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Invariant EKF Design for Scan Matching-aided
Localization
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and François Goulette,Member, IEEE

Abstract

Localization in indoor environments is a technique which estimates the robot’s pose by fusing data from onboard motion
sensors with readings of the environment, in our case obtained by scan matching point clouds captured by a low-cost Kinect
depth camera. We develop both an Invariant Extended Kalman Filter (IEKF)-based and a Multiplicative Extended Kalman Filter
(MEKF)-based solution to this problem. The two designs are successfully validated in experiments and demonstrate the advantage
of the IEKF design.

Index Terms

Mobile robots, State estimation, Kalman filters, Iterativeclosest point algorithm, Covariance matrices, Least squares methods,
Additive noise

I. I NTRODUCTION AND L ITERATURE REVIEW

LOCALIZATION is a fundamental building block for mobile robotics [1]. For operations in environments where GPS is
not available e.g. indoor navigation, or for situations where GPS is available but degraded, the uncertainty in the vehicle

pose can be reduced by using information from a 3D map [2]. Fundamentally this represents a sensor fusion problem, and
as such it is typically handled via an Extended Kalman Filter(EKF) c.f. the textbooks [3], [4], although a number of direct
nonlinear observer designs have been proposed e.g. [5], [6], [7]. The EKF approach offers two practical advantages overthese:
it is a fully systematic design procedure, and it admits a probabilistic interpretation. Indeed it can be viewed as a maximum
likelihood estimator that combines sensor information in an optimal way (in the linear case), with the confidence in each
measurement being described by a covariance matrix.

In this paper, we address a localization problem, where poseestimates from proprioceptive sensors are obtained by matching
images obtained from a depth scanner (scan matching or LIDAR-based odometry [8]) with a 3D map. We use the Iterative
Closest-Point (ICP) algorithm [9], [10] on 3D point clouds obtained from a low-cost Kinect camera mounted on our experimental
wheeled robot. During the motion we assume an already built 3D gross map made of clouds of points is available. When a
scan contains substantially more information than the map,it can be aggregated to the existing map. Further details will be
provided in Section III.

The sensor fusion EKF works by linearizing a system about itsestimated trajectory, then using estimates obtained from
an observer for this linearized model to correct the state ofthe original system. In this way the EKF relies on a closed
loop which can be destabilized by sufficiently poor estimates of the trajectory, known as divergence [3]. Clearly, reducing
or eliminating the dependence of the EKF on the system’s trajectory would increase the robustness of the overall system.
An emerging methodology to accomplish this goal is the Invariant EKF [11], [12], built on the theoretical foundations of
invariant (symmetry-preserving) observers [13], [14]. The IEKF technique has already demonstrated experimental performance
improvements over a typical [4] “Multiplicative” EKF (MEKF) in aided inertial navigation designs [15], [16]. From a practical
viewpoint, the advantage of EKF-like techniques is their automatic tuning of gains based on the estimated covariance ofthe
measurements. Applying the IEKF to an aided scan matching problem was first demonstrated in [17] for 3D mapping. A
preliminary version of this work appears in conference proceedings [18]. The contributions of the present paper are as follows:

1) Designing a scan matching-aided localization system fora wheeled indoor robot which fuses robot odometry with
Kinect-based scan matching,

2) A method to compute a realistic covariance matrix associated to the scan matching step and implicitly detect undercon-
strained environments,

3) Providing both an IEKF (whose non-linear structure takesadvantage of the the geometry of the problem) and a MEKF
version of the state estimator for this problem,

4) Experimentally validating both designs, and comparing their accuracy w.r.t. ground truth data provided by an optical
motion capture system.

M. Barczyk is with the Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 2G8 Canada
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This paper is structured as follows. A brief literature review and problem motivation have been provided above. SectionII
provides the model of the system dynamics and derives linearizing approximations used in the sequel. Section III coversthe
process of obtaining aiding measurements from scan matching of point clouds provided by a Kinect depth camera mounted
on the robot, and provides a meaningful and simple method to compute a covariance matrix associated to the measurements.
Section IV provides the equations of the invariant observer, IEKF and MEKF state estimators, which are then experimentally
validated in Section V. Conclusions and future work directions are given in Section VI.

