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3-D Velocity Regulation for Nonholonomic Source
Seeking Without Position Measurement
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Abstract—We consider a three-dimensional problem of steering  Different from [1]-[4] where the agents are also assumed
a nonholonomic vehicle to seek an unknown source of a spatial to be capable of sensing their positions, this paper corside
distributed signal field without any position measurement. In the three-dimensional (3-D) problem of steering a single

the literature, there exists an extremum seeking-based sitegy hol . hicle t K th ithout th hi
under a constant forward velocity and tunable pitch and yaw nonholonomic venicle o see € source without the veni-

velocities. Obviously, the vehicle with a constant forwardzelocity  Cl€’'s position information. This consideration is moteat
may exhibit certain overshoots in the seeking process and sa by vehicles operated in environments where their position
not slow down even it approaches the source. To resolve thisinformation is unavailable or costly, such as urban, under-
undesired behavior, this paper proposes a regulation str&gy for  g4nd and underwater environments. The lack of position
the forward velocity along with the pitch and yaw velocities . . . . .
Under such a strategy, the vehicle slows down near the source'nformat'on r_enders the gwdance. _Of the vehlc!e |ntergst|r_1
and stays within a small area as if it comes to a full stop, @and challenging, as most of traditional searching strategi
and controllers for angular velocities become succinct. Werove  fail to work under this framework. In addition, we use only
the local exponential convergence via the averaging techmie. one vehicle in the mission in contrast withl [1[,! [2]. While
Finally, the theoretical results are illustrated with simulations. the collaboration among multiple vehicles may improve the
Index Terms—Extremum seeking, adaptive control, nonholo- search efficiency due to the capacity in exploring several
nomic vehicle, averaging. locations simultaneously and exchanging data in real time,
a single vehicle can collect field values more freely with
|. INTRODUCTION lower hardware overhead. As inl[5]=]10], this paper focuses
n seeking a source whose signal strength depends only on

ECENTLY there has been a growing interest in th
9 9 e distance between the vehicle and the source, .

study of steering single or multiple autonomous agen King i Li del f di
to seek the source of a scalar signal field. The signal could b xtremum hsegz Ing Is a rea -::me mod el free gradient fes-
thermal, electromagnetic, acoustic, or the concentratioa t|ma¥|on method to .c;]ptlmlze the ?tgaky-st?tg OUtEUt oha
chemical or biological agent. The strength of the signadfief‘on Inear system, without any exp '9” nowledge about the
is usually assumed to decay away from the source, and ut-output map_other than the eX|stence_of an ext_remum
agent only has the capability of measuring the signal stren L1]. It has been |mplgmented sgccessfully_ln many d|ff9ren
at its present location. However, the information about t eas [1‘2]"!19]' Specially, a series of stugﬂes sugge$t|th§\
spatial distribution of the signal field is unavailable. Buc'S an effective approach for source seeking problems with-

a source seeking problem is of interest in a wide range gyt lf.’os'“on Lnfgrmaﬂorc]jl[Sl]——[IO]. EmployTg the extremulir)
applications, including explosive detection, drug detect seeking method, two distinct strategies for source seeking

localizing the sources of hazardous chemicals leakage p(gpbl_zms (ijn a plar|1|_e Werr]e deiig?edb thile _Zhanrg]; etlal. |[5]
pollutants, localizing hydrothermal vents, etc. considered controlling the vehicle by keeping the angular

Various methods have been proposed to study source Se\éqlppity constant and twning the forward ve locity, COCh.m'd
ing problems and related issues. Porat and Nehafai [1] rstic [7] con.S|dered controlling Fhe vehicle by keepmgath
plored the use of moving sensors for detecting and locaizi prward velocity constant and tuning the angular velodify.

vapor-emitting sources by computing the gradient of tt_%nd Krstic [8], [9] replaced the periodic sinusoidal exiga
Cramér-Rao bound on the location error. Ogren et [al. [ ith the stochastic excitation and redesigned the extremum
addressed the gradient climbing question of a mobile sen$ Iekmg method. Ghods an_d Krs_1:|c [10] -regulated b.Oth fodwar
network. Pang and Farrell |[3] provided a SOUI‘CE-“kG"hOOYFlOCIty and angular velocity with the intent of bringingeth

mapping approach based on Bayesian inference methodé"?\!?\'/ﬂ.‘la to a Ston n(ra]ar the Source. hf d
estimate a likelihood map for the location of the source of e most of the previous research focused on source

a chemical plume. Demetriou et al [4] proposed a couplé&ekmg problems in a plane, there are few work on the three
4 : _t ) ; ;
controls-computational fluids approach for the estimatidén dimension case [6][[20]. The 3-D model is more complicated

the signal field in a two-dimensional (2-D) domain with ague to more optional vehicle movements, thus the methods
Lyapunov-guided sensing aerial vehicle in the 2-D workspace can not be directly applied to the 3-D

workspace. However, in many engineering applicationsa®our
This work was supported by National Natural Science Fouodaif China seeking in the 3-D workspace attracts more concern. Two
(61304038, 41427806). _ N control schemes in the 3-D workspace were presented by
The authors are with the Department of Automation, Tsinghumver- Coch LIT61. Both h id d hicl ith
sity, Beijing, 100084, China (e-mail: linjp11@mails.ighua.edu.cn; shi- Cochran et al.L[ ]. Both schemes considered a vehicle wit

jis@tsinghua.edu.cn; youky@tsinghua.edu.cn; wuc@tsiagdu.cn). a constant forward velocity. Whereas it is similar to the 2-
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D case, a constant forward velocity results in complicated z
asymptotic behaviors of the vehicle. As a result, the vehicl A
cannot settle when it approaches close to the source. thstea
it exhibits certain overshoots and finally revolves aroumel t 7
source with a relatively large forward velocity. Note that a
small constant forward velocity may improve the asymptotic y |
performance, but the convergence rate decreases. Matveev e |
al. [20] proposed a hybrid controller without estimationtio '
field gradient, which is justified to be of global convergence Y o Ve !
to the source of a generic field. However, they employed a \/\‘(9/ ‘/ '
vehicle with a constant forward velocity as well, which agai ~4 » Ve
results in the undesired performance similar[to [6].

