arXiv:1502.03181v1 [cs.SY] 11 Feb 2015

Multiple Loop Self-Triggered Model Predictive
Control for Network Scheduling and Control
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Abstract—We present an algorithm for controlling and A P | S |
scheduling multiple linear time-invariant processes on a lsared | s :
bandwidth limited communication network using adaptive san-
pling intervals. The controller is centralized and computes at
every sampling instant not only the new control command for a | Ay I Py _’l S1 |
process, but also decides the time interval to wait until takng
the next sample. The approach relies on model predictive carol

Network

ideas, where the cost function penalizes the state and coptr Manager [ ---— Network
effort as well as the time interval until the next sample is 4

taken. The latter is introduced in order to generate an adapive

sampling scheme for the overall system such that the samplin C

time increases as the norm of the system state goes to zero.

The paper presents a method for synthesizing such a predie® Fig. 1. Actuators4 and processe® are wired to the controlle€ while the
controller and gives explicit sufficient conditions for when it is  sensorsS communicate over a wireless network, which in turn is cauatéd
stabilizing. Further explicit conditions are given which guarantee by the Network Manager

conflict free transmissions on the network. It is shown that

the optimization problem may be solved off-line and that the

controller can be implemented as a lookup table of state fedzhck . . .
gains. Simulation studies which compare the proposed algithm through a wireless network. The wireless network is cotecbl

to periodic sampling illustrate potential performance gans. by a Network Managerwhich allocates medium access to
the sensors and triggers their transmissions. This setup is
motivated by current industry standards based on the IEEE
802.15.4 standarcg.g, [2], [3], which utilizes this structure

for wireless control in process industry. Here the triggegris

in turn generated by the controller which, in addition to eom

o ; iting the appropriate control action, dynamically deiess
creased attention in the process industry over the lasisye g bprop y y

£ ing technologies in | K di bl e time of the next sample by a self-triggering approach [4]
Merging technologies In low-power wake-up radio enablgs doing so the controller gives varying attention to thepso
engineering of a new type of industrial automation syste

h troll d actuat icat na%pending on their state, while trying to communicate only
where sensors, controllers and actualors communicateaovag, , samples. To achieve this the controller must, for every

wireless channel. The introduction of a wireless medium |Bop, trade control performance against inter samplingetim

the control loop gives rise to new challenges which need 194 ai titati f th It f
be handled[1]. The aim of this paper is to address the problem give a quantiiative meastire of the resuliing performanc

of how the medium access to the wireless channel COUIdThe main contribution of the baper is to show that a self-
be divided between the loops, taking the process dynamics . troll be d P g . dina taori
into consideration. We investigate possibilities to desay riggenng controlfier can be derived using a receding fwriz
self-triggered controller, that adaptively chooses thapgang controllformulanon wher(_e the predicted costis used tot]y)m
period for multiple control loops. The aim is to reduce thgetermme what co.ntro_l signal to t.)e applled as weI.I as the tim
amount of generated network traffic, while maintaining f the next sampling instant. Using this formulation we can

guaranteed level of performance in respect of driving tit&in guarant?g a}.m|n|mum_ and a .maX|mum time between.samples.
system states to zero and the control effort needed. We will initially consider a smglg-loop system. We _W|II the
Consider the networked control system in Fig. 1, whichxtend the approach to the multiple-loop case which can be

shows how the sensors and the controller are conneciéiflyzed with additional constraints on the communication
attern. The results presented herein are extensions to the
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I. INTRODUCTION
Wireless sensing and control systems have received
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sampling is receiving increased attention. The effortdinit the self-triggered network scheduling and control probiem
this area may coarsely be divided into the two paradigms défined and formulated as a receding horizon control problem
event- and self-triggered control. In event-triggeredtomn Sectior1l] presents the open-loop optimal control probfem
e.g, [7], [8l, [©], [10], [11], [12], [13], [14], [15] the sen- a single loop, to be solved by the receding horizon controlle
sor continuously monitors the process state and generateéBha optimal solution is presented in Section IV. Secfign V
sample when the state violates some predefined conditipnesents the receding horizon control algorithm for a singl
Self-triggered controle.g, [4], [16], [17], [18], utilizes a loop in further detail and gives conditions for when it iststa
model of the system to predict when a new sample neddsng. The results are then extended to the multiple loogeca
to be taken in order to fulfill some pre-defined condition. An Sectior VIl where conditions for stability and conflice&
possible advantage of event- over self-triggered contrtthat transmissions are given. The proposed method is explamid a
the continuous monitoring of the state guarantees that alsamevaluated on simulated examples in Secflion]VIIl. Conclgdin
will be drawn as soon as the design condition is violateds thdiscussions are made in Sectlod IX.

resulting in an appropriate control action. The self-teggd

controller will instead operate in open-loop between sanpl [1. SELF-TRIGGEREDNETWORKED CONTROL

This could potentially be a problem as disturbances to the ARCHITECTURE

process between samples cannot be attenuated. This probleqye consider the problem of controlling > 1 processes
may however be avoided by good choices of the inter-samplig through P, over a shared communication network as in
times. The possible advantage of self- over event-trighergig.[1. The processes are controlled by the contrdllerich
control is that the transmission time of sensor packets@#n computes the appropriate control action and schedule ftr ea

a-priori and hence we may schedule them, enabling sensgfgcess. Each proce$¥ is given by a linear time-invariant
and transmitters to be put to sleep in-between samples qpl|y system

thereby save energy.
The research area of joint design of control and communica- o(k +1) = Agze(k) + Boug(k), 1)
tion is currently very active, especially in the context véet- ze(k) € R™, ug(k) € R™.

triggered control. In[[19] a joint optimization of controhd The controller works in the following way: At timé = %,
communication is solved using dynamic programming, PBCiensors, transmits a sample; (k) to the controller, which
a communication scheduler in the sensorlIn [20]} [21] & [2then computes the control signa}(k,) and sends it to the
the control law and event-condition are co-designed to Matgetator.4,. Herel ¢ {1,2,...,s} is the process index. The
performanE:e of periodic control using a lower communiGticacyator in turn will apply this control signal to the proses
rate. In [23] this idea is extended to decentralized systemgj| a new value is received from the controller. Jointlyttwi
The use of predictive control is also gaining popularityhivit - gecidingu, (k) the controller also decides how many discrete
the networked control community [24], [25], [26]. [27]. Intjme steps, say,(k;) € N* 2 {1,2,...}, it will wait before
[28] predictive methods and vector quantization are used j{heeds to change the control signal the next time. Thisevalu
_reduce the controller to actuator communication in mubtlpllé(kz) is sent to theNetwork Managewhich will schedule the
input systems. In [29] modgl pred|ct|ve.c0ntrol (MPC) '?d'sesensorSg to send a new sample at tinke= k; + (k). To
to design multiple actuator link scheduling and controhsi§. g arantee conflict free transmissions on the network, onéy o
There have also been developments in using MPC Un(f%"nsor is allowed to transmit at every time instance. Hence,
event-based sampling. I0_[30] a method for trading contr@lhen deciding the time to waif, (k,), the controller must
performance and transmission rate in systems with multigl§ake sure that no other sensfy, ¢ # £, already is scheduled
sensors is given. IN_[31] an event-based MPC is proposgf transmission at timé — ko + Io (k).
where the decision to re-calculate the control law is basede propose that the controll€rshould be implemented as
on the difference between predicted and measured states. 5 receding horizon controller which for an individual loép
The problem addressed in the present paper, namely Hi&very sampling instarit = k, solves an open-loop optimal