II. SYSTEM MODELS

A. Noiseless System

In the absence of sensor noise, the dynamics of a rigid-body vehicle are governed by

Ṙ = RS(ω)

ṗ = Rµ
(1)

whereR ∈ SO(3) is a rotation matrix measuring the 3D attitude of the vehicle, ω ∈ R
3 is the body-frame angular velocity

vector,S(·) is the 3 × 3 skew-symmetric matrix such thatS(x)y = x × y where× denotes theR3 cross-product,p ∈ R
3

is the position vector of the vehicle expressed in coordinates of the ground-fixed frame, andµ ∈ R
3 is the velocity vector

of the vehicle expressed in body-frame coordinates. The body-frame angular velocityω and linear velocityµ vectors can be
measured directly using on-board motion sensors, e.g. a triaxial rate gyro forω and a Doppler radar forµ. In the case of a
wheeled vehicle traveling over flat terrain, odometry information from the left and right wheels can be used to compute the
forward component of vectorµ and the vertical component of vectorω, taking the remaining components as zero.

As will be discussed in Section III the vehicle’s attitudeR and positionp are computed byscan matching images from
the on-board Kinect depth camera with a map of 3D points via the Iterative Closest Point (ICP) algorithm. This gives output
equations

(

yR
yp

)

=

(

R
p

)

(2)

B. Sensor noise models

In reality the input signalsω andµ in (1) and the output readingsyR, yp in (2) are corrupted by sensing noise. For the
former we employ the sensor model typically used in aided navigation design [4]

ω̃ = ω + νω

µ̃ = µ+ νµ
(3)

whereν ∼ N (0, σ2) terms represent additive Gaussian white noise vectors whose covariance can be directly identified from
logged sensor data. Remark the noise vectorsνω and νµ are expressed in coordinates of the body-fixed frame. The noise
models for scan matching outputs (2) are not standard and will be derived in Section III-D.

C. Geometry of SO(3)

The special orthogonal groupSO(3) is a Lie group. For any Lie groupG, there exists an exponential mapexp : g → G
which maps elements of the Lie algebrag to the Lie groupG. It is known (e.g. [19, p. 519]) that for anyX ∈ g, (exp X)−1 =
exp(−X), that exp is a smooth map fromg to G, and thatexp restricts to a diffeomorphism from some neighborhood of0
in g to a neighborhood of the identity elemente in G. The last fact means there exists in a neighborhoodU of e an inverse
smooth maplog : G→ g such thatexp ◦ log(g) = g, ∀g ∈ U .

For the particular case ofSO(3), the associated Lie algebraso(3) is the set of3×3 skew-symmetric matricesξ := S(x), x ∈
R

3 andexp : so(3) → SO(3) is the matrix exponential

exp ξ = I + ξ +
1

2!
ξ2 + · · ·

while log : SO(3) → so(3) is given by

logR = αS(β) where α : 2 cosα+ 1 = trace(R) and S(β) =
1

2 sinα
(R−RT )

Now consider the special case ofR ∈ SO(3) close toI. Since the exponential map restricts to a diffeomorphism from a
neighborhood of zero inso(3) to a neighborhood of identity inSO(3), ξ ∈ so(3) is close to the matrix03×3 such thatξ2 and
higher-order terms inR ≡ exp ξ are negligible and thus

R ≈ I + ξ, R ∈ SO(3) close toI (4)
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Since(exp ξ)−1 = exp(−ξ) we also have

R−1 ≈ I − ξ, R ∈ SO(3) close toI (5)

Still for R close toI, trace(R) ≈ 3 such thatα ≈ 0 and sologR ≈ (R−RT )/2. We define the projection map

π : SO(3) → so(3), π(R) =
R−RT

2

which is defined everywhere but is the inverse ofexp only for R ≡ exp ξ close toI. In this caseπ(R) ≈ ξ and (4) becomes

R− I ≈ π(R), R ∈ SO(3) close toI (6)

Approximations (4), (5) and (6) will be employed in the sequel.

