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Abstract

Localization in indoor environments is a technique whickineastes the robot's pose by fusing data from onboard motion
sensors with readings of the environment, in our case dadaby scan matching point clouds captured by a low-cost Kinec
depth camera. We develop both an Invariant Extended Kalnilger HEKF)-based and a Multiplicative Extended Kalmaritéi
(MEKF)-based solution to this problem. The two designs azsssfully validated in experiments and demonstrate dharaage
of the IEKF design.
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|. INTRODUCTION AND LITERATURE REVIEW

OCALIZATION is a fundamental building block for mobile robes [1]. For operations in environments where GPS is

not available e.g. indoor navigation, or for situations veh&PS is available but degraded, the uncertainty in thecleshi
pose can be reduced by using information from a 3D map [2]dRmentally this represents a sensor fusion problem, and
as such it is typically handled via an Extended Kalman Fi{ieKF) c.f. the textbooks[[3],[]4], although a number of direc
nonlinear observer designs have been proposed é.gL[5]/]6]The EKF approach offers two practical advantages tvese:
it is a fully systematic design procedure, and it admits ebphilistic interpretation. Indeed it can be viewed as a mann
likelihood estimator that combines sensor information imagtimal way (in the linear case), with the confidence in each
measurement being described by a covariance matrix.

In this paper, we address a localization problem, where pssmates from proprioceptive sensors are obtained byhimatc
images obtained from a depth scanner (scan matching or Libaded odometry [8]) with a 3D map. We use the lterative
Closest-Point (ICP) algorithm][9],110] on 3D point cloudstained from a low-cost Kinect camera mounted on our expartal
wheeled robot. During the motion we assume an already bDilg®ss map made of clouds of points is available. When a
scan contains substantially more information than the ragan be aggregated to the existing map. Further detailsbeil
provided in Sectiof Tll.

The sensor fusion EKF works by linearizing a system abouedtimated trajectory, then using estimates obtained from
an observer for this linearized model to correct the stat¢heforiginal system. In this way the EKF relies on a closed
loop which can be destabilized by sufficiently poor estimaté the trajectory, known as divergenceé [3]. Clearly, redgc
or eliminating the dependence of the EKF on the system’&dtajy would increase the robustness of the overall system.
An emerging methodology to accomplish this goal is the liavarEKF [11], [12], built on the theoretical foundations of
invariant (symmetry-preserving) observers|[18], [14]eTEKF technique has already demonstrated experimentidrpgance
improvements over a typicall[4] “Multiplicative” EKF (MEK)Fin aided inertial navigation desigris [15], [16]. From agiieal
viewpoint, the advantage of EKF-like techniques is theitoenatic tuning of gains based on the estimated covariandheof
measurements. Applying the IEKF to an aided scan matchinglem was first demonstrated in_[17] for 3D mapping. A
preliminary version of this work appears in conference pemtings[[1B8]. The contributions of the present paper arelasis:

1) Designing a scan matching-aided localization systemafavheeled indoor robot which fuses robot odometry with
Kinect-based scan matching,

2) A method to compute a realistic covariance matrix assedito the scan matching step and implicitly detect undercon
strained environments,

3) Providing both an IEKF (whose non-linear structure takdgantage of the the geometry of the problem) and a MEKF
version of the state estimator for this problem,

4) Experimentally validating both designs, and comparimgjrt accuracy w.r.t. ground truth data provided by an optica
motion capture system.
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This paper is structured as follows. A brief literature ssviand problem motivation have been provided above. Seffion
provides the model of the system dynamics and derives lizingrapproximations used in the sequel. Seclioh Il cotkes
process of obtaining aiding measurements from scan mataifipoint clouds provided by a Kinect depth camera mounted
on the robot, and provides a meaningful and simple methoaepate a covariance matrix associated to the measurements.
Section IV provides the equations of the invariant obsenE&F and MEKF state estimators, which are then experinignta
validated in Sectiofi V. Conclusions and future work direes are given in Sectidn VI.