joint design of a self-triggering rule and the appropriaigteol  control problem. It does so by minimizing the infinite-hariz
signal using MPC has been less studied than its event-teédgeqyadratic cost function

counterpart. In[[32] an approach relying on an exhaustive -
search which utilizes sub-optimal solutions giving the tcoin Z <|~U(ké SO, + (ke + D)2 )
policy and a corresponding self-triggering policy is presel. @ fe

In [23) it is suggested that a portion of t_he open loop tra]@a.r%ubject to the user defined weighils and R,, while taking
produced by the MPC should be applied to the process. The o : .
. N . . . ystem dynamics into account. In Secfioh Il we will emskili
time between re-optimizations is then decided via a selt. . :

. . is cost function, such that control performance, inten-sa
triggering approach. S -

. . . pling time and overall network schedulability also are take
The approach taken in this paper differs from the above . .
. INto consideration.

two in that the open loop cost we propose the MPC to solve
is designed to be used in an adaptive sampling context. &urtRemark 1. The focus is on a networked system where the
our extension to handle multiple loops using a self-trigger network manager and controller are integrated in the same
MPC is new. So is the guarantee of conflict free transmissionsit. This means, that the controller can send the schedules

The outline of the paper is as follows. In Sectibd Ithat contain the transmission times of the sensors, direotl

=0



A The constraint on the shape of the control trajecidrys
* motivated by the idea, that this sequence is applied to the
E actuator from time until time instantc+:. At time x(k-+i) we
> take a new sample and redo the optimization. By this method
ok +i+2-p) we get a joint optimization of the control signal to be apglie
4 as well as the number of time steps to the next sampling
instant. The reason for letting the system be controlled by a
u(k+i+2-p) control signal with periog after this is that we hope for the
——— receding horizon algorithm to converge to this sampling-ra
¢ o o0 We will provide methods for choosing so that this happens
in Section V. The reason for wanting convergence to a down
Fig. 2. The prediction horizon. Here typical signal preidies are shown Sampled control is that we want the system to be sampled at
with I(k) = 3 andp = 5. a slow rate when it has reached steady state, while we want
it to be sampled faster during the transients.
If one includes the above mentioned constraints, thén (3)
be rewritten as

i)
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the network manager. This information needs to be tranerhitt
to the sensor node such that it knows when to sample ard’
transmit. For example, using the IEEE 802.15.4 superframe, o =l

described in[[3], this can be done without creating additibn /(2 (k), 1, U(i)) == + > (|56(k + 0I5 + |u(/€)|%¢>

overhead. Here the network manager broadcasts a beacon in 1=0

the beginning of each superframe, which occurs at a fixed time o [p=l

interval. This beacon is received by all devices on the netwo + (Z <|~’C(k +i+r-p+05 @)
and includes a schedule of the sensors that are allowed to r=0 \ =0

transmit at given times.

+ lulk +i+r -p)|%»,)>
IIl. ADAPTIVE SAMPLING STRATEGY

For pedagogical ease we will in this section study the casterei and/(i) 2 {u(k),u(k + i),u(k +i4+n-p),...},
when we control a single process on the network allowing wse NT, are the decision variables over which we optimize.
to drop the loop indeX. The process we control has dynamic§he termea/i reflects the cost of sampling. We use this cost

n m to weight the cost of sampling against the classical quadrat
ok +1) = Ax(k) + Bu(k), x(k) € R", u(k) e R™ (2) control performance cost. For a give(fk), choosing a larger

and the open-loop cost function we propose the controller will force ¢ to be larger and hence give longer inter sampling
minimize at every sampling instant is times. By the construction of the cost, we may tufe R

0 & and « via simulations to get the desired sampling behaviour

J(x(k),i,U) = =+ Z <|x(k + D15 + lJulk + l)||f%) (3) while maintaining the desired control performance. Ondatou

L — imagine a more general cost of sampling. Here however we
where « € R* is a design variable that is used to tragfound a/i sqfﬁc?ent to be able_ to trqde c_ontrol performance
off the cost of sampling against the cost of control anf’ COmmunication cost, see simulations in Secfion Vill-B.
i = I(k) € {1,2,...,p} is the number of discrete time
units to wait before taking the next sample, wheree N+
is the maximum number of time units to wait until taking
the next sample. Further, the design variallesc @ and Having defined the open-loop codfl (4) we proceed by
0 < R are symmetric matrices of appropriate dimensions. W@mputing its optimal value. We start by noticing that, even
optimize this cost over the constraint that the control sege though we have a joint optimization problem, we may state it
U = {u(k),u(k + 1),...} should follow the specific shapeas
illustrated in Fig.[2, for some fixed periogl The periodp minimize(minimizeJ(:v(k),i,u(i))). (5)
is the maximum amount of time steps the sensor is allowed i Ui
to wait before taking the next sample.4f= 1, a sample iS \ye il yse this separation and start by solving the inner
taken at every time instance and a regular receding ho”zﬁﬂ)blem, that of minimizing/ ((k), i, 1()) for a given value

cost is obtained. If one on th_e o_ther hand would Se!eCto‘?z‘. In order to derive the solution, and for future reference,
large value ofy, very long sampling intervals can be obtalneﬂ,\,e need to define some variables
This can though affect the control performance signifigant

in case there are disturbances in the system that make the Elgfinition 1. We define notation for the lifted model as
of the state increase. Thus, the number of discrete time unit il
1=1(k) €{1,2,...,p} to wait before taking the next sample AO — 4T B = ZAqB'

q=0

IV. COSTFUNCTION MINIMIZATION

x(k + i), as well as the levels in the control sequebtare
free variables over which we optimize. Note that neither the
state nor the control values have a constrained magnitude.and notation for the generalized weighting matrices asseci



to @) as where alsoL® is given by Lemma] 2.

