditions of A and B boils
down to the following four conditions involving the control
gains and the frequencyω:

kvmyz − kvmzy +
j(kpmzy − kpmyz)

ω
= 0 (45a)

kvsyz − kvszy +
j(kpszy − kpsyz)

ω
= 0 (45b)

ω2(kvmyzkvsyy − kvsyzkvmyy) + jω(kvsyzkpmyy

+ kpsyzkvmyy − kvmyzkpsyy − kpmyzkvsyy)

+ kpsyzkpmyy − kpmyzkpsyy = 0 (45c)

ω2(kvmzzkvsyz − kvszzkvmyz) + jω(kvszzkpmyz

+ kpszzkvmyz − kvmzzkpsyz − kpmzzkvsyz)

+ kpszzkpmyz − kpmzzkpsyz = 0 (45d)

Conditions (45) will be fulfilled for all frequenciesω if the
gains of the PD controllers (43) satisfy

kpmyz = kpmzy, kvmyz = kvmzy (46a)
kpsyz = kpszy , kvsyz = kvszy (46b)
kvmyy

kvsyy
=

kvmyz

kvsyz
=

kpmyy

kpsyy
=

kpmyz

kpsyz
=

kvmzz

kvszz
=

kpmzz

kpszz
(46c)
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It is easy to see that, under (46), all the elements of the
impedance matrix (44) have only a simple pole on the imagi-
nary axis, thus satisfying Condition C. Definekij , i, j = 1, 2, 3
as the elements of residues matrixK, analysis of the residues
according to Condition D leads to the following constraints:

kmyy + kpmyy ≥ 0 (47a)
kmzz + kpmzz ≥ 0 (47b)
ksyy + kpsyy ≥ 0 (47c)
kszz + kpszz ≥ 0 (47d)
Qm +Qpm +Wmpm ≥ 0 (47e)
Qm(ksyy + kpsyy) +Qpm(ksyy + kmyy)

+ ksyyWmpm ≥ 0 (47f)
Qm(kszz + kpszz) +Qpm(kszz + kmzz)

+ kszzWmpm ≥ 0 (47g)
Qs(Qm +Qpm +Wmpm) +Qm(Qps +Wsps)

+
kpmyy

kpsyy
QpsWms ≥ 0 (47h)

where Wmpm = kmyykpmzz + kmzzkpmyy − 2kmyzkpmyz,
Wsps = ksyykpszz + kszzkpsyy − 2ksyzkpsyz , Wms =
kmyykszz + kmzzksyy − 2kmyzksyz . Also, Qi = kiyykizz −
k2iyz , where i = m, s, pm, ps. It is easy to see that, the
condition set (47) holds if

kiyykizz ≥ k2iyz , i = m, s, pm, ps (48)

Now, let us deal with Condition E of Theorem 1. Condition
(15a) turns out to state

bmyy + kvmyy ≥ 0 (49a)
bmzz + kvmzz ≥ 0 (49b)
bsyy + kvsyy ≥ 0 (49c)
bszz + kvszz ≥ 0 (49d)

Under (46) and (48), the second principal minor condition,
i.e., (15b), gives

Um +Qvm + bmyykvmzz + bmzzkvmyy ≥ 0 (50)
Us +Qvs + bsyykvszz + bszzkvsyy ≥ 0 (51)

where Um = bmyybmzz − b2myz, Us = bsyybszz − b2syz,
Qvs = kvsyykvszz −k2vsyz, andQvm = kvmyykvmzz−k2vmyz.
Similarly, the third principal minor condition requires

Um(kvsyy + bsyy) +
bmyykvmyyQvm

kvsyy
+ bsyyWmvm ≥ 0

(52)

Us(kvmyy + bmyy) +
bsyykvsyyQvs

kvmyy

+ bmyyWsvs ≥ 0 (53)

where Wmvm = kmyykvmzz + kmzzkvmyy − 2kmyzkvmyz

andWsvs = ksyykvszz + kszzkvsyy − 2ksyzkvsyz . Finally, the
fourth principal minor condition, i.e., (15c), mandates

Us(Um +Qs

k2vmyy

k2vsyy
) +Qvs(Um +

kvmyy

kvsyy
) ≥ 0 (54)

All in all, one can see that conditions (49)-(54) will be
fulfilled for all frequenciesω if

bmyybmzz ≥ b2myz, kvmyykvmzz ≥ k2vmyz (55a)

bsyybszz ≥ b2syz, kvsyykvszz ≥ k2vsyz (55b)

Table II
THE CONTROLLERS GAINS OF THE2-DOFBILATERAL TELEOPERATION
SYSTEM USED IN EXPERIMENTS. (A1) AND (A2) ABSOLUTELY STABLE,

(B) POTENTIALLY UNSTABLE .