Il. SYSTEM MODELS
A. Noiseless System

In the absence of sensor noise, the dynamics of a rigid-bedicle are governed by
R = RS(w)
p=Ru
where R € SO(3) is a rotation matrix measuring the 3D attitude of the vehiclec R3 is the body-frame angular velocity
vector, S(-) is the 3 x 3 skew-symmetric matrix such tha(z)y = = x y where x denotes theéR? cross-productp € R3
is the position vector of the vehicle expressed in cooréimatf the ground-fixed frame, and € R? is the velocity vector
of the vehicle expressed in body-frame coordinates. The/i@ne angular velocitw and linear velocityu vectors can be
measured directly using on-board motion sensors, e.gasidtirate gyro forw and a Doppler radar for. In the case of a
wheeled vehicle traveling over flat terrain, odometry infation from the left and right wheels can be used to compuge th
forward component of vectqe and the vertical component of vector taking the remaining components as zero.

As will be discussed in SectidnllIl the vehicle’s attitudeand positionp are computed bycan matching images from
the on-board Kinect depth camera with a map of 3D points waltbrative Closest Point (ICP) algorithm. This gives otitpu

equations
Yp p

In reality the input signalss and i in (@) and the output readingsgs, y, in (2) are corrupted by sensing noise. For the
former we employ the sensor model typically used in aidedgadion design([4]

1)

B. Sensor noise models

w=w++v,

_ 3)
n= M+V;L

wherev ~ N(0,0?) terms represent additive Gaussian white noise vectorsevbogariance can be directly identified from
logged sensor data. Remark the noise vectgrsand v, are expressed in coordinates of the body-fixed frame. Thsenoi
models for scan matching outpuls (2) are not standard andwiitlerived in Sectiof TII=D.

C. Geometry of SO(3)

The special orthogonal groupO(3) is a Lie group. For any Lie grougr, there exists an exponential magp : g — G
which maps elements of the Lie algelyr#o the Lie groupG. It is known (e.g.[[19, p. 519]) that for any € g, (exp X)~! =
exp(—X), thatexp is a smooth map frongy to GG, and thatexp restricts to a diffeomorphism from some neighborhood of
in g to a neighborhood of the identity elemenin G. The last fact means there exists in a neighborhGoaf e an inverse
smooth madog : G — g such thatexp olog(g) = g, Vg € U.

For the particular case &fO(3), the associated Lie algebsa(3) is the set of3 x 3 skew-symmetric matrices:= S(z),x €
R3 andexp : so(3) — SO(3) is the matrix exponential

1
expl=T+{+ 58+

while log : SO(3) — so(3) is given by
1
~ 2sina

logR=aS(3) where «a:2cosa+1=tracdR) and S(B) (R—RT)

Now consider the special case &f € SO(3) close tol. Since the exponential map restricts to a diffeomorphisomfra
neighborhood of zero iro(3) to a neighborhood of identity iISO(3), ¢ € so(3) is close to the matri;,; such thatt? and
higher-order terms iR = exp £ are negligible and thus

R~I+¢  ReSO(3) close tol (4)
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Since (exp &) ! = exp(—£) we also have

R'~T1-¢, R € SO(3) close tol (5)
Still for R close tol, tracéR) ~ 3 such thato ~ 0 and solog R ~ (R — RT)/2. We define the projection map
_pT
7m:S0(3) = so(3), m(R) = al 2R
which is defined everywhere but is the inverseesf) only for R = exp ¢ close to!. In this caser(R) ~ ¢ and [4) becomes
R—1I~mn(R), R € 50(3) close toI (6)

