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Abstract

In this paper, we present a set of techniques for finding a cost function to the time-invariant Linear 

Quadratic Regulator (LQR) problem in both continuous- and discrete-time cases. Our 

methodology is based on the solution to the inverse LQR problem, which can be stated as: does a 

given controller K describe the solution to a time-invariant LQR problem, and if so, what weights 

Q and R produce K as the optimal solution? Our motivation for investigating this problem is the 

analysis of motion goals in biological systems. We first describe an efficient Linear Matrix 

Inequality (LMI) method for determining a solution to the general case of this inverse LQR 

problem when both the weighting matrices Q and R are unknown. Our first LMI-based 

formulation provides a unique solution when it is feasible. Additionally, we propose a gradient-

based, least-squares minimization method that can be applied to approximate a solution in cases 

when the LMIs are infeasible. This new method is very useful in practice since the estimated gain 

matrix K from the noisy experimental data could be perturbed by the estimation error, which may 

result in the infeasibility of the LMIs. We also provide an LMI minimization problem to find a 

good initial point for the minimization using the proposed gradient descent algorithm. We then 

provide a set of examples to illustrate how to apply our approaches to several different types of 

problems. An important result is the application of the technique to human subject posture control 

when seated on a moving robot. Results show that we can recover a cost function which may 

provide a useful insight on the human motor control goal.
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I. Introduction

Systems science has produced a number of useful tools for the analysis of biological 

systems. The application of systems identification techniques to human motor control 

problems has allowed researchers to determine physiological parameters, control gains, and 

control bandwidth for a variety of motion tasks [1, 2, 3]. The goal of biomechanical 

researchers is often to determine differences which may exist between healthy subjects and 

those suffering from pain or disease [4]. Even though these differences may be visible in the 

standard characteristics accessible through system identification (plant parameters, feedback 

gains, etc), if one assumes that the motion under analysis results from an optimal control 

method, it may be possible to additionally determine a cost function that would generate that 

control in some optimal sense [5]. These cost functions can offer additional relevant 

information about the system- for example, how much weight does the controller put on the 

various states as compared to the control effort? Several prior studies have attempted to 

determine optimality criteria from human motion data in an effort to explain human motion 

goals [5, 6, 7, 8]. In contrast to the more general potential cost functions used in these 

studies, we propose the use of a control theoretic method using the Linear Quadratic 

Regulator (LQR) framework.

In optimal control theory, the LQR problem [9] is to find the optimal infinite-horizon full 

state-feedback control law for the continuous-time LTI system

(1)

with respect to the cost function

(2)

where Q = MT M ⪰ 0 and R = RT ≻ 0. Assume, for the moment, that S = 0. Then assuming 

that (A, B) is controllable and (A, M) is detectable, the optimal stabilizing control 

minimizing J is found as

(3)

where

(4)

with P being the unique positive-semidefinite solution to the Algebraic Riccatti Equation 

(ARE)
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(5)

The typical use of the LQR problem in (1)–(5) is the forward result, i.e., to determine the 

optimal control law K from a given set of weight matrices Q and R. However, the inverse 

LQR problem has received some attention as well. In general, the inverse problem has been 

defined by two sub-problems [10]. Given a stabilizing control law (3),

• P. 1 Determine what necessary and sufficient conditions exist on (K, A, B) such that 

K is an optimal control law for a cost of the form in (2) with Q ⪰ 0 and R = I.

• P. 2 Determine all Q for some (K, A, B) that satisfy the conditions found in P. 1.

According to Fujii and Narazaki [10], Problem 1 was first addressed with Kalman’s 

investigation of the single-input case [11], which was later extended to the multi-input case 

by Anderson [12]. A necessary and sufficient condition when K is not necessarily stabilizing 

and R unknown was determined by Jameson and Kreindler [13], who also show an analytic 

solution for recovering R ≻ 0 and Q = QT. However, a feasible Q recovered using this 

method is not guaranteed to be positive-semidefinite even when the closed-loop system is 

stable [13].