To overcome the shortcoming induced by a constant forward
velocity in the 2-D case, an approach that regulates both
forward velocity and angular velocity was proposed by Gho%. 1
and Krstic [10]. In this paper the approach is extended to 3-D
workspace, aiming at bringing the vehicle to a stop around
the source. While only one angular velocity is considered |8 problem Description
the 2-D case, we must address two angular velocities (pitch, . : .

. . . As in [6], we consider an autonomous vehicle under non-
and yaw velocities) simultaneously in the 3-D case. The t\/\ﬁo

angular velocities and the forward velocity interwine wetich olonomic constraints, see Fiff] 1 for an illustration. The

: . : vehicle is equipped with actuators which are used to impart
other, which makes the design and analysis of the Cont%ﬁrward, pitch and yaw velocities. The diagram in Fig. 1

scheme challenging. A preliminary version of this work hag . . . ) -
) , . epicts the position, heading, forward, pitch and yaw vieex
been reported in WCICA 2014 [21]. However, we eStabIISh1“?’.‘)rpthe vehi(F:)Ie center and sgensor. Thepsengds n?ounted at

rigorous proof of the stability and provide a rule on pare&neta distanceR away from the vehicle centet,. The azimuthal
. S ..
selection for the controllers |n_ _thls Paper. .. anglexa defines the pitch, whose velocity is governedihy.
We tune_both angular_velocmes and forward velocity simukry 4 polar anglé defines the yaw, whose velocity is governed
tanequsly in contrast with [6]/_[20]. _Under a tunable ford/arby . The forward velocity, or surge velocity, is defined by
velocity we can slow down the vehicle around the source 0 ngte that the sensor is mounted at the tip of the vehicle,

get closer to the source without decreasing the convergeRges e roll velocity and angle do not affect the measurémen
rate. The forward velocity is controlled to be small near thgnd movement of the vehicle and can be neglected

source, which eliminates the undesired overshoots. M@®OV 1o inematic equations of motion for the vehicle center
the controllers for angular velocities can be simplified b¥re

removing extra items for eliminating the overshoots calsed

Geometric interpretation of vehicle model.

a constant large forward velocity. We obtain two phenomena cos(a) CF’S(G)

for the static source that produces a signal field with sphéri Te = v COS(?‘) sin(6) |, 1)
level sets. In one phenomenon the vehicle eventually stays sin(a)

within a small area around the source as if it “stops” as & = Yo, (2)
expected. In the other it revolves in an annular attractouad 6 = 4y, 3)

the source, which is similar to][6] but with simpler contesh. h h < | q
The rest of the paper is organized as follows. In Section 2 we'erere = (@, Ye, 2c). The sensor is located at

describe the 3-D nonholonomic source seeking problem and cos(a) cos(6)
present our extremum seeking scheme. In Section 3 we derive rs =r.+ R | cos(a)sin(f) | . 4)
an averaged system and prove local exponential convergence sin(c)

for the static source that produces a signal field with sphéri S . .
P 9 o The task of vehicle is to seek a source that emits a spatially

level sets. In Section 4 we provide a rule on the paramet rt ibuted sianal. The sianal st th at the locatiori
selection for the control scheme. In Section 5 we incluasils riouted signal.- the signal strength at the locatons

simulation results to illustrate the behaviors of the viehic gnoted *byJ — f(i)’ which has an isolated Ipcal maximum
under different scenarios. f* = f(r*) wherer* denotes the source location, or the local

maximizer of f. Here the isolated maximum means that there
is only one source in the searching area. The signal strength
J decays away from the source, but other information
Il. PROBLEM DESCRIPTION ANDCONTROL SCHEME about J, such as the shape ¢f and the position of*, is
unknown. Furthermore, the information of the vehicle’sipos
In this section we firstly describe the 3-D nonholonomition is unavailable, which makes traditional gradient skarg
vehicle model for the task of the source seeking missiostrategy fail to work. Our objective of this work is to design
Then we present our extremum seeking scheme and providatrol scheme to steer the nonholonomic vehicle to thecgour
an intuitive interpretation of the control scheme. without any vehicle’s position information.
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Fig. 2. Block diagram of source seeking via tuning of forwapidch and

yaw velocities of the vehicle.
Fig. 3. Block diagram of source seeking id [6].

B. Control Scheme

To achieve the goal of seeking the source, we employ
extremum seeking method to tune the pitch and yaw velociti ) : ) .
(b andy) directly and the forward velocityu] indirectly, velocity v is designed to be positively correlated to the output

which is in contrast with[[6] as they assume the forwaré of the washout filter, sincé describes the variation of the

velocity to be constant. It is worth mentioning that the ,Sensor reading in some sense. As a result, the vehicle would
g%eed up when heading towards the source, and slow down

D case has been studied in_[10]. However, the 3-D ca . X - .
is more intricate and challenging and remains outstandiﬁéq en deviating from the source. A detailed stability analys

Firstly, the control scheme iri [L0] for the 2-D case is n "this scheme for the static source will be shown in next
longer applicable. We consider more angular variableseNhﬁeCt'_On' . . .
It is worthy mentioning that our control scheme is quite

the utilizable information is still constrained to the sin . : O S :
strength. In fact two extra states are added to analyze fHHere”t frqm the_ one in[6], which is given n FI. 3. In_ thei
ork a vehicle with a constant forward velocity is considere

dynamics of the system for the extra dimension. Secondzé’/, lovi he basi K hod. th hicl
the two angular velocities and the forward velocity intéra mploying the basic extremum seeking method, the vehicle

with each other by affecting the motion and movement &annot settle even if it has reached the source due to thefuse o
the vehicle. The coupling of the three velocities obviousl| constant forward velocity. In addition, it easily overstethe

complicates the stability analysis of the vehicle dynanaicd ource and “"T‘S arpund. The process may repeat for a_wh|le
involves new challenges. Thus, we need to redesign theaion efore the vehicle finally revolves around the source with a
scheme ' constant velocity. In[[6] a so-called “d-item” is added tméu