Approximations[(#),[(b) and16) will be employed in the selque

IIl. DEPTHCAMERA AIDING
A. Camera Hardware

Our test robot is equipped with a Kinect depth camera, a lost-currently around 00 €) gaming peripheral sold by
Microsoft for the XBox 360 console. The Kinect's sensinghiealogy is described iri [20]. The unit employs an infrareskla
to project a speckle pattern ahead of itself, whose imagead back using an infrared camera offset from the laser gmje
By correlating the acquired image with a stored referencagencorresponding to a known distance, the Kinect computes a
disparity map (standard terminology in stereo camera n)sgd the scene which is employed to construct a 3D point cloud
of the environment in the robot-fixed frame. The disparitypsi@omputed by the Kinect, corresponding to individual |sixe
of the IR camera image, are available @) x 480 images at a rate af0 Hz. Physically the IR camera has a total angular
field of view of 57° horizontally and43° vertically, such that the constructed point cloud is failiyarrow” as compared to
time-of-flight scanning laser units such as the Hokuyo UTOL-8 (270°) or the Velodyne HDL-32E360°). The maximum
depth ranging limit of the Kinect i§ m, in contrast to the UTM-30LX30 m) and HDL-32E {0 m). The Kinect can only
be utilized under indoor lighting conditions. But convdys¢he Kinect is much less expensive than the Hokuyo (akd6060
€) and Velodyne (abou22000 €) units and unlike the scanning units is not prone to pointidldeformation at high vehicle
speeds. The scan matching algorithms developed for Kingat plouds are adaptable to these units.

A comprehensive analysis of the Kinect's accuracy and pi@tis carried out i [21], showing that point cloud measuzats
are affected by both noise and resolution errors which gngmificantly with distance from the camera. Consequently th
recommended usable range intervalis z < 3 m.

B. ICP Algorithm

The ICP algorithm[[B],[[10] is an iterative procedure for fimglthe optimum rigid-body transformatidd Rz, §7") € SO(3) x
R? between two sets of points ®* (clouds){a;} and{b;}, which do not necessarily have equal number of entriesowaig
the taxonomy in[[22] an ICP algorithm consists of the follogi(iterated) sequence of steps:

1) Sdect source points from one or both clouds. We select a totabo6 points (about % of the available) from both clouds
and located away from edges, compute their correspondifighormals {n;} by fitting a plane through neighboring
points [23], and employ the strategy of normal-space samgdRZ].

2) Match the source points with those in the other cloud(s) and rgjeot matches. We employ a nearest-neighbor search
accelerated by & — d tree [24], then reject pairs whose point-to-point distaareeeds the threshold value @25 m
or whose associated normals form an angle larger #3&n

3) Minimize the error cost function. We choose the point-to-plane ICfaua [10]

N
FOR,0T) =" [(§Ra; + 6T — b;) - n;]” @)
1=1
and apply linearization to solv€](7) as explained below.
4) Terminate if convergence criteria met, else goto 1). For simplicity deenot employ an early stop condition and always
run 25 iterations of the ICP algorithm.
The heart of the ICP algorithm lies in the way the matching stedone, as the points of the two clouds are arbitrarily ldbe
and do not initially match correctly. Linearization is jifigd provideddR is close tol, equivalent to cloudga;} and {b;}
starting off close to each other. As explained in SedfiofDlithe closeness assumption is valid due to pre-alignindyefttvo
clouds using an estimate of pose obtained at the predictem f the overall filter. We thus employ linearizatidd (4)(f)
to obtain
flz) = Z [(CCR X a; + 7 + a; — b;) 'nz‘f ZZ [((Ii X n;)- xR+ n; 'xT'i‘ni'(ai_bi)}Q 8)

i %
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where we have used the scalar triple product circular ptpgerx b) - ¢ = (b X ¢) - a. In the linearized context, minimizing
the ICP cost functior{7) is equivalent to minimizirig (8} R® — R by choice ofr =[xz x7]7. We define the terms

H; = [(ai x ng)T nﬂ yi = n;fr(ai —b;)

to rewrite [8) as

flz) = Z [Hiz + yi}2 9

i

The minimum of [®)f(x) is achieved atr for which 9 f/0x = 0 sinced? f/0x? = 2A > 0 everywhere with

A= ()T H =Y {< i) as < ma) T (as % ”%)"ﬂ

ni(ai X ni)T n;n;
— N, (a; x ni)n! (a; — b;)
b= Z(HZ) vi= Z { nint (a; — b;)
This minimum is found by solving the linear system of equagiolx = —b. Then up to second order term&R,p) =

(I + S(zr),z,) is the rigid-body transformation which minimizes the petiotplane error[{]7).

