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Abstract—A geometric-based methodology that was recently
proposed provides a systematic controller design approach for
controlling remote vibration at multiple points using only a
restricted number of sensors and actuators. Valuable physical
insight into the existence of control solutions for vibration
attenuation at multiple locations is retained with this approach
in contrast to alternatives, such as 72 and H., methods. A
drawback of the existing geometric design approach is that the
controller implementation for the broad band case incorporates
an inverted local control path transfer function. When the sensor
and actuator are non-collocated or when there is significant
latency or phase lag in the system, the local control path model
will have non-minimum phase characteristics. Therefore the
resulting controller for this situation will itself be unstable due
to the inclusion of an inverted non-minimum phase transfer
function. In this paper a systematic procedure is presented
that extends the previous work and which yields both a stable
and stabilising controller without requiring a minimum phase
control path assumption. Furthermore, robustness against control
spillover at out of band frequencies is incorporated within
this modified design procedure without deteriorating controller
performance within the design bandwidth. The detailed control
design procedure is illustrated using a simulated beam vibration
problem. Finally, the design approach is experimentally validated
using a test rig that replicates the problem of vibration trans-
mission in rotary propulsion systems.

I. INTRODUCTION

HE REQUIREMENT to reduce vibration at specific
points on a flexible structure can be achieved using
active control systems in a feedback configuration whereby
sensors and actuators are located at these same points in
a collocated or non-collocated set-up [1], [2]. However, for
complex interconnected structures it is not always feasible
to locate sensors and actuators at the points where vibration
attenuation is desired. This restriction arises from practical
constraints and can be due to cost, space or environmental con-
siderations. In such circumstances, feedback control systems
have to be employed at a restricted number of easily accessible
locations and therefore the performance of the closed loop
system cannot simply be assessed in terms of the measurement
obtained at the local error sensors.
A typical example of such a problem is the vibration
encountered due to aerodynamic loading on helicopter blades.
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The unsteady forces experienced by the rotor blades are
generally transmitted at multiples of the blade passing fre-
quency through the hub to the fuselage. Although some active
damping approaches that are applied directly to the rotating
blades have been proposed [3], [4] it is more practical to apply
control across the gearbox at the opposite end of the propeller
shaft [5]. Although the latter approach will reduce the locally
measured fuselage vibration, the change in impedance seen by
the shaft can lead to an increase in blade vibration. This effect
has been demonstrated within the context of maritime vehicles
in [6], [7].

A systematic controller design approach was developed pre-
viously that addresses such problems and also provides insight
into the conflicting requirements of vibration attenuation at
local and remote points' on a structure [7]. The approach
enables global optimisation for discrete frequencies with a
single loop collocated control architecture. The controller is
defined as a function of a single frequency-dependent design
freedom parameter. The feasible solutions of simultaneous
vibration reduction at both the local and remote points can
be deduced using this single design parameter. An advantage
of the method is that the feasible set of attenuation solutions
are presented in a simple graphical form and the designer can
select the controller to satisfy a variety of frequency depen-
dent control objectives. As a result the approach is closely
related to classical loop shaping procedures. For the task of
attenuation over an arbitrary frequency band, the controller
implementation proposed in [8] incorporates an inverted local
control path transfer function. As a result an assumption
of an ideally collocated sensor and actuator pair has to be
made in order to ensure that the control path dynamics are
minimum phase and consequently that the controller is itself
stable. However in practice even for the collocated case the
experimentally derived control path transfer function can be
non-minimum phase since it incorporates sensor, actuator
and signal conditioning dynamics together with acquisition
latencies. For the non-minimum phase case the controller given
by the method in [8] would itself be an unstable function by
virtue of the right half plane zeros present in the control path
transfer function. Even if the closed loop system is internally
stable, the implementation of an unstable controller is not
practical. As the closed loop system is only conditionally
stable, any scenario that leads to a variation in gain would

IThe term local point is used to refer to the location of the sensor and
actuator on the structure while a remote point refers to any other location
where a disturbance force acts or where vibration reduction is desired.



lead to instabilities [9]. This can occur for example during
commissioning and start-up as the controller gain is gradually
increased to the nominal and so may pass through regions
of instability. One of the solutions to address implementation
of unstable controllers involves switching between the Youla
parameterisation of a stable controller and the unstable con-
troller until the latter is fully active [10]. However, this adds
complexity to the implementation and it is more desirable to
have a controller function that is strongly stabilising.