III. D EPTH CAMERA A IDING

A. Camera Hardware

Our test robot is equipped with a Kinect depth camera, a low-cost (currently around100 e) gaming peripheral sold by
Microsoft for the XBox 360 console. The Kinect’s sensing technology is described in [20]. The unit employs an infrared laser
to project a speckle pattern ahead of itself, whose image is read back using an infrared camera offset from the laser projector.
By correlating the acquired image with a stored reference image corresponding to a known distance, the Kinect computes a
disparity map (standard terminology in stereo camera vision) of the scene which is employed to construct a 3D point cloud
of the environment in the robot-fixed frame. The disparity maps computed by the Kinect, corresponding to individual pixels
of the IR camera image, are available as640× 480 images at a rate of30 Hz. Physically the IR camera has a total angular
field of view of 57◦ horizontally and43◦ vertically, such that the constructed point cloud is fairly“narrow” as compared to
time-of-flight scanning laser units such as the Hokuyo UTM-30LX (270◦) or the Velodyne HDL-32E (360◦). The maximum
depth ranging limit of the Kinect is5 m, in contrast to the UTM-30LX (30 m) and HDL-32E (70 m). The Kinect can only
be utilized under indoor lighting conditions. But conversely, the Kinect is much less expensive than the Hokuyo (about4500
e) and Velodyne (about22000 e) units and unlike the scanning units is not prone to point cloud deformation at high vehicle
speeds. The scan matching algorithms developed for Kinect point clouds are adaptable to these units.

A comprehensive analysis of the Kinect’s accuracy and precision is carried out in [21], showing that point cloud measurements
are affected by both noise and resolution errors which grow significantly with distance from the camera. Consequently the
recommended usable range interval is1 ≤ z ≤ 3 m.

B. ICP Algorithm

The ICP algorithm [9], [10] is an iterative procedure for finding the optimum rigid-body transformation(δR, δT ) ∈ SO(3)×
R

3 between two sets of points inR3 (clouds){ai} and{bi}, which do not necessarily have equal number of entries. Following
the taxonomy in [22] an ICP algorithm consists of the following (iterated) sequence of steps:

1) Select source points from one or both clouds. We select a total of3000 points (about1% of the available) from both clouds
and located away from edges, compute their corresponding unit normals{ni} by fitting a plane through neighboring
points [23], and employ the strategy of normal-space sampling [22].

2) Match the source points with those in the other cloud(s) and rejectpoor matches. We employ a nearest-neighbor search
accelerated by ak − d tree [24], then reject pairs whose point-to-point distanceexceeds the threshold value of0.25 m
or whose associated normals form an angle larger than45◦.

3) Minimize the error cost function. We choose the point-to-plane ICP variant [10]

f(δR, δT ) =

N
∑

i=1

[

(δRai + δT − bi) · ni

]2
(7)

and apply linearization to solve (7) as explained below.
4) Terminate if convergence criteria met, else goto 1). For simplicity wedo not employ an early stop condition and always

run 25 iterations of the ICP algorithm.

The heart of the ICP algorithm lies in the way the matching step is done, as the points of the two clouds are arbitrarily labeled
and do not initially match correctly. Linearization is justified providedδR is close toI, equivalent to clouds{ai} and {bi}
starting off close to each other. As explained in Section III-D the closeness assumption is valid due to pre-aligning of the two
clouds using an estimate of pose obtained at the prediction step of the overall filter. We thus employ linearization (4) in(7)
to obtain

f(x) =
∑

i

[

(xR × ai + xT + ai − bi) · ni

]2
=
∑

i

[

(ai × ni) · xR + ni · xT + ni · (ai − bi)
]2

(8)
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where we have used the scalar triple product circular property (a× b) · c = (b × c) · a. In the linearized context, minimizing
the ICP cost function (7) is equivalent to minimizing (8)f : R6 → R by choice ofx = [xR xT ]

T . We define the terms

Hi :=
[

(ai × ni)
T nT

i

]

yi := nT
i (ai − bi)

to rewrite (8) as
f(x) =

∑

i

[

Hix+ yi
]2

(9)

The minimum of (9)f(x) is achieved atx for which ∂f/∂x = 0 since∂2f/∂x2 = 2A ≥ 0 everywhere with

A :=
∑

i

(Hi)
THi =

∑

i

[

(ai × ni)(ai × ni)
T (ai × ni)n

T
i

ni(ai × ni)
T nin

T
i

]

b :=
∑

i

(Hi)
T yi =

∑

i

[

(ai × ni)n
T
i (ai − bi)

nin
T
i (ai − bi)

]

This minimum is found by solving the linear system of equations Ax = −b. Then up to second order terms,(R, p) =
(I + S(xR), xp) is the rigid-body transformation which minimizes the point-to-plane error (7).

C. Covariance of ICP output

As stated in Section III-A the measured point clouds{ai} and {bi} are affected by sensor noise and resolution errors.
We require a method to estimate the covariance (uncertainty) of the rigid-body transformation obtained by running the ICP
algorithm between measured point clouds.