Our control scheme is depicted by the block diagram ﬁﬂ‘e angular velocities, aiming at improying the perforrre:mc
Fig.[2. The control laws are given by Neverthel_ess, a C(_)nstant forwarq velocity leads to corafdit
asymptotic behaviors of the vehicle.
v = V.4 0bg, %) Instead of using a constant forward velocity, we tune the
VYo = awcos(wt) + cof sin(wt), (6) forward velocity along with the pitch and yaw velocities.
_ . This intuitively is a better way to control the vehicle, as
Yo = (Zw sin(wt) + cog cos(wt), M we are able to smartly adjust the vehicle to speed up, slow
£ = 5T h[J]’ (8)  down, or stop depending on different circumstances. Beside
wherew is the probing frequency, the parametersc,, co we can conveniently maneuvre the_ angl_JIar velocmes_, under
' o =’ a tunable forward velocity, which is evident from Fig. 2.

b andV, are positive and will affect the performance of the, , . ; .
approach,J is the sensor reading, ardis the output of the hile the control scheme in [6] employed r_elatlvely complex
' controllers as shown in Fid.] 3, we can simply employ the

: < :
washout filter 7 [J]. In the sequel, we shall provide a rUIebasic extremum seeking controllers. This succinct feature

X . s+h
for designing the above parameters, substantially simplifies the parameter design of the cdntro
scheme.

In our control scheme in Fid.] 2, the pitch velocity, and
the yaw velocityiyy are tuned according to the idea of the
basic extremum seeking tuning law [22]. The perturbation
terms,aw cos(wt) and —aw sin(wt), are added to persistently
excite the system while the corresponding demodulationger It is obvious that the dynamics of the closed-loop system
¢ sin(wt) and¢ cos(wt), are used to estimate the gradient of this complicated due to the nonlinearities of the vehicle nhode

s+h

Rnlinear mapf. The washout filter—=- is used to eliminate
ﬂge “DC component” of the sensor reading The forward

IIl. STABILITY OF THE CLOSED-LOOP SYSTEM
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and the signal map and the time varying forcing applied biyhe dynamics of the shifted system is given by
extremum seeking. Additionally, more coupled state végisib

are involved to analyze the dynamics than in the 2-D case. In__ cos(d& + asin(r)) cos( + a cos(t))
this section we focus on a static source that produces alsignd”c _ Vetb cos(& + asin()) sin(é +acos(t)) |,
field with spherical level sets and employ an averaging ntketho dr w sin(& + asin(r))
[23] to analyze the stability of the system. Ao cot
In this work, the distribution of the signal field is assumed — = —*= sin(7),
to depend only on the distance from the sensor to the sourced . w
Since we are concerned with the local convergence, it is™” — co§ cos(7),
sensible to apply the Taylor series expansion around thesou dr w

and omit higher order terms, which yields a quadratic map. % — @
Thus, the quadratic map is an approximation of the distiiout dr  w

of the signal field in a local sense, and takes the followingifo ) . ) )
For further analysis we now redefing by its spherical

J=f(r) = £ —qelrs — "%, (9) coordinates
wherer* is the unknown maximizer and denotes the location
of source,f* = f(r*) is the unknown maximum angl. is an Te = |fe|l =324+ 92+ 22,
unknown positive constant. cos(a*) cos(0*)
To analyze the stability of the closed-loop system, we define —f. = 7. | cos(a*)sin(6*) |,
an output error variable sin(a*)
h 2(;
e= J] = [, 10 tan(a*) = ——m———,
which allows us to express the output of the washout filter as fan(6") Je
an =
h T’
= J=J———[J]=J—-f"—e.
&= s+ h[ 1= s+ h[ ] / c

Moreover, we can easily obtain that= h¢. By inserting where7. ls thg Hoilstance bettvzre]en the Vtih'lde clenter dand Ithe
the control law[(5){(B) into the systeinl (1}}(4), the closedp SOUTC?’O‘ Zn th represenh (;\hazmhq Ia. a;tg € art1. FO ar
system is written as angle towards the source when the vehicle i& atspectively.

By using these new definitions, the expressiorf a$
cos(a) cos(6)

re = (Vo408 cos(q)(sir;(@) , (11) € = —q. (72 + R — 27.RE.) — e,
S« ~

G = aweos(wt) + o sin(wt), (12) & = cos(@+asin(r)) cos(a”) cos(d — 6" +acos(r))

0 = —awsin(wt)+ co€ cos(wt), (13) +sin(& + asin(7)) sin(a”),

¢ = n 5 (14) and the resulting dynamics is

E = —qrs—1r"|"—e, (15)

cos(a) cos(0) dF dée g 4 ddeg 4 dies
rs = re+ R | cos(a)sin(f) |. (16) ch =& d;
sm(oz-) | | - (V 4 bf)fc
The closed-loop syster (1 1)-(16) involves six variables, a =

it is difficult to analyze the system directly. We re-expréss 2 dzc R
system by variable transformation and time scale change fofl®" _ ( et yc) e+ e
further discussion firstly. Noting the signal strengtllepends  dr 72
only on the distance between the vehicle and the source, we V. + bg{ (@ + (7)) cos(a*)—
redefine the position of the vehicle center in its spherical o W sin(& + asin(7)) cos(a

coordinates form. Finally we successfully reduce the syste

N . . % é _ 0"
order by defining an error variable. To this end, define sthifte cos(& + QSIH(T)) sin(a”) cos( + aCOS(T))}’

variables by do* Cfiyf — o
Fe = Te—15, dr y‘; + 5?
& = a-—asin(wt), = _NCA
. wre cos(a*)
0 = 60— acos(wt),

= e+q.R% cos(& + asin(7)) sin(0 — 6 + acos(7))] .