QW = QU1 + A(i—l)TQA(i—l) Proof. The proof is given in AppendixIB. O
R®W = RG-1) B(i—l)TQB(i—l) +R Now, getting back to the original probleil (5). Provided that
the assumptions of Theordm 1 hold, we may apply it giving

(i) _ (-1 (-7 HpG-1)
NGO = N +A QB that

; 1 1 1

wherei € {1,2,...,p}, Q¥ =Q, R = Rand N = 0. min J(x(k),i,U(i)) = min {g ()P }

Using Definition it is straightforward to show the follow- U@ ot
ing lemma. Unfortunately the authors are not aware of any method taesolv
this problem in general. If howevéris restricted to a known
finite set 7° ¢ NT we may find the optimal value within
=L ) ) this set for a given value af(k) by simply evaluating? +
Z <|x(k+l)|Q + ||“(k)||R> [2(k)||% Vi € Z° and by this obtaining the which gives
=0 , ‘ ‘ the Iowest value of the cost. This procedure gives the optimu
= 2(k)"QWa(k) + u(k)" RVu(k) + 2 (k)" NWu(k) of (B). Note that the computational complexity of finding the

i i optimum is not necessarily high, as we may compié
AQz(k) + BOu(k). Vi € Z° off-line prior to execution.

Lemma 1. It holds that

andz(k +1) =

Lemma 2. Assume thad < @, 0 < R and that the pair

(A®, B®)) is controllable. Then V. SINGLE LOOPSELF-TRIGGEREDMPC

- Having presented the receding horizon cost, we now con-
mlnz <Z (llx k+i+r-p+0[3 tinue with formulating its implementation in further détale
will assume tha) < @, 0 < R and that the down-sampled
. ) . pair (A®®) B(P)) is controllable. Let us also assume that the
+ lu(k +i+r 'P)||R) = [Jz(k + )| 5w finite and non-emptysetZ° c N is given and let

and the minimizing control signal characterizitis)) is given 7 = max1". ©)
by ) ® , From this we may use Theorefd 1 to compute the pairs
u(k +i+r-p)=—LPx(k+i+r-p). (P®W,L®W) vi ¢ 7° and formulate our proposed receding
In the above, horizon control algorithm for a single loop:
») — Q) +A(p)TP(p)A(p) Algorithm 1. Single Loop Self-Triggered MPC
T 1) Attimek = k' the samplex(k’) is transmitted by the
- (A(p) PP B® + N(p))L(p) (6) sensor to the controller.
L® — (R(p) + B(p)Tp(p)B(p))—l 2) Using z(k’) the controller computes
X (A(P)TP(P)B(P) + N(P))T I(k/) _ argngg[} % + ”x(k/)”Qp(w)
Proof. The proof is given in AppendixJA. O w(k') = — LI g(k")
Using the above results we may formulate the main result3) a) The controller sends:(k') to the actuator which
of this section as follows. appliesu(k) = u(k') to @) until k = & + I(k').
Theorem 1 (Closed Form Solution)Assume that < Q, b) The network manager is requested to schedule the
0 < R and that the pair(A®, B()) is controllable. Then sensor to transmit a new sample at tire= &’ +
(k).
«
min J(z(k),i,U(1)) = = + ||J2(k)|| B¢ 7 . ,
U(i) ((k) (@) 4 le®lee @ Remark 2. Note that the control signal value is sent to
where the actuator at the same time as the controller requests the
PO = 4 A &7 p) A® scheduling of the next sample by the sensor.
(A(l (p) g(®) +N(l>)L(> Remark 3. The proposed algorithm guarantees a minimum
0 @ ®T pv) gy~ (8) and a maximum inter-sampling time. The minimum time is
LY = (R Y+ BY P BY ) time step in the time scale of the underlying procEks (2) had t
(A(z )10 N(z)) maximum inter sampling time igtime steps. This implies that

there is some minimum attention to every loop independent of
and P?) is given by Lemmi 2. Denoting the vector of all onehe predicted evolution of the process.

in R™ as 1,, the minimizing control signal sequence is give L .

:oy inimizing '9 au 'S gV Ezemark 4. Even though we are working in uniformly sampled
} discrete time the state is not sampled at every time ingtant

U* = {—LO2(k)17, —LPx(k +i+r-p)1¥, ..}, re N Instead the set of samples of the state actually taken isgive



by the setD, which assuming that the first sample is taken dty a factory, see Lemm@]3. Otherwise one may use Lema 4
k =0, is given by to re-designZ® giving a new value ofy which recovers the

casep® = .

D = {(0), 2(1(0)), 2(I(1(0))),...} (o) 7
Remark 7. It is worth noticing that the developed framework
VI. ANALYSIS is not limited to just varying the time to the next sample

Having established and detailed our receding horizon cdh@S in Fig.[2. One could expand this by using a *multi-
trol law for a single loop we continue with giving conditionsStéP” @pproach wherein the inter sampling time is optimized

for when it is stabilizing. Letting\(4) denote the set of OVer several frames before reverting to constant sampliitly w

eigenvalues ofd we first recall the following controllability Period»-

conditions.

Lemma 3. [34] The systen{A(®), B() is controllable if and VIl. EXTENSION TOMULTIPLE LOOPS

only if the pair(A, B) is controllable andA has no eigenvalue

A € A(A) such that\ # 1 and \* = 1. Having detailed the controller for the case with a single

loop on the network and given conditions for when it is

Using the above, and the results of Section IV, we mayapilizing we now continue with extending to the case when
now give conditions for when the proposed receding horizQf, contro| multiple loops on the network, as described in

control algorithm is stabilizing. Fig.[. The idea is that the controll€r now will run s such

Theorem 2 (Practical stability [35]) Assume) < Q, 0 < R single loop controllers described in Algorithimh 1 in parhlle

and that(A, B) is controllable. If we choosé € 70 ¢ N+ one for each procesB,, ¢ € L = {1,2,...,s}, controlled
and p = p* given by over the network. To guarantee conflict free communication o

. o ; . the network the controlle€ will, at the same time, centrally
p* =max{ili € I", VA € M(A) X' #1if A#£1}  (11) coordinate the transmissions of the different loops.

and apply Algorithn{1l, then the system state is ultimately

bounded as per:

A. Cost Function
all 1

« . . « 2
5 < Jm tero (? + ”w(k)'P“‘)) =% (E - (1= 6)5)' We start by extending the results in Section Ill to the case
when we have multiple loops. The cost function we propose

In the above;y is as in ande is the largest value in the L S
! ©) ¢ g the controller to minimize at every sampling instant forpab

interval (0, 1] which Vi € Z° fulfils

is then
(A(i) _ B(i)L(i))Tp(P*) (A(i) _ B(i)L(i)) <(1- 6)p(i) -
, . y
and is guaranteed to exist. Jo(we(k),i,Up()) =+ > <|~”sz(k +DI3, + |W(k)||%a@>
1=0
Proof. The proof is given in Appendik]C. O 0o [/ pe—1
e - : A D (el +i+7-pe+ D)2

