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A Potential Game Approach for Information-Maximizing
Cooperative Planning of Sensor Networks

Han-Lim Choi* and Su-Jin Lee

Abstract—This paper presents a potential game approach for
distributed cooperative selection of informative sensors, when
the goal is to maximize the mutual information between the
measurement variables and the quantities of interest. It is
proved that a local utility function defined by the conditional
mutual information of an agent conditioned on the other agents’
sensing decisions leads to a potential game with the global
potential being the original mutual information of the cooperative
planning problem. The joint strategy fictitious play method
is then applied to obtain a distributed solution that provably
converges to a pure strategy Nash equilibrium. Two numerical
examples on simplified weather forecasting and range-only target
tracking verify convergence and performance characteristics of
the proposed game-theoretic approach.

I. INTRODUCTION

Mutual information has recently been adopted as a metric of
information gain in many contexts (e.g., cooperative sensing
for tracking targets [1,2], weather forecast improvement with
mobile sensor networks [3]–[5], temperature field described
by Gaussian processes [6], management of deployed sensor
networks [7,8], adaptive data reduction for simultaneous lo-
calization and mapping of mobile robots [9]). This popularity
results in part from that mutual information is a more natural
quantity of information (than entropy) that can be applied
to general random entities (i.e., random variables, random
processes, random functions, random systems), and in part
from that often times sufficient statistics (rather than the
actual data) can be used to compute the mutual information.
In addition, recent progress on efficient Bayesian inference
methods has contributed to effective quantification of mutual
information in various contexts.

However, compared to the variety and maturity of the con-
cept of maximizing mutual information for decision making
of a network of sensing agents, distributed implementation of
such process has not been fully studied and investigated. This
may be rather surprising in that the earliest work such as [1]
already addressed distributed/decentralized decision making
of this cooperative sensing problem by presenting a local
greedy framework in which each agent maximizes the mutual
information for its own measurement choice. [2] extended this
local greedy framework and analyzed the optimality gap for
such localized decision making to prove that the optimality is
monotonically improved as more agents make decisions in a
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coordinated manner (in their problem setting where submod-
ularity holds). The present author compared the local greedy
and a sequential greedy architecture in the context of weather
sensor targeting, and pointed out that inter-team information
sharing is crucial for performance improvement [4].

This set of previous research provided useful insights and
also implementable algorithms; however, the fundamental
question of decentralizing the planning process for cooperative
sensor networks has not been fully resolved. Compared to
the maturity of decentralized/distributed task allocation (e.g.,
[10]–[13]), relatively few arguments can be made for sensor
network planning. One primary reason for this limit is the
underlying correlation structure of the information space in
which the cooperative decision is made. For task allocation,
for example, one agent’s decentralized decision may change
the feasibility/fitness of the other agents for that particular
task of interest, but there is typically no change in the score
structure for other tasks. However, in the cooperative sensing,
one agent’s decision makes an impact on all other agents’
reward structures - for example, if agent 1 selects some task
A, then task B that was best for agent 2 is no longer best
and task C all of a sudden becomes the best. It is hard to
embed this kind of correlation structure in the decentralized
decision making. Given this fundamental challenge, this paper
tries to take a little bit different approach for distributed
decision making for cooperative planning of sensor networks.
The authors should point out that the proposed structure is not
fully decentralized in the sense that it assumes all the agents
know the prior correlation structure correctly and are abe to
access to other agents’ decisions - thus, it is more of distributed
decision making rather than decentralized decision making.

This work presents a game-theoretic approach to address
distributed decision making for informative sensor planning.
The mutual information is adopted as reward metric to rep-
resent the informativeness of sensors. For the global opti-
mization problem of maximizing mutual information between
the measurement selection and the quantities of interest, a
potential game formulation that defines the local utility func-
tions aligned with the global objective function is proposed.
The conditional mutual information of the measurement se-
lection conditioned on the other agents’ action enables the
potential game formulation, which allows for taking advantage
of learning algorithm in the optimization process. The joint
strategy fictitious play is particularly considered as an efficient
framework to solve the potential game problem. Numerical
case studies on idealized weather forecasting and range-
only cooperative target tracking using UAVs are presented to
demonstrate the feasibility and applicability of the proposed
framework. Preliminary work was presented in [14], while the
present article includes an additional case study that addresses
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non-Gaussianity in the problem formulation, as well as a
refined description of the algorithm.

II. PRELIMINARIES

A. Mutual Information

Mutual information represents the amount of information
contained in one random entity (X) about the other random
entity (V ). If the two entities of interest are random vectors,
the mutual information can be represented as the difference
between the prior and the posterior entropy of V conditioned
on X:

I(V ;X) = H(V )−H(V |X)

where H(V ) = −E[log(fV (v))] represents the entropy of
V . The mutual information is known to be commutative (or
measure-independent [15]):

I(V ;X) = I(X;V ) = H(X)−H(X|V ).