While further results have been determined for potentially destabilizing controllers [10], 

only stabilizing controllers are of interest when investigating engineered or biological 

systems. Additionally, it has been found that when the cross-term S is included in the LQR 

cost function, then trivially any controller K is optimal for some cost function [14]. 

However, we choose to exclude S from this work for a number of reasons- it is rarely used in 

the design of LQR controllers for practical systems, and inverse results that include the 

cross-term provide less salient information about the control goals than results which 

separate control and state costs in a straightforward manner (e.g., principle of parsimony). 

As a result, we will be restricting our focus in the rest of this paper to the stable LQR 

problem described in (1)–(5) (and later, its discrete-time counterpart) with S = 0. Molinari 

[15] found a necessary and sufficient condition to Problem 1 for some Q ⪰ 0, R = I when the 

admissible controls are in the class of control u(t) such that the corresponding state x(t) 

satisfies limt→∞ x(t) = 0. This result from [15] is stated as follows.

Theorem 1

Assume that (A, B) from (1) is controllable. Then K will be optimal for some Q ⪰ 0 if and 

only if

1. A − BK is Hurwitz, and

2. T★(jw)T (jw) − I ⪰ 0, where T (s) = I + K(Is − A)−1B.

For a stabilizing controller K, a necessary and sufficient condition utilizing coprime matrix 

fraction descriptions was derived in [16]. An approach utilizing convex optimization to find 

a maximally diagonal Q ⪰ 0 describing a given stabilizing control law K was proposed in 

[17]. While R = I in all of these results, if R ≻ 0 is known, then any result found for R = I 

can be determined by a simple coordinate transformation of B and K.
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However, a more general case of the inverse LQR problem is still unanswered- if it exists, 

what set (Q ⪰ 0, R ≻ 0) generates a given stabilizing feedback law K? So far as we are 

aware, there is no analytical solution to this more general problem, although for K 

stabilizing, at least one convex optimization formulation exists for determining a feasible 

solution [18]. This problem is an interesting extension to conventional system identification 

theory, and has potential uses in both the the reverse-engineering of black-box control 

systems as well as in the analysis of biological control systems. For example, it may be 

possible to determine underlying motor control goals from analysis of a human subject’s 

feedback gains, which would give clinical researchers an additional way to quantify and 

evaluate patients. The objective of this paper is to provide a methodology for determining an 

inverse LQR solution in both continuous- and discrete-time cases, and, as an example, to 

apply this method to recover a cost function from a human motor control task.

The contribution of this paper is as follows. We present an LMI-based formulation similar to 

that in [18] to determine whether or not for a given stabilizing feedback law K that has been 

estimated from a set of experimental time-series data, there exists some set (Q, R) for which 

K is the optimal feedback gain. If such a solution exists, then the LMIs are solved for (Q, R) 

directly. Our first LMI formulation provides a unique solution when it is feasible, which can 

be viewed as a regularization of the feasibility formulation given in [18]. If the exact 

solution does not exist due to the infeasibility of the LMIs, we show how to formulate a 

gradient descent algorithm based on the derivative of the ARE in order to minimize the 

difference between the resulting best-fit and experimental feedback gains. This new method 

is very useful in practice since the estimated gain matrix K from the noisy experimental data 

could be perturbed by the estimation error, which may result in the infeasibility of the LMIs. 

Since this minimization using the gradient descent algorithm guarantees only the local 

optimality of the solution, finding a good initial starting point (or initial guess) for the 

gradient descent algorithm becomes important. Hence, we also provide an LMI 

minimization problem to find a good initial point for the minimization using the gradient 

approach. We then provide examples to illustrate how to apply our approaches to several 

different types of problems. One important contribution is to apply our proposed technique 

to the biological data obtained from a seated balance test using a commercial robot with a 

human subject. This test is designed to investigate the control mechanism of the human 

subject on an actuated seat. A practical experimental result obtained in this paper shows a 

proof of concept in human cost function recovery for future clinical research activities. 