>

and introduce a time scale change The system order can be reduced from six to five by defining

T = wt. an error variablé =  — 6*, resulting in the following error
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system gave = Jy(a) cos(a*™®) sin(6)
dr. (Ve +b§)&e — Jo(V2a) sin(a*®°) cos(4™°) cos(62°),
e (et W an o
T w [e% ~
do* Vo4 be fve _ Jolv5a) cos(20/%V) sin(26°7°) cos(67¥)
= ————|sin(& + asin(1)) cos(a) 2
. e _ Sin@a™) [J (2v/2a) cos(2427¢) cos(20%7¢)
— cos(d& + asin(r)) sin(a*) cos(d + acos(7))|, (18) 8 0
A +3J0(2a) cos(262°) + Jo(2a) cos(2607°) — 1|,
di ek o 19 0(20) cos(26°*%) 4 Jp(2a) cos(20°*%) ~ 1]
dt w ;gé J1 (\/ia’) *ave\ i ~ave pave
dd  ce€ V. + b€ &V = ———= cos(a™°) sin(&*"°) cos(6*7°)
il cos(T) + ———"— V2
T w wre COS(Oj ) + Jl (a) sin(a* aVC) COS(davc),
cos(& + asin(7)) sin(6 + acos(T))} , (20) cos J1(v/2a) .
&ve = —7\/5 cos(a™¥®) cos(&*'®) sin(0*V°),
de h s
_ cos sin 2+/2 -
E - ;57 (21) é-cavc _ JO( i/_a) Cos(a*avc) COS(2davc) Sin(29avc)
where ~
+ Jo(2a) (42(1) cos(a™ ™) sin(26%¥°)
:_TNQ 2q,Rrcée — ¢,
5 o - e 5 ‘ ~ ']0(\/50‘) : xavey . ~ave\ .:..(pave
& = cos(a + asin(7)) cos(a™) cos( + a cos(T)) + — sin(a™™") sin(24*°) sin(6*¥°),
+ sin(& + asin(7)) sin(a™). cos sin

Eave = Jo(V2a) cos(GV¢) sin(62°).
Note that the system equations are periodizinAccording . . .
to the averaging method in_[23], the solution of the error By setting the right hand side df (P2)-26) to be zero, we

system can be well approximated by the solution of tH tain the follwing four equilibria with details being wided
corresponding “average system”. Averaging the error aystén Appendlx.

in a period2w, we obtain an average error system ngeew’a*aveequ&aveequ éavee@, éaveeql'
~ave ~ave)2 save - -
d:lc = (bQT(TC ) + be - ‘/c) é.gve = [717 07 07 07 61] ) (27)
T w r eq moned p eq ~  n€d Aveed2 ]
2quRfavc ) fg‘ve 27a*owe 2 a2ve 2’9ave 2’ pave 2
- — &, (22) - .
ave ~w 2 . = [_71707077"561] ) (28)
do* — (bqr(Tgvc) + bet® — ‘/C) gvc —2quR g\’e [~ave®® xave®®® ave®d3 Fave®d3  .ave©dd]
dr - wrave 5 - ¢ ’ Te , & , & ) 0 , €
s . . (23) = |:p2 V 2737 07 07 Ho, e?jl 3 (29)
da™e _ 2caq, RIEC 5n o4 U SR
dr - w [ ( ) nge°q 7a=¢<awe°q ,OAéaveLq ,eave“l , éave°q
déavc 269qTR;zcwc 232 2quR g(\j/zsm B )
ar = o ¢ Wa*a"e) c = [PQ vV 273,0,0, —po, 62} , (30)
(Ve — bg, (72¥€)? — bé™€) _cossin where
Fave *ave) 5 e s (25)
] , wra cos(ha e Vodo(v2a)
gave T/~ A, T ~ave ~ave FY - " ba-Ror
‘; = Drpaveyz  Dgave | ZMrTiavegave  (7g) ' Tbg Rpy
T w w w
Vedo(v/2a)
where Jy(-) and J;(-) are Bessel functions of the first kind o = 2J5(v2a) + “bgRps
and "
, R _ Jo(2v/2a) + Jo(2a) — 72
£ = Jo(vV2a) cos(a*™) cos(a4™°) cos(6*7°) 3 Jo(2v/2a) — 1 ’
s *kave s ~ave 1
+ Jgga)*i\lllcl)(a )sm(a )7 p1 = 2J02(\/§CL) _ 5 |:J0(2\/§CL) + JO(2a) +1],
ave cos” (o ~ ave nave
g2ave — f{‘]0(2\/%) cos(26:7°) cos(20™°) V3b [1 = Jo(2v/2a)]
P2 = ’
- depJ1(V2a
+Jo(2a) [cos(2davc) + cos(293"c)] + 1} o1 1)
. ) o = arccos <—1/—> ,
2/  xave 2
— (g ) [1 — Jo(2a) cos(262Y¢)] 78
J ( \/ga) ~ 1According to the physical interpretation of the system,ehere have
+ S8V Gin(200"2Y°) sin (2627°) cos(627°), implicitly restricted a*ave € [—n/2,7/2],&™°¢ € [—7/2,7/2],6>° €
2 (—m, ] to exclude repetitive equilibria.
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o) = _V2J3(V2a) n 2V«:J02(\/§a) Proposition 2: Consider the systeni (IL1)=(16) with positive
40> R2p3? bpr parameterss, c., cg, b, h and V.. Suppose that these pa-
ey = —2¢,73p2° — 2, RpaJo(V2a). rameters are appropriately chosen so that the Jacabigh

is Hurwitz. For sufficiently largew, if the initial conditions

The average systeni_(22)-{26) may converge to one ©f(0),6(0),a(0),e(0) are such that the following quantities
the four equilibria [(27)i(30) under different parametergla are sufficiently small

initial conditions. Each equilibrium corresponds to a ®ru

in the vicinity of the source. Around equilibriuni(27) and  |I7c(0) — *| — p2y/273|, |a(0)[, |€(0) — g R* — €3],
equilibrium [28), the vehicle converges to a torus with its and either ‘9(0) — arctan iciii — 1o
average heading directly towards or away from the source. _ 1