When X consists of multiple other random entities, i.e.,
X = {X1, X2, . . . , Xk, . . . , Xn}, each of Xk being a random
variable and/or a random vector with smaller cardinality, by
the chain rule the mutual information can be expressed as:

I(V ;X) = I(V ;Xk1) + I(V ;Xk2 |Xk1)

+ · · ·+ I(V ;Xkn |Xk1 , . . . , Xkn−1
)

= I(V ;Xk1) +
∑n
i=2I(V ;Xki |Xk1:i−1

) (1)

for arbitrary index permutation {k1, . . . , kn} obtained from
{1, . . . , n} where Xk1:i−1 = {Xk1 , . . . , Xki−1}.

B. Potential Games

Consider a finite game of n players defined by each player’s
an action set Ai and a utility function Ui : A → R with
A = ×ni=1Ai. The notation a−i is often used to denote
the profile of player actions other than player i, i.e., a−i =
{a1, . . . , ai−1, ai+1, . . . , an}.

Definition 1 (Potential Games [16]) A finite n-player game
with action sets {Ai}ni=1 and utility functions {Ui}ni=1 is a
potential game if, for some scalar potential function φ : A →
R

Ui(a
′
i, a−i)− Ui(a′′i , a−i) = φ(a′i, a−i)− φ(a′′i , a−i)

for every a−i ∈ ×j 6=iAj and for every a′i, a
′′
i ∈ Ai.

Definition 2 (Pure Strategy Nash Equilibrium [17]) An
action profile a? ∈ A called a pure strategy Nash equilibrium,
if

Ui(a
?
i , a

?
−i) = max

ai∈Ai

Ui(ai, a
?
−i), ∀i ∈ {1, . . . , n}.

1) Joint Strategy Fictitious Play [16]: As a mechanics to
solve a repeated game, this work adopts joint strategy fictitious
play (JSFP) developed by [16]. This section briefs on the
basic concept of the JSFP; thus, notations and descriptions
are similar to what was written in the original article. JSFP is
a sequential decision making process in a repeated game, i.e.,
the same set of games being played over and over again, but
with updated set of information at every stage. In JSFP, each
player keeps track of the empirical frequencies of the joint
actions of all other. In contrast to the traditional fictitious
play [17], the action of player i at stage t is based on
the presumption that other players play randomly but jointly
according to the joint empirical frequencies. Let f−i(a′−i; t)
be the frequency with which all players but i have selected
some joint action profile a′−i up to stage t− 1:

f−i(a
′
−i; t) =

1

t

t−1∑
τ=0

I(a−i(τ) = a′−i),

where I(·) is the indicator function that is unity if the argument
is true. In JSFP, player i’s action at stage t is based on the
expected utility for action ai ∈ Ai, with the joint action model
of opponents given by

Ui(ai; f−i(t)) = Ef−i(t) [Ui(ai, a−i)]

where the expectation is calculated by the empirical frequency
distribution f−i(t) that defines f−i(a−i; t) for all a−i. It was
pointed out in [16] that the predicted utilities Ui(ai; f−i(t))
for each ai ∈ Ai can be expresses as

Ui(ai, f−i(t)) =
1

t

t−1∑
τ=0

Ui(ai, a−i(τ))

which is the average utility player i would have obtained if
he/she had chosen ai rather than what he/she actually chose
at every stage up to time t−1 while other players playing the
same. This leads to a recursion [16]:

Ui(ai; t+ 1) =
t

t+ 1
Ui(ai; t) +

1

t+ 1
Ui(ai, a−i(t)),

which provides significant computational advantage of JSFP
compared to the traditional fictitious play based on empirical
frequencies of marginal actions. Although convergence of
JSFP to a pure Nash equilibrium is not guaranteed even for a
potential game, a slight modification of JSFP to include some
notion of inertia was proven to converge to a pure strategy
Nash equilibrium [16, Theorem 2.1].

III. COOPERATIVE SENSOR NETWORK PLANNING FOR
MAXIMUM INFORMATION

Consider a network of N sensing agents1 deployed in a
relatively large domain. Each sensing agent is designated to a
certain sensing region within which the agent can select points

1An agent can be a rather abstract concept depending on the context. Each
agent can be a mobile sensor that can move within the specified sensing
regions, or a network of sensors among which some sensors will be turned
on/off, or possibly a computational unit based on decomposition of the
optimization problem.



3

V : 
Verification 
Variables 

Si : i-th search 
space 

si : i-th sensing 
choice 

Sensor 1 Sensor j 

Sensor i Sensor N 

Fig. 1: Concept of Cooperative Planning of Sensor Networks

of sensing; agent i’s sensing region is denoted as Si and is
assumed to be finite-dimensional.