Previous work [19] has appeared without human test data and analysis. The current work 

also augments previous work with an LMI formulation that provides a good initial point for 

the gradient descent method.

The paper is organized as follows. In Section II, we formulate the LMI problem describing 

the inverse LQR solution in both continuous- and discrete-time. In Section II, we formulate 

a gradient descent algorithm which can be applied to cases where the LMI problem is 

infeasible, and show an LMI method for determining a good starting point for this 

algorithm. In Section III, we demonstrate the use of the LMI method for several feasible 

example problems. In Section IV, we demonstrate the use of the gradient descent algorithm 

to solve a problem where the LMI method is infeasible. In Section V, we apply the method 
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to experimentally determine an LQR-type cost function in a human subject. Finally, in 

Section VI, we offer some conclusions on the described inverse LQR methods.

II. Inverse LQR Problem

The inverse LQR problem has both the continuous-time formulation (1)–(5) and a 

formulation for the discrete-time LTI system

(6)

which minimizes the value of the cost function

(7)

Assuming, again, that S = 0, the optimal feedback control is

where

(8)

and P is the unique positive-semidefinite solution to the Discrete-time Algebraic Ricatti 

Equation (DARE)

(9)

We additionally define an auxiliary notation for the solution K to the discrete-time LQR 

problem as

and one for the continuous-time LQR problem as

In formal terms, for the continuous-time (respectively, discrete-time) case, our problem is to 

determine the weighting matrices
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(10)

where Ke is the full-state feedback gain matrix determined via a system identification 

method from the experimental data.

A. Solution via Linear Matrix Inequalities (LMIs)

For the formulated inverse LQR problem in Sections I and II, there is an associated 

uniqueness issue; for example, if we multiply Q̂ and R̂ in (10) by the scalar β > 0 and find 

the LQR solution, then the resulting controller gain matrix K̂ will be identical no matter 

what the value of β. Consequently, we expect there to be a manifold of possible solutions 

( , ) to the inverse problem defined in (10). Therefore, we define the additional criteria 

that an optimal solution (Q̂, R̂) must minimize the condition number of the weighting matrix 

, which can be defined explicitly as

(11)

Minimizing the condition number ensures the numerical stability for operations involving 

(Q̂, R̂) [20]. This will also lead us to obtain the unique solution to our problem (See Remark 

1). Note, however, that (11) will force Q ≻ 0, which is more restrictive than the Q ⪰ 0 

requirement in (10) and is, in general, not a necessary condition for the defined LQR 

problem. Additionally, forcing Q ≻ 0 means that (A, M) (with Q = MT M) will trivially 

satisfy the detectability requirement.

The problems defined in (10)–(11) can be written together as a convex optimization problem 

subject to LMI constraints. For the continuous-time LQR from (1)–(5), the LMI 

optimization can be written as follows.

(12)

For the discrete-time LQR defined in (6)–(9), the problem becomes
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(13)

Since one of the major applications of the inverse LQR solution presented here is to use the 

recovered cost matrices to draw some broader conclusions from a control system, it is 

important that any solution be unique. If multiple solutions to the inverse LQR problem exist 

for a given system, then multiple cost functions give equivalent descriptions of the controller 

and no useful conclusions can be found. In that regard, we make the following statement:

Remark 1—(12) and (13) are convex optimization problems with strictly convex objectives 

[21]. Therefore, if a feasible solution exists that minimizes the objective function, it will be 

unique [21, 22]. Note that strict convexity of the objective is only a sufficient condition for 

uniqueness of the solution. Our approach used in (12) and (13) can be viewed as a 

regularization of the feasibility formulation given in [18], providing a great utility to inverse 

problem applications. Note also that (12) and (13) can be formulated and solved as semi-

definite programs (SDP) by adding the LMI constraint

and then minimize γ instead of α2.