Remark 5. The bound given in Theordrh 2 scales linearly with Qe
the choice ofx. r=0 A 1=0
Assumption 1. Assume thafi € \(A) except possibly = 1 + lwelk +i+7- pz)||ize>>
such that|A\| = 1 and the complex argument\ = 27” -n for
somen € N+,

derived in the same way &S| (4) now with € R*, 0 < @,
Lemma 4. Let Assumptiofil1 hold, thest = ~. 0 < R, and periodp, € N* specific for the control of process
Proof. The proof is given in AppendixD. O P, given by [1). From this we can state the following.
Corollary 1 (Asymptotic stability of the origin) Assume) < DefiniFion 2. We define the notatipn in the multiple loop case
0,0 < R and that(A, B) is controllable. Further assume that °lOWing D((af)mltlon[j.. For a matrixt, e.g, A, and @, we
either Assumptiofl 1 holds ar = 0. If we choose ¢ 70 ¢ N+  denote(E) Yoy BV

andp = p* given by [11) and apply Algorithfri 1, then Theorem 3 (Closed Form Solution)Assume thab < Q,

lim z(k) =0 0 < R, and that the pair(Agp),B,Ep)) is controllable. Then
k—o0
Proof. The proof is given in AppendikIE. O m%% Jo(ze(k), i, Uy(7)) = O‘_? + ||Ig(k)||f3(i)
Uy (i 1 ¢

From the above results we may note the following.

Remark 6. If the assumptions of Theoref 2 hold, the}ﬁvhere
Corollary [1 can be used to ensure asymptotic stability of the ;) (i) T (o) 4() )T p(pe) nli) @) 7 (5)
origin, except in the extremely rare case that the undegyin?)fv’ = Q7+ A BPAT = (A7 BB+ N

system(A, B) becomes uncontrollable under down sampling;, () — (Réi) + Béi)TPZ(”)BZ(i))_l(Agi)TPZ(”)BZ(i) + Ng(i))T



and Remark 8. When the controller is initialized at timé = 0
(pe) (pe) )T 15 (pe) 1(pe) it is assumed that the controller has knowledge of the state
Pt =Qp AT BU Ay x(0) for all processes?, controlled over the network. It will
_ (A§”f)TP,3(”f)B,§pf) + Ng(p’f))Lgp") Fhen execute Algorithl’ﬁ] 2 entering at st2pin the order of
(pe) (pe) )T p(pe) ppe)y—1 increasing loop index.
Ly = (Rz + By P B, )
x (AP pr pre) | NO)T C. Schedulability

What remains to be detailed in the multiple loop receding
horizon control law is a mechanism for loépo chooseZ, (k)
_ to achieve collision free scheduling. We now continue with
u; = {—Lﬁz)xg(k)lf, —Lém)xg(k—i—i—i-r-pg)l;, ...}, r € N. giving conditions for when this holds.

First we note that when using Theoréin 3 we make the im-
plicit assumption that it is possible to apply the corresping
optimal control signal sequenc#;. For this to be possible
B. Multiple Loop Self-Triggered MPC we must be able to measure the staték) at the future time

To formulate our multiple loop receding horizon control lavinstances
we will re-use the results in Sectigd V and apply them on a
per loop basis. Se(ke) = ke + Lo(ke), ke + Lo(ke) + pe,

For each proces®, with dynamics given in[{1) let the ko + Io(ke) + 2pe, ko + Io(ke) + 3pe, ...} (12)
weightsay, € RT, 0 < Q, 0 < R, and periodp, € NT
specific to the process be defined. If we further define t
finite setZ) c N* for loop ¢ we may apply Theorerl 3 to
compute the pairgP”, L{") Vi € 70. Provided of course _ o
that the pair(Ag”’f),Aﬁp”) is controllable. Lemma 5. _Let loop ¢ choose its sef,(k,) of feasible times

As discussed in Sectidil Il when choosinghe controller 0 Wait until the next sample to be
must take into consideration what transmission times other, . .
loops have reserved as well as overall network schedulabil £t (ko) = {7 € Tl # kg™ = ke - pg —m-pr,
ity. Hence at timek = k, loop ¢ is restricted to choose m,n €N, g € L\ {{}}

: 0 : ,
i € Ty(ke) © Z,) whereZ, (k) contains the feasible values Ofwherekge’“ is the next transmission time of sensyr Then it

i which gives collisions free scheduling of the network. Notg possible to reserve the needed sampling patfk,) in
that at timek = k, the control inputu, and time for the next @) at timek = k.

samplel, only have to be computed forsingleloop ¢. How o _ _
T,(k¢) should be constructed when multiple loops are preséntoof. The proof is given in AppendiXIF. O

on the network is discussed further later in this section. ConstructingZ(k;) as above we are not guaranteed that

. We may now c;ontmue_ with formulating our proposed alg%g(kg) # (). To guarantee this we make the following assump-
rithm for controlling multiple processes over the netwdrke

following algorithm is executed whenever a sample is resiv

Denoting the vector of all ones iR"™ as 1, the minimizing
control signal sequence is given by

Proof. Application of Theorerfi]1 on the individual loops

Hence this sampling pattern must be reserved for use by senso
¢. We state the following to give conditions for when this is
possible.

by the controller. Assumption 2. Assume that for every loopon the network
) ) ) 7} = 7I° and p;, = p. Further assume thal. C Z° and
Algorithm 2. Multiple Loop Self-Triggered MPC maxL < p.
1) At time k = k, the samplex,(k;) of processP, is B )
transmitted by the sensd; to the controllerC. Theorem 4. Let Assumptiofi]2 hold. If every lodjpchooses
2) The controllerC constructsZ, (k). To(ke) = {i € T # K™ — by + 1 p, r € Z, g € L\ {¢}}

3) Using z4(k,) the controllerC computes
all transmissions on the network will be conflict free and it

.o« ) . ;
Iy(ke) = arg i TE + ||If(kl)”?3(i) will always be possible to reserve the needed sampling patte
el ‘ Se(ke) in (@2).
_ (I(ke))
ug(ke) = —L, xy(ke). N .
Proof. The proof is given in Appendik]G. O
4) a) The controllerC sendsu,(k,) to the actuatorA, ) ) )

which appliesu(k) = u¢(ke) to @) until k& = Remark 9. The result in Lemmil 5 requires the reservation of
ke + Io(k). an infinite sequence. This is no longer required in Thedrem 4

b) TheNetwork Manageis requested to schedule the?S all loops cooperate when choosing the set of feasiblestime
sensorS; to transmit a new sample at timie = to wait. In fact loop? only needs to know the current ting,

ke + Io(ke). the periodp and the times when the other loops will transmit

nextkp™'vq e L\ {¢} in order to find its own valug (k).

