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Multiple Loop Self-Triggered Model Predictive
Control for Network Scheduling and Control

Erik Henriksson, Daniel E. Quevedo, Edwin G.W. Peters, Henrik Sandberg, Karl Henrik Johansson

Abstract—We present an algorithm for controlling and
scheduling multiple linear time-invariant processes on a shared
bandwidth limited communication network using adaptive sam-
pling intervals. The controller is centralized and computes at
every sampling instant not only the new control command for a
process, but also decides the time interval to wait until taking
the next sample. The approach relies on model predictive control
ideas, where the cost function penalizes the state and control
effort as well as the time interval until the next sample is
taken. The latter is introduced in order to generate an adaptive
sampling scheme for the overall system such that the sampling
time increases as the norm of the system state goes to zero.
The paper presents a method for synthesizing such a predictive
controller and gives explicit sufficient conditions for when it is
stabilizing. Further explicit conditions are given which guarantee
conflict free transmissions on the network. It is shown that
the optimization problem may be solved off-line and that the
controller can be implemented as a lookup table of state feedback
gains. Simulation studies which compare the proposed algorithm
to periodic sampling illustrate potential performance gains.

Index Terms—Predictive Control; Networked Control Systems;
Process Control; Stability; Scheduling; Self-triggered Control.

I. I NTRODUCTION

Wireless sensing and control systems have received in-
creased attention in the process industry over the last years.
Emerging technologies in low-power wake-up radio enables
engineering of a new type of industrial automation systems
where sensors, controllers and actuators communicate overa
wireless channel. The introduction of a wireless medium in
the control loop gives rise to new challenges which need to
be handled [1]. The aim of this paper is to address the problem
of how the medium access to the wireless channel could
be divided between the loops, taking the process dynamics
into consideration. We investigate possibilities to design a
self-triggered controller, that adaptively chooses the sampling
period for multiple control loops. The aim is to reduce the
amount of generated network traffic, while maintaining a
guaranteed level of performance in respect of driving the initial
system states to zero and the control effort needed.

Consider the networked control system in Fig. 1, which
shows how the sensors and the controller are connected
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Fig. 1. ActuatorsA and processesP are wired to the controllerC while the
sensorsS communicate over a wireless network, which in turn is coordinated
by the Network Manager.

through a wireless network. The wireless network is controlled
by a Network Managerwhich allocates medium access to
the sensors and triggers their transmissions. This setup is
motivated by current industry standards based on the IEEE
802.15.4 standard,e.g., [2], [3], which utilizes this structure
for wireless control in process industry. Here the triggering is
in turn generated by the controller which, in addition to com-
puting the appropriate control action, dynamically determines
the time of the next sample by a self-triggering approach [4].
In doing so the controller gives varying attention to the loops
depending on their state, while trying to communicate only
few samples. To achieve this the controller must, for every
loop, trade control performance against inter sampling time
and give a quantitative measure of the resulting performance.

The main contribution of the paper is to show that a self-
triggering controller can be derived using a receding horizon
control formulation where the predicted cost is used to jointly
determine what control signal to be applied as well as the time
of the next sampling instant. Using this formulation we can
guarantee a minimum and a maximum time between samples.

We will initially consider a single-loop system. We will then
extend the approach to the multiple-loop case which can be
analyzed with additional constraints on the communication
pattern. The results presented herein are extensions to the
authors’ previous work presented in [5]. These results have
been extended to handle multiple control loops on the same
network while maintaining control performance and simulta-
neously guarantee conflict free transmissions on the network.

The development of control strategies for wireless automa-
tion has become a large area of research in which, up until
recently, most efforts have been made under the assumption
of periodic communication [6]. However the idea of adaptive
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sampling is receiving increased attention. The efforts within
this area may coarsely be divided into the two paradigms of
event- and self-triggered control. In event-triggered control,
e.g., [7], [8], [9], [10], [11], [12], [13], [14], [15] the sen-
sor continuously monitors the process state and generates a
sample when the state violates some predefined condition.
Self-triggered control,e.g., [4], [16], [17], [18], utilizes a
model of the system to predict when a new sample needs
to be taken in order to fulfill some pre-defined condition. A
possible advantage of event- over self-triggered control is that
the continuous monitoring of the state guarantees that a sample
will be drawn as soon as the design condition is violated, thus
resulting in an appropriate control action. The self-triggered
controller will instead operate in open-loop between samples.
This could potentially be a problem as disturbances to the
process between samples cannot be attenuated. This problem
may however be avoided by good choices of the inter-sampling
times. The possible advantage of self- over event-triggered
control is that the transmission time of sensor packets is known
a-priori and hence we may schedule them, enabling sensors
and transmitters to be put to sleep in-between samples and
thereby save energy.

The research area of joint design of control and communica-
tion is currently very active, especially in the context of event-
triggered control. In [19] a joint optimization of control and
communication is solved using dynamic programming, placing
a communication scheduler in the sensor. In [20], [21] and [22]
the control law and event-condition are co-designed to match
performance of periodic control using a lower communication
rate. In [23] this idea is extended to decentralized systems.
The use of predictive control is also gaining popularity within
the networked control community [24], [25], [26], [27]. In
[28] predictive methods and vector quantization are used to
reduce the controller to actuator communication in multiple
input systems. In [29] model predictive control (MPC) is used
to design multiple actuator link scheduling and control signals.
There have also been developments in using MPC under
event-based sampling. In [30] a method for trading control
performance and transmission rate in systems with multiple
sensors is given. In [31] an event-based MPC is proposed
where the decision to re-calculate the control law is based
on the difference between predicted and measured states.

The problem addressed in the present paper, namely the
joint design of a self-triggering rule and the appropriate control
signal using MPC has been less studied than its event-triggered
counterpart. In [32] an approach relying on an exhaustive
search which utilizes sub-optimal solutions giving the control
policy and a corresponding self-triggering policy is presented.
In [33] it is suggested that a portion of the open loop trajectory
produced by the MPC should be applied to the process. The
time between re-optimizations is then decided via a self-
triggering approach.

The approach taken in this paper differs from the above
two in that the open loop cost we propose the MPC to solve
is designed to be used in an adaptive sampling context. Further
our extension to handle multiple loops using a self-triggered
MPC is new. So is the guarantee of conflict free transmissions.

The outline of the paper is as follows. In Section II

the self-triggered network scheduling and control problemis
defined and formulated as a receding horizon control problem.
Section III presents the open-loop optimal control problemfor
a single loop, to be solved by the receding horizon controller.
The optimal solution is presented in Section IV. Section V
presents the receding horizon control algorithm for a single
loop in further detail and gives conditions for when it is stabi-
lizing. The results are then extended to the multiple loop case
in Section VII where conditions for stability and conflict free
transmissions are given. The proposed method is explained and
evaluated on simulated examples in Section VIII. Concluding
discussions are made in Section IX.

II. SELF-TRIGGEREDNETWORKED CONTROL

ARCHITECTURE

We consider the problem of controllings ≥ 1 processes
P1 throughPs over a shared communication network as in
Fig. 1. The processes are controlled by the controllerC which
computes the appropriate control action and schedule for each
process. Each processPℓ is given by a linear time-invariant
(LTI) system

xℓ(k + 1) = Aℓxℓ(k) +Bℓuℓ(k),

xℓ(k) ∈ Rnℓ , uℓ(k) ∈ Rmℓ .
(1)

The controller works in the following way: At timek = kℓ,
sensorSℓ transmits a samplexℓ(kℓ) to the controller, which
then computes the control signaluℓ(kℓ) and sends it to the
actuatorAℓ. Hereℓ ∈ {1, 2, . . . , s} is the process index. The
actuator in turn will apply this control signal to the process
until a new value is received from the controller. Jointly with
decidinguℓ(kℓ) the controller also decides how many discrete
time steps, sayIℓ(kℓ) ∈ N+ , {1, 2, . . .}, it will wait before
it needs to change the control signal the next time. This value
Iℓ(kℓ) is sent to theNetwork Managerwhich will schedule the
sensorSℓ to send a new sample at timek = kℓ + Iℓ(kℓ). To
guarantee conflict free transmissions on the network, only one
sensor is allowed to transmit at every time instance. Hence,
when deciding the time to waitIℓ(kℓ), the controller must
make sure that no other sensorSq, q 6= ℓ, already is scheduled
for transmission at timek = kℓ + Iℓ(kℓ).