Moreover, the unmeasured out of band dynamics at high
frequencies can lead to control spillover with the potential
to cause instability. The gain of the open loop system must
roll-off above the disturbance attenuation bandwidth, which
for most practical vibration control applications will be in the
low-mid frequency region. This satisfies noise rejection re-
quirements and provides robustness to unmodelled dynamics.
Also, in certain applications it is desired to have a low control
gain at low frequencies. This can, for example, be needed to
avoid stroke/force saturation due to resonance in proof mass
actuators [11], [12], or to avoid problems associated with
low frequency accelerometer inaccuracy. In order to address
these problems, a modified design approach is proposed in this
paper for the general non-minimum phase case which gives a
strongly stabilising controller that is also robust to unmodelled
dynamics.

The paper is structured as follows: In Section II a control
design procedure for a robust stable and stabilising controller
is presented. The efficacy of the design approach is illustrated
with simulation results using a beam model in Section III. In
Section IV the control design is validated experimentally using
a rig that replicates the vibration problems associated with
propeller blade excitation that are encountered in aerospace
and maritime propulsion systems. The experimental results are
followed by concluding remarks in Section V.

II. STABLE CONTROLLER FOR NON-MINIMUM PHASE
DYNAMICS

The original geometric control design procedure was de-
veloped (see Section 2 of [8]) for a system described by the
following frequency response function (FRF).
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where y(jw), z(jw), u(jw) and d(jw) represent the locally
measured response, the remote vibration response, the control
input and the disturbance input, respectively. Although the
motivation behind this control design is the unavailability
of sensors or actuators at the remote location during opera-
tion, it is assumed that the remote response is available for
measurement during a commissioning stage. As noted in the
introduction this may be due to operational cost constraints or
in the case of rotary propulsion, environmental considerations.
The local response is used as a feedback signal to generate the
control input according to

u(jw) = —k(jw)y(jw) 2)

[ y(jw) ] _ [ 911 (jw)
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The objective is to obtain a controller (k(jw)) that reduces both
the local (y(jw)) and remote (z(jw)) vibration response over a
target frequency span. The local control path transfer function
g11(s) was assumed to be minimum phase in the original
formulation [8]. The control design for the general case of non-
minimum phase control path dynamics is addressed here. Also,
the design procedure addresses the requirement to suppress
control spill-over at out of band frequencies. According to this
method, the modified design freedom parameter, -, is related
to the sensitivity function S(jw) and complementary sensitivity
function 7T'(jw), of the local feedback loop, as
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where Bi;(jw) is the frequency response of an all pass
transfer function formed from the decomposition of the non-
minimum phase transfer function g1 (s) into a minimum phase
counterpart guvp(s) as g11(s) = gmp(s)Bi1(s), and W, (jw) is
the frequency response of a weighting filter chosen to suppress
control spillover. Using (1), (2) and (3) the closed loop local
and remote vibration responses can be denoted in terms of this
design freedom variable as (4) and (6) respectively
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Comparing the closed loop responses given by (4) and (6)
with the open loop response, it can be seen that simultaneous
reduction in both outputs is possible using a controller that
minimises the terms inside the brackets in (4) and (6). This
minimisation can be stated for a discrete frequency wy, in a
similar manner to the original formulation described in [7], as
(8) and (9) respectively.

[7(jwo) + Ur(jwo)| < [UL(jwo)] (8)
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Inequality (8) is an algebraic constraint which describes
a region in the ~—plane inside a unit radius circle, i.e.
|UL(jwo)| = 1, centred on —UL(jwp). Similarly, inequality
(9) describes the region inside a circle with centre —Ug (jwo)
and radius |Ug (jwo)| in the y—plane. Simultaneous attenuation
of y(jwo) and z(jwg) is possible, therefore, if both circles
intersect in the ~y—plane. It can be seen, however, that if
|12 (jwo)g21 (jwo)| << |g11(jwo)g22(jwo)|, then the circle for
reduction of the remote response has a very large radius
with its centre —Ur(jwp) far from the centre of the local
vibration reduction circle —UL (jwo). The control authority for
the remote response will be low in this case. This can happen,



for example, if the control input or the remote output is close
to a node of a resonant mode that is to be controlled.
Specific values for the design freedom parameter are se-
lected at discrete frequencies from within the region of inter-
section of the circles depending upon the design objectives.
In a similar manner to the procedure proposed in [8] these
optimal values for the design freedom parameter within the
design band [wr,,wp] can be interpolated by a stable transfer
function +(s), using an algorithm of the Nevanlinna-Pick
interpolation problem [13]. Using this technique a set of
complex v values 71, ...,vn selected at N discrete frequency
points w1, ...,wy can be interpolated to obtain a continuous-
time transfer function v(s) such that vy(jw;) = ~; for all
i=1,...,N. The controller is then implemented as