Sensing agent i determines a set of sensing points si =
{si1 , si2 , . . . , sini

} ⊂ Si with ni = |si|. If an agent takes
measurement with some sensing option s, the measurement
model is given by

Zs = hs(X) +Ws

where Ws is some additive sensing noise, and hs(·) is the
observation function that typically is a function of the sensing
location s. For example, if the agent measures some physical
quantity (e.g., temperature, pressure) at the measurement loca-
tion, hs(X) = Xs with Xs being the physical entity of interest
at s; if the agent observes bearing or range to the object of
interest from the sensing location s, hs can be expressed as a
function of relative geometry of s and the object location.

The goal of cooperative sensor network planning is to
reduce uncertainty in some random quantity of interest, called
verification variables and denoted as V . In this work, the mu-
tual information is used to quantify the uncertainty reduction
of V by measurement selection by the sensing agents. The
mathematical formulation of the cooperative sensing is given
by the optimization:

s?1:N = arg max
s1:N

I(V ;Zs1:N ) (P)

where Zs1:N , {Zs1 , Zs2 , . . . , ZsN }, which maximizes mu-
tual information between the verification variables and the
measurement chosen by the sensing agents. The verification
variables V is some subset of the state variables X but is not
necessarily a part of the states associated with some sensing
region. It can be state variables associated with a separate
region of interest or it can be the whole state variables,
depending on the contexts. The optimization (P) may be
subject to some constraints such as cardinality constraint in
each agent’s measurement selection, i.e., s |si| = ni.

If there exists a central agent (or computational unit) that
can decide on all the agents sensing decision, (P) can simply
be considered as a combinatorial optimization problem that
considers every admissible measurement options s1:N and
computes the mutual information and then chooses the best
solution. This process typically requires huge amount of com-
putational resource; the author’s previous work provided some
techniques such as backward selection based on commutativity
of mutual information that can reduce the computational cost
of the optimization process [3,4].

A. Greedy Approximations

Sometimes more distributed (or decentralized) decision ar-
chitecture is needed for cooperative sensing problem. One
reason is computational complexity. The complexity of (P)
easily grows as the number of agents N increase, number
of selected sensing points for each agent ni increases, and/or
the size of sensing region |Si| increases. Thus, some level
of decomposition and/or approximation is needed to obtain
the solution to (P) with maintaining computational tractability.
Another reason is underlying architecture of the network of
the sensing agents where a central unit cannot be assumed
due to accessibility of the agent-specific information. The
third possible reason is for better robustness to changes and/or
uncertainty in the environment.

From these perspectives, there are a couple of approxi-
mation techniques that are often adopted: local greedy and
sequential greedy decisions. For the local greedy strategy,
agent i simply tries to maximize the uncertainty reduction of
V by the measurement itself selects:

max I(V ;Zsi), ∀i ∈ {1, . . . , N}. (2)

This local greedy is known to lead to arbitrary suboptimal
result because it totally ignores the coupling and correlation
between one agent’s measurement selection an the other
agents’ selections. For this reason, the sequential greedy
strategy is frequently adopted, in which agents assume some
fixed order of information flow, and an agent optimizes its
decision based on the preceding agents’ decisions.

max I(V ;Zski
|Zsk1

, . . . , Zski−1
),∀i (3)

for some given index permutation {k1, k2, . . . , kN}. This
sequential greedy approach has been popular, because it often
provides good enough suboptimal solutions. In particular, if
the underlying mutual information satisfied submodularity, the
sequential greedy strategy provides some worst-case perfor-
mance guarantee: SGA ≥ (1 − 1/e)OPT where SGA and
OPT denote objective values for the sequential greedy and the
optimal solution, respectively [6]. Submodularity, for example,
holds when V = X . Also, unlike the objective function in the
local greedy strategy, for sequential greedy strategy, the global
reward is summation of the local reward because of chain rule
of mutual information in (1).

Although the sequential greedy strategy provides a relatively
good result, it is still subject to some limitations. Choice of
index permutation is not systematic, and more importantly
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it does not fully take advantage of possible information
flows. The strategy solves only one problem for each agent,
without considering any possibility of improving the solution
performance by communicating agents’ decisions. This work
aims at a systematic decision update procedure, inspired by the
theory of potential games to achieve closer-to-optimal solution
quality.