We propose that the controllerC should be implemented as
a receding horizon controller which for an individual loopℓ
at every sampling instantk = kℓ solves an open-loop optimal
control problem. It does so by minimizing the infinite-horizon
quadratic cost function

∞∑

l=0

(

‖xℓ(kℓ + l)‖2Qℓ
+ ‖uℓ(kℓ + l)‖2Rℓ

)

subject to the user defined weightsQℓ andRℓ, while taking
system dynamics into account. In Section III we will embellish
this cost function, such that control performance, inter sam-
pling time and overall network schedulability also are taken
into consideration.

Remark 1. The focus is on a networked system where the
network manager and controller are integrated in the same
unit. This means, that the controller can send the schedules,
that contain the transmission times of the sensors, directly to
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Fig. 2. The prediction horizon. Here typical signal predictions are shown
with I(k) = 3 andp = 5.

the network manager. This information needs to be transmitted
to the sensor node such that it knows when to sample and
transmit. For example, using the IEEE 802.15.4 superframe,
described in [3], this can be done without creating additional
overhead. Here the network manager broadcasts a beacon in
the beginning of each superframe, which occurs at a fixed time
interval. This beacon is received by all devices on the network
and includes a schedule of the sensors that are allowed to
transmit at given times.

III. A DAPTIVE SAMPLING STRATEGY

For pedagogical ease we will in this section study the case
when we control a single process on the network allowing us
to drop the loop indexℓ. The process we control has dynamics

x(k + 1) = Ax(k) +Bu(k), x(k) ∈ Rn, u(k) ∈ Rm (2)

and the open-loop cost function we propose the controller to
minimize at every sampling instant is

J(x(k), i,U) =
α

i
+

∞∑

l=0

(

‖x(k + l)‖2Q + ‖u(k+ l)‖2R

)

(3)

where α ∈ R+ is a design variable that is used to trade
off the cost of sampling against the cost of control and
i = I(k) ∈ {1, 2, . . . , p} is the number of discrete time
units to wait before taking the next sample, wherep ∈ N+

is the maximum number of time units to wait until taking
the next sample. Further, the design variables0 < Q and
0 < R are symmetric matrices of appropriate dimensions. We
optimize this cost over the constraint that the control sequence
U , {u(k), u(k + 1), . . .} should follow the specific shape
illustrated in Fig. 2, for some fixed periodp. The periodp
is the maximum amount of time steps the sensor is allowed
to wait before taking the next sample. Ifp = 1, a sample is
taken at every time instance and a regular receding horizon
cost is obtained. If one on the other hand would select a
large value ofp, very long sampling intervals can be obtained.
This can though affect the control performance significantly
in case there are disturbances in the system that make the size
of the state increase. Thus, the number of discrete time units
i = I(k) ∈ {1, 2, . . . , p} to wait before taking the next sample
x(k + i), as well as the levels in the control sequenceU are
free variables over which we optimize. Note that neither the
state nor the control values have a constrained magnitude.

The constraint on the shape of the control trajectoryU is
motivated by the idea, that this sequence is applied to the
actuator from timek until time instantk+i. At timex(k+i) we
take a new sample and redo the optimization. By this method
we get a joint optimization of the control signal to be applied
as well as the number of time steps to the next sampling
instant. The reason for letting the system be controlled by a
control signal with periodp after this is that we hope for the
receding horizon algorithm to converge to this sampling-rate.
We will provide methods for choosingp so that this happens
in Section V. The reason for wanting convergence to a down
sampled control is that we want the system to be sampled at
a slow rate when it has reached steady state, while we want
it to be sampled faster during the transients.

If one includes the above mentioned constraints, then (3)
can be rewritten as

J(x(k), i,U(i)) =
α

i
+

i−1∑

l=0

(

‖x(k + l)‖2Q + ‖u(k)‖2R

)

+
∞∑

r=0

(
p−1
∑

l=0

(

‖x(k + i+ r · p+ l)‖2Q

+ ‖u(k + i+ r · p)‖2R

))

(4)

where i and U(i) , {u(k), u(k + i), u(k + i + η · p), . . .},
η ∈ N+, are the decision variables over which we optimize.
The termα/i reflects the cost of sampling. We use this cost
to weight the cost of sampling against the classical quadratic
control performance cost. For a givenx(k), choosing a largeα
will force i to be larger and hence give longer inter sampling
times. By the construction of the cost, we may tuneQ, R
andα via simulations to get the desired sampling behaviour
while maintaining the desired control performance. One could
imagine a more general cost of sampling. Here however we
found α/i sufficient to be able to trade control performance
for communication cost, see simulations in Section VIII-B.

IV. COST FUNCTION M INIMIZATION

Having defined the open-loop cost (4) we proceed by
computing its optimal value. We start by noticing that, even
though we have a joint optimization problem, we may state it
as

minimize
i

(

minimize
U(i)

J(x(k), i,U(i))
)

. (5)

We will use this separation and start by solving the inner
problem, that of minimizingJ(x(k), i,U(i)) for a given value
of i. In order to derive the solution, and for future reference,
we need to define some variables.

Definition 1. We define notation for the lifted model as

A(i) = Ai, B(i) =

i−1∑

q=0

AqB.

and notation for the generalized weighting matrices associated
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to (4) as

Q(i) = Q(i−1) +A(i−1)TQA(i−1)

R(i) = R(i−1) +B(i−1)TQB(i−1) +R

N (i) = N (i−1) +A(i−1)TQB(i−1)

wherei ∈ {1, 2, . . . , p}, Q(1) = Q, R(1) = R andN (1) = 0.

Using Definition 1 it is straightforward to show the follow-
ing lemma.

Lemma 1. It holds that
i−1∑

l=0

(

‖x(k + l)‖2Q + ‖u(k)‖2R

)

= x(k)TQ(i)x(k) + u(k)TR(i)u(k) + 2x(k)TN (i)u(k)

and x(k + i) = A(i)x(k) +B(i)u(k).

Lemma 2. Assume that0 < Q, 0 < R and that the pair
(A(p), B(p)) is controllable. Then

min
U(i)

∞∑

r=0

(
p−1
∑

l=0

(

‖x(k + i+ r · p+ l)‖2Q

+ ‖u(k + i+ r · p)‖2R

))

= ‖x(k + i)‖2P (p)

and the minimizing control signal characterizingU(i)) is given
by

u(k + i+ r · p) = −L(p)x(k + i+ r · p).

In the above,

P (p) = Q(p) +A(p)TP (p)A(p)

−
(
A(p)TP (p)B(p) +N (p)

)
L(p)

L(p) =
(
R(p) +B(p)TP (p)B(p)

)−1

×
(
A(p)TP (p)B(p) +N (p)

)T
.

(6)

Proof. The proof is given in Appendix A.

Using the above results we may formulate the main result
of this section as follows.