C. Covariance of ICP output

As stated in Sectiof III-A the measured point clouds} and {b;} are affected by sensor noise and resolution errors.
We require a method to estimate the covariance (uncenaifitthe rigid-body transformation obtained by running ti&PI
algorithm between measured point clouds.

We continue to assuméx;} and {b;} start close to each other (the open-loop integration of teian sensors allows to
pre-align the clouds). We can thus model the (point-to-@)dGP as a linear least-squares estimator minimiZihg (&).rs).

Let 2;¢p denote the estimate computed by the ICP from noisy pointccttata{a;} and{b;} andz* the true transformation.
The associated covariance is
cov(zicp) = E <(xmp — ) (zrop — x*)T> (10)

Based on the linear least-squares cost funcfibn (9) we d#faeesiduals as the error purely due to sensor noise, thtieis
error between each measured point and the original poinsfivamed through thé&ue transformation:

r = Hx™ +y; (12)

The estimater;cp minimizing (3) was already shown to becp = —A~10 = — [>°,(H;) " H] ! > (H;)Ty;. Rewrite this
using [11) ast;cp = [, (H:) Hi]f1 S H)T (Hiz* — 1) = 2* — A71 Y, (H;)Tr; and [I0) becomes

cov(zrcp) = E< ( - At Xi:(Hi)Tri> ( — A7t ;(Hz)Trl)T>
_ [Z(HZ—) H] - ) ()" B{rirs) ;) {Z(Hn H} L

i A

(12)

In order to evaluatd (12) we need to assume a noise model oresidualsr; in (I1). Expanding the right-hand side using
the definitions ofH; andy; we have

ri = (a; x ny) wly +nlah +nl(a;i—b) = [(xh x a;) + 25+ (a; — b;)] - ni == w; - n

wherew; € R? represents the post-alignment error of tfepoint pair due (only) to the presence of sensor noise in point
clouds{a;} and {b;}. The residual; = w; - n, = nTw; now represents the projection of and [12) becomes

—1 -1
i i g i
The classical Hessian methdd[25], [17].][18] consists sfiasing the post-alignment erroug are independent and identically

normally isotropically distributed with standard dewiatic. Under these assumptiodé(wiij) = E(wi>E<ij> =0,i#j
and the double sum if_(L3) reduces to a single sufm( = 1 for unit normals):

102;(1—11-)TH1-[Z(H1-) Hz}_l :UQ[Z(Hi) H]

@ %

- -1
COV(,T]CP) = [Z(Hz)THz:|
This is precisely the covariance of a linear unbiased estimasing observations with additive white Gaussian noie[26,

p. 85]. However, there is a catch: for a Kinect sensor with~ 300 000 points per cloud an@ =~ 1 cm for depth range
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1 < z < 3m [21, Fig. 10], the above expression yields a covarianceixaiith entries on the order of nanometers, a
completely overoptimistic result for the low-cost Kine@nsor. This result stems from the independence assumptiachw
makes the estimator converge B5/N whereN is the (high) number of points.

We thus need to consider a more complete error model for #iduals. In addition to random noise on the residuals whose
contribution to coyz;cp) rapidly becomes negligible as the number of point pairincreases, the Kinect exhibits resolution
errors on the order of ~ 1 cm for1 < »z < 3 m [21, Fig. 10] due to quantization errors incurred duringiriage correlation
to a reference image as discussed in Se¢fionllll-A. Thes#utésn errors are non-zero mean and are not independeratabf e
other and actually constitute the dominant limitation icw@acy. As shown in our preliminary work [27], this leads het
following approximation of the covariance matrlx {13):

N -1
Z {(ai x n;)(a; x):?i)T (a; x n?n?]) (14)

— ni(ai X n; n;n;
1=

N -t N
COV(I]CP) ~ 52Fp [;(Hz) H1:| = 52Fp <
where N, = 3 is the number of plane “buckets” used for normal-space saqdPZ] in Step 1 of the ICP algorithm,
c.f. Sectio1II=B. Note that the covariance matrix corheaeflects the observability of the environment: for instarif the
environment consists of a single plane, ijls are identical leading to rank deficiency of the matrix toilwerted, thus the
covariance is infinite along directions parallel to the plaAlso note that the overall ICP variance is on the order ef th
Kinect's precisions? in the case of full observability, as expected.