Note that at timek step 3 only needs to be performed for _
loop L. Remark 10. If Assumptior[ R holds and every loop on the

network choosed,(k,) according to Theorerll4, then it is



guaranteed that at timé&, we can reserve (12) and that no TABLE |

other loop can make conflicting reservations. Hence at timg HE PRECOMPUTED CONTROL LAWS WITH RELATED COST FUNCTIONS
k +I (k ) the Sequence AND INTERMEDIATE VARIABLES.

4 L\ e

i | A@ @) | QW RO NGO | LG p@) v (z)
Se(ke + Io(ke)) = { ke + Io(ke) + p, ; 1 ; ; ; 0 8.72 1.72 ozjl + PE;; xz
1 1 /046 173 a/2+P? .
ke + Ie(ke) +2p, ke + Le(ke) +3p, ..} 3|1 3|3 8 3|03 18 o/3+P® .42
: _ 4 |1 4| 4 18 6 |028 208 a/d+P® a2
is guaranteed to be available. Thuss Z;(k; + Ir(k¢)). 5*| 1 5 | 5 35 10 | 023 230 a§5 L PO g2
D. Stability A. Single Loop

We continue with giving conditions for when the multiple Let us exemplify and discuss how the controller handles the
loop receding horizon control law described in Algorithins2 icontrol performance versus communication rate tradercdii
stabilizing. Extending the theory developed Secfidn V te thndividual loop. We do this by studying the case with a single
multiple loop case we may state the following. system on the network. The system we study is the single inte-
. grator system which we discretize using sample and hold with
Theorem 5. Assume) < Q, 0 < R and that(A, Br) IS qampling timeT, = 1 giving usz(k + 1) = Az(k) + Bu(k)
gontrollable. Fourther+let A_ssumptldﬁ 2 hold. If_we then cheo | ... (A,B) = (1,1). Since we want the resulting self-

i € Zo(k) *g I < N, with Z,(k) chosen as in Theorefd 4'triggered MPC described in Algorithda 1 to be stabilizing
andp = p* given by we need to make sure that our design fulfils the conditions
of Theorem[R. If we further want it to be asymptotically

p" = max{ili € I°, VLN EA(A) N # 1 A1} (13)  Gopiizing we in addition need it to fulfil the conditions of

. Corollary[d.
d ly AlgorithniR2, th . . .
and apply Algorithni.P, then ak — oo The design procedure is then as follows: First we note that
a . ay ) ap (1 1 the systen{A4, B) is controllable. The next step is to decide the
> < Lam (T wa(k)Hpem < . (1- 66); weights0 < @ and0 < R in the quadratic cost functiofl(3).

This is done in the same way as in classical linear quadratic
wherey = maxZ° and ¢, is the largest value in the interval control, see e.g/ [36]. Here we for simplicity chooQe= 1
(0, 1] which Vi € 7° fulffills and R = 1. We note that the system only has the eigenvalue
A = 1, fulfilling Assumption[d1, so that[(11) in Theorelm 2
(Aff) _ Béi)Lgi))Tpg(P*)(Agi) _ Béi)Lgi)) <(1- Eg)pé(i). givesp* = maxZ°. Hence Corollary]l, and thus Theoréin 2,
will hold for every choice ofZ". This means that we may
Proof. The proof is given in AppendiXH. 0 choose the elements iB°, i.e., the possible down sampling
rates, freely. A natural way to choose them is to decide on a
Corollary 2. Assumed < Q, 0 < R, and that(Ay, By) is maximum allowed down sampling rate and then chabséo

controllable. Further let Assumptidd 2 hold. In addition &~ contain all rates from up to this number. Let's say that we
be chosen so that the resulting= maxZ° guarantees that here want the system to be sampled at least evefy s, then

AssumptiofilL holds for every lodpor alternatively leta, — 0 & 900d choice ig° = {1,2,3,4, 5}, giving p* = max 7" = 5.
for every loopt. If we then choose € Z,(k) C 70 ¢ N+ Now having guaranteed that the conditions of Theokgém 2

with Z, (k) chosen as in Theorefd 4, apd= p* given by [IB) and Corollary[1l hold we have also guaranteed that the

and apply Algorithni it holds that conditions of Theoreni]1 are fulfilled. Hence we may use
it to compute the state feedback gains and cost function

lim (k) = 0. matrices that are used in Algoritioh 1. The results from these

k—oo computations are shown in Taljle I, together with some of the

g’ntermediate variables from Definition 1. Here we see that th
cost functions are quadratic functions in the stat@here the
coefficientsP(®) are functions ofQ and R. We also see that
the cost to sample/i enters linearly and as we change it we
VIII. SIMULATION STUDIES will change the offset level of the curves and thereby their
values related to each other. However it will not affect the
To illustrate the proposed theory we now continue withtate feedback gains.
giving simulations. First we show how the control law works A graphical illustration of the cost functions in Talble Irfo
when a single loop is controlled over the network and focube choicea = 0.2, is shown in Fig[ B together with the
on the loop specific mechanisms of the controller. SecondiyrveI(k) = arg mingzo V) (z(k)), i.e., the index of the cost
we illustrate how the controller works when multiple loop$unction which has the lowest value for a given stafgé).
are present on the network and focus on how the controllEhis is the partitioning of the state space that the sajigired
allocates network access to different loops. MPC controller will use to choose which of the state feedback

Proof. The proof follows from the results in Theorehi
analogous to the proof of Corollaky 1. O



Fig. 3. The cost function¥ () (z(k)) (dashed) together with the partitioning
of the state space and the time to wi(ik) = arg minzo V() (z(k)) (solid).

gains to apply and how long to wait before sampling again.

Applying our self-triggered MPC described in Algoritirh 1
using the results in Tablg | to our integrator system when
initialized inz(0) = 2 we get the response shown in Hig. #(a).
Note here that the system will converge to the fixed sampling
ratep* as the state converges.

It may now appear as it is sufficient to use periodic control
and sample the system evepy - Ts s to get good control
performance. To compare the performance of this periodic
sampling strategy with the self-triggered strategy aboee w
apply the control which minimizes the same cost functidn (3)
as above with the exception that the system now may only be
sampled every* - T s. This is in fact the same as using the
receding horizon control above while restricting the colter
to choosei = p* every time. The resulting simulations are
shown in Fig[4(H). As seen, there is a large degradation of
the performance in the transient while the stationary biehav
is almost the same. By this we can conclude that it is not
sufficient to sample the system evepy - T s if we want
to achieve the same transient performance as with the self-
triggered sampling.