Theorem 1 (Closed Form Solution). Assume that0 < Q,
0 < R and that the pair(A(p), B(p)) is controllable. Then

min
U(i)

J(x(k), i,U(i)) =
α

i
+ ‖x(k)‖2

P (i) (7)

where
P (i) = Q(i) +A(i)TP (p)A(i)

−
(
A(i)TP (p)B(i) +N (i)

)
L(i)

L(i) =
(
R(i) +B(i)TP (p)B(i)

)−1

×
(
A(i)TP (p)B(i) +N (i)

)T

(8)

andP (p) is given by Lemma 2. Denoting the vector of all ones
in Rn as1n, the minimizing control signal sequence is given
by

U∗ = {−L(i)x(k)1T
i ,−L(p)x(k + i+ r · p)1T

p , . . .}, r ∈ N

where alsoL(p) is given by Lemma 2.

Proof. The proof is given in Appendix B.

Now, getting back to the original problem (5). Provided that
the assumptions of Theorem 1 hold, we may apply it giving
that

min
i,U(i)

J(x(k), i,U(i)) = min
i

{α

i
+ ‖x(k)‖2

P (i)

}

.

Unfortunately the authors are not aware of any method to solve
this problem in general. If howeveri is restricted to a known
finite set I0 ⊂ N+ we may find the optimal value within
this set for a given value ofx(k) by simply evaluatingα

i
+

‖x(k)‖2
P (i) ∀i ∈ I0 and by this obtaining thei which gives

the lowest value of the cost. This procedure gives the optimum
of (5). Note that the computational complexity of finding the
optimum is not necessarily high, as we may computeP (i)

∀i ∈ I0 off-line prior to execution.

V. SINGLE LOOPSELF-TRIGGEREDMPC

Having presented the receding horizon cost, we now con-
tinue with formulating its implementation in further detail. We
will assume that0 < Q, 0 < R and that the down-sampled
pair (A(p), B(p)) is controllable. Let us also assume that the
finite andnon-emptysetI0 ⊂ N+ is given and let

γ = maxI0. (9)

From this we may use Theorem 1 to compute the pairs
(P (i), L(i)) ∀i ∈ I0 and formulate our proposed receding
horizon control algorithm for a single loop:

Algorithm 1. Single Loop Self-Triggered MPC

1) At time k = k′ the samplex(k′) is transmitted by the
sensor to the controller.

2) Using x(k′) the controller computes

I(k′) = argmin
i∈I0

α

i
+ ‖x(k′)‖2

P (i)

u(k′) = −L(I(k′))x(k′)

3) a) The controller sendsu(k′) to the actuator which
appliesu(k) = u(k′) to (2) until k = k′ + I(k′).

b) The network manager is requested to schedule the
sensor to transmit a new sample at timek = k′ +
I(k′).

Remark 2. Note that the control signal value is sent to
the actuator at the same time as the controller requests the
scheduling of the next sample by the sensor.

Remark 3. The proposed algorithm guarantees a minimum
and a maximum inter-sampling time. The minimum time is1
time step in the time scale of the underlying process (2) and the
maximum inter sampling time isγ time steps. This implies that
there is some minimum attention to every loop independent of
the predicted evolution of the process.

Remark 4. Even though we are working in uniformly sampled
discrete time the state is not sampled at every time instantk.
Instead the set of samples of the state actually taken is given
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by the setD, which assuming that the first sample is taken at
k = 0, is given by

D = {x(0), x(I(0)), x(I(I(0))), . . .} . (10)

VI. A NALYSIS

Having established and detailed our receding horizon con-
trol law for a single loop we continue with giving conditions
for when it is stabilizing. Lettingλ(A) denote the set of
eigenvalues ofA we first recall the following controllability
conditions.

Lemma 3. [34] The system(A(i), B(i)) is controllable if and
only if the pair(A,B) is controllable andA has no eigenvalue
λ ∈ λ(A) such thatλ 6= 1 andλi = 1.

Using the above, and the results of Section IV, we may
now give conditions for when the proposed receding horizon
control algorithm is stabilizing.

Theorem 2 (Practical stability [35]). Assume0 < Q, 0 < R
and that(A,B) is controllable. If we choosei ∈ I0 ⊂ N+

and p = p∗ given by

p∗ = max{i|i ∈ I0, ∀λ ∈ λ(A) λi 6= 1 if λ 6= 1} (11)

and apply Algorithm 1, then the system state is ultimately
bounded as per:

α

γ
≤ lim

k→∞
min
i∈I0

(
α

i
+ ‖x(k)‖2

P (i)

)

≤
α

ǫ

(
1

p∗
− (1 − ǫ)

1

γ

)

.

In the above,γ is as in (9) andǫ is the largest value in the
interval (0, 1] which ∀i ∈ I0 fulfils
(
A(i) −B(i)L(i)

)T
P (p∗)

(
A(i) −B(i)L(i)

)
≤ (1− ǫ)P (i)

and is guaranteed to exist.

Proof. The proof is given in Appendix C.

Remark 5. The bound given in Theorem 2 scales linearly with
the choice ofα.

Assumption 1. Assume that∄λ ∈ λ(A) except possiblyλ = 1
such that|λ| = 1 and the complex argument∠λ = 2π

γ
· n for

somen ∈ N+.

Lemma 4. Let Assumption 1 hold, thenp∗ = γ.

Proof. The proof is given in Appendix D.

Corollary 1 (Asymptotic stability of the origin). Assume0 <
Q, 0 < R and that(A,B) is controllable. Further assume that
either Assumption 1 holds orα = 0. If we choosei ∈ I0 ⊂ N+

and p = p∗ given by (11) and apply Algorithm 1, then

lim
k→∞

x(k) = 0

Proof. The proof is given in Appendix E.

From the above results we may note the following.

Remark 6. If the assumptions of Theorem 2 hold, then
Corollary 1 can be used to ensure asymptotic stability of the
origin, except in the extremely rare case that the underlying
system(A,B) becomes uncontrollable under down sampling

by a factorγ, see Lemma 3. Otherwise one may use Lemma 4
to re-designI0 giving a new value ofγ which recovers the
casep∗ = γ.

Remark 7. It is worth noticing that the developed framework
is not limited to just varying the time to the next sample
i as in Fig. 2. One could expand this by using a “multi-
step” approach wherein the inter sampling time is optimized
over several frames before reverting to constant sampling with
period p.

VII. E XTENSION TO MULTIPLE LOOPS

Having detailed the controller for the case with a single
loop on the network and given conditions for when it is
stabilizing we now continue with extending to the case when
we control multiple loops on the network, as described in
Fig. 1. The idea is that the controllerC now will run s such
single loop controllers described in Algorithm 1 in parallel,
one for each processPℓ, ℓ ∈ L = {1, 2, . . . , s}, controlled
over the network. To guarantee conflict free communication on
the network the controllerC will, at the same time, centrally
coordinate the transmissions of the different loops.

A. Cost Function

We start by extending the results in Section III to the case
when we have multiple loops. The cost function we propose
the controller to minimize at every sampling instant for loop ℓ
is then

Jℓ(xℓ(k), i,Uℓ(i)) =
αℓ

i
+

i−1∑

l=0

(

‖xℓ(k + l)‖2Qℓ
+ ‖uℓ(k)‖

2
Rℓ

)

+

∞∑

r=0

(
pℓ−1
∑

l=0

(

‖xℓ(k + i+ r · pℓ + l)‖2Qℓ

+ ‖uℓ(k + i+ r · pℓ)‖
2
Rℓ

))

derived in the same way as (4) now withαℓ ∈ R+, 0 < Qℓ

0 < Rℓ and periodpℓ ∈ N+ specific for the control of process
Pℓ given by (1). From this we can state the following.

Definition 2. We define the notation in the multiple loop case
following Definition 1. For a matrixEℓ, e.g., Aℓ andQℓ, we
denote

(
Eℓ

)(i)
by E

(i)
ℓ .