D. Scan Matching as Measured Output

Suppose a 3D map of the environment made up of point cloudtréady available, built either by the robot or from
lasergrammetry. Assuming the scan from the on-board depttera and the map contain a set of identical features, tha'sob
pose with respect to the map can be identified through an I@&itim. However, due to sensor noise and quantizatioristfe
the computed pose is noisy.

Denote the initial estimate of the robot’s pose (obtainedfnumerical integration of the vehicle dynamick (1)) &s (p™).
This estimate is used to pre-align the two scans (the cus@art and the map) in the body-fixed frame; this is requireckesin
the ICP does not guarantee global convergence, and in factasily get stuck at a local minimum. The robot’s true pose ca
then be expressed up to second order termskag { + S(x3)), R« +p~ ), that is the vectofz}, ;) € R is defined as
the discrepancy of the initial estimatio®(, p~) and the true posel{*, p*) projected in the Lie algebr®® and is the vector
to be estimated by the ICP algorithm.

Based on Section [I[{C, we have seen that the ICP output swrite p = (x3;, x;) + (vr, ;) Where the covariance of the
vector (vg, v,) € R is given by [IB) and can be approximated by the simple to coenpxpressior{34). Using the linearity
of the mapsS, we see thaf + S((z;cp)r +vr) =1 + S(z};) + S(vr) and so the pose output from scan matching is (up to

second-order terms)
IR R* R*S(uR)>
=1L )+ i 15
(yp> (p ) ( R*vy (13)

The above is a noisy version dfl(2), where the noise covagiaos(v), v := [vr 1,]T is (approximately but efficiently)
computed by[(14).

IV. STATE ESTIMATOR DESIGN
A. Invariant Observer

We first design an invariant observer for the nominal (ndise) system[{1),[{2) by following the constructive method
in [13], [14]; a tutorial presentation is available in [16)daso the calculations will be omitted. We consider the cakera
the Special Euclidean Lie groupF(3) = SO(3) x R? acts on theSE(3) state of [1) by left translation, which physically
represents applying a constant rigid-body transformati®n po) to ground-fixed frame vector coordinates. This leads to the

nonlinear invariant observer )
5 A . R R
}? _ (RS:(W)) +R (S(I;RER + l;)p EP)) (16)
D R,u LRER =+ LpEP
where L%, L[, L, L» areR**3 gain matrices and
Eg:=—5"'(n(R"yr)), E,=R"(p—y,)

are the invariant output error column vectors. Standardpedations in the framework of symmetry-preserving obsergdow
the associated invariant estimation errggs= RT R, n, = R (p — p) have dynamics

ik = —S(w)nr +nrS(W) + nrS(LEER + L Ep)

. (17)
ip = —S(w)np + nrp — p+ nr (LY ER + LEE,)
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and stabilizing the (nonlinear) dynamids{17) o= I by choice of gainsL leads to an asymptotically stable nonlinear
observer[(16). The stabilization process is simplified[Bg) (1ot being dependent on the estimated system staitedeed the
fundamental feature of the invariant observer is that itrgoees) = Y (n, I(#,w)) [13, Thm. 2] wherel (&, u) = [w p] is
the set of invariants in the present example. We will complugestabilizing gains using the Invariant EKF method in ortde
handle variable scan matching observability of the envirent.

B. Invariant EKF

The Invariant EKF[[11] is a systematic approach to computireggainsK of an invariant observer by linearizing its invariant
estimation error dynamics. A noisy version bf (1) is readilytained by accounting for the sensors’ noise by expregbiag
measured angular and linear velocities as the noisy vectoss® + v, and i = ji + v, and lettingQ, = coviv,, v,]7
denote the process white noise covariance matrix. TheesndfiQ),, can be identified directly from logged sensor data, while
R, :=covlvg vp|T is computed by[(A3) (or more simpli{14)).