A1 A2 B
kpmyy 500 1000 500
kvmyy 300 800 300

Master kpmzz 500 800 500
kvmzz 300 600 250
kpmyz 450 50 550
kvmyz 250 25 300
kpsyy 500 1000 500
kvsyy 300 800 300

Slave kpszz 500 800 500
kvszz 300 600 250
kpsyz 450 50 550
kvsyz 250 25 300

So, a sufficient, frequency-independent, and compact condi-
tion set for absolute stability of the above-described 2-DOF
bilateral teleoperator is

bmyybmzz ≥ b2myz, bsyybszz ≥ b2syz (56a)

kiyykizz ≥ k2iyz, i = m, s, pm, ps, vm, vs (56b)

kpmyz = kpmzy, kvmyz = kvmzy (56c)
kpsyz = kpszy , kvsyz = kvszy (56d)
kvmyy

kvsyy
=

kvmyz

kvsyz
=

kpmyy

kpsyy
=

kpmyz

kpsyz
=

kvmzz

kvszz
=

kpmzz

kpszz
(56e)

where all control gains are nonnegative. Again, the ratios in
(56) are merely artifacts of our presentation of the absolute
stability conditions meaning that division by zero can be
avoided. An alternative to the above stability analysis is to use
the extended Z-W criterion [30]. However, in that approach,
the stability conditions often need to be evaluated numerically
rather than being in closed form.

B. Experiments

We use a 2-DOF bilateral teleoperation system comprising
two 3-joint Phantom Premium 1.5A robots (Sensable Tech-
nologies/Geomagic, Wilmington, MA) as the master and as
the slave. Out of the three joints of each robot, the second
(y) and the third (z) joints, which form a vertical plane, are
considered. The first joint (x), which corresponds to rotation
of the vertical plane about an axis, is locked using high-
gain control. The experimental setup is shown in Figure 6,
where a human user interacts with the master while the slave
is physically connected via a 2D passive spring array to a
stiff wall. The stiffness of the springs were chosen such that
sufficient displacements result as the robot end-effector applies
forces. Given the limited maximum continuous output force
of 1.4N of the Phantom Premium the stiffness was selected
to be 45 N/m. Even though we will only implement position-
position teleoperation control, the master is equipped with a
JR3 6-DOF force/torque sensor (product model: 50M31, JR3,
Inc., Woodland, CA) for measuring the applied forces such that
Es(t) in (6) can be quantified. With knowledge of Phantom
1.5A robot dynamics from [31], gravity compensation for each
robot arm is performed by calculating the gravity vector at
each point within the workspace and feeding it forward. All
data logging and robot control actions occurred with a 1 kHz
sampling frequency.

According to the condition set (56), the absolute stabilityof
the 2-DOF bilateral teleoperator should depend on the control
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Figure 6. Experimental setup where the master is controlledby a human user
and the slave is physically connected via a 2D passive springarray to a stiff
wall.
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Figure 7. Experimental results for the 2-DOF bilateral teleoperation system.
Input energy at the master’s port is shown while the slave is physically
connected via a 2D passive spring array to a stiff wall. The control gains
are listed in Table II(A1) and (A2) for the absolutely stablecase and in
Table II(B) for the potentially unstable case.

gains. In the experiments, the control gains were chosen
according to either case A1, A2 or case B listed in Table II.
For these cases, the input energyEs(t) in (6) is plotted in
Figure 7. As it can be seen, if the control gains are selected
according to (56), i.e., as listed in Table II(A1) and (A2),
then the input energyEs(t) in (6) at the master’s port are
non-negative at all times, indicating the absolute stability of
the bilateral teleoperator. However, when the control gains are
selected as Table II(B), which violates (56), the input energy
Es(t) in (6) will become negative at least for a period of time,
indicating the potential instability of the bilateral teleoperator.

Figure 8 and 9 depicts the master position versus the slave
position for each of the two joints for the parameters listedin
Table II(A1) and (A2). The above show that there is agreement
between the theoretical absolute stability condition (56)and
the experiments. Note that as long as the control gains satisfy
(56), the system will be stable. However, the exact values
of such stabilizing control gains influence position tracking
performance shown in Figure 8 and 9. Also, the force tracking
performance is shown in Figure 10, where the master-side
forces are measured by a JR3 force sensor, while the slave-
side forces are calculated through multiplying the stiffness of
the springs by the slave robot’s displacement.