The feasible solution to the problem in (12) (respectively, in (13)), will satisfy both (10) and 

(11) simultaneously. Infeasibility implies that there is no solution to the LQR problem such 

that K̂ = Ke while satisfying all constraints.

Previous works [10, 11, 15, 16, 17] include results that a stabilizing K is optimal relative to 

some Q ⪰ 0 for R known, while the inverse problem (10) involves both Q and R unknown. 

We therefore make Remark 2.

Remark 2—If the LMI problem defined in (12) (respectively, (13)) is feasible, then at least 

one exact solution to the inverse problem of (10) exists. If the problem is infeasible, then no 

exact solution exists.

However, if no exact solution exists, then an approximation K̂ minimizing the residual error 

between K̂ and Ke can be found via a gradient descent law, which is the main idea in the 

following subsection.
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B. Solution via Gradient Descent Algorithm

In accordance with Remark 2, if the solution to the LMI problem in (12) (respectively, (13)) 

is infeasible, then we consider the following minimization problem

(14)

where ||•||F denotes the Frobenius norm, i.e.,  (for A ∈ ), and θ 

defines the upper-triangular entries of the symmetric weighting matrices Q ∈ , R ∈ 

 as

We can find a local minimum to (14) by using the analytical gradient of the cost in (14). For 

a concise presentation, we first vectorize K(θ) and Ke such that

where the vec(•) operator converts an arbitrary matrix A ∈  into a column vector such 

that

where aij is the (i, j)th element of A.

Let us define , then we have . We now 

present a gradient descent law that drives each element θi of θ such that the error norm in 

(14) is decreased as follows.

(15)

where λ is a positive constant that controls the convergence rate. Note that we need to 

compute

(16)
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To obtain the value in (16) analytically, we first introduce the notation

As it is clear that (Kυ, Q, R) are functions of θ and t, we will drop the explicit dependencies 

as in (Kυ(θ(t)), Q(θ(t)), R(θ(t))).

Consider the continuous-time case for a representative presentation. The discrete-time case 

follows similar steps. Now we have the following.

(17)

The stabilizing solution P to the ARE in (5) is analytic in A, B, M [23], and can therefore be 

differentiated implicitly with respect to θ. If we take the derivative of the ARE from (5) with 

respect to θi, we arrive at

(18)

where Ā = A − BR−1BT P and P = PT ⪰ 0 is the solution to the original ARE in (5). Equation 

(18) defines a Lyapunov equation that can be solved for P′. By determining (15) for all 

elements i of θi(t), we find a directional derivative that drives the elements in θ(t) such that 

the norm of the error in (14) is minimized. For actual computation of θ(t), we apply the 

preceding result in a discrete sense, i.e., we replace the continuous-time θi(t) in (15) with the 

discrete-time equivalent ,

(19)

which is iterated for a desired number of iterations. Additionally, a projection rule for θ is 

applied because Q must remain positive-semidefinite and R must remain positive-definite 

for the LQR solution to exist.

The success of any gradient descent algorithm depends on the quality of the initial starting 

point (or initial guess). We can exploit the fact that there always exists an exact solution to 

the inverse LQR problem when S ≠ 0 [14] to determine a “close” approximation for the case 

when S = 0. To this end, we consider the following LMI problem.
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(20)

Additional constraints on Q and R may be included in (20) to improve the quality of the 

initial point.

Solving this set of LMIs for Qs, Rs, Ss yields an initial point (Qs, Rs) which is “nearly” 

optimal in the sense that it is based on an exact solution minimizing S. Note that by 

introducing an additional LMI constraint and decision variable, it would be possible to 

reformulate (20) as a SDP which can be solved efficiently. Complete details of the algorithm 

are given in Table I.