Theorem 3 (Closed Form Solution). Assume that0 < Qℓ,
0 < Rℓ and that the pair(A(p)

ℓ , B
(p)
ℓ ) is controllable. Then

min
Uℓ(i)

Jℓ(xℓ(k), i,Uℓ(i)) =
αℓ

i
+ ‖xℓ(k)‖

2

P
(i)
ℓ

where

P
(i)
ℓ = Q

(i)
ℓ +A

(i)
ℓ

T
P

(pℓ)
ℓ A

(i)
ℓ −

(
A

(i)
ℓ

T
P

(pℓ)
ℓ B

(i)
ℓ +N

(i)
ℓ

)
L
(i)
ℓ

L
(i)
ℓ =

(
R

(i)
ℓ +B

(i)
ℓ

T
P

(pℓ)
ℓ B

(i)
ℓ

)−1(
A

(i)
ℓ

T
P

(pℓ)
ℓ B

(i)
ℓ +N

(i)
ℓ

)T
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and

P
(pℓ)
ℓ = Q

(pℓ)
ℓ +A

(pℓ)
ℓ

T
P

(pℓ)
ℓ A

(pℓ)
ℓ

−
(
A

(pℓ)
ℓ

T
P

(pℓ)
ℓ B

(pℓ)
ℓ +N

(pℓ)
ℓ

)
L
(pℓ)
ℓ

L
(pℓ)
ℓ =

(
R

(pℓ)
ℓ +B

(pℓ)
ℓ

T
P

(pℓ)
ℓ B

(pℓ)
ℓ

)−1

×
(
A

(pℓ)
ℓ

T
P

(pℓ)
ℓ B

(pℓ)
ℓ +N

(pℓ)
ℓ

)T
.

Denoting the vector of all ones inRn as 1n, the minimizing
control signal sequence is given by

U∗
ℓ = {−L

(i)
ℓ xℓ(k)1

T
i ,−L

(pℓ)
ℓ xℓ(k+i+r·pℓ)1

T
pℓ
, . . .}, r ∈ N.

Proof. Application of Theorem 1 on the individual loops.

B. Multiple Loop Self-Triggered MPC

To formulate our multiple loop receding horizon control law
we will re-use the results in Section V and apply them on a
per loop basis.

For each processPℓ with dynamics given in (1) let the
weightsαℓ ∈ R+, 0 < Qℓ 0 < Rℓ and periodpℓ ∈ N+

specific to the process be defined. If we further define the
finite set I0

ℓ ⊂ N+ for loop ℓ we may apply Theorem 3 to
compute the pairs(P (i)

ℓ , L
(i)
ℓ ) ∀ i ∈ I0

ℓ . Provided of course
that the pair(A(pℓ)

ℓ , A
(pℓ)
ℓ ) is controllable.

As discussed in Section II when choosingi the controller
must take into consideration what transmission times other
loops have reserved as well as overall network schedulabil-
ity. Hence at timek = kℓ loop ℓ is restricted to choose
i ∈ Iℓ(kℓ) ⊆ I0

ℓ whereIℓ(kℓ) contains the feasible values of
i which gives collisions free scheduling of the network. Note
that at timek = kℓ the control inputuℓ and time for the next
sampleIℓ only have to be computed for asingle loop ℓ. How
Iℓ(kℓ) should be constructed when multiple loops are present
on the network is discussed further later in this section.

We may now continue with formulating our proposed algo-
rithm for controlling multiple processes over the network.The
following algorithm is executed whenever a sample is received
by the controller.

Algorithm 2. Multiple Loop Self-Triggered MPC

1) At time k = kℓ the samplexℓ(kℓ) of processPℓ is
transmitted by the sensorSℓ to the controllerC.

2) The controllerC constructsIℓ(kℓ).
3) Using xℓ(kℓ) the controllerC computes

Iℓ(kℓ) = arg min
i∈Iℓ(kℓ)

αℓ

i
+ ‖xℓ(kℓ)‖

2

P
(i)
ℓ

uℓ(kℓ) = −L
(I(kℓ))
ℓ xℓ(kℓ).

4) a) The controllerC sendsuℓ(kℓ) to the actuatorAℓ

which appliesuℓ(k) = uℓ(kℓ) to (1) until k =
kℓ + Iℓ(kℓ).

b) TheNetwork Manageris requested to schedule the
sensorSℓ to transmit a new sample at timek =
kℓ + Iℓ(kℓ).

Note that at timek step 3 only needs to be performed for
loop l.

Remark 8. When the controller is initialized at timek = 0
it is assumed that the controller has knowledge of the state
xℓ(0) for all processesPℓ controlled over the network. It will
then execute Algorithm 2 entering at step2, in the order of
increasing loop indexℓ.

C. Schedulability

What remains to be detailed in the multiple loop receding
horizon control law is a mechanism for loopℓ to chooseIℓ(kℓ)
to achieve collision free scheduling. We now continue with
giving conditions for when this holds.

First we note that when using Theorem 3 we make the im-
plicit assumption that it is possible to apply the corresponding
optimal control signal sequenceU∗

ℓ . For this to be possible
we must be able to measure the statexℓ(k) at the future time
instances

Sℓ(kℓ) = {kℓ + Iℓ(kℓ), kℓ + Iℓ(kℓ) + pℓ,

kℓ + Iℓ(kℓ) + 2pℓ, kℓ + Iℓ(kℓ) + 3pℓ, . . .}. (12)

Hence this sampling pattern must be reserved for use by sensor
Sℓ. We state the following to give conditions for when this is
possible.

Lemma 5. Let loop ℓ choose its setIℓ(kℓ) of feasible times
to wait until the next sample to be

Iℓ(kℓ) = {i ∈ I0
ℓ |i 6= knext

q − kℓ + n · pq −m · pℓ,

m, n ∈ N, q ∈ L \ {ℓ}}

whereknext
q is the next transmission time of sensorSq. Then it

is possible to reserve the needed sampling patternSℓ(kℓ) in
(12) at timek = kℓ.

Proof. The proof is given in Appendix F.

ConstructingIℓ(kℓ) as above we are not guaranteed that
Iℓ(kℓ) 6= ∅. To guarantee this we make the following assump-
tion.

Assumption 2. Assume that for every loopℓ on the network
I0
ℓ = I0 and pℓ = p. Further assume thatL ⊆ I0 and

maxL ≤ p.

Theorem 4. Let Assumption 2 hold. If every loopℓ chooses

Iℓ(kℓ) = {i ∈ I0|i 6= knext
q − kℓ + r · p, r ∈ Z, q ∈ L \ {ℓ}}

all transmissions on the network will be conflict free and it
will always be possible to reserve the needed sampling pattern
Sℓ(kℓ) in (12).

Proof. The proof is given in Appendix G.

Remark 9. The result in Lemma 5 requires the reservation of
an infinite sequence. This is no longer required in Theorem 4
as all loops cooperate when choosing the set of feasible times
to wait. In fact loopℓ only needs to know the current timekℓ,
the periodp and the times when the other loops will transmit
nextknext

q ∀ q ∈ L \ {ℓ} in order to find its own valueIℓ(kℓ).

Remark 10. If Assumption 2 holds and every loop on the
network choosesIℓ(kℓ) according to Theorem 4, then it is
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guaranteed that at timekℓ we can reserve (12) and that no
other loop can make conflicting reservations. Hence at time
kℓ + Iℓ(kℓ) the sequence

Sℓ(kℓ + Iℓ(kℓ)) = { kℓ + Iℓ(kℓ) + p,

kℓ + Iℓ(kℓ) + 2p, kℓ + Iℓ(kℓ) + 3p, . . .}.

is guaranteed to be available. Thusp ∈ Iℓ(kℓ + Iℓ(kℓ)).

D. Stability

We continue with giving conditions for when the multiple
loop receding horizon control law described in Algorithm 2 is
stabilizing. Extending the theory developed Section V to the
multiple loop case we may state the following.