VII. C ONCLUSIONSAND FUTURE WORKS

In the beginning of this paper, it was shown via an ex-
ample that applying Llewellyn’s absolute stability criterion
once in each DOF of a multi-DOF bilateral haptic system
cannot guarantee the absolute stability as this method ignores
the coupling between DOFs that may exist in the system.
Also, reducing a multi-lateral haptic system to a bilateral
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Figure 8. Experimental results for the 2-DOF bilateral teleoperation system.
The master and slave positions in terms of their second and the third joints
are shown when using the control gains listed in Table II(A1), which amount
to absolute stability of the bilateral teleoperator.
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Figure 9. Experimental results for the 2-DOF bilateral teleoperation system.
The master and slave positions in terms of their second and the third joints
are shown when using the control gains listed in Table II(A2), which amount
to absolute stability of the bilateral teleoperator.

haptic system by terminating some of its terminals such
that Llewellyn’s absolute stability criterion can be used is
cumbersome. This paper presented a closed-form and easy-
to-use absolute stability criterion for multi-DOF multi-lateral
haptic systems. Through two case studies, we elaborated on its
application in absolute stability analysis of a 1-DOF trilateral
and a 2-DOF bilateral haptic system. Through simulations
and experiments, the proposed absolute stability criterion
was validated. In the future, a possible investigation is the
stability-transparency trade-offs for haptic systems in light
of the proposed stability criterion. Also, investigating the
stability of multi-dof multi-lateral haptic systems in which
multiple master robots control a higher-DOF slave robot for
performing a dexterous task through collaboration of several
human operators is an interesting direction for future research.

VIII. A PPENDIX

Llewellyn’s criterion: If pmn = rmn+ jxmn, m,n = 1, 2,
represents any of the four immittance parameters (z, y, h, and
g) of a two-port network, for all real values of frequenciesω,
the network is absolutely stable if and only if
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Figure 10. Experimental results for the 2-DOF bilateral teleoperation system.
The master and slave forces in terms of their second and the third joints are
shown when using the control gains listed in Table II(A2), which amount to
absolute stability of the bilateral teleoperator.

1) TheP matrix elements have no poles in the right-half plane
(RHP).

2) Any poles of theP matrix elements on the imaginary axis
are simple with residues that satisfy

kmm ≥ 0, m = 1, 2

k11k22 − k12k21 ≥ 0, k12 = k∗21 (57)

where kmn denotes the residue ofpmn and k∗mn is the
complex conjugate ofkmn.

3) The real and imaginary parts of theP matrix elements
satisfy

r11 ≥ 0 (58a)
r22 ≥ 0 (58b)

r11r22 −
|p12p21|+Re(p12p21)

2
≥ 0 (58c)

REFERENCES

[1] S. Nudehi, R. Mukherjee, and M. Ghodoussi, “A shared-control approach
to haptic interface design for minimally invasive telesurgical training,”
IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp.
588–592, July 2005.

[2] Y. Ye and P. Liu, “Improving haptic feedback fidelity in wave-variable-
based teleoperation orientated to telemedical applications,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 58, no. 8, pp. 2847
–2855, August 2009.

[3] D. J. Lee and M. W. Spong, “Semi-Autonomous Teleoperation of
Multiple Cooperative Robots for Human-Robot Lunar Exploration,”
2006 AAAI Spring Symposia, no. 1, pp. 1–8, 2006.

[4] W. T. Lo, Y. Liu, I. Elhajj, N. Xi, Y. Wang, and T. Fukuda, “Cooperative
teleoperation of a multirobot system with force reflection via internet,”
IEEE/ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 661 –670,
December 2004.

[5] I. G. Polushin, S. N. Dashkovskiy, A. Takhmar, and R. V. Patel,
“A small gain framework for networked cooperative force-reflecting
teleoperation,”Automatica, vol. 49, no. 2, pp. 338–348, 2013.

[6] G. Lombardi and B. Neri, “Criteria for the evaluation of unconditional
stability of microwave linear two-ports: a critical reviewand new proof,”
IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 6,
pp. 746 –751, Jun 1999.

[7] E. Tan, “Simplified graphical analysis of linear three-port stability,” IEE
Proceedings on Microwaves, Antennas and Propagation, vol. 152, no. 4,
pp. 209–213, August 2005.

[8] G. Raisbeck, “A definition of passive linear networks in terms of time
and energy,”Journal of Applied Physics, vol. 25, no. 12, pp. 1510–1514,
December 1954.