Around equilibrium [2D) and equilibrium (80) the vehicle °F \9(0)—‘““&“ oo +Ho|
revolves around the source clockwise or counterclockwise ) ) i
and its average heading is more outward than inward. THbe” the trajectory of the v_ehlcle center(t) exponentially
72v¢ should be real and positive as it represents the avera&?é‘verges to, and remains in the torus

distance between the vehicle center and the source. Ndte tha la| < O(1/w)

a*ve a*ve are equal to zero for all the equilibria of the - ’

average system, thus all the tori nearly reduce to annuluses Pm/% —0(1/w) < re = 17| < P2\/E+ O(1/w).

The values of¢d*ve for different average equilibria are quite ) . ) L
different, whilts in different motion patterns in the tokive Here we do not give the proof of Proposition 2 since it is

shall formalize these phenomena in the sequel and illestr&SSentially a repetition of the proof of Proposition 1. Irttbo
in the simulations. propositions, the vehicle center converges to a torus aroun

Let Jeal, Jea2  Jea3 and Je% denote the Jacobians of thethe source. In Proposition 1, the limit of the vehicle’s hagd

average svste 6) at equilibral(271(30) reswebti 'S either directly towards or away from the source on average
It is ogviogs thﬁiﬂie) rootsqof theEc]ﬁa%éter)istic m In this case_the_ vehi_cle _stays in the torus as if it comes to a
for a Jacobian have negative real parts, the corresponde§ stop, which is qu_|t_e different from the re_sult of Coc_hisa
equilibrium is an exponentially stable equilibrium of theea work [6]. In P.rop(.)smon 2, the vehicle O!”ffts CqukW'se or
age system. Noting froni (81) and{32) that the Characterisgountercl_ockmse in the torus.and the limit of its average
equations of/¢! and J¢#* are the same, we conclude tha eading is more outward than inward.

equilibrium [2T) and equilibriuni{28) have the same stapili _Re_zma_rk 1:1t shOl_JId be_ noted that we haye assumed the
conditions. This property also holds for equilibriumai(29)da distribution of the signal field can be approximated by
equilibrium [30). Applying Theorem in[23], we derive the
following two propositions.

Proposition 1: Consider the systeni (111)-(16) with positiven the stability analysis. This implies that the proposed-co
parameterss, cq, cp, b, h and V.. Suppose that these patro| scheme works for signal fields satisfying the following
rameters are appropriately chosen so that the Jacabitin o requirements: (a) the signal strength depends only on
is Hurwitz. For sufficiently largev, if the initial conditions the distance between the vehicle and the source, J.e=
rC(O),H(_O)_,a(O),e(O) are such that the following quantitiesf(d% d = |rs—r*|; (b) f(d) is strictly concave in the distance
are sufficiently small d. However, the simulation results in Sectioh V illustratatth

“TC(O) — 7| = ], |a(0)], e(0) — ¢ R? — 61] : the cont_rol scheme also works for some other unknown forms
g of the signal fields.
and ’9(0) — arctan £== — F +sgn(y1) x g‘ ,

X

*

J=f —qlrs — 1

where thesgn(-) is a standard sign function, then the trajectory IV. PARAMETER SELECTION

of the vehicle center.(t) exponentially converges to, and
remains in the torus In this section we further study the stability conditions

for Proposition 1, and provide a rule on the selection of
la] < O(1/w), the parameters in Proposition 1. The stability conditioms f
1| — O /w) < |re — 7| < |y + O(1/w). Proposition 2 can be similarly derived. However, their ferm

] ] are fairly complex and lengthy, we only give a brief discossi
Proof: The system (I1):(16) is equivalent to the error sysy Appendix(B.

tem system[(17):(21), whose solution can be approximated byye first note that the Jacobians of the average sysieh (22)-

the solution of the corresponding “average system” acogrdi at equilibrium and equilibriuni{28) are given ireth
to the averaging theory in [23]. If the Jacobidff! is Hurwitz, ﬁ())wingqform ) g ) g

then both equilibrial{27) and (P8) are exponentially staifle
the average system since the characteristic equatioff$6f mi; O 0

0 mss
and.J¢? are the same. By Theorem 10.4in][23], we conclude 1 0 moy mo3 O 0
that the error systeni (L 7)-(R1) has two distinct, expodgti JUh=—_10 mg ms3 0 0 |, (31)
stable periodic solutions withi®(1/w) of the equilibria [(2)7) “1lo 0 0 ma O