Theorem 5. Assume0 < Qℓ, 0 < Rℓ and that (Aℓ, Bℓ) is
controllable. Further let Assumption 2 hold. If we then choose
i ∈ Iℓ(k) ⊆ I0 ⊂ N+, with Iℓ(k) chosen as in Theorem 4,
and p = p∗ given by

p∗ = max{i|i ∈ I0, ∀ ℓ ∀λ ∈ λ(Aℓ) λ
i 6= 1 if λ 6= 1} (13)

and apply Algorithm 2, then ask → ∞

αℓ

γ
≤ min

i∈Iℓ(k)

(
αℓ

i
+ ‖xℓ(k)‖

2

P
(i)
ℓ

)

≤
αℓ

ǫℓ

(
1

p∗
− (1− ǫℓ)

1

γ

)

whereγ = maxI0 and ǫℓ is the largest value in the interval
(0, 1] which ∀i ∈ I0 fulfills

(
A

(i)
ℓ −B

(i)
ℓ L

(i)
ℓ

)T
P

(p∗)
ℓ

(
A

(i)
ℓ −B

(i)
ℓ L

(i)
ℓ

)
≤ (1− ǫℓ)P

(i)
ℓ .

Proof. The proof is given in Appendix H.

Corollary 2. Assume0 < Qℓ, 0 < Rℓ and that(Aℓ, Bℓ) is
controllable. Further let Assumption 2 hold. In addition let I0

be chosen so that the resultingγ = maxI0 guarantees that
Assumption 1 holds for every loopℓ or alternatively letαℓ = 0
for every loopℓ. If we then choosei ∈ Iℓ(k) ⊆ I0 ⊂ N+,
with Iℓ(k) chosen as in Theorem 4, andp = p∗ given by (13)
and apply Algorithm 2 it holds that

lim
k→∞

xℓ(k) = 0.

Proof. The proof follows from the results in Theorem 5
analogous to the proof of Corollary 1.

VIII. S IMULATION STUDIES

To illustrate the proposed theory we now continue with
giving simulations. First we show how the control law works
when a single loop is controlled over the network and focus
on the loop specific mechanisms of the controller. Secondly
we illustrate how the controller works when multiple loops
are present on the network and focus on how the controller
allocates network access to different loops.

TABLE I
THE PRE-COMPUTED CONTROL LAWS WITH RELATED COST FUNCTIONS

AND INTERMEDIATE VARIABLES .

i A(i) B(i) Q(i) R(i) N(i) L(i) P (i) V (i)(x)

1 1 1 1 1 0 0.70 1.70 α/1 + P (1) · x2

2 1 2 2 3 1 0.46 1.73 α/2 + P (2) · x2

3 1 3 3 8 3 0.35 1.89 α/3 + P (3) · x2

4 1 4 4 18 6 0.28 2.08 α/4 + P (4) · x2

5=p∗ 1 5 5 35 10 0.23 2.30 α/5 + P (5) · x2

A. Single Loop

Let us exemplify and discuss how the controller handles the
control performance versus communication rate trade-off in an
individual loop. We do this by studying the case with a single
system on the network. The system we study is the single inte-
grator system which we discretize using sample and hold with
sampling timeTs = 1 s giving usx(k+1) = Ax(k) +Bu(k)
with (A,B) = (1, 1). Since we want the resulting self-
triggered MPC described in Algorithm 1 to be stabilizing
we need to make sure that our design fulfils the conditions
of Theorem 2. If we further want it to be asymptotically
stabilizing we in addition need it to fulfil the conditions of
Corollary 1.

The design procedure is then as follows: First we note that
the system(A,B) is controllable. The next step is to decide the
weights0 < Q and0 < R in the quadratic cost function (3).
This is done in the same way as in classical linear quadratic
control, see e.g. [36]. Here we for simplicity chooseQ = 1
andR = 1. We note that the system only has the eigenvalue
λ = 1, fulfilling Assumption 1, so that (11) in Theorem 2
givesp∗ = maxI0. Hence Corollary 1, and thus Theorem 2,
will hold for every choice ofI0. This means that we may
choose the elements inI0, i.e., the possible down sampling
rates, freely. A natural way to choose them is to decide on a
maximum allowed down sampling rate and then chooseI0 to
contain all rates from1 up to this number. Let’s say that we
here want the system to be sampled at least every5 ·Ts s, then
a good choice isI0 = {1, 2, 3, 4, 5}, givingp∗ = maxI0 = 5.

Now having guaranteed that the conditions of Theorem 2
and Corollary 1 hold we have also guaranteed that the
conditions of Theorem 1 are fulfilled. Hence we may use
it to compute the state feedback gains and cost function
matrices that are used in Algorithm 1. The results from these
computations are shown in Table I, together with some of the
intermediate variables from Definition 1. Here we see that the
cost functions are quadratic functions in the statex where the
coefficientsP (i) are functions ofQ andR. We also see that
the cost to sampleα/i enters linearly and as we change it we
will change the offset level of the curves and thereby their
values related to each other. However it will not affect the
state feedback gains.

A graphical illustration of the cost functions in Table I, for
the choiceα = 0.2, is shown in Fig. 3 together with the
curveI(k) = argminI0 V (i)(x(k)), i.e., the index of the cost
function which has the lowest value for a given statex(k).
This is the partitioning of the state space that the self-triggered
MPC controller will use to choose which of the state feedback
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Fig. 3. The cost functionsV (i)(x(k)) (dashed) together with the partitioning
of the state space and the time to waitI(k) = argmin

I0 V (i)(x(k)) (solid).

gains to apply and how long to wait before sampling again.
Applying our self-triggered MPC described in Algorithm 1

using the results in Table I to our integrator system when
initialized inx(0) = 2 we get the response shown in Fig. 4(a).
Note here that the system will converge to the fixed sampling
ratep∗ as the state converges.

It may now appear as it is sufficient to use periodic control
and sample the system everyp∗ · Ts s to get good control
performance. To compare the performance of this periodic
sampling strategy with the self-triggered strategy above we
apply the control which minimizes the same cost function (3)
as above with the exception that the system now may only be
sampled everyp∗ · Ts s. This is in fact the same as using the
receding horizon control above while restricting the controller
to choosei = p∗ every time. The resulting simulations are
shown in Fig. 4(b). As seen, there is a large degradation of
the performance in the transient while the stationary behaviour
is almost the same. By this we can conclude that it is not
sufficient to sample the system everyp∗ · Ts s if we want
to achieve the same transient performance as with the self-
triggered sampling.

In the initial transient response the self-triggered MPC
controller sampled after one time instant. This indicates that
there is performance to gain by sampling every time instant.
To investigate this we apply the control which minimizes
the same cost function (3), now with the exception that the
system may be sampled everyTs s, i.e., classical unconstrained
linear quadratic control. Now simulating the system we get
the response shown in Fig. 4(c). As expected we get slightly
better transient performance in this case compared to our
self-triggered sampling scheme, it is however comparable.
Note however that this improvement comes at the cost of
a drastically increased communication need, which may not
be suitable for systems where multiple loops share the same
wireless medium.

From the above we may conclude that our self-triggered
MPC combines the low communication rate in stationarity of
the slow periodic controller with the quick transient response
of the fast periodic sampling. In fact we may, using our
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(a) System response of the integrator system when minimizing
the cost by using our single loop self-triggered MPC.
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(b) System response of the integrator system when minimizing
the cost by sampling every5th second.
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Fig. 4. Comparing control performance for different sampling policies.
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Fig. 5. The average sampling interval for different values of α for the
integrator system.

method, recover the transient behaviour of fast periodic sam-
pling at the communication cost of one extra sample compared
to slow periodic sampling. The reason for this is that the
fast sampling rate only is needed in the transient while we
in stationarity can obtain sufficient performance with a lower
rate.