We continue to assume{ai} and{bi} start close to each other (the open-loop integration of the motion sensors allows to
pre-align the clouds). We can thus model the (point-to-plane) ICP as a linear least-squares estimator minimizing (9) resp. (8).
Let xICP denote the estimate computed by the ICP from noisy point cloud data{ai} and{bi} andx∗ the true transformation.
The associated covariance is

cov(xICP ) = E
〈

(xICP − x∗) (xICP − x∗)
T
〉

(10)

Based on the linear least-squares cost function (9) we definethe residuals as the error purely due to sensor noise, that is, the
error between each measured point and the original point transformed through thetrue transformation:

ri := Hix
∗ + yi (11)

The estimatexICP minimizing (9) was already shown to bexICP = −A−1b = −
[
∑

i(Hi)
THi

]

−1∑

i(Hi)
T yi. Rewrite this

using (11) asxICP =
[
∑

i(Hi)
THi

]

−1∑

i(Hi)
T (Hix

∗ − ri) = x∗ −A−1
∑

i(Hi)
T ri and (10) becomes

cov(xICP ) = E

〈

(

−A−1
∑

i

(Hi)
T ri

)(

−A−1
∑

i

(Hi)
T ri

)T
〉

=

[

∑

i

(Hi)
THi

]

−1
∑

i

∑

j

(

(Hi)
TE〈rirj〉Hj

)

[

∑

i

(Hi)
THi

]

−1
(12)

In order to evaluate (12) we need to assume a noise model on theresidualsri in (11). Expanding the right-hand side using
the definitions ofHi andyi we have

ri = (ai × ni)
Tx∗R + nT

i x
∗

T + nT
i (ai − bi) = [(x∗R × ai) + x∗T + (ai − bi)] · ni := wi · ni

wherewi ∈ R
3 represents the post-alignment error of theith point pair due (only) to the presence of sensor noise in point

clouds{ai} and{bi}. The residualri = wi · ni = nT
i wi now represents the projection ofwi and (12) becomes

cov(xICP ) =

[

∑

i

(Hi)
THi

]

−1
∑

i

∑

j

(

(Hi)
TnT

i E〈wiw
T
j 〉njHj

)

[

∑

i

(Hi)
THi

]

−1

(13)

The classical Hessian method [25], [17], [18] consists of assuming the post-alignment errorswi are independent and identically
normally isotropically distributed with standard deviation σ. Under these assumptionsE〈wiw

T
j 〉 = E〈wi〉E〈wT

j 〉 = 0, i 6= j
and the double sum in (13) reduces to a single sum (nT

i ni = 1 for unit normals):

cov(xICP ) =

[

∑

i

(Hi)
THi

]

−1

σ2
∑

i

(Hi)
THi

[

∑

i

(Hi)
THi

]

−1

= σ2

[

∑

i

(Hi)
THi

]

−1

This is precisely the covariance of a linear unbiased estimator using observations with additive white Gaussian noise c.f. [26,
p. 85]. However, there is a catch: for a Kinect sensor withN ≈ 300 000 points per cloud andσ ≈ 1 cm for depth range
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1 ≤ z ≤ 3 m [21, Fig. 10], the above expression yields a covariance matrix with entries on the order of nanometers, a
completely overoptimistic result for the low-cost Kinect sensor. This result stems from the independence assumption which
makes the estimator converge as1/

√
N whereN is the (high) number of points.

We thus need to consider a more complete error model for the residuals. In addition to random noise on the residuals whose
contribution to cov(xICP ) rapidly becomes negligible as the number of point pairsN increases, the Kinect exhibits resolution
errors on the order ofδ ≈ 1 cm for 1 ≤ z ≤ 3 m [21, Fig. 10] due to quantization errors incurred during IRimage correlation
to a reference image as discussed in Section III-A. These resolution errors are non-zero mean and are not independent of each
other and actually constitute the dominant limitation in accuracy. As shown in our preliminary work [27], this leads to the
following approximation of the covariance matrix (13):

cov(xICP ) ≈ δ2
N

Np

[

∑

i

(Hi)
THi

]

−1

= δ2
N

Np

(

N
∑

i=1

[

(ai × ni)(ai × ni)
T (ai × ni)n

T
i

ni(ai × ni)
T nin

T
i

]

)−1

(14)

whereNp = 3 is the number of plane “buckets” used for normal-space sampling [22] in Step 1 of the ICP algorithm,
c.f. Section III-B. Note that the covariance matrix correctly reflects the observability of the environment: for instance if the
environment consists of a single plane, allni’s are identical leading to rank deficiency of the matrix to beinverted, thus the
covariance is infinite along directions parallel to the plane. Also note that the overall ICP variance is on the order of the
Kinect’s precisionδ2 in the case of full observability, as expected.