Following the IEKF method, we first write a noisy version okterror dynamics[(17) where we let = & — v, and
w = f—v,, wherew, i denote the noisy inputs read from onboard sensors, and tpetds given by[(15). This equation is
linearized using the standard methodology of symmetrggameéng observers, i.e. using vectorsiof to denote the orientation
error by lettingnr := I + S(Cr), ¢r € R® by (@) and lettingn, := ¢, € R®. Up to second order terms if\ v, the noisy
version of [I7) is approximated by the following linear etioia:

i () = (G —sw) (&) () (8 %) (©)- (2 %) ()

dt \ ¢p =S(n) —S(w) ¢p vy Ly Ly ¢p Ly LY Up
The rationale of the IEKF is to tune the gains through Kalntaeoty in order to minimize at each step the increase in the
covariance of the linearized errgr This is done through the standard Kalman filter equaticetint

I R U U S TR O [

and tuning the gains through the standard Riccati equationsntinuous time of the Kalman-Bucy filter
P=AP+PAT — PR;'P+Q,
K = -PR;!
where the gaind making upK are employed in the invariant observer](16).
Remark the IEKF filter matriceéA, B, C, D) are dependent on the system trajectory only throughuheand j,, terms
in A, and do not depend on the estimatés ) as in the usual Extended Kalman Filter. The interest of theardiant EKF
is indeed the reduced dependence of the linearized systetheoastimated trajectory of the target system. In our pitesen

example thg A, B, C, D) matrices are guaranteed not to depend on the estimatedwtaoh increases the filter’s robustness
to poor state estimates and precludes divergence (c.fio8dpt

(19)

C. Multiplicative EKF design

For comparison purposes consider a typical [4] Multipli@iExtended Kalman Filter (MEKF) design for our system. The
governing system equations are given By (1) with noise nsofland output model (15):

R=RS(@—u,)
p=R(i—vyu) (20)
] =[]

We linearize [[2D) about a nominal system trajecto@ﬁ). Remark(R — R) ¢ SO(3) is not a valid linearized system state.
Instead define the multiplicative attitude erbr:= RTR € SO(3) such that forR close toR, I' is close tol. By (@)

I =1+ S(0y), &y € R* and soR"R = I + S(07) = R — R = RS(6v). We definedp = p — p, the output errors
Syr == S~ m(RTyr)] with 7 : SO(3) — s0(3) from Sectio1=C andby, := y, — p and obtain the linearized system

Ml —AS((D) 0l [oy n -I 0] [w
op|  |-RS(z) 0] [dp 0 —R||v
oyr| |1 O |07y + I Q VR
oyp| |0 I| |dp 0 R||v
an LTV system tractable using the classical Kalman Filtdre Tesulting[op ¢~] estimate is used to update the estimated

state of the nonlinear systefi {20) as follows. NSt@+) € so(3) corresponds td” = RTR € SO(3) and by Sectiofi TI-=C
exp : so(3) — SO(3) is the matrix exponential. Thus the estimated states aratagds

pt=p+dp and R' = RexpS(0y)

(21)
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The main difference between the MEKF and the IEKF is that dmmér linearizes the system dynamics| (20) about a nominal
trajectory, while the latter linearizes the invariant esttion error dynamic§(17) about identity. As discussedentiSn[IV-A
and[IV-B, the latter dynamics do not depend on the estimate® $ such that the linearized IEKF system is guaranteed
to be robust to poor estimates of state. Meanwhile the MEKi#hoamake this guarantee and indeed the linearized system
matrices[(2l) depend on the estimated statelxidhe difference in experimental estimation performancéheftwo designs
will be demonstrated in Sectidn] V.