B. Comparison to periodic control

To make a more extensive comparison between the self-
triggered algorithm and periodic sampling, we sweep the value
of the design parameterα in the cost function, and run
100 simulations of 10 000 samples for each value. To add
randomness to the process, the model (1) is extended to include
disturbances such that for processℓ

xℓ(k + 1) = Aℓxℓ(k) + Bℓuℓ(k) + Eℓωℓ(k), (14)

whereωℓ(k) ∼ N (0, σ2
ℓ ) is zero-mean normal distributed with

varianceσ2
ℓ = 0.1 and Eℓ = 1. We increase the maximum

allowed sampling interval top∗ = maxI0 = 15. This though
has the effect, thatP (1) = 1.83 whereasP (2) = 1.74, such
that it is always more favourable to have a sample interval
of 2 samples instead of 1, even whenα = 0. We therefore
changed the cost of control toR = 0.1 such that we allow for
larger control signals and force the process to sample at every
time instance ifα = 0 is chosen. The initial state is randomly
generated asxℓ(0) ∼ N (0, σ2

x0,ℓ
) , whereσ2

x0,ℓ
= 2 500.

Fig. 5 shows the average sampling interval during the
simulations for different choices ofα for the integrator system.
The relation between the value ofα and the average sampling
interval is in general monotonic but highly affected by the
system to be controlled and the statistics of the disturbances
in the system.

Since we now have the range of values in which we want
to sweepα, we present a simple periodic MPC cost to which
we compare our algorithm. This cost is given by

Jℓ(xℓ(k),Uℓ) =

∞∑

r=0

Ts∑

l=0

(
‖xℓ(k + l + rTs)‖

2
Qℓ

+‖uℓ(k + l+ rTs)‖
2
Rℓ

)
,

which using Definition 1 and Lemmas 1 and 2 can be rewritten
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Fig. 6. Performance of the integrator using the self-triggered algorithm
compared to the simple periodic algorithm for different sampling intervals.
Some values ofα are marked with the black crosses.

as

Jℓ(xℓ(k),Uℓ) =

∞∑

r=0

‖xℓ(k+rTs)‖
2

Q
(Ts)
ℓ

+‖uℓ(k+rTs)‖
2

R
(Ts)
ℓ

+ 2xℓ(k + rTs)
TN

(i)
ℓ uℓ(k + rTs) (15)

for sampling periodTs where

xℓ(k + Ts) = A
(Ts)
ℓ xℓ(k) +B

(Ts)
ℓ uℓ(k).

WhenTs = 1, (15) reduces to classical unconstrained linear
quadratic control.

The empiric cost for each simulation is calculated by

1

T

T−1∑

k=0

xℓ(k)
TQℓxℓ(k) + uℓ(k)

TRℓuℓ(k), (16)

whereT = 10 000 is the length of the simulation.
Fig. 6 shows the average performance that is obtained for

different averaged sampling intervals obtained by sweeping α
from 0 to106. Fig. 6 illustrates that the self-triggered algorithm
performs significantly better than periodic sampling especially
when communication costs are medium to high. However, at
sampling intervals of 2 and 3 time-steps the self-triggered
algorithm performs slightly worse than the periodic algorithm.
This is caused by the fact, that if the state of the system is close
to zero when sampled, the cost of sampling is much higher
than the cost of the state error and control, hence the time until
the next sample is taken is large. To avoid this phenomenon, in
future work, one could take the statistics of the process noise
into account in the cost function. It can further be noticed,that
whenα → ∞, the performance of the self-triggered algorithm
is very close to the cost of the periodic algorithm. This is as
expected, since the cost ofα will be greater than the cost
of the state and control, which will result in sample intervals
of i = p∗ = 15. This reduces the self-triggered algorithm to
periodic control.

C. Multiple Loops

We now continue with performing a simulation study where
we control two systems over the same network. We will
start by showing a simple example followed by a more
extensive performance comparison of the Algorithm 2 to
periodic control. We will keep the integrator system from
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Section VIII-A now denoting it processP1 with dynamics
x1(k + 1) = A1x1(k) + B1u1(k) with (A1, B1) = (1, 1) as
before. In addition we will the control processP2 which is
a double integrator system which we discretize using sample
and hold with sampling timeTs = 1 s giving
(

x1
2(k + 1)

x2
2(k + 1)

)

︸ ︷︷ ︸

x2(k+1)

=

(
1 0
1 1

)

︸ ︷︷ ︸

A2

(
x1
2(k)

x2
2(k)

)

︸ ︷︷ ︸

x2(k)

+

(
1
0.5

)

︸ ︷︷ ︸

B2

u2(k).

We wish to control these processes using our proposed
multiple loop self-triggered MPC described in Algorithm 2.
As we wish to stabilize these systems we start by checking
the conditions of Theorem 5 and Corollary 2. First we may
easily verify that both the pairs(A1, B1) and (A2, B2) are
controllable. To use the stability results we need Assumption 2
to hold, implying that we must choosep1 = p2 = p,
I0
1 = I0

2 = I0 and chooseI0 such that{1, 2} ∈ I0 and2 ≤ p.
For reasons of performance we wish to guarantee that the
systems are sampled at least every5·Ts s and therefore choose
I0
1 = I0

2 = I0 = {1, 2, 3, 4, 5} fulfilling the requirement
above. We also note thatλ(A1) = {1} andλ(A2) = {1, 1}
and that hence both system fulfill Assumption 1 for this choice
of I0, implying that (13) in Theorem 5 givesp∗ = maxI0 =
5. Thus choosingp = p∗ as stated in Theorem 5 results in that
Assumption 2 holds. What now remains to be decided are the
weightsαℓ, Qℓ andRℓ.

For the integrator processP1 we keep the same tuning as
in Section VIII-A with Q1 = R1 = 1. Having decidedQ1,
R1, I0 andp∗ we use Theorem 3 to compute the needed state
feedback gains and cost function matrices(P

(i)
1 , L

(i)
1 ) ∀ i ∈ I0

needed by Algorithm 2. We also keepα1 = 0.2 as it gave a
good communication versus performance trade-off.

For the double integrator processP2 the weights are chosen
to beQ2 = I as we consider both states equally important and
R2 = 1

10 to favor control performance and allow for larger
control signals. Having decidedQ2, R2, I0 and p∗ we may
use Theorem 3 to compute the needed state feedback gains
and cost function matrices(P (i)

2 , L
(i)
2 ) ∀ i ∈ I0 needed by

Algorithm 2. The sampling cost is chosen to beα2 = 1, as
this gives a good tradeoff between control performance and
the number of samples.

We have now fulfilled all the assumptions of both Theo-
rem 5 and Corollary 2. Hence applying Algorithm 2 choosing
Iℓ(kℓ) according to Theorem 4 will asymptotically stabilize
both processP1 andP2.

ControllingP1 andP2 using our multiple loop self-triggered
MPC described in Algorithm 2 with the above designed tuning
we get the result shown in Fig. 7. As expected, the behavior of
the controller illustrated in Section VIII-A carries through also
to the case when we have multiple loops on the network. In
fact comparing Fig. 4(a) showing how the controller handles
processP1 when controlling it by itself on the network and
Fig. 7(a) which shows howP1 is handled in the multiple loop
case we see that they are the same. Further we see that, as
expected, in stationarity the two loops controlling process P1

andP2 both converge to the sampling ratep∗.
As mentioned previously the controller uses the mechanism

in Theorem 4 to choose the set of feasible times to wait
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(a) System response for processP1
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(b) System response for processP2

Fig. 7. The processesP1 and P2 controlled and scheduled on the same
network using our multiple loop self-triggered MPC.

until the next sample. In Fig. 8 we can see how the resulting
sets Iℓ(kℓ) look in detail. At time k = 0 loop 1 gets to
run Algorithm 2 first. As sensorS2 is not scheduled for
any transmissions yetI1(0) = I0 from which the controller
choosesI1(0) = 1. Then loop2 gets to run Algorithm 2 at time
k = 0. As sensorS1 now is scheduled for transmission at time
k = 0+ I1(0) = 1, Theorem 4 givesI2(0) = I0 \ {1}. From
which the controller choosesI2(0) = 2. The process is then
repeated every time a sample is transmitted to the controller,
giving the result in Fig. 8. As seen both the setIℓ(·) and the
optimal time to waitIℓ(·) converges to some fixed value as
the state of the corresponding processPℓ converges to zero.