In the initial transient response the self-triggered MPC
controller sampled after one time instant. This indicatest t
there is performance to gain by sampling every time instant.
To investigate this we apply the control which minimizes
the same cost functiof](3), now with the exception that the
system may be sampled evélys,i.e., classical unconstrained
linear quadratic control. Now simulating the system we get
the response shown in Fig. 4(c). As expected we get slightly
better transient performance in this case compared to our
self-triggered sampling scheme, it is however comparable.
Note however that this improvement comes at the cost of
a drastically increased communication need, which may not
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(a) System response of the integrator system when minimizin
the cost by using our single loop self-triggered MPC.
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(b) System response of the integrator system when minignizin
the cost by sampling every*” second.
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(c) System response of the integrator system when minignizin

be suitable for systems where multiple loops share the same the cost by sampling every second.

wireless medium.

From the above we may conclude that our self-triggere
MPC combines the low communication rate in stationarity of
the slow periodic controller with the quick transient respe
of the fast periodic sampling. In fact we may, using our

Fci?. 4. Comparing control performance for different samglpolicies.
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Fig. 5. The average sampling interval for different valudscofor the Fig- 6. Performance of the integrator using the self-trigdealgorithm
integrator system. compared to the simple periodic algorithm for different géing intervals.
Some values o& are marked with the black crosses.

method, recover the transient behaviour of fast periodis-sagg
pling at the communication cost of one extra sample compared

to slow periodic sampling. The reason for this is that the 2
. : . . . k (k+rTs k+rTy
fast sampling rate only is needed in the transient while weJZ(IZ( ) U ZHM )l (TSH_HW( +r) RyTS)

in stationarity can obtain sufficient performance with a éow = T ()

rate. + 2$g(/€ + TTS) Nl Ug(k + T‘TS) (15)
for sampling periodl’; where

B. Comparison to periodic control ek +T) = AETS)SW(]C) + BZ(TS)Ug(k).

To make a more extensive comparison between the sajfthen7, = 1, (I5) reduces to classical unconstrained linear
triggered algorithm and periodic sampling, we sweep theevalquadratic control.

of the design parameter in the cost function, and run  The empiric cost for each simulation is calculated by

100 simulations of 10000 samples for each value. To add

randomness to the process, the mddel (1) is extended tamclu Z ok
T

T
disturbances such that for procédss ) Qewe(k) + we(k)" Reue(h), (16)

xo(k +1) = Apwo(k) + Boue(k) + Egwe(k), (14) whereT = 10000 is the length of the simulation.

Fig.[8 shows the average performance that is obtained for
wherew, (k) ~ N(0,07) is zero-mean normal distributed withdifferent averaged sampling intervals obtained by swegpin
varianceo; = 0.1 and E; = 1. We increase the maximumfrom 0 to106. Fig.[8 illustrates that the self-triggered algorithm
allowed sampling interval tp* = maxZ° = 15. This though performs significantly better than periodic sampling esiBc
has the effect, thaP® = 1.83 whereasP® = 1.74, such when communication costs are medium to high. However, at
that it is always more favourable to have a sample intervedmpling intervals of 2 and 3 time-steps the self-triggered
of 2 samples instead of 1, even whan= 0. We therefore algorithm performs slightly worse than the periodic alguri.
changed the cost of control # = 0.1 such that we allow for This is caused by the fact, that if the state of the systenoiecl
larger control signals and force the process to sample ay evéy zero when sampled, the cost of sampling is much higher
time instance if = 0 is chosen. The initial state is randomlythan the cost of the state error and control, hence the tirtie un
generated as,(0) ~ N(0,07 ,) , whereo? , = 2500. the next sample is taken is large. To avoid this phenomenon, i

Fig. [ shows the average sampling interval during theture work, one could take the statistics of the processenoi
simulations for different choices of for the integrator system. into account in the cost function. It can further be notidbds
The relation between the value afand the average samplingwhena — oo, the performance of the self-triggered algorithm
interval is in general monotonic but highly affected by thé very close to the cost of the periodic algorithm. This is as
system to be controlled and the statistics of the disturesin@xpected, since the cost of will be greater than the cost
in the system. of the state and control, which will result in sample intdsva

Since we now have the range of values in which we wanf i = p* = 15. This reduces the self-triggered algorithm to
to sweepa, we present a simple periodic MPC cost to whiclperiodic control.
we compare our algorithm. This cost is given by

C. Multiple Loops

oo Ts
Jo(xe(k), Uy) = Z Z lze(k + 1+ rTy)|3, We now continue with performing a simulation study where
=0 1=0 we control two systems over the same network. We will
+||ul(k+l+TTs)”?D%), start by showing a simple example followed by a more

extensive performance comparison of the Algorithin 2 to
which using Definitiof Il and Lemma&s 1 dnd 2 can be rewrittqreriodic control. We will keep the integrator system from
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Section[VIII-A now denoting it proces®; with dynamics x1(k)
ch(k + 1) = Alxl(k:) + Blul(k) with (Al,Bl) = (1, 1) as ? ‘ ‘ ‘
before. In addition we will the control proce$s which is

a double integrator system which we discretize using sample
and hold with sampling tim&, = 1 s giving i

()-GO (is)wer o
—_— ( ‘ ‘

Ig(k+1) Ao Ig(k) Bs 05

We wish to control these processes using our proposed o o o o
multiple loop self-triggered MPC described in AlgoritHmh 2.
As we wish to stabilize these systems we start by checking
the conditions of Theoreml 5 and Corolldry 2. First we may
easily verify that both the pair§A;, B;) and (As, Bs) are s L = - " - »
controllable. To use the stability results we need Assuomidi k
to hold, implying that we must choosg; = p» = p, (@) System response for proceBs
79 = 79 = 7° and choos&® such thaf{1,2} € 7° and2 < p. zo (k)
For reasons of performance we wish to guarantee that the :‘ ‘ ‘
systems are sampled at least every, s and therefore choose o ©

e

[0]
[0]
[0]