D. Scan Matching as Measured Output

Suppose a 3D map of the environment made up of point clouds is already available, built either by the robot or from
lasergrammetry. Assuming the scan from the on-board depth camera and the map contain a set of identical features, the robot’s
pose with respect to the map can be identified through an ICP algorithm. However, due to sensor noise and quantization effects,
the computed pose is noisy.

Denote the initial estimate of the robot’s pose (obtained from numerical integration of the vehicle dynamics (1)) as (R−, p−).
This estimate is used to pre-align the two scans (the currentscan and the map) in the body-fixed frame; this is required since
the ICP does not guarantee global convergence, and in fact can easily get stuck at a local minimum. The robot’s true pose can
then be expressed up to second order terms as (R−(I + S(x∗R)), R

−x∗p + p−), that is the vector(x∗R, x
∗

p) ∈ R
6 is defined as

the discrepancy of the initial estimation (R−, p−) and the true pose (R∗, p∗) projected in the Lie algebraR6 and is the vector
to be estimated by the ICP algorithm.

Based on Section III-C, we have seen that the ICP output writes xICP = (x∗R, x
∗

p) + (νR, νp) where the covariance of the
vector(νR, νp) ∈ R

6 is given by (13) and can be approximated by the simple to compute expression (14). Using the linearity
of the mapS, we see thatI + S((xICP )R + νR) = I + S(x∗R) + S(νR) and so the pose output from scan matching is (up to
second-order terms)

(

ỹR
ỹp

)

=

(

R∗

p∗

)

+

(

R∗S(νR)
R∗νp

)

(15)

The above is a noisy version of (2), where the noise covariance cov(υ), υ := [νR νp]
T is (approximately but efficiently)

computed by (14).

IV. STATE ESTIMATOR DESIGN

A. Invariant Observer

We first design an invariant observer for the nominal (noise-free) system (1), (2) by following the constructive method
in [13], [14]; a tutorial presentation is available in [16] and so the calculations will be omitted. We consider the case where
the Special Euclidean Lie groupSE(3) = SO(3) × R

3 acts on theSE(3) state of (1) by left translation, which physically
represents applying a constant rigid-body transformation(R0, p0) to ground-fixed frame vector coordinates. This leads to the
nonlinear invariant observer

(

˙̂
R
˙̂p

)

=

(

R̂S(ω)

R̂µ

)

+ R̂

(

S
(

LR
RER + LR

p Ep

)

Lp
RER + Lp

pEp

)

(16)

whereLR
R, LR

p , Lp
R, Lp

p areR3×3 gain matrices and

ER := −S−1(π(R̂T yR)), Ep = R̂T (p̂− yp)

are the invariant output error column vectors. Standard computations in the framework of symmetry-preserving observers show
the associated invariant estimation errorsηR = RT R̂, ηp = RT (p̂− p) have dynamics

η̇R = −S(ω)ηR + ηRS(ω) + ηRS
(

LR
RER + LR

p Ep

)

η̇p = −S(ω)ηp + ηRµ− µ+ ηR
(

Lp
RER + Lp

pEp

) (17)
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and stabilizing the (nonlinear) dynamics (17) toη = I by choice of gainsL leads to an asymptotically stable nonlinear
observer (16). The stabilization process is simplified by (17) not being dependent on the estimated system statex̂; indeed the
fundamental feature of the invariant observer is that it guaranteesη̇ = Υ(η, I(x̂, u)) [13, Thm. 2] whereI(x̂, u) = [ω µ] is
the set of invariants in the present example. We will computethe stabilizing gains using the Invariant EKF method in order to
handle variable scan matching observability of the environment.