V. EXPERIMENTAL VALIDATION
A. Hardware platform

Fig. 1. The Wifibot Lab v4 Robot (left); Experiment area witlotion-capture system (right)

The wheeled robot used for our experiments is shown on theldfigure[1. The robot is equipped with an Intel Core i5-
based single-board computer running Ubuntu Linux, WLAN .808 wireless networking, all-wheel drive vi2 V brushless
DC motors, and a Kinect camera providing 3-D point cloud sazfrthe environment. The experimental testing area is stoown
the right side of FigurEl1, and consists of an open area sudextiby a set of seven S250e cameras employed by an OptiTrack
motion capture system to provide a set of ground truth (egfee trajectory) data for the experiments with sub-miltiene
precision at a rate of20 Hz. The wooden parquet floor seen in Figlite 1 is not perfecily dausing small oscillations in
the vehicle’s attitude and height which will be visible iretexperimental plots. A number of visual landmarks (reatidsny
boxes) were placed randomly around the experimental areadier to provide good scan-matching conditions.

The robot is equipped with independent odometers on thealadt right wheels. The two odometer counts are averaged
and converted to forward velocity, by dividing by an experimentally-identified constant = 788 m—! representing the
number of encoder counts per meter of travel. Assuming zei® dip as well as zero out-of-plane velocity, we obtain the
body-fixed velocity vecton: = [, 0 0] m/s used in noiseless vehicle dynamiCk (1). Since the prashicle is not
equipped with a rate gyro, we employ the difference in odemebunts, identified constant, = 0.44 m representing the
lateral distance between wheel-ground contact pointskantd compute in-plane angular velocity, then employ the angular
velocity vectorw = [0 0 w.]” rad/s in [[1), i.e. assume zero roll and pitch angular vejotite to the vehicle being level,
with the non-flatness of the floor reflected by additive semsnse vectorsvu andy,,. The covariances of, andv, were
assigned by first identifying the on-axis variane¢s = 0.01> m*/s ando?_ = 0.02? rad’/s of data logged durlng respectively
constant-velocity advance and constant-velocity circigettories, then takmg diggov(v,)) = [o2. 0.0, 0.10). ] and
diag(cov(r,)) = [0.162 0.1, o2 ] on account of the uneven terrain.

Clearly the assumptions in the previous paragraph are bptimstic and ad-hoc, for instance the zero-slip assumptio
does not fully hold, the noise covariances are assigneddtieaily, and the encoder-derived data is subject to ifieation
errors of x and quantization effects. This is acceptable for our pugppobowever, since we are interested in comparing the
experimental performance of two competing filter designgertban the absolute accuracy of the estimates. Since we will
employ identical sensor data in both designs, we will be &blamake a fair comparison between the two.

For each experiment, the sampling rate of the wheel odometas set td50 Hz and the Kinect depth images ioHz.

The latter is a fairly slow rate for scan matching and was ehaspecifically to test the robustness of each of the two dilter
The trajectories were steered in open-loop mode by setifigahd right wheel velocities. The map was built from thdiahi
robot’s pose. The resulting sensor data was logged to th@oand memory and then run through both the Invariant EKF and
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the Multiplicative EKF whose designs were covered througt®ectiof VY. When an image was found to possess a substantia
amount of novel information compared to the existing mapaswvaggregated to the existing map. For fairness of compariso
the ICP algorithm and associated parameters e.g. numbeiimf grirs and rejection criteria (c.f. Section 111-B) wetkentical
among the filters.

B. First Experiment

In the first experiment, the Wifibot starts stationary neaedge of the bounding area wall, then advances in a straigt i
towards the opposite wall, where it stops. The position atitude (converted to Euler angles) estimates from the IEKE
MEKEF designs are plotted against the OptiTrack ground tmtRigure[2. For visualization purposes Figlile 2 also presid
an overhead view of the positions, plus the values of3the3 subset of the Kalman gain matriX acting on planar position
and heading angle error states via their correspondingserro
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Fig. 2. Linear trajectory experiment: |EK ), MEKF (mm=), Ground truth se)

From Figurd 2 we see that the IEKF and MEKF designs performiynégae same. In the final stationary configuration, the
IEKF exhibits an in-plane error ¢iAz, Ay, Ay) = (6.2 cm, 8.5 cm, 1.6°) from the ground truth, while for the MEKF this error
is (6.0 cm, 7.8 cm, 1.9°) — the difference being within the uncertainty of the systd@ime RMS of the vector of errors between
estimated trajectories and ground truth throughout theexperiment are RM&\z, Ay, Ay) = (3.8 cm, 4.9 cm, 1.1°) for
the IEKF and(3.6 cm, 4.4 cm, 1.0°) for the MEKF, again within uncertainty. In addition the Kamgain matrix entries are
seen to behave nearly the same. This almost-identical ppeaftce is as expected because for a linear trajectory baehsfil
reduce to a linear Kalman filter. We will be considering a hioear robot trajectory in the next experiment.