IV. MAIN RESULTS

A. Cooperative Sensor Network Planning as Potential Game

From a game-theoretic perspective, each sensing agent is
considered as a selfish entity who simply tries to maximize its
local utility function, Ui(Zsi , Zs−i

) where Zs−i
, Zs1:N \Zsi ,

which as it is represented is a function of agent i’s sensing
decision and the decision of the rest of agents. In order for this
N -person game to provide a solution to the cooperative sens-
ing problem in (P), the local utility function should be cho-
sen/designed to align with the objective function I(V ;Zs1:N ).
Being “aligned” here means that local player’s decision always
helps on accomplishing the global objective. The concept of
potential game described in section II-B provides a systematic
description of this alignment of the local and global objectives.
In other words, if one can devise a potential game in which the
global potential function is identical to the objective function
of (P), a Nash equilibrium of that potential game can provide
a good solution to the cooperative sensor network planning
problem.

This section presents one such case as the following Lemma.

Lemma 1 With local utility function defined as

Ui(Zsi , Zs−i) = I(V ;Zsi |Zs−i), (4)

the distributed procedure leads to a potential game with global
potential:

φ(Zsi , Zs−i) = I(V ;Zsi , Zs−i) = I(V ;Zs1:N ). (5)

Proof: Consider two different possible sensing actions of
agent i, Z ′si and Z ′′si . Then, the difference in the local utility
function with other agents action fixed:

Ui(Z
′
si , Zs−i

)− Ui(Z ′′si , Zs−i
)

= I(V ;Z ′si |Zs−i
)− I(V ;Z ′′si |Zs−i

)

=
[
I(V ;Zs−i) + I(V ;Z ′si |Zs−i)

]
−
[
I(V ;Zs−i

) + I(V ;Z ′′si |Zs−i
)
]

= I(V ;Z ′si , Zs−i
)− I(V ;Z ′′si , Zs−i

)

= φ(Z ′si , Zs−i
)− φ(Z ′′si , Zs−i

),

which means the local utility in (4) leads to a potential game
aligned with the global potential (5).

Remark 1 Note that once other agents’ actions are fixed at
s?i , the utility of agent i depends only on its own action;
thus, the maximized solution s?i will not be dominated by any
unilateral variation of agent i’s action. Hence, if a solution to
the potential game in Lemma 1 is found out, that solution is
a pure strategy Nash equilibrium.

Corollary 1 The utility function in Lemma 1 is not only one
that is aligned to the potential function φ in (5). In general,
all the local utility functions of the following form constitute
a potential game with the same global potential function:

Ui(Zsi , Zs−i
) = I(V ;Zsi , ZsJ (i)

|Zs−J (i)
)

where J1(i),J2(i) ⊂ {1, . . . , N} are some index sets satisfy-
ing

J1 ∪ J2 ∪ {i} = {1, . . . , N},
J1 ∩ {i} = J2 ∩ {i} = J1 ∩ J2 = ∅

Proof: For J1(i) and J2(i) satisfying the above condi-
tions,

Zs−i
= ZsJ1(i)

∪ ZsJ1(i)
.

The the potential function, i.e., the global objective function
of the cooperative sensing, can be written as:

φ(Zsi , Zs−i
) = I(V ;Zsi , ZsJ1(i)

, ZsJ2(i)
)

= I(V ;ZsJ2(i)
) + I(V ;Zsi , ZsJ1(i)

|ZsJ2(i)
)

by the chain rule of the mutual information. Thus, for two
different actions of agent i, Z ′si and Z ′′si

Ui(Z
′
si , Zs−i

)− Ui(Z ′′si , Zs−i
)

=
[
I(V ;Z ′si , ZsJ1(i)

, ZsJ2(i)
)− I(V ;ZsJ2(i)

)
]

−
[
I(V ;Z ′′si , ZsJ1(i)

, ZsJ2(i)
)− I(V ;ZsJ2(i)

)
]

= φ(Z ′si , Zs−i)− φ(Z ′si , Zs−i)

B. Iterative Algorithm with Joint Strategy Fictitious Play

Consider a repeated version of the potential game presented
in Lemma 1. In a repeated game, agent i makes its decision
at stage t based on the information about the other agents’
action obtained up to stage t − 1. For this repeated game,
other agents’ current action is not available to an agent; thus,
the utility function for stage t needs only to be defined as
its present action and previous history of the other agents’
actions.

One possibly implementation of the potential game in
Lemma 1 is a one-step look-back scheme in which agent i
presumes that the other agents made reasonable decisions at
the previous stage, and thus maximize local utility conditioned
on the other agent’s last stage’s action:

Ui(Zsi ; t) = I(Zsi |Z?s−i
[t− 1]). (6)

Although looking simple and implementable, this procedure
may not converge to a Nash equilibrium, and as will be
demonstrated with numerical examples in section V-A, this
often leads to agent’s cycling between the actions.