B. Invariant EKF

The Invariant EKF [11] is a systematic approach to computingthe gainsK of an invariant observer by linearizing its invariant
estimation error dynamics. A noisy version of (1) is readilyobtained by accounting for the sensors’ noise by expressingthe
measured angular and linear velocities as the noisy vectorsω = ω̃ + νω andµ = µ̃ + νµ and lettingQν := cov[νω νµ]

T

denote the process white noise covariance matrix. The entries ofQν can be identified directly from logged sensor data, while
Rν := cov[νR νp]

T is computed by (13) (or more simply (14)).
Following the IEKF method, we first write a noisy version of the error dynamics (17) where we letω = ω̃ − νω and

µ = µ̃− νµ, whereω̃, µ̃ denote the noisy inputs read from onboard sensors, and the output is given by (15). This equation is
linearized using the standard methodology of symmetry-preserving observers, i.e. using vectors ofR

3 to denote the orientation
error by lettingηR := I + S(ζR), ζR ∈ R

3 by (4) and lettingηp := ζp ∈ R
3. Up to second order terms inζ, ν, the noisy

version of (17) is approximated by the following linear equation:

d

dt

(

ζR
ζp

)

=

(

−S(ω̃) 0
−S(µ̃) −S(ω̃)

)(

ζR
ζp

)

+

(

νω
νµ

)

+

(

LR
R LR

p

Lp
R Lp

p

)(

ζR
ζp

)

−
(

LR
R LR

p

Lp
R Lp

p

)(

νR
νp

)

The rationale of the IEKF is to tune the gains through Kalman theory in order to minimize at each step the increase in the
covariance of the linearized errorζ. This is done through the standard Kalman filter equations, letting

A =

[

−S(ω̃) 0
−S(µ̃) −S(ω̃)

]

, B =

[

−I 0
0 −I

]

, C =

[

−I 0
0 −I

]

, D =

[

−I 0
0 −I

]

, K =

[

LR
R LR

p

Lp
R Lp

p

]

(18)

and tuning the gains through the standard Riccati equationsin continuous time of the Kalman-Bucy filter

Ṗ = AP + PAT − PR−1
ν P +Qν

K = −PR−1
ν

(19)

where the gainsL making upK are employed in the invariant observer (16).
Remark the IEKF filter matrices(A,B,C,D) are dependent on the system trajectory only through theωm andµm terms

in A, and do not depend on the estimates (R̂, p̂) as in the usual Extended Kalman Filter. The interest of the Invariant EKF
is indeed the reduced dependence of the linearized system onthe estimated trajectory of the target system. In our present
example the(A,B,C,D) matrices are guaranteed not to depend on the estimated state, which increases the filter’s robustness
to poor state estimates and precludes divergence (c.f. Section I).

C. Multiplicative EKF design

For comparison purposes consider a typical [4] Multiplicative Extended Kalman Filter (MEKF) design for our system. The
governing system equations are given by (1) with noise models (3) and output model (15):

Ṙ = RS(ω̃ − νω)

ṗ = R(µ̃− νµ)
[

yR
yp

]

=

[

R+RS(νR)
p+Rνp

]

(20)

We linearize (20) about a nominal system trajectory(R̂, p̂). Remark(R − R̂) /∈ SO(3) is not a valid linearized system state.
Instead define the multiplicative attitude errorΓ := R̂TR ∈ SO(3) such that forR close to R̂, Γ is close toI. By (4)
Γ := I + S(δγ), δγ ∈ R

3 and soR̂TR = I + S(δγ) =⇒ R − R̂ = R̂S(δγ). We defineδp = p − p̂, the output errors
δyR := S−1[π(R̂T yR)] with π : SO(3) → so(3) from Section II-C andδyp := yp − p̂ and obtain the linearized system

[

δγ̇
δṗ

]

=

[ −S(ω̃) 0

−R̂S(µ̃) 0

] [

δγ
δp

]

+

[−I 0

0 −R̂

] [

νω
νµ

]

[

δyR
δyp

]

=

[

I 0
0 I

] [

δγ
δp

]

+

[

I 0

0 R̂

] [

νR
νp

] (21)

an LTV system tractable using the classical Kalman Filter. The resulting[δp δγ] estimate is used to update the estimated
state of the nonlinear system (20) as follows. NoteS(δγ) ∈ so(3) corresponds toΓ = R̂TR ∈ SO(3) and by Section II-C
exp : so(3) → SO(3) is the matrix exponential. Thus the estimated states are updated as

p̂+ = p̂+ δp and R̂+ = R̂ expS(δγ)
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The main difference between the MEKF and the IEKF is that the former linearizes the system dynamics (20) about a nominal
trajectory, while the latter linearizes the invariant estimation error dynamics (17) about identity. As discussed in Section IV-A
and IV-B, the latter dynamics do not depend on the estimated state x̂ such that the linearized IEKF system is guaranteed
to be robust to poor estimates of state. Meanwhile the MEKF cannot make this guarantee and indeed the linearized system
matrices (21) depend on the estimated state viaR̂. The difference in experimental estimation performance ofthe two designs
will be demonstrated in Section V.