[9] B. Willaert, B. Corteville, D. Reynaerts, H. V. Brussel,and E. B. V.
Poorten, “A mechatronic analysis of the classical position-force con-
troller based on bounded environment passivity,”The International
Journal of Robotics Research, pp. 1 – 18, August 2010.

[10] M. Shahbazi, H. A. Talebi, and M. J. Yazdanpanah, “A control archi-
tecture for dual user teleoperation with unknown time delays: A sliding
mode approach,” in2010 IEEE/ASME International Conference on AIM,
July 2010, pp. 1221 –1226.

[11] M. Panzirsch, J. Artigas, A. Tobergte, P. Kotyczka, P. Carsten, A. Albu-
Schaeffer, and G. Hirzinger, “A peer-to-peer trilateral passivity control
for delayed collaborative teleoperation,” inInstitute of Robotics and
Mechatronics, vol. 7282, December 2012, pp. 395–406.

[12] V. Mendez and M. Tavakoli, “A passivity criterion for n-port multilateral
haptic systems,” in2010 49th IEEE Conference on Decision and Control
(CDC), December 2010, pp. 274 – 279.

[13] S. Haykin,Active Network Theory. Addison-Wesley, 1970.
[14] F. Llewellyn, “Some fundamental properties of transmission systems,”

Proceedings of the IRE, vol. 2, no. 1, pp. 271–283, 1952.
[15] B. Khademian and K. Hashtrudi-Zaad, “Shared control architectures

for haptic training: Performance and coupled stability analysis,” The
International Journal of Robotics Research, vol. 30, pp. 1627–1642,
2011.

[16] J. Li, M. Tavakoli, and Q. Huang, “Stability analysis oftrilateral haptic
collaboration,” IEEE World Haptics Conference 2013, pp. 611 –616,
April 2013.

[17] W. Ku, “Stability of linear active nonreciprocal n-ports,” J. Franklin
Inst., no. 276, pp. 207 – 224, 1963.

[18] J. Speich and M. Goldfarb, “An implementation of loop-shaping com-
pensation for multidegree-of-freedom macro-microscaledtelemanipula-
tion,” IEEE Transactions on Control Systems Technology, vol. 13, no. 3,
pp. 459 – 464, May 2005.

[19] P. Malysz and S. Sirouspour, “Trilateral teleoperation control of kinemat-
ically redundant robotic manipulators,”International Journal of Robotics
Research, vol. 30, pp. 1643–1664, November 2011.

[20] J.-H. Ryu, C. Preusche, B. Hannaford, and G. Hirzinger,“Time domain
passivity control with reference energy following,”IEEE Transactions
on Control Systems Technology, vol. 13, no. 5, pp. 737 – 742, Sept.
2005.

[21] R. J. Duffin, D. Hazony, and N. Morrison,The Gyration Operator in
Network Theory. Scientific Report No. 7, AF 19 (628) 1699, CRST I
Sills Bld 5285 Port Royal Road, Springfield, Virginia, 1965.

[22] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[23] R. A. Horn and C. R. Johanson,Matrix Analysis. Cambridge University

Press, 2012.
[24] E. Zeheb and E. Walach, “Necessary and sufficient conditions for

absolute stability of linear n-ports,”International Journal of Circuit
Theory and Applications, vol. 9, no. 3, pp. 311–330, 1981.

[25] D. Youla, “A stability characterization of the reciprocal linear passive
n-port,” Proc. IRE, vol. 47, pp. 1150–1151, 1959.

[26] D.Youla, “A note on the stability of linear, nonreciprocal n-port,” Proc.
IRE, vol. 48, pp. 121–122, 1960.

[27] H. J. Marquez,Nonlinear Control Systems Analysis and Design. Wiley,
2003.

[28] K. N. Swamy, “On sylvester’s criterion for positive-semidefinite ma-
trices,” IEEE Transactions on Automatic Control, vol. 18, no. 3, pp.
306–306, 1973.

[29] M. Tavakoli, A. Aziminejad, R. Patel, and M. Moallem, “High-fidelity
bilateral teleoperation systems and the effect of multimodal haptics,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cyber-
netics, vol. 37, no. 6, pp. 1512 –1528, December 2007.

[30] K. Razi and K. Hashtrudi-Zaad, “Extension of zeheb-walach absolute
stability criteria for robot-human interactions,”51st IEEE Conference
on Decision and Control, pp. 1186 – 1191, December 2012.

[31] M. C. avusoglu, M. C. avusoglu, D. Feygin, and F. Tendick, “A critical
study of the mechanical and electrical properties of the phantom haptic
interface and improvements for high performance control,”Presence,
vol. 11, pp. 555–568, 2002.