As briefly described in section II-B1, the joint strategy fic-
titious play with inertia proposed by [16] ensures convergence
to a pure Nash equilibrium in the repeated game of potential
games. Thus, this paper proposes application of JSFP (with
inertia) to solve the potential game for the cooperative sensing
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Algorithm 1 JSFP FOR COOPERATIVE SENSOR NETWORK
PLANNING(ZS1:N , V , ᾱ ∈ (0, 1))

1: t := 0
2: for i ∈ {1, . . . , N} do
3: for si ∈ nchoosek(|Si|, ni) do
4: Ui(Zsi ; t) = I(V ;Zsi)
5: end for
6: s†i [t] = arg maxsi Ui(Zs; t)
7: s?i [t] = s†i [t]
8: end for
9: Coverged = FALSE

10: while ¬ Converged do
11: t := t+ 1
12: for i ∈ {1, . . . , N} do
13: for si ∈ nchoosek(|Si|, ni) do
14: Ũi(Zsi ; t) = I(V ;Zsi |Zs?−i[t−1])

15: Ui(Zsi ; t) = 1
t Ũi(Zsi ; t) + t−1

t Ui(Zsi ; t− 1)
16: end for
17: s]i [t] = arg maxsi Ũi(si; t)
18: s†i [t] = arg maxsi Ui(si; t)
19: if rand() < ᾱ then
20: s?i [t] = s†i [t]
21: else
22: s?i [t] = s?i [t− 1]
23: end if
24: end for
25: if ∀i, (s]i [t] ≡ s?i [t− 1]) ∧ (s]i [t] ≡ s†i [t− 1]) then
26: Converged = TRUE

27: end if
28: end while

problem. The algorithm is summarized in Algorithm 1. Some
key points to be noted are:
• At every stage, each agent computes utility values for

all of its possible actions. In lines 3 and 13, function
nchoosek(a, b) indicates a set of b-dimensional vector
whose entry is an integer lest than equal to a with all
entries being different each other.

• In line 4, agents’ initial actions are initialized by the
solution of local greedy strategy that maximizes mutual
information by its own measurement. Note that this
initialization step simply provides agents some initial idea
about other agents’ actions, but does not affect the utility
values in the later stages.

• In line 15, at stage t > 0, utility values for possible
actions are calculated recursively.

• To introduce inertia in the JSFP process, agents choose
its best action at the current stage with probability ᾱ ∈
(0, 1), while keeping the previous action with probability
1− ᾱ (if statement in line 19).

• The convergence is checked by the condition in line 25,
which is based on calculation of two additional types of
actions in lines 17 and 18 as well as the actions chosen
by the JSFP process.

Lemma 2 Suppose that the termination condition in line 25

of Algorithm 1 is satisfied at some finite t. Thus, the following
three actions of agent i are identical: s]i [t], s

†
i [t−1], and s?i [t−

1] for all i ∈ {1, . . . , N}; denote this identical action as s̄i.
The following holds for s̄i, i ∈ {1, . . . , N}:

1) s̄i is a converged solution, in the sense that:

s?i [t+ τ ] = s†i [t+ τ ] = s]i [t+ τ ] = s̄i, ∀τ ≥ 0 (7)

for all i ∈ {1, . . . , N}, with consistent tie-breaking in
all the arg max operations involved.

2) This converged solution s̄1:N , (s̄1, . . . , s̄N ) is a pure
strategy Nash equilibrium of the potential game defined
by the utilities in (4). In other words,

s̄i = arg max
si
I(V ;Zsi |Zs̄−i

), ∀i ∈ {1, . . . , N}.

Proof:
a) Proof of Statement 1: The proof is by induction. First,

consider the case τ = 0 to show that s?i [t] = s†i [t] = s̄i,
where s]i [t] = s̄i by assumption. The termination condition
ensures that s]i [t] = s†i [t− 1] = s̄i, each of which maximizes
Ũi(Zsi ; t) and Ui(Zsi ; t − 1). Since Ui(Zsi ; t) is a weighted
average of Ũi(Zsi ; t) and Ui(Zsi ; t − 1) (from line 15), the
same action s̄i maximizes Ui(Zsi ; t) as well. This means that
the best response at stage t becomes:

s†i [t] , arg max
si

= s̄i. (8)

The action chosen in stage t, s?i [t] is determined to be either the
best response s†i [t] or the previous action s?i [t− 1], depending
on the random number drawn. With (8) and the termination
condition, we have s†i [t] = s?[t − 1] = s̄i. Hence, regardless
of the random number generated, s?i [t] = s̄i, which proves the
statement for τ = 0.