III. Illustrative Example with Feasible Solution

Consider the continuous-time LTI system

(21)

where

(22)

In contrast to (1), we include an output equation so that measurement noise can be 

considered later.

The system in (22) is unstable, with two eigenvalues in the open right-half plane. However, 

the pair (A, B) is controllable, allowing us to design an LQR controller with weights

(23)
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The feedback gain matrix K0 resulting from the solution of the ARE in (4)–(5) with (Q, R) = 

(Q0, R0) from (23) is

Q0 and R0 in this case were chosen to minimize the condition number of the weighting 

matrix used to produce K0. The closed-loop system is then

(24)

i.e. u(t) = −K0x(t) + r(t). The system in (24) is simulated by computing the response at a 

finite number of sampling points tk. The input r(t) is then computed as a zero-order hold of a 

sampled input r(tk), which we realize as an identically distributed (i.i.d.) Gaussian white 

noise process with r(tk) ~  (0, 10I4).

Suppose that a noisy version of the sampled state response of the “true” system A − BK0 is 

available and denoted by ỹ(tk) = y(tk)+ w(tk), where w(tk) is the measurement noise that is 

realized by the i.i.d. Gaussian white noise process w(tk) ~  (0, Σ) with Σ = I4. Let y★(tk) be 

the sampled state response of the estimated system A−BK★, and T be the total number of 

samples k in the measured responses. Then, if the system matrices (A, B, C) are known, the 

feedback gain matrix can be estimated by a maximum-likelihood estimator (MLE) via 

minimizing the least-squares error.

(25)

We apply MATLAB’s numerical optimization algorithm fmin-search to the problem of (25), 

with A, B known and recover

Measurement noise and other disturbances may perturb the estimation Ke away from K0. 

However, under the conditions we have specified, we make Remark 3.
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Remark 3—In general, for a given set of system matrices (A, B, C), Ke minimizing the 

cost function in (25) is the MLE of K0 [24], and under mild conditions (e.g., identifiability 

[24]), has a limit of K0 w. p. 1, as the length of the experiment T goes to ∞ [25].

Once we have recovered Ke we can solve the convex LMI optimization problem defined in 

(12) efficiently using the SeDuMi [26] package with the YALMIP modeling toolbox [27] in 

MATLAB. The optimal estimated weights (Q̂, R̂) are found to be

Because the original weights Q0 and R0 were designed to minimize the condition number of 

the overall weighting matrix, the recovered Q̂ and R̂ match the original weights closely. In 

general, however, the condition number minimization in (12) and (13) means that the 

recovered Q̂ and R̂ may not be numerically similar to Q0 and R0, but will produce an 

equivalent controller in the forward LQR problem (assuming that Ke estimates K0 

accurately).

IV. Illustrative Example with Infeasible Solution

In the case when the LMI problem in (12) is infeasible, we apply the gradient descent 

algorithm outlined in Table I. Consider the system of (21) with

Design a controller via pole-placement such that the closed-loop poles are λ1 = −90, λ2 = 

−20, λ3 = −10. This results in the feedback gain matrix

The closed-loop system is again simulated at a number of sampling points tk with an 

additive i.i.d. measurement noise realization of w(tk) ~  (0, I) such that ỹ(tk) = y(tk) + 
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w(tk). If we again use a sampled input sequence which is a realization of the process r(tk) ~ 

 (0, 10I3), the gain matrix Ke recovered via system identification with (A, B, C) known is

However, for this system, numerical computation shows that the solution to the LMI 

problem in (12) is infeasible. Applying the gradient descent algorithm from (19) using the 

initial point derived from a solution to (20)

yields

which has a residual cost of eT e = 77.24 after 5000 iterations (Figure 1). The final optimal 

weighting matrices formed from θ̂ were

Even though we were not able to recover K̂ = K0, the gradient descent algorithm has 

produced a locally-optimal estimate minimizing the residual error eT e despite the imperfect 

initial guess θ0.