and m) | ms1 0 0 0 —h
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mi1 0 0 0 —mis Substituting the definitions of11, - -+ ,ms; into the above
, 1 0 maz  —mas 0 0 inequalities, we derive the following stability condit®n
Jeq = — 0 —ms2 mss 0 0 N (32) J \/_
w
0 0 0 M4y 0 quer)l <2\/§CQV 0( CL) (\/50,), (40)
—ms51 0 0 0 —h
\/—a
where b2q-Roo < 2V 2cy V. (p ) Ji(V2a),  (41)
2
W, Jo2(V2a) 1 Jo(V2a) 2
my, = 2velo (V2a) J;{p(‘f“) — ShaeR [Jo(2v2a) + 200(20) +1] Wem— — <hEF 51’qu o1, (42)
1
— 2 2
s = 1)1J0(\/§a), L(;/—a) \/7_¢1J1(\/§a) + ¢3J1(a)| <0, (43)
1
Moo = —bq,«R [3J0(2a) — 2] 5
2 (@) 4103 (V2a) — ¢4 <0,  (44)
= bg, R—22 [ 1y(2v/2a) + Jo(2a) + 1
23 q 2J0(v/2a) [ of a) 0(2a) } where
— 2bq, RJo(V/5a), $1 = 3Jo(2a) — 2,
VJO(\/_a) b2 = Jo(2v/2a) + Jo(2a) — 1,
Mg = 2¢a b Ji(a), Jo(a)
P 3 = ——=— (¢ +2) — 4Jo(V5a),
m _ _\/5 VJO(\/_G) (\/ia) JO(\/ia)
% ’ ba = Jo(2v/2a) + 2Jo(2a) + 1.
s = —/2eo VJo(\/—a) T (v2a) Note that inequalities[ (43) and(44) depend only on the
bp1 parameter. We restrict the parameterto the union of two
i 1 2 i 1 1
—b R [Jo(2v2 J(2a) — 1 intervalsS} and Sz, which are deflnec_i by. = [1.25,1.65] _
Ty (2v2a) + Jo(2a) ’ and S2 = [1.75,2.5]. The reason is that the constraint
B V.Jo(v2a) guarantees the validity of inequalitids (43) ahd] (44) arsb al
ms1 = —2h bRp1 + 2hq, RJo(v20). brings convenience for the design of the other parameters.

Under this constraint, we have that < 0, ¢2 < 0, p; < 0,
Due to the property of determinant [24]¢?* has the same J1(v/2a) > 0, and
eigenvalues as the following block diagonal matrix { Jo(v2a) > 0, ifac S

. 2
1 Mas Mo mi mas Jo(v/2a) <0, ifaeS2
— - diag , [m44} , nl (33)
w Mgz  M33 msp

Now let us consider inequalities (40)-{42). Observe that th
right hand side of inequality (42) is positive singgis positive

It is clear that the characteristic equation for matfix] (&) for all positive a. The left hand side of inequality_(#2) is

the product of the characteristic equations of the threekslo negative with a negative,. Thus inequality [(42) holds for

Then we can easily calculate the characteristic equation fdl a € S. U S2. Whena € S2, the inequalities[{40) and(41)

Jeal, which is given by hold since their left hand side is negative while their right
hand side is positive. Whem € S!, we need the following

0= [(ws)z - (m22 + m33)w5 + Mooms3 — m23m32:| conditions
x (ws — may) V. < V202, Rep1 py (45)
2 L » 4caJ0(\/_a)J1(\/_a)
) [(WS) s =l = m15m51} -89 V2b%q, R (46)
© T depJo(v2a)J1(V2a)

Note that the characteristic equation 8192 is also equal

to thus equilibrium({27) and equilibriufi (28) have thé? Satisfy the inequalities (#0) and {41).
sar%)stablﬁllty g(;jrlw:jltllgns[(z ) quilibriurh {28) hav Summarizing the above, we conclude that the local ex-

To guarantee that all the roots of characteristic equd@m(ponenual convergence to equilibria_{27) arld](28) can be

have negative real parts, we invoke the Routh-Hurwitz &5} [ : guaranteed by selecting appropriate parameteaid V. as

and result in the following conditions in the following two corollaries:
Corollary 1: Consider the systeni _(IL1)-(16) with positive

parametersy, co, cg, b, h and V.. Let the parametet €

maz sz <0, (35) [1.75, 2.5], then for sufficiently largey, if the initial conditions
Ma2aM33 — Ma3mszz > 0, (36) r.(0),6(0), a(0),e(0) are such that the following quantities
mya < 0, (37) are sufficiently small
h—mq1 >0, (38) “rc(o) —r* - 71’, |a(0)], ‘6(0) — ¢-R?
—mith —mismsi > 0. (39) and ‘9(0) — arctan iz:j’( ,
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Vehicle Trajectory 1 Projection of vehicle trajectory on x-y plane
X Start Position % Start Position
*  Source Position x ® * Sou!'ce Pos_ition
Vehicle Trajectory 1h Vehicle Traleqory x
2D Projections — Average Heading
1 0.8
0.8
0.6 06
N
0.4 >
04|
02F 1.
\ P
' /
\ '
\ /
° \ ,
| /
_02 i i i i i i i
-0.2 0 0.2 0.4 0.6 0.8 1 12
X
(a) (b)

Fig. 4. Simulation results for Corollary 1: (a) Vehicle &afory; (b) Projection of vehicle trajectory an— y plane.

then the trajectory of the vehicle center(t) exponentially we still suggest a relatively small. for Corollary 1 since a
converges to, and remains in the torus smallerV, results in a closer distance to the source.
Remark 2:In this section, the intervals [1.75, 2.5] and
laf < O(1/w), [1.25, 1.65] are suggested for the perturbation amplitiniees
1 — 01 /w) <re —7*| <y + O(1/w). they guarantee the validity of inequalities (43) and (449 an
) ) . also bring convenience for the design of the other parameter
Corollary 2: Consider the systeni (11)-(16) with positivegesides, a larger perturbation amplitude implies morestast

parametersy, cq, cg, b, b and V. Let the parameten € i the noise. In Cochran’s workl[6], such a large perturlsatio
[1.25,1.65] and the parametéf. be chosen such that < V.,  ampjitude would lead to rambling around the source, as a
where constant forward velocity and a large perturbation amgétu
A V20%q, R i {¢1p1 ¢,2p1} 47) make the vehicle move fast. When around the source, the
= o (20, (V2a) o o |’ vehicle moves too fast to estimate the_grqdlent _preCISBIy. I
our control scheme, the forward velocity is designed to be
then for sufficiently largew, if the initial conditions positively correlated to the output of the washout filtercisa
7¢(0),0(0),(0),e(0) are such that the following quantitiestunable forward velocity can avoid too fast movements agoun
are sufficiently small the source. Thus even the perturbation amplitude is chosen
X 2 within [1.75, 2.5] and [1.25, 1.65], the vehicle can estienat
]|rc(0) —rl+ 71” |a(0)_| ’Je(o) — e the gradient correctly and settle down near the source.
and ‘9(0) — arctan o= — W’ ) The derivation for stability conditions for Proposition € i
provided in AppendiXxB.