Second, assume that s?i [t+ k] = s†i [t+ k] = s]i [t+ k] = s̄i
for all k ∈ {0, . . . ,K − 1}. Then, at stage t+K

Ũi(Zsi ; t+K) , I(V ;Zsi |Zs?−i[t+K−1])

= I(V ;Zsi |Zs̄−i
) , Ũi(Zsi ; t)

for all si, which leads to

s][t+K] = s][t] = s̄i. (9)

From (9) and the assumption s†i [t + K − 1] = s̄i, the best
response at t + K is obtained as s†i [t + K] = s̄i, and the
sameness of s†[t+K] and s?[t+K] results in s?i [t+K] = s̄i,
which completes the induction proof.

b) Proof of Statement 2: Consider the best response of
agent i, when the other agents choose s̄j ,∀j 6= i.

I(V ;Zsi |Zs̄−i) = I(V ;Zsi |Zs?−i[t−1]) = Ũ(Zsi ; t).

By the definition of s][t], which is identical to s̄i,

s̄i = s][t] = arg max
si
I(V ;Zsi |Zs̄−i

),

which means that s̄1:N is a pure strategy Nash equilibrium.

Lemma 2 proves that if the algorithm is terminated by the
specified condition, the resulting solution is a pure strategy
Nash equilibrium that is invariant with further stages of game.
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However, this does not mean that this termination condition is
ever satisfied (in finite stages). Fortunately, the original work
on the JSFP method ensures convergence of the procedure [16,
Theorem 2.1]. To adopt this result, the following can be
concluded:

Theorem 1 Algorithm 1 with ᾱ ∈ (0, 1) almost surely con-
verges to a pure strategy Nash equilibrium of the potential
game in Lemma 1, with consistent tie-breaking in all the
arg max operations involved in the process.

Proof: The iterative procedure represented as the while-
loop of Algorithm 1 constitutes a JSFP process with inertia
for a potential game, which is proven to converge to a pure
strategy Nash equilibrium almost surely in [16, Theorem 2.1].
Also, Lemma 2 ensures validity of the termination condition
of the while loop to stop at a Nash equilibrium. Thus, as
a whole, Algorithm 1 produces a Nash equilibrium for the
potential game in Lemma 1.

V. NUMERICAL EXAMPLES

A. Lorenz-95 Sensor Targeting

The proposed JSFP method is demonstrated on a simplified
weather sensor targeting example using Lorenz-95 model.
The Lorenz-95 model [18] is an idealized chaos model that
captures key aspects of weather dynamics, such as energy
dissipation, advection, and external forcing. As such, it has
been successfully implemented for the initial verification
of numerical weather prediction algorithms [18,19]. A two-
dimensional extension of the original one-dimensional model
was developed and adopted in the author’s earlier work [3,20];
this two-dimensional extension represents the global weather
dynamics of the mid-latitude region of the northern hemi-
sphere. The dynamics are:

ẏij = (yi+1,j − yi−2,j) yi−1,j + 2
3 (yi,j+1 − yi,j−2) yi,j−1

− yij + ȳ, (i = 1, . . . , Lon, j = 1, . . . , Lat)
(10)

where yij denotes a scalar meteorological quantity, such as
vorticity or temperature [18], at the (i, j)-th grid point; i
and j are longitudinal and latitudinal grid indices. There
are Lon = 36 longitudinal and Lat = 9 latitudinal grid
points; ȳ = 8 is used for this numerical study. The dynamics
are subject to cyclic boundary conditions in the longitudinal
direction (yi+Lon,j = yi−Lon,j = yi,j) and to the constant
advection condition (yi,0 = yi,−1 = yi,Lat+1 = 4 in advection
terms) in the latitudinal direction, to model the mid-latitude
area as an annulus.

A similar sensor targeting scenario as [3] is considered.
The problem is to choose optimal sensing locations at time
tS = 0.05 (equivalent to 6 hrs in wall clock) to reduce the
uncertainty in the verification regions at tV = 0.55 (equivalent
to 66hrs). While a routine network of sensors of size 93 is
already deployed and takes measurement every 6 hrs, the
decision is to choose additional sensing locations for UAV
sensor platforms. The routine network is distributed unevenly
to represent data void over the oceanic region. Ensemble
square root filter [21] with 1024 samples is used to obtain the

correlation structure of the search regions and the verification
region. This ensemble is forward integrated to obtain the
prior ensemble at the verification time; then, the problem
can be treated as a static sensor selection selection problem
involving the measurement variables at tS and the verification
variables at tV . The prior data available from this ensemble
forecast pre-processing is Monte-Carlo samples for XS1:N ∪V ,
or equivalently the covariance matrix for these variables.
The backward selection scheme [3] that takes advantage of
commutativity of mutual information is utilized to calculate
the mutual information:

I(V ;Zs)

= I(Zs;V )

= H(Zs)−H(Zs|V )

= log det Cov(Zs)− log det Cov(Zs|V )

= log det (Cov(Xs) +Rs)− log det (Cov(Xs|V ) +Rs)

where the measurement equation is given by Zs = Xs +Ws

with Ws ∼ N (0, Rs) for all s ∈ S1:N . For given covariance
Cov(XS1:N ∪ V ), the backward scheme first computes the
conditional covariance Cov(XS1:N |V ). Once this conditional
covariance is computed, then the selection process for each
sensing agent is selection of corresponding principal submatrix
and calculation of determinants.