V. EXPERIMENTAL VALIDATION

A. Hardware platform

Fig. 1. The Wifibot Lab v4 Robot (left); Experiment area with motion-capture system (right)

The wheeled robot used for our experiments is shown on the left of Figure 1. The robot is equipped with an Intel Core i5-
based single-board computer running Ubuntu Linux, WLAN 802.11g wireless networking, all-wheel drive via12 V brushless
DC motors, and a Kinect camera providing 3-D point cloud scans of the environment. The experimental testing area is shownon
the right side of Figure 1, and consists of an open area surrounded by a set of seven S250e cameras employed by an OptiTrack
motion capture system to provide a set of ground truth (reference trajectory) data for the experiments with sub-millimeter
precision at a rate of120 Hz. The wooden parquet floor seen in Figure 1 is not perfectly flat, causing small oscillations in
the vehicle’s attitude and height which will be visible in the experimental plots. A number of visual landmarks (rectangular
boxes) were placed randomly around the experimental area inorder to provide good scan-matching conditions.

The robot is equipped with independent odometers on the leftand right wheels. The two odometer counts are averaged
and converted to forward velocityµx by dividing by an experimentally-identified constantκ1 = 788 m−1 representing the
number of encoder counts per meter of travel. Assuming zero side slip as well as zero out-of-plane velocity, we obtain the
body-fixed velocity vectorµ = [µx 0 0]T m/s used in noiseless vehicle dynamics (1). Since the present vehicle is not
equipped with a rate gyro, we employ the difference in odometer counts, identified constantκ2 = 0.44 m representing the
lateral distance between wheel-ground contact points andκ1 to compute in-plane angular velocityωz then employ the angular
velocity vectorω = [0 0 ωz]

T rad/s in (1), i.e. assume zero roll and pitch angular velocity due to the vehicle being level,
with the non-flatness of the floor reflected by additive sensornoise vectorsνµ and νω. The covariances ofνµ and νω were
assigned by first identifying the on-axis variancesσ2

µx

= 0.012 m2/s andσ2
ωz

= 0.022 rad2/s of data logged during respectively
constant-velocity advance and constant-velocity circle trajectories, then taking diag(cov(νµ)) = [σ2

µx

0.1σ2
µx

0.1σ2
µx

] and
diag(cov(νω)) = [0.1σ2

ωx

0.1σ2
ωx

σ2
ωz

] on account of the uneven terrain.
Clearly the assumptions in the previous paragraph are both optimistic and ad-hoc, for instance the zero-slip assumption

does not fully hold, the noise covariances are assigned heuristically, and the encoder-derived data is subject to identification
errors ofκ and quantization effects. This is acceptable for our purposes, however, since we are interested in comparing the
experimental performance of two competing filter designs more than the absolute accuracy of the estimates. Since we will
employ identical sensor data in both designs, we will be ableto make a fair comparison between the two.

For each experiment, the sampling rate of the wheel odometers was set to50 Hz and the Kinect depth images to1 Hz.
The latter is a fairly slow rate for scan matching and was chosen specifically to test the robustness of each of the two filters.
The trajectories were steered in open-loop mode by setting left and right wheel velocities. The map was built from the initial
robot’s pose. The resulting sensor data was logged to the on-board memory and then run through both the Invariant EKF and
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the Multiplicative EKF whose designs were covered throughout Section IV. When an image was found to possess a substantial
amount of novel information compared to the existing map it was aggregated to the existing map. For fairness of comparison
the ICP algorithm and associated parameters e.g. number of point pairs and rejection criteria (c.f. Section III-B) wereidentical
among the filters.

B. First Experiment

In the first experiment, the Wifibot starts stationary near anedge of the bounding area wall, then advances in a straight line
towards the opposite wall, where it stops. The position and attitude (converted to Euler angles) estimates from the IEKFand
MEKF designs are plotted against the OptiTrack ground truthin Figure 2. For visualization purposes Figure 2 also provides
an overhead view of the positions, plus the values of the3× 3 subset of the Kalman gain matrixK acting on planar position
and heading angle error states via their corresponding errors.
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Fig. 2. Linear trajectory experiment: IEKF ( ), MEKF ( ), Ground truth ( )