Note that the OptiTrack data reflects the unevenness of tlelevofloor mentioned in Sectién WA, which causes the robot
to sway with an order-of-magnitude amplitude 16fin the roll and pitch axes and heave with amplitudem in the vertical
axis. This acts as an exogenous disturbance to the systenasgureviously discussed is accounted for by the additivegss

noise vectors/, andu,,.
C. Second Experiment

In the second experiment the robot begins stationary, tkeoutes a circular (thus non-linear) trajectory consistif two
identical circles traveled in the counter-clockwise dii@t, obtained by setting differing constant speeds on ¢ffteand right
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wheels. As in the previous experiment, for each of the twerSliwe plot the estimated system states versus the grouthd tru
reported by the OptiTrack system, as well as an overhead ofdWe positions for visualization purposes and a 3 subset
of the Kalman gain matri¥< entries. The results are shown in Figliie 3.
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Fig. 3. Circular trajectory experiment: |EK fufmm), MEKF (=), Ground truth se)

Figurel3 clearly shows that the performance of the two estirsas no longer identical, and that the IEKF-computedhestes
are closer to the ground truth than the MEKF ones. In the fioalffiguration, the IEKF has an error 0f\z, Ay, Ay) =
(14.3 cm, 1.2 cm,9.7°) while the MEKF hag29.4 cm, 5.7 cm, 21.3°). For RMS values of the estimation discrepancy vectors,
the IEKF shows RM8Az, Ay, Ay) = (10.6 cm, 14.2 cm, 5.7°) and the MEKF(18.5 cm, 21.3 cm, 12.4°). Thus in this non-
linear trajectory case, the IEKF exhibits an estimatiorfggenance advantage over the MEKF.

The Kalman gain matrix entries plotted in Figlile 3 demonsteafeature of the IEKF already discussed in SedfionIV-B:
the independence of the linearized Kalman Filter dynamasstie matrice$A, B, C, D) used to computé® henceK) on
the estimated system stafg c.f. (I8) for IEKF versus{d1) for the MEKF. Indeed throughthe circular trajectory wher®&
varies with time, the IEKF gains remain approximately lewdile the MEKF gains oscillate — note that they can not remain
absolutely level, as the IEKF gains depend on the scan nmatatuvarianceR, which varies throughout the trajectory due to
inhomogeneities in the environment. This is logical as thimg should definitely adapt to the environment’s obselimlsuch
that the filter does not trust the scan matching output wheretivironment is underconstrained and contains no infoomat
along some specific direction(s). The IEKF design’s greatdependence from estimated states is expected to proeiteer b
estimation accuracy than in the MEKF design, and this iseddehat we see here.

VI. CONCLUSIONS

We have successfully designed and experimentally validat€inect depth camera scan matching-aided Invariant ExSet
localization system and compared it against a MultiphieatKF-based design in terms of theoretical features arichasbn
performance relative to a ground truth. The fundamentadathge of the IEKF is its guaranteed increase in robustogssdr
estimates of state, a fundamental weakness of the MEKF mlesig

We described both filter designs and tested them experithgrdamonstrating that the state estimates follow the gtbu
truth and confirming the consistency of the novel ICP covemrgeestimation (14) derived in Section1l-C. Experimenésting
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illustrated the theoretical features and advantages olEK& and demonstrated its improved estimation accuracy twe
MEKF design for a circular (non-linear) robot trajectory.

Future work involves mixing the introduced techniques wittee-SLAM and smoothing in order to take advantage of the
loop closures which may occur during the motion, tackling tiase where a 3D map is not available, and applying the IEKF
to more complicated problems such as outdoor mobile caxfdoy
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