) =19 = 1 = {1,2,3,4,5} fulfilling the requirement
above. We also note tha(A;) = {1} and A(A42) = {1,1}
and that hence both system fulfill Assumptidn 1 for this choic -2 ]
of 70, implying that [I3) in Theorerml5 givgs = max7° = ; m T » 5 %
5. Thus choosing = p* as stated in Theorel 5 results in that ua (k)
Assumptior 2 holds. What now remains to be decided are the ‘ ‘
weightsay, Q¢ and Ry. osh
For the integrator procesB; we keep the same tuning as o 6 © © ©
in Section[VIII-A with Q; = R; = 1. Having decided?),, o
R1, I° andp* we use Theoreinl 3 to compute the needed state ..} ]
feedback gains and cost function matri¢&s”, L{") vi € 7° % ; o " » » »
needed by Algorithni]2. We also keep = 0.2 as it gave a K
good communication versus performance trade-off. (b) System response for proce®s
For the double integrator proceBs the weights are chosenrig. 7. The processe®; and P. controlled and scheduled on the same
to be@Q, = I as we consider both states equally important amgtwork using our multiple loop self-triggered MPC.
Ry = % to favor control performance and allow for larger
control signals. Having decide@», R., Z' andp* we may
use Theorenmh]3 to compute the needed state feedback g

i i (@) 7@ : 0
and cost function matricegP,”, L;") Vi € I° needed by run Algorithm [2 first. As sensotS; is not scheduled for

e e s o) VanSMISsins vl (0) — 7 from which he conll
the r? mber cg‘ samples P cnooseqd; (0) = 1. Then loop2 gets to run Algorithmi P at time
u Pes. k = 0. As sensoiS; now is scheduled for transmission at time

We have now fulfilled all the assumptions of both TheoE — 0+ 1,(0) = 1, Theoreni® gived,(0) — 7°\ {1}. From

rem(3 and Corollary]2. Hence applying Algorittit 2 ChOOSinv%hich the controller choosek (0) = 2. The process is then

Zy(k¢) according to Theorer] 4 will asymptotically stabilize ! . .
both proces; andPs. repeated every time a sample is transmitted to the controlle

ControllingP; andP, using our multiple loop self-triggered giving the result in FigLB. As seen both the Sg{) and the

MPC described in Algorithrial2 with the above designed tuningimmal time to waitl, () converges to some fixed value as
we get the result shown in Figl 7. As expected, the behavior i state of the corresponding procégsconverges to zero.
the controller illustrated in Sectidn VIITJA carries thrglu also ) o
to the case when we have multiple loops on the network. B Comparison to periodic control
fact comparing Figl_4{&) showing how the controller handles For a more thorough performance comparison, we simulate
processP; when controlling it by itself on the network andthe systems using Algorithid 2 and compare them to the peri-
Fig.[7(@) which shows how; is handled in the multiple loop odic algorithm that uses the cost functiénl(15). The singke a
case we see that they are the same. Further we see thatjasble integrator processe®;(andP;) are simulated using
expected, in stationarity the two loops controlling pracBs the parameters mentioned in Section VIlI. The variance ef th
and P, both converge to the sampling raté. disturbances for both processes are seto= 0.1, V¢, the

As mentioned previously the controller uses the mechanisrriance of the initial state to? , = 25, ¥/ andE, = [1, 1]©
in Theorem# to choose the set of feasible times to wait (I4). The value of« is identical for both processes in

T T
?lﬂ

¢

0]

0]

0]

gintsil the next sample. In Fid] 8 we can see how the resulting
S&SI@(IC[) look in detail. At timek = 0 loop 1 gets to
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‘ 7 ‘(~) Normalized average empiric cost
sik%k O o ) o o o ! P T °
— Self-triggeredP;
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Average sampling interval
% O
2FO ¥ % * * * * * Fig. 10. Performance for both processes for the self-trigiealgorithm
Az * * % % % % compared to a simple periodic algorithm for different sangpintervals. The
s . . . ‘ . . max sampling intervap* = 15. This is done by varyingx from 0 to 10°

and calculating the average amount of samples for everyewafld.

Fig. 8. The sets,(-) of feasible times to wait until the next sample for o )
loop 1 and loop2. The optimal time to waitl,(-) is marked by red circles the average sampling interval increases.

whereas the other feasible times are starred. As o — oo the cost of sampling forces the self-triggered
algorithm to behave similar to the periodic sampled altonit

Normalized average empiric cost

1 T

— Self-triggeredP;
08 - - Self-triggeredP,

Therefore the performance gap between the periodic and self
triggered algorithms narrows, as the average samplingvite
is close top*.

PeriodicP;
06F O PeriodicPs

-1 IX. CONCLUSIONS

o4r 0---"" -7 | We have studied joint design of control and adaptive

o2k i | scheduling of multiple loops, and have presented a method
which at every sampling instant computes the optimal céntro

05 5 25 5 Py . s s signal to be applied as well as the optimal time to wait

Average sampling interval before taking the next sample. It is shown that this control

law may be realized using MPC and computed explicitly.
The controller is also shown to be stabilizing under mild
assumptions. Simulation results show that the use of the
presented control law in most cases may help reducing the
required amount of communication without almost any loss
of performance compared to fast periodic sampling.

In the multiple loop case we have also presented an algo-

Fig. 9. Performance for both processes for the self-triggjealgorithm
compared to a simple periodic algorithm for different sangpintervals. The
max sampling intervap* = 5. This is done by varyingx from 0 to 5 - 10%
and calculating the average amount of samples for everyewafld.

each simulation, such that; = as. FurtherR; = 0.1. The

simulation for both algorithms is initialized as described rithm for guaranteeing conflict free transmissions. It isvsh
Remarl{8. that under mild assumptions there always exists a feasible

Fig [9 shows the performance for the processes,and schedule for the network. The complexity of the multiple
P, calculated by averaging ([16) over 100 simulations eatbop self-triggered MPC and the corresponding scheduling
of length 10000 for different values of whenp} = p; = 5. algorithm scales linearly in the number of loops.

Fig.[10 shows the performance whgh= p; = 15. The cost  An interesting topic for future research is to further inves
of each process is normalized with respect to its largedt ctéigate the complexity and possible performance increase fo
for easier viewing. such an extended formulation.

Both figures show that the self-triggered algorithm in gen- Intuitively, additional performance gains can be achieved
eral outperforms periodic sampling. The performance nmargivhen the cost function takes process noise into account as
increases as the sampling interval increases.[Fig. 9 sHmws tvell. Exploiting this could be of interest in future resdarc
P, whena = 0 samples every 1.8 time steps on average, Another topic for future research would be to apply the
whereasP; only samples every 2.2 time steps. When presented framework to constrained control problems.
increases both processes sample almost every 2 time steps.
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Now applying Lemma&]1l we get Sincee € (0, 1] this is equivalent to

. . o . 1—(1—¢)t
T (@ (k),6,U(i) = = + ek + )l Vier S (L—e) Vit 5 1—(<—1 - 2) ’
T A T p(i T (e
(k)T QWa(k) + u(k)" RV u(k) + 2x(k)" NWu(k). which asl — oo gives us an upper bound on the cost function,
with z(k + &) = A@z(k) + BOu(k). Minimizing Virrr < /€. Applying this idea on our setup we should fulfil