The proposed JSFP-based method is tested for three dif-
ferent sensing topologies – six sensors in a row, six sensors
in 2×3 format, and nine sensors in 3×3 format with equal
coverage. An oceanic region of size 12 × 9 (in longitude ×
latitude) is considered as a potential search region, among
which agents are assigned their sensing region Si. The goal
of cooperative sensing is to reduce uncertainty over a separate
verification region in time tV ; the verification region is not
a subset of the search region. The number of sensing points
each agent selects, ni, is set to be one for all the cases, the
main reason being the optimal solution cannot be obtained in
tractable time for larger cases. For comparison, six different
strategies are considered:

1) Optimal: Optimal solution for the cooperative sensing
problem in (P) is computed by explicit enumeration.

2) Local Greedy: Local greedy strategy that maximizes the
mutual information of its own measurement calculated;
the solution of local greedy gives the initial condition to
iterative algorithms (as in (2)).

3) Sequential Greedy: With a fixed agent indexing, sequen-
tial greedy algorithm in which an agent selects the point
that gives largest mutual information conditioned on the
preceding agents’ decision (as in (3)).

4) Iterative Greedy: An iterative process that only depends
on the latest game outcome (as in (6)).

5) JSFP w/o Inertia: Implementation of Algorithm 1 with
ᾱ = 1.0.

6) JSFP w/ Inertia: Implementation of Algorithm 1 with
ᾱ = 0.3.

The resulting histories of objective values in the iterative
procedure are depicted in Fig. 2. Although the cases herein
might not be diverse enough to make some concrete state-
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Fig. 2: Histories of Objective Values with Stage Count

ments, some trend can be observed in all the cases (and the
similar trend was also found in other unreported test cases).
• JSFP converges to a solution that is same as or close to

the optimal solution; the convergence time is less than 20
iterations.

• JSFP solution is better than sequential greedy.
• No significant difference was observed with varying ᾱ

for JSFP.
• Iterative greedy cycles.

It should also be noted that this problem setting of targeting
sensor networks to improve forecast in a separate region
is particularly difficult case to obtain good solutions using
distributed approximation strategies. For example, for the
problem of reducing the uncertainty in the entire state (rather
than some variables in a particular region), it was observed
(although not reported herein) that most strategies result in
solutions that are very close to the optimum. The implication is
that a certain choice of verification variables may significantly
change the underlying information structure.

B. Range-Only Tracking with UAV Sensors
To demonstrate the applicability of the proposed JSFP

method in non-Gaussian cases, cooperative localization of a
stationary target with range-only sensors equipped on quadro-
tor UAVs is considered. The same example was introduced
in [2], which presented particle filter-based computation of
mutual information (and its local approximation); the present
paper takes advantage of this particle filter-based framework
in computation of associated mutual information.

A network of quadrotor sensor platforms try to estimate the
location of a stationary target. Each quadrotor carries a particle
filter to estimate the target location, while measurements are
shared by communication to update the particle filters. The
location of quadrotor i, denoted as si, is represented as the
following discrete-time dynamics:

si(k + 1) = si(k) + ai(k),

where ai(k) ∈ Ai is the control input, which represents
movement to one of 12 candidate directions, { 0, 45, 90,
. . . , 315deg } with some constant speed. Each UAV takes
measurement of the distance between itself and the target with
some noise:

Zsi(k) = ||si(k)− r||+Wi(k)

where r represents the location of the target, and Wi(k) is
the additive sensing noise that is not necessarily Gaussian.
To effectively take into account the nonlinearity and non-
Gaussianity in the observation process, particle filtering is used
to estimate the target state. The particle filter approximates the
distribution of the target states with a total of M particles
of (V (p),w(p)), where V (p) and w(p) represent the states
and the importance weight of the pth particle. Each agent
carries its own particle filter to estimate the target state and
utilizes this own filter to make their plans for sensing, while
measurements and sensor locations are assumed to be shared
by communication among sensors.

At every time step, the sensor network determines best
sensing locations to minimize the uncertainty in the target
location when the estimate on the target location based on the
measurement thus far is available; thus, the problem at time
step k can be formulated as the following mutual information
maximization:

max I(V ;Zs1:N (k)|Z(k−1)
s1:N ) (11)

where the verification variable V = r and Z(k−1)
s1:N ,

{Zs1:N (l)|l ∈ {0, . . . , k − 1}}. Once the UAV sensors move
to the planned sensing locations and take measurements of
ranges to the target, these measurements are incorporated into
the particle filters of each sensor. The updated particle filter
provides prior information for the planning decision at the next
time step.