<

C

)

then the trajectory of the vehicle center(t) exponentially
converges to, and remains in the torus
V. SIMULATION
la] < O(1/w), Due to different initial conditions, the vehicle may con-
—v1 — O0(1/w) < |re — 7" < —y1 + O(1/w). verge to different regions around the source under difteren

) ) scenarios. In this section we present simulation results to
The above two corollaries provide a rule on the parametf;sirate the behaviors described in Corollary 1, Conylla

configuration of the control scheme for the static source thg, Proposition 2. We also consider locating a source which
produces a signal field with spherical level sets. In the WQaates a non-quadratic signal field.

corollaries, the vehicle center locally exponentially veryes

to, and remains in the torus represented by equilibrurh ¢27) ) ) ) ) o

equilibrium [Z8). Note that the conditions in the corokeriare A. Signal fields with spherical and elliptical level sets
usually stricter than the stability conditioris {40)(4#4).fact, Fig.[ illustrates the behavior dictated by Corollary 1. The
we can find many arrays of parameters that satisfy the dtabilmap parameters are set A= 1, »* = (0,0,0) andg¢, = 1,
conditions [[4D){(44) but violate the conditions in Corofla and the initial conditions of the vehicle are setma$0) =

1 and Corollary 2. It is interesting that the biased forwarfl,1,1), «(0) = —x/2 and #(0) = —=/2. The controller
velocity V. in Corollary 2 must be small enough while it carparameters are chosen as= 40, a = 2, ¢, = 100, ¢y =
be any positive value in Corollary 1. This distinct featuse i100, b = 5, h = 10 and V., = 0.001. Fig.[4 (a) shows the
different from the 2-D case in_[10], which requires a smattajectory of the vehicle converging to an attractor verysel
V. to actuate the vehicle to “stop” near the source. Howeveo, the source. Instead of drifting in a torus like in [6], the
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Forward velocity of the vehicle Vehicle Trajectory

0.003 /s

' X Start Position
V. +bS 0.001/s *  Source Position
Vehicle Trajectory x x
1 2D Projections

-0.001/s
399s 399.5s 400s
Time 1
Pitch velocity of the vehicle

100 rad/s

‘ orad/s\W T

-100 rad/s L
399s

399.5s8 400s
Time e x
Yaw velocity of the vehicle 0 *
100 rad/s ; *
g o NVV\/V\/
-100 rad/s -
399s 399.5s 400s

Time

Fig. 5. Forward and angular velocities of the vehicle.
Fig. 7. Vehicle trajectory illustrating Proposition 2.

Vehicle Trajectory
Vehicle Trajectory

% Start Position
*  Source Position X Start Position
Vehicle Trajectory x % *  Source Position
2D Projections Vehicle Trajectory x
2D Projections x
1
1
N 05
N 0.5
0
0 * x

T :

S
/

\

<E=

0.5

Fig. 6. Vehicle trajectory illustrating Corollary 2. . ) ) ) » o
Fig. 8. Vehicle locates a source which creates a signal fiéld elliptical
level sets.

vehicle slows down nearly to a stop when it is in the torus, _ _ _ -

which is almost in a horizontal plane, as the average aziathuth Fig. [1 illustrates the behavior dictated by Proposition 2.

angle between the vehicle and the source is close to zefb€ map parameters, initial conditions of the vehicle, and

We can notice more details in Fif] 4 (b), which describegontroller parameters are chosen to be the same as those in

the projection of vehicle trajectory an— y plane. The limit Fig.[6 except. = 0.1. The trajectory before entering a torus is

of the average heading of the vehicle is directly towards timilar to the one in Fid.16. However, the vehicle turns adbun

source, which coincides with the theoretical result in Qlarg ~ and keeps moving with a relatively large forward velocitieaf

1. Fig.[B depicts the forward and angular velocities of théovershoots the source. After several times of adjustroént

vehicle in the torus. direction, it eventually drifts in a planar torus, as shown i
Fig. [@ illustrates the behavior dictated by Corollary oFig.[1. _

The map parameters, initial conditions of the vehicle, and Our control scheme also allows the vehicle to seek a source

controller parameters are chosen to be the same as thosg‘é"i\‘f?h creates a signal field with elllptlcal level sets, asvsh

Fig.[d excepta = 1.5. As in Fig.[3, the vehicle converges toln Fig.[8. We now assume the nonlinear map takes the form

an gpproximately planar near to the source. In this case th_e flry) =1—22% — 0.5y — 22,

vehicle overshoots the source and comes to a “stop”. The limi . o N )

of the average heading of the vehicle is directly away froMherers = [zs,ys, zs]" . The initial conditions of the vehicle

the source, as dictated by the average equilibriu (28). and controller parameters are chosen to be the same as those
Note that the vehicle does not strictly come to a full stoff® Fig-[4. The vehicle converges to a region near the source

in the two simulations though its stop seems evident froljith its average heading directly towards the source, wkich

Fig.[4 and Fig[B. In fact, the forward velocity of the vehicl§iMilar to the result in Fig.14.

oscillates around the biased forward velodify and the yaw ) . .

and pitch velocities oscillate around zero, as shown in[Big. B- Non-quadratic and non-concave signal fields

When the vehicle settles stably in the torus, it still rersain For some signal fields with non-quadratic maps, our control

moving within a small area. scheme also exhibits abilities to seek the sources, as stmown
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Vehicle Trajectory Vl CONCLUS|ON

X Start Positi . . :
% Source postion We have studied the nonholonomic source seeking problem
bt B * in the 3-D workspace by proposing a new control strategy,

which extends the work in the 2-D workspace [[10] from
two dimensions to three dimensions, and proved the local
exponential convergence of the closed-loop system forta sta
source that produces a signal field with spherical level. sets
Under different parameters the vehicle may virtually “Stop
* or revolve around the source. We also provided a rule on the
parameter selection for the control scheme. The theotetica
results were validated through simulations under differen
scenarios.