V. Experimental Human Cost Function Recovery

We have developed an experimental setup for identification of the human response during 

an upright seated balance task (Figure 2), and to which our inverse LQR solution method 

can be applied. One subject volunteered for this portion of the experiment and the testing 

was designated as Non-Regulated Research by the MSU Institutional Review Board (IRB). 

The subject was seated on a hexapod robot (R-3000 Rotopod, Mikrolar Inc., Hampton, NH), 

which was used to apply rigid position disturbances to the subject’s lower body about a 

lateral bending axis centered on the pelvis. In order to calculate kinematics, LED markers 

(Visualeyez Motion Capture System, Phoenix Technologies Inc., Burnaby Canada) were 
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attached to the subject (on the trunk and sacrum) and the robotic platform. Experimental 

kinematic data were sampled at 100 samples/sec. During the trial, the subject was given the 

goal of keeping the upper body as close to vertical as possible. We constructed a rigid-body 

model of this task (Figure 3) similar to the seated balance model developed by Reeves et al. 

[3], and having parameter values adapted from [3, 28]. In this model, control authority from 

the spine muscles is represented by the torque, τ, acting about the L4 vertebrae. The lower 

body has mass M1 at a distance l1 from the actuator pivot point, and moment of inertia J1 

about the center of mass. The pivot point at the L4 vertebrae is a distance l12 from the 

actuator pivot. The upper body has mass M2 at a distance l2 from the L4 pivot, with moment 

of inertia J2 about the center of mass. The spine has some intrinsic stiffness kh and intrinsic 

damping ch. Because the actuator provides a rigid disturbance βi, we have modeled the 

interaction of the seat and lower body through the soft gluteal tissues which have stiffness kb 

and damping cb, which would be fitted to the experimental data later.

The nonlinear equations of motion were derived using Lagrange’s equation using a state-

space representation , and linearized about the operating point 

 to form the plant model G. We assume that the sampled system outputs 

are a noisy direct measure of the states, i.e. ỹ(tk) = Cy(tk) + w(tk), with C = I4 and w(tk) a 

realization of the i.i.d. process w(tk) ~  (0, Σ) with Σ = σ2I4. We presumed the existence of 

a full-state feedback controller  which would produce the 

voluntary input torque τ via τ = −Ky.

We fit the 6 unknown model parameters ζ := [K1, … , K4, kb, cb]T by using MATLAB’s 

fminsearchbnd function to perform the minimization

where W = diag(1, 0, 1, 0), k is the sample index, T is the number of samples in the 

experiment, y★(tk) is the sampled state response of the estimated system using ζ★, and ỹ(tk) 

is the sampled response of the experimentally measurable system states. The resulting best-

fit and experimental responses for β1 and β2 are shown in Figure 4. The estimated 

parameters ζe are shown in Table II. The estimated feedback controller Ke was formed as Ke 

= [K1,e, … , K4,e].

The values kb,e and cb,e were incorporated into the A matrix of the plant G to form Ae, and 

the the columns of B associated with βi and βi were removed to form Be. The inverse LQR 

procedure of (12) was then applied to determine Q̂ and R̂ such that Ke = CLQR(Ae, Be, Q̂, 

R̂). In this case, a feasible solution to the LMI problem could not be found. The gradient 

descent method of Algorithm I was applied, recovering
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with residual .