For the global objective in (11), the local utility function
for the proposed potential game can be defined as:

Ui(Zsi(k), Zs−i
(k)) = I(V ;Zsi(k)|Zs−i

(k),Z(k−1)
s1:N ).

Note that this mutual information can alternatively be repre-
sented as

I(V ;Zsi(k)|Zs−i(k),Z(k−1)
s1:N )

= H(Zsi(k)|Zs−i
(k),Z(k−1)

s1:N )−H(Zsi(k)|V,Zs−i
(k),Z(k−1)

s1:N )

= H(Zsi(k)|Zs−i
(k),Z(k−1)

s1:N )−H(Zsi(k)|V ), (12)

by the commutativity mutual information and the conditional
independence of the measurements conditioned on the target
state [22]. This re-formulation is particularly convenient since
the last term H(Zsi(k)|V ) represents simply the uncertainty
in the measurement noise.

In the particle filtering framework, the computation of the
entropy terms in (12) can be performed using Monte-Carlo
integration and an appropriate numerical quadrature technique
presented in , as described in detail in [2]. The entropy of
some measurement Zs (conditioned on the prior information)
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can be expressed as

H(Zs|Z(k−1)
s1:N ) ≈ −

∫
Zs

(
M∑
p=1

(
w(p)p(Zs|V = V (p))

))

· log

(
M∑
p=1

(
w(p)p(Zs|V = V (p))

))
dZs,

where superscript (p) denotes the particle index. The condition
the conditional entropy term can be computed from

H(Zsi(k)|Zs−i
(k),Z(k−1)

s1:N )

= H(Zs1:N (k)|Z(k−1)
s1:N )−H(Zs−i

(k)|Z(k−1)
s1:N ).

The conditional entropy of measurement conditioned on the
target state can be obtained by

H(Zsi |V ) ≈−
∫
Zsi

M∑
p=1

{
w(p)p(Zsi |V = V (p))

· log p(Zsi |V = V (p))
}
dZsi .

It should be noted that this term does not have any impact on
the planning solution unless the distribution of sensing noise
varies with the sensing location.

The scenario is to estimate the position of a target in
40m×40m square region with three UAVs initial positioning
at the same location; there is no prior information about the
target and particles are uniformly drawn over the whole square
region. Fig. 3 shows the resulting trajectories of the sensor
network when using the proposed JSFP method (with ᾱ = 0.3)
compared with the local greedy and the sequential greedy
strategies. For all three cases, plans are made every time
step and the sensors move to the planned positions to take
measurements and make decisions for the next time step. The
trajectories are overlaid with the particles of the target state
carried by the first agent. Observe the difference in the initial
direction of UAVs for the three strategies. Since the range-
only sensor lacks directional information and all the mobile
sensors are initially placed at the same position, the probability
distribution of the target location with the measurements taken
at the initial time looks like a circle around the UAVs’ initial
position. Since every direction is equally uncertain, physical
insights suggest that the optimal cooperative behavior of the
sensor network is to spread out with equal angular distance
(i.e., 120degs) to lower down the overall uncertainty level.
This type of behavior is observed for the JSFP solution. For
the sequential greedy case, it can be seen that two agents who
make the first two decisions move to the opposite direction,
which is the best way for two-agent problem. For the local
greedy case, agents do not coordinate and move to a similar
direction, which is highly suboptimal.

In addition, performance of the JSFP method is further
investigated as follows. Each agent moves in a randomly
chosen direction and takes measurement; however, every time
step the planning problem is posed and the solutions for
four different strategies (optimal, JSFP with ᾱ = 0.3, local
greedy, and sequential greedy) are computed. Fig. 4 shows the
optimality gaps of the strategies for every time step. Observe
that JSFP produces solutions very close to the optimum every
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Fig. 4: Optimality gaps for different distributed planning
strategies
cases, while the other greedy methods result in large optimality
gap for some cases. The JSFP procedure converges within
5.7 stages on average, and average of 7.1 calculations of
mutual information are involved until convergence – note
that the latter is less than three times of the former as an
agent computes mutual information values only when the other
agents change their decisions. This number of calculations
is certainly more expensive than the greedy strategies that
do not have any iterative procedures, and is much less than
exhaustive search for the optimal solution in which hundreds
of calculations are required.

VI. CONCLUSIONS

A potential game-based approach for distributed selection
of informative sensors has been presented when the global
information reward is defined as the mutual information be-
tween the measurement variables and the entities of interest. A
local utility function defined that leads to a potential game is
proposed, and the joint strategy fictitious play method is then
applied to obtain a Nash equilibrium of the potential game.
Two numerical examples have demonstrated validity of the
proposed method compared to other distributed schemes.
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