From Figure 2 we see that the IEKF and MEKF designs perform nearly the same. In the final stationary configuration, the
IEKF exhibits an in-plane error of(∆x,∆y,∆ψ) = (6.2 cm, 8.5 cm, 1.6◦) from the ground truth, while for the MEKF this error
is (6.0 cm, 7.8 cm, 1.9◦) — the difference being within the uncertainty of the system.The RMS of the vector of errors between
estimated trajectories and ground truth throughout the full experiment are RMS(∆x,∆y,∆ψ) = (3.8 cm, 4.9 cm, 1.1◦) for
the IEKF and(3.6 cm, 4.4 cm, 1.0◦) for the MEKF, again within uncertainty. In addition the Kalman gain matrix entries are
seen to behave nearly the same. This almost-identical performance is as expected because for a linear trajectory both filters
reduce to a linear Kalman filter. We will be considering a non-linear robot trajectory in the next experiment.

Note that the OptiTrack data reflects the unevenness of the wooden floor mentioned in Section V-A, which causes the robot
to sway with an order-of-magnitude amplitude of1◦ in the roll and pitch axes and heave with amplitude1 cm in the vertical
axis. This acts as an exogenous disturbance to the system, and as previously discussed is accounted for by the additive process
noise vectorsνµ andνω.

C. Second Experiment

In the second experiment the robot begins stationary, then executes a circular (thus non-linear) trajectory consisting of two
identical circles traveled in the counter-clockwise direction, obtained by setting differing constant speeds on the left and right
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wheels. As in the previous experiment, for each of the two filters we plot the estimated system states versus the ground truth
reported by the OptiTrack system, as well as an overhead viewof the positions for visualization purposes and a3× 3 subset
of the Kalman gain matrixK entries. The results are shown in Figure 3.
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Fig. 3. Circular trajectory experiment: IEKF ( ), MEKF ( ), Ground truth ( )

Figure 3 clearly shows that the performance of the two estimators is no longer identical, and that the IEKF-computed estimates
are closer to the ground truth than the MEKF ones. In the final configuration, the IEKF has an error of(∆x,∆y,∆ψ) =
(14.3 cm, 1.2 cm, 9.7◦) while the MEKF has(29.4 cm, 5.7 cm, 21.3◦). For RMS values of the estimation discrepancy vectors,
the IEKF shows RMS(∆x,∆y,∆ψ) = (10.6 cm, 14.2 cm, 5.7◦) and the MEKF(18.5 cm, 21.3 cm, 12.4◦). Thus in this non-
linear trajectory case, the IEKF exhibits an estimation performance advantage over the MEKF.

The Kalman gain matrix entries plotted in Figure 3 demonstrate a feature of the IEKF already discussed in Section IV-B:
the independence of the linearized Kalman Filter dynamics (as the matrices(A,B,C,D) used to computeP henceK) on
the estimated system statêR, c.f. (18) for IEKF versus (21) for the MEKF. Indeed throughout the circular trajectory wherêR
varies with time, the IEKF gains remain approximately levelwhile the MEKF gains oscillate — note that they can not remain
absolutely level, as the IEKF gains depend on the scan matching covarianceRν which varies throughout the trajectory due to
inhomogeneities in the environment. This is logical as the gains should definitely adapt to the environment’s observability, such
that the filter does not trust the scan matching output when the environment is underconstrained and contains no information
along some specific direction(s). The IEKF design’s greaterindependence from estimated states is expected to provide better
estimation accuracy than in the MEKF design, and this is indeed what we see here.

VI. CONCLUSIONS

We have successfully designed and experimentally validated a Kinect depth camera scan matching-aided Invariant EKF-based
localization system and compared it against a Multiplicative EKF-based design in terms of theoretical features and estimation
performance relative to a ground truth. The fundamental advantage of the IEKF is its guaranteed increase in robustness to poor
estimates of state, a fundamental weakness of the MEKF design.

We described both filter designs and tested them experimentally, demonstrating that the state estimates follow the ground
truth and confirming the consistency of the novel ICP covariance estimation (14) derived in Section III-C. Experimentaltesting
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illustrated the theoretical features and advantages of theIEKF and demonstrated its improved estimation accuracy over the
MEKF design for a circular (non-linear) robot trajectory.

Future work involves mixing the introduced techniques withpose-SLAM and smoothing in order to take advantage of the
loop closures which may occur during the motion, tackling the case where a 3D map is not available, and applying the IEKF
to more complicated problems such as outdoor mobile cartography.
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