This (Q̂, R̂) meets all the conditions defined in (12). Notice that the diagonal element 

associated with the upper body angle (Q̂
33) provides the largest single contribution to the 

cost. Further, the relative weights of Q̂ and R̂ suggest that the system states are penalized 

much more heavily than the control effort in the cost function. However, it is not 

immediately clear from Q̂ whether linear combinations of the states may offer a more salient 

picture of how the cost is distributed. Therefore, we apply a similarity transform to x and Q̂ 

such that Q̃ is diagonal and operates on x̃, which is a vector of linear combinations of the 

elements in x. If we let V be an orthogonal matrix whose columns are the eigenvectors of Q̂, 

and Λ the square diagonal matrix whose diagonal elements are the corresponding 

eigenvalues of Q̂, then Q̃ = Λ, and x̃ = VTx. This similarity transformation will satisfy the 

equality xT Q̂x = x̃T Q̃x̃. For the experimental Q̂ found above,

Note that the last column in V, which is the eigenvector of Q̂ that corresponds to the largest 

eigenvalue in Q̃, will produce a coordinate in x̃ that is a linear combination of the body 

angles and rates (i.e. x̃4 = −0.04044β1 + 0.03988β̇
1 + 0.9984β2 − 0.005035β̇

2), with a highest 

weight on the upper body angle β2. If we consider only the largest eigenvalue, x̃4 is 

reasonably consistent with the motion goal given to the subject (minimize |β2|). However, a 

quantitative clinical study would have to be performed to draw any scientific conclusions.

VI. Conclusions

In this paper, we described a comprehensive methodology for determining a cost function to 

the time-invariant LQR problem in both continuous- and discrete-time cases. Our results 

have potential application not only to the determination of human control cost, but also to 

the reverse-engineering of black-box controllers, and offer a new dimension of information 

(control design cost function) beyond that available using traditional system identification 

techniques. A set of several numerical problems and an experimental result with a human 

subject on a seated balance testing apparatus successfully demonstrate that our proposed 

method is able to determine a salient measure of control performance weights from 

experimental data. We plan to use this methodology in the future to more comprehensively 
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evaluate human postural control and determine if consistent features or control goals can be 

extracted from the resulting cost functions.
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Fig. 1. 
CONVERGENCE OF THE ERROR NORM DURING THE GRADIENT DESCENT 

PROCESS.
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Fig. 2. 
EXAMPLE SETUP FOR SEATED BALANCE TESTING USING THE MIKROLAR 

R-3000 ROTOPOD.
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Fig. 3. 
SEATED-BALANCE MODEL OF THE HUMAN SUBJECT. THE VALUES OF THE 

GIVEN PARAMETERS ARE ADAPTED FROM [28, 3].
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Fig. 4. 
Plot of the experimental and best-fit angular responses. The upper figure shows the upper 

body angle vs. time, while the lower figure is the lower body angle vs. time.
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TABLE I

ALGORITHM FOR THE UPDATE OF θ.

Input: 1 The known system matrices A ∈  and B ∈ .

2 The estimated feedback gain vector .

Output: 1 The optimal output parameter vector θ̂.

1: solve the set of LMIs in (20) for Qs and Rs.

2: let Q1 = Qs and R1 = Rs

3: form θ1 from Q1 and R1

4: for k = 1, ···, kend do

5:  compute Kv = vec (LQR(A, B, Qk, Rk))

6:

 compute P solving 

7:
 for  do

8:

  compute n

9:

  compute P′ solving 

10:

  compute 

11:
  compute 

12:

  compute 

13:

  let the element 

14:  end for

15:  form Qk+1 and Rk+1 from θk+1

16:  if Qk+1 ≺ 0 then

17:   let Qk+1 = Qk

18:

  let 

19:  end if

20:  if Rk+1 ⪯ 0 then

21:   let Rk+1 = Rk

22:

  let 

23:  end if
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24: end for

25: let K̂ = LQR( A, B, Qkend+1, Rkend+1)
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TABLE II

OPTIMAL ESTIMATED PARAMETERS ζe OF THE HUMAN SUBJECT.

Parameter Value

K1,e −1.8 × 105

K2,e −5.573 × 103

K3,e 2.295 × 105

K4,e 7.37 × 104

kb,e 2.958 × 104 Nm/rad

cb,e 8.09 × 103 Nms/rad
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