D. Comparison to periodic control

For a more thorough performance comparison, we simulate
the systems using Algorithm 2 and compare them to the peri-
odic algorithm that uses the cost function (15). The single and
double integrator processes (P1 andP2) are simulated using
the parameters mentioned in Section VIII. The variance of the
disturbances for both processes are set toσ2

ℓ = 0.1, ∀ℓ, the
variance of the initial state toσ2

x0,ℓ
= 25, ∀ℓ andE2 = [1, 1]T

in (14). The value ofα is identical for both processes in
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Fig. 9. Performance for both processes for the self-triggered algorithm
compared to a simple periodic algorithm for different sampling intervals. The
max sampling intervalp∗ = 5. This is done by varyingα from 0 to 5 · 104

and calculating the average amount of samples for every value of α.

each simulation, such thatα1 = α2. FurtherR1 = 0.1. The
simulation for both algorithms is initialized as describedin
Remark 8.

Fig 9 shows the performance for the processes,P1 and
P2, calculated by averaging (16) over 100 simulations each
of length 10 000 for different values ofα whenp∗1 = p∗2 = 5.
Fig. 10 shows the performance whenp∗1 = p∗2 = 15. The cost
of each process is normalized with respect to its largest cost
for easier viewing.

Both figures show that the self-triggered algorithm in gen-
eral outperforms periodic sampling. The performance margin
increases as the sampling interval increases. Fig. 9 shows that
P1 when α = 0 samples every 1.8 time steps on average,
whereasP2 only samples every 2.2 time steps. Whenα
increases both processes sample almost every 2 time steps.
The reason for this is that the cost of the state for the down
sampled systems in some cases is lower.

The worse performance of the self-triggered algorithm at
lower sampling intervals is more significant in Fig. 10 where
the performance of processP1 shows a similar performance
as in Fig. 6. The lowest average sampling interval for process
P2 is 3.6 time steps whenα = 0. The self-triggered algorithm
though significantly outperforms the periodic algorithm when
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Fig. 10. Performance for both processes for the self-triggered algorithm
compared to a simple periodic algorithm for different sampling intervals. The
max sampling intervalp∗ = 15. This is done by varyingα from 0 to 109

and calculating the average amount of samples for every value of α.

the average sampling interval increases.
As α → ∞ the cost of sampling forces the self-triggered

algorithm to behave similar to the periodic sampled algorithm.
Therefore the performance gap between the periodic and self-
triggered algorithms narrows, as the average sampling interval
is close top∗.

IX. CONCLUSIONS

We have studied joint design of control and adaptive
scheduling of multiple loops, and have presented a method
which at every sampling instant computes the optimal control
signal to be applied as well as the optimal time to wait
before taking the next sample. It is shown that this control
law may be realized using MPC and computed explicitly.
The controller is also shown to be stabilizing under mild
assumptions. Simulation results show that the use of the
presented control law in most cases may help reducing the
required amount of communication without almost any loss
of performance compared to fast periodic sampling.

In the multiple loop case we have also presented an algo-
rithm for guaranteeing conflict free transmissions. It is shown
that under mild assumptions there always exists a feasible
schedule for the network. The complexity of the multiple
loop self-triggered MPC and the corresponding scheduling
algorithm scales linearly in the number of loops.

An interesting topic for future research is to further inves-
tigate the complexity and possible performance increase for
such an extended formulation.

Intuitively, additional performance gains can be achieved
when the cost function takes process noise into account as
well. Exploiting this could be of interest in future research.

Another topic for future research would be to apply the
presented framework to constrained control problems.
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predictive control and verification of integral continuous-time hybrid
automata,” in Hybrid Systems: Computation and Control, 9th
International Workshop, HSCC 2006, Santa Barbara, CA, USA,March
29-31, 2006, Proceedings, 2006, pp. 93–107. [Online]. Available:
http://dx.doi.org/10.1007/1173063710

[12] P. Varutti, B. Kern, T. Faulwasser, and R. Findeisen, “Event-based
model predictive control for networked control systems,” in Decision
and Control, 2009 held jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on, Dec 2009, pp. 567–572.

[13] D. Gross and O. Stursberg, “Distributed predictive control for a class of
hybrid systems with event-based communication,” in4th IFAC Workshop
on Distributed Estimation and Control in Networked Systems, 2013, pp.
283–288.

[14] A. Molin and S. Hirche, “A bi-level approach for the design of
event-triggered control systems over a shared network,”Discrete Event
Dynamic Systems, vol. 24, no. 2, pp. 153–171, 2014.
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APPENDIX

A. Proof of Lemma 2

Proof. Following Lemma 1 the problem is equivalent to

min
U(i)

∞∑

r=0

(

x(k + i+ r · p)TQ(p)x(k + i+ r · p)

+u(k + i+ r · p)TR(p)u(k + i+ r · p)

+2x(k + i + r · p)TN (p)u(k + i+ r · p)

)

with

x(k+i+(r+1)·p) = A(p)x(k+i+r ·p)+B(p)u(k+i+r ·p).

This problem has the known optimal solution, see e.g. [37],
‖x(k + i)‖2

P (p) . WhereP (p) is given by the Riccati equation
(6), which has a solution provided that0 < R(p), implied
by 0 < R, and 0 < Q(p), implied by 0 < Q, and that the
pair (A(p), B(p)) is controllable. Exactly what is stated in the
Lemma.

B. Proof of Theorem 1

Proof. From the Theorem we have that0 < Q, 0 < R and
that the pair(A(p), B(p)) is controllable. Thus we may use
Lemma 2 to express the cost (4) as

J(x(k), i,U(i)) =
α

i
+ ‖x(k + i)‖2P (p)

+

i−1∑

l=0

(

‖x(k + l)‖2Q + ‖u(k)‖2R

)

.

http://dx.doi.org/10.1007/11730637_10
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Now applying Lemma 1 we get

J(x(k), i,U(i)) =
α

i
+ ‖x(k + i)‖2

P (p)

+ x(k)TQ(i)x(k) + u(k)TR(i)u(k) + 2x(k)TN (i)u(k).

with x(k + i) = A(i)x(k) + B(i)u(k). Minimizing
J(x(k), i,U(i)) now becomes a finite horizon optimal control
problem with one prediction step into the future. This problem
has the well defined solution (7), seee.g., [37], given by
iterating the Riccati equation (8).

C. Proof of Theorem 2

Proof. By assumption(A,B) is controllable. Together with
the choice ofp∗ this, via Lemma 3, implies that(A(p∗), B(p∗))
is controllable. Further let̂x(k′|k) denote an estimate ofx(k′),
given all available measurements up until timek. Defining

‖x̂(k|k)‖2
S(i) ,

i−1∑

l=0

(

‖x̂(k + l|k)‖2Q + ‖û(k|k)‖2R

)

(17)

we may, since by assumption0 < Q and0 < R, use Lemma 2
and Theorem 1 to expressVk, the optimal value of the cost
(4) at the current sampling instantk, as

Vk , min
i∈I0,û(k|k)

J(x(k), i, û(k|k))

=min
i∈I0

α

i
+ ‖x̂(k + i|k)‖2

P (p∗) + ‖x̂(k|k)‖2
S(i)

=min
i∈I0

α

i
+ ‖x̂(k|k)‖2P (i) .