N 05

APPENDIXA
COMPUTATION OF THEEQUILIBRIA

By setting the right hand side of the average error system

Fig. 9. Vehicle approaches an acoustic source.

Vehicle Trajectory (22)-(28) to be zero, we have
¥ Sowcoromton | 0 = (bg,(F2*)? 4 6™ — V,)E2' — 2bg, RFEVE2™°,  (48)
1.2 \2/;h|i’dej Trtz_:tjectory ¥ (bq (fave)Q + peave V) @
- rojections J— fe%
1 0= =" Cgive —2bg, REC,  (49)
0.8 ¢
sin
N 0.6 0=¢&8ve, (50)
04 cos 2ba,. R cos sin
— ot q”‘_
0-2 . 5 0 = 2cq, RFVERe + Cos(a*avc)fcavc
% By . )
n (‘/:: _ bQT (,r,gve)2 — bedVe)gggzsm7 (51)

faclvc COS(a*aVC)
0 = —qp(F)? = ™ + 2q, RF2€2™. (52)

We first note that wherv**™ = 0 and 4** = 0, the
equations[(49) and(50) hold singeve = 0, £2¢ = 0 and

Fig. 10. Vehicle approaches a source whose signal map is anBaxk sin . .
fugcﬂon. PP 9 P & = (. Then we only need to consider the equatidnsg (48),

(51) and [(5R), which take the forms

nve 1 ~ave
Fig.[@ and Fig[I0. In Fig9 we consider an acoustic source 0 = —Jo(v2a) cos(6"") — 50 Rz, (53)
\t/;/1ithfunit emitting power. Then, the signal distribution éak 0 = —v2cpq, RF J1(v2a) Sin(éave)
e form
N T
1 + ——Jo(V/2a) sin(6*7°)
J = f(rs) = 2 reve
47 |rs| 1 .

+ bR [ Jo(2v/2a) +J0(2a)} sin(2627°),  (54)
Considering the signal strength is too large near the spurce v 2 e v e
we replaceJ by J’, which takes the form & = —qr(F2¥)? + 2¢, RF2¥ Jo(V2a) cos(6 ), (55)

where
J = —exp(—J) = —ex B aver2 .
= p = p o |7’S|2 . m = V., — bqr(fz‘ve) _ béa‘ve7

= | Jo(2V2a) + Jo(2 207V + Jo(2a) + 1.
In Fig.[I0 we assume the distribution of the signal field is an 2 [ 0(2v/2a) + Jo(2a) | cos( )+ Jo(2a) +

Rosenbrock function, which takes the form When Sin(gave) — 0, the equation[{84) holds and we can
J = =i — (g — 22 — g — (20 — 2)? easily derive equilibrial(27) and_(28). Otherwise we reevrit
= T W T ) T s T B T s ) the equationd(33) and equatidnl(54) as follows

The Rosenbrock function is obviously a non-concave functio 1 _ bgr Rz (56)
and has an isolated maximum at (0,0,0). In both simulations, 7ave 2Jo(v2a) cos(60™°)’

the initial conditions of the vehicle and controller parderns _ _ave m

are chosen to be the same as those in[HFig. 4. Simulations show 0= ~V2epqr R 1(V20) + rave Jol(v20)
?nedvgiglclizocan well approach the source, as depicted ifBFig. 4 b R J0(2\/§a) n J0(2a)} COS(éave). (57)
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Substituting [(5B) into[{37), we derive
P2
cos(fave)’
Combining [68) and(88), we figure ofi*. Then we obtain

equilibria [29) and[{30).

~ave
. =

(58)

APPENDIXB
STABILITY CONDITIONS FORPROPOSITION2

The Jacobians of the average systém (22)-(26) at equilib- °* ‘9(0) — arctan

rium (29) and equilibrium[{30) are

i 0 0 hLs s
1 0 oo a3 O 0
JB =210 13 lsz 0 0],
Yl 0 0 lag s
51 0 0 Is4 —h
i 00—l Iis
1 0 loo o3 0 0
JUWU =210 s I3 0 0|,
=l 0 0 Iy —lss
51 0 0 —lss —h

wherel;; is the element of the Jacobian of average syst

(22)-(26) evaluated at equilibriuni (29). We do not give the
explicit form of;; since it is quite lengthy and easily obtained.

Both /¢ and.J¢¢* has the same characteristic equation as t
block diagonal matrix

1 Iy o lin liy bis

— . diag [l I } v 1lar g s

w 32 33 l l —h
51 Isg

The characteristic equation is

0= [s* — (laz + l33)s + laalss — loglso]
x (8% + k15® + kos + ks) (59)
where

k1 =h— 111 — lua,
ko = lilaa — linh — laah — lyslsa — Liglar — lislsa,
k3 = lilaah — Liglarh + linlaslsa + Lislaals:

— lialaslsy — lislarlsg.

11

Corollary 3: Consider the systeni_(IL1)-(16) with positive
parametersa, c,, cg, b, h and V.. Let these parame-

ters are appropriately chosen to satisfy inequalities -(60)

(€&5), then for sufficiently largev, if the initial conditions
r.(0),6(0), a(0),e(0) are such that the following quantities
are sufficiently small

[Ire(0) = 7*| = p2v/273] . [@(0)], [e(0)

’9(0) — arctan )yczii* — 1o

K

- QTRQ — €2

and either

Yny*
Xo—x* =+ ol ,

then the trajectory of the vehicle center(t) exponentially
converges to, and remains in the torus

la] < O(1/w),
p2v/27s — O(Lw) < Ire —1"| < pay/275 + O(1/w).
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