J(x(k),,U(z)) now becomes a finite horizon optimal control «
problem with one prediction step into the future. This pesbl ~ p«
has the well defined solutiori](7), seeg, [37], given by
iterating the Riccati equatiof](8).

a
=7~ I2klE) s
@ ~ . N
< —ez —ell@k +ilk) [ poe) — ell2kIR)IS0 + B

ChoosingB £ a/p* — (1 — €)a/y we have fulfilment if
C. Proof of Theorerfil2

: _ _ (Ilfr(kﬂlk)ll oo + 1 2(k[R) 5 )) < & (klk) 13- (20)
Proof. By assumption(A, B) is controllable. Together with
the choice op* this, via LemmaRB, implies thatA®?™), B("))  Clearly therede € (0, 1] such that the above relation is fulfilled
is controllable. Further let(%’|k) denote an est|mate o:f(k’) if 0 < [|Z(k[k)||%, . For the casdlz(k|k)||%. = 0 we must,
given all available measurements up until tifaeDefining following the definition [IIV) and the assumption< @, have
4 that Z(k|k) = 0 and&(k + i|k) = 0 and hence the relation

N 2 A N 2 N 2 is fulfilled also in this case. Using the final step [n](18) we
Iz (k1R 50 = ; <|x(k+ Rl + ||u(k|k)”R> (17) may express[(20) in easily computable quantities giving the

condition
we may, since by assumption< @ and0 < R, use Lemmal2 R e R )
and Theorenf]1 to expreds,, the optimal value of the cost [2(k + i[k) I oo < (1= e)ll2(klk) b0 -
@ at the current sampling instak} as As this should hold/z andVi € 7° we must fulfil
£ i k)i a(klk i i) 7 N\T p(p* i D i
Vi ieZgEI(lk\k)J(x( ), 1, 0(k|k)) (AD — BO LT pe) (4G — BOLOY < (1 — )P
= min & etk + ilk) |50 + |2(k[K) |2,  (18) Which is stated in the Theorem. Summing up we have
S 7
o . o ~ 2 « 1 1
= mmin &+ (K20 Viwr < & (E —a- 6)5)

We will useV}, as a Lyapunov-like function. Assume tHat,; which is minimized by maximizing. From the definition of
is the optimal cost at the next sampling instant- i. Again the cost[(B) we may also conclude thaty < V,,. With
using Theorem]1 we may express it as
Vi = i J(x(k +1), §, a(k + ik +
b & i (ko ),k o+ ik )
< min J(x(k+1),5 =p", a(k+ ik + 1))

e (@ kU 4+ 12
Viww = iy (4 otk + 05+ 1),

we may conclude that

T a(k4il k4i) 1 1
a . . . (19) 2 <y <g+ 2 (k|k 2.><%<__1_ _>.
=2 otk ik )l 7 <l min 7+ IeERIE ) < 25 - (-a7
Qo . . O
= Tlate+ i) B
Where the inequality comes from the fact that choogirgp* D. Proof of Lemmal4
is sub-optimal. Taking the difference we get Proof. From [11) it is clear thap* =~ if )\ € A\(A) except
a o« A ) A = 1 such that\” = 1. In polar coordinates we have that
Virs = Ve < 5 = 7 = 2R ls0 A= |Mexp(j - Z)) implying A = [A[Texp(j -7 - ZA) = 1
may only be fulfilled if |A\| = 1 and Z\ = 2% . n for some
which in general is not decreasing. However we may use the = N+, which contradicts Assumptidd 1. v O

following idea to bound this difference: Assume that there
Je € (0,1] and 8 € Rt such that we may write
E. Proof of Corollary(1

Proof. From Theoreni]2 we have that &s— oo

for all k,k +i € D, see[(IB) and (10). Thus, atsampling « <m 9 L@ 1 1
instances into the future, which happens at let's say tmé, ~ on + lz(B)pe ) < = p* (- 6)§
we have that

Viti = Vie < =€V + 8,

which asp* = v, given by LemmadH4, simplifies to

Vier (- V4 8-S (1 o). LI < Tk >|?Dm) <
r=0 Y i€ ZO Y



independent ot. Implying that ask — oo we have that = v
and ||z(k)||%,, = 0, since0 < P provided0 < Q this
implies z(k) = 0 independent ofx. In the casen = 0 the
bound from Theorernl2 simplifies to that As— oo

0 < mi B)%e <0
< min [lz(k)|[pe <

and hence for the optimalwe havel|z(k)||%,, = 0 implying
z(k) = 0 as above. O

F. Proof of Lemm&l5

Proof. When loopg¢ was last sampled at timg, < k, it
was optimized ovetZ,(k,) and found the optimal feasible
time until the next samplé, (k,). The loop then reserved the
infinite sequence

Sq(kq) = {kq + Iq(kq)a kq + Iq(k) + pg,
kg + Iq(kq) +2pg, kg + Iq(kq) +3pg, - -}
When loop¢ now should choosd,(k,) it must be able to
reserve[(IR). To ensure that this is true it must chaék)

so thatS,(k,) N Sy(ky) =0, Vq € L\ {¢}. This holds if we
have that

ke + Lo(ke) +m - pe # kg + 1g(kq) + 1 pg,
Vm,neN,VqgelL\{{}

Simplifying the above condition we get conditions on the
feasible values of (k)

If(kl) # (kq "’Iq(kq)) — ke +Nn-pg— M- pe,
Vm,neN,VqgelL\{{}

Noticing that kq+Iq(kq)) is the next transmission of loap
we denote itk)**, giving the statement in the lemma. O

G. Proof of Theorerhl4

Proof. Assumingp, = p andZ? = Z° for all loops Lemmdb
gives Zy(k,) as stated in the theorem. Since by assumption
L C Z° we know that

To(ke) D{i € Lli # k)™ —k¢+7-p, v €Z, g€ L\ {{}}.
Further, sincanaxIL. < p we know that the set
{ielli=k™—ki+r-preZ}
contains at most one element for a given lapprhus,
{ieLli# k™ —ki+r-p,reZ qeL\{}}

contains at least one element @s= L \ {¢} C L. Hence
T,(k¢) always contains at least one elemeéfit,, and thus
there always exists a feasible time to wait. O

H. Proof of Theorem]5

Proof. Direct application of Theoreril2 on each loop. The
corresponding proof carries through as the choiceZdfk)
together with the remaining assumptions guarantees that we
may apply Theorernl3 on the feasible values of every step,
thus the expression fdrj in (18) always exists. The critical
step is that the upper bound 64 ; in (I9) must existj.e.,,

the choicej = p* must be feasible. This is also guaranteed
by the choice ofZ;(k), see Remark10. O
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