(18)

We will useVk as a Lyapunov-like function. Assume thatVk+i

is the optimal cost at the next sampling instantk + i. Again
using Theorem 1 we may express it as

Vk+i , min
j∈I0,û(k+i|k+i)

J(x(k + i), j, û(k + i|k + i))

≤ min
û(k+i|k+i)

J(x(k + i), j = p∗, û(k + i|k + i))

=
α

p∗
+ ‖x̂(k + i|k + i)‖2

P (p∗)

=
α

p∗
+ ‖x̂(k + i|k)‖2

P (p∗) .

(19)

Where the inequality comes from the fact that choosingj = p∗

is sub-optimal. Taking the difference we get

Vk+i − Vk ≤
α

p∗
−

α

i
− ‖x̂(k|k)‖2

S(i)

which in general is not decreasing. However we may use the
following idea to bound this difference: Assume that there
∃ ǫ ∈ (0, 1] andβ ∈ R+ such that we may write

Vk+i − Vk ≤ −ǫVk + β,

for all k, k + i ∈ D, see (18) and (10). Thus, atl sampling
instances into the future, which happens at let’s say timek+l′,
we have that

Vk+l′ ≤ (1− ǫ)l · Vk + β ·
l−i∑

r=0

(1− ǫ)l.

Sinceǫ ∈ (0, 1] this is equivalent to

Vk+l′ ≤ (1 − ǫ)l · Vk + β ·
1− (1− ǫ)l

1− (1− ǫ)
,

which asl → ∞ gives us an upper bound on the cost function,
Vk+l′ ≤ β/ǫ. Applying this idea on our setup we should fulfil

α

p∗
−

α

i
− ‖x̂(k|k)‖S(i)

≤ −ǫ
α

i
− ǫ‖x̂(k + i|k)‖2

P (p∗) − ǫ‖x̂(k|k)‖2
S(i) + β.

Choosingβ , α/p∗ − (1− ǫ)α/γ we have fulfilment if

ǫ
(

‖x̂(k + i|k)‖2
P (p∗) + ‖x̂(k|k)‖2

S(i)

)

≤ ‖x̂(k|k)‖2
S(i) . (20)

Clearly there∃ǫ ∈ (0, 1] such that the above relation is fulfilled
if 0 < ‖x̂(k|k)‖2

S(i) . For the case‖x̂(k|k)‖2
S(i) = 0 we must,

following the definition (17) and the assumption0 < Q, have
that x̂(k|k) = 0 and x̂(k + i|k) = 0 and hence the relation
is fulfilled also in this case. Using the final step in (18) we
may express (20) in easily computable quantities giving the
condition

‖x̂(k + i|k)‖2
P (p∗) ≤ (1− ǫ)‖x̂(k|k)‖2

P (i) .

As this should hold∀x and∀i ∈ I0 we must fulfill
(
A(i) −B(i)L(i)

)T
P (p∗)

(
A(i) −B(i)L(i)

)
≤ (1− ǫ)P (i)

which is stated in the Theorem. Summing up we have

Vk+l′ ≤
α

ǫ

(
1

p∗
− (1− ǫ)

1

γ

)

which is minimized by maximizingǫ. From the definition of
the cost (3) we may also conclude thatα/γ ≤ Vk+l′ . With

Vk+l′ = min
i∈I0

(
α

i
+ ‖x̂(k + l′|k + l′)‖2P (i)

)

we may conclude that

α

γ
≤ lim

k→∞
min
i∈I0

(
α

i
+ ‖x̂(k|k)‖2

P (i)

)

≤
α

ǫ

(
1

p∗
− (1− ǫ)

1

γ

)

.

D. Proof of Lemma 4

Proof. From (11) it is clear thatp∗ = γ if ∄λ ∈ λ(A) except
λ = 1 such thatλγ = 1. In polar coordinates we have that
λ = |λ| exp(j · ∠λ) implying λγ = |λ|γ exp(j · γ · ∠λ) = 1
may only be fulfilled if |λ| = 1 and∠λ = 2π

γ
· n for some

n ∈ N+, which contradicts Assumption 1.

E. Proof of Corollary 1

Proof. From Theorem 2 we have that ask → ∞

α

γ
≤ min

i∈I0

(
α

i
+ ‖x(k)‖2P (i)

)

≤
α

ǫ

(
1

p∗
− (1 − ǫ)

1

γ

)

which asp∗ = γ, given by Lemma 4, simplifies to

α

γ
≤ min

i∈I0

(
α

i
+ ‖x(k)‖2

P (i)

)

≤
α

γ



14

independent ofǫ. Implying that ask → ∞ we have thati = γ
and ‖x(k)‖2

P (i) = 0, since 0 < P (i) provided 0 < Q this
implies x(k) = 0 independent ofα. In the caseα = 0 the
bound from Theorem 2 simplifies to that ask → ∞

0 ≤ min
i∈I0

‖x(k)‖2
P (i) ≤ 0

and hence for the optimali we have‖x(k)‖2
P (i) = 0 implying

x(k) = 0 as above.

F. Proof of Lemma 5

Proof. When loop q was last sampled at timekq < kℓ it
was optimized overIq(kq) and found the optimal feasible
time until the next sampleIq(kq). The loop then reserved the
infinite sequence

Sq(kq) = {kq + Iq(kq), kq + Iq(k) + pq,

kq + Iq(kq) + 2pq, kq + Iq(kq) + 3pq, . . .}.

When loopℓ now should chooseIℓ(kℓ) it must be able to
reserve (12). To ensure that this is true it must chooseIℓ(kℓ)
so thatSℓ(kℓ) ∩ Sq(kq) = ∅, ∀ q ∈ L \ {ℓ}. This holds if we
have that

kℓ + Iℓ(kℓ) +m · pℓ 6= kq + Iq(kq) + n · pq,

∀m,n ∈ N, ∀ q ∈ L \ {ℓ}

Simplifying the above condition we get conditions on the
feasible values ofIℓ(kℓ)

Iℓ(kℓ) 6=
(

kq + Iq(kq)
)

− kℓ + n · pq −m · pℓ,

∀m,n ∈ N, ∀ q ∈ L \ {ℓ}

Noticing that
(

kq+Iq(kq)
)

is the next transmission of loopq

we denote itknext
q , giving the statement in the lemma.

G. Proof of Theorem 4

Proof. Assumingpℓ = p andI0
ℓ = I0 for all loops Lemma 5

gives Iℓ(kℓ) as stated in the theorem. Since by assumption
L ⊆ I0 we know that

Iℓ(kℓ) ⊇ {i ∈ L|i 6= knext
q − kℓ + r · p, r ∈ Z, q ∈ L \ {ℓ}}.

Further, sincemaxL ≤ p we know that the set

{i ∈ L|i = knext
q − kℓ + r · p, r ∈ Z}

contains at most one element for a given loopq. Thus,

{i ∈ L|i 6= knext
q − kℓ + r · p, r ∈ Z, q ∈ L \ {ℓ}}

contains at least one element asq ∈ L \ {ℓ} ⊂ L. Hence
Iℓ(kℓ) always contains at least one element∀ kℓ, and thus
there always exists a feasible time to wait.

H. Proof of Theorem 5

Proof. Direct application of Theorem 2 on each loop. The
corresponding proof carries through as the choice ofIℓ(k)
together with the remaining assumptions guarantees that we
may apply Theorem 3 on the feasible values ofi in every step,
thus the expression forVk in (18) always exists. The critical
step is that the upper bound onVk+i in (19) must exist,i.e.,
the choicej = p∗ must be feasible. This is also guaranteed
by the choice ofIℓ(k), see Remark 10.
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