5= V(s)W5(s)
k(s) [1 4+ 7(s)Bu1(s) W (s)]gmp(s)

The number of excess poles of the controller is determined
by the difference between the number of excess poles of
W,(s) and the number of excess poles of gmp(s). Hence,
even if ~y(s) is not a strictly proper transfer function, the
final controller can be made to be strictly proper and hence
causal without performance loss by selection of a suitable
weighting function W, (s). In addition, since gmp(s) has no
RHP zero(s), a controller given by (10) is itself stable if
v(s) is a stable transfer function and the Nyquist contour
of v(jw)Bi1(jw)W,(jw) does not enclose the (—1,0) point.
This follows from the form of the controller structure given
in (10) since this is equivalent to a closed loop feedback
system having an open-loop frequency response function of
v(jw)Bi1(jw) W, (jw). The main steps in the controller design
process are outlined in Fig. 1.

(10)

III. ILLUSTRATIVE DESIGN EXAMPLE
A. Beam model

In this section the response of a slender beam, assuming
Euler Bernoulli beam theory for a simply supported boundary
condition, is used to illustrate the strongly stabilising remote
vibration control design technique developed in the paper and
compare the performance with an H., controller design. A
1 m long steel beam with density p = 7850 k&/m® and Young’s
modulus £ = 21 x 10'°N/m2 is considered. It has a cross-
section of 2.0 x 2.0cm. A schematic drawing showing the
location of control input, disturbance excitation, local and
remote outputs is shown in Fig. 2. a € [0, 1] represents a gain
that is gradually increased to the nominal during controller
commissioning. To develop the model, vertical translational
displacement and angular rotation degrees of freedom are
considered for 10 equal beam segments which gives an ap-
proximation for the first 20 modes of the beam. The control
input (u) acts as a point translation force at a distance 0.5m
while the feedback signal (y) is the displacement measured
at a distance 0.1 m, from one end of the beam. Although
sensor and actuator dynamics are not included in the model
the non-collocated arrangement imparts non-minimum phase
characteristics on the local control path transfer function
g11(s) and so serves to illustrate the key aspects of the design
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Fig. 1. Flow chart showing the main steps of the geometric based control
design process
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Fig. 2. A schematic representation of the local and remote control set-up for
the beam simulation example.

process. The primary excitation (d) acts as a point force at a
distance of 0.9 m from the same end of the beam. In addition
to the local output, the response at two remote points at
distances 0.9m and 0.5m are also considered. The design
goal addressed is the development of a feedback controller
that achieves simultaneous attenuation at the local and remote
points for the first four resonant modes.

B. H controller design for active damping

To provide a benchmark for the approach proposed in this
paper the feasibility of reducing the resonant peaks in the
magnitude of response at the local and remote points is initially
investigated for different H ., controller designs. The conflict-
ing requirements for remote and local vibration reduction is
illustrated using different error signals to be minimised for H
controller design. Initially, an H, controller is synthesised
using MATLAB’s hinfsyn function (which is based on the
method described in [14]), in order to minimise only the local
output (z1). Using the resulting controller the magnitude of the



closed loop response at the local point, Fig. 3, shows reduction
of the lower frequency resonant modes. However, the closed
loop response of the remote point (z) at 0.9 m in Fig. 4 shows
that the second and fourth resonant peaks are not minimised.
Moreover, there are enhancements at the frequencies of these
two resonances in the closed loop output of the midpoint (z3)
as seen in Fig. 5. If the error signal to be minimised is chosen
as only the remote output (22) at 0.9 m then as can be seen
from Fig. 4 the H, controller attenuates all the low frequency
resonant modes in this response. However, the second and
fourth resonant modes are not minimised in the output at the
local point (z7) as seen in Fig. 3. Also, the controller causes
enhancement at these two frequencies in the closed loop output
at 0.5m (z3) as seen in Fig. 5. Selecting the error signal to
be minimised as both the local and remote output gives a
closed loop response that is similar to one of the above designs
depending upon the weighting function used. It is clear,
therefore, that it is not possible to synthesise an H ., controller
that can minimise the response in both z; and 25 at the second
and fourth resonant peaks simultaneously. However, the trade-
off between these two conflicting performance requirements
is not evident to the control designer. The additional insight
that can be obtained using the geometric design approach at
the frequencies of the second and fourth bending modes is
illustrated in the next section. It should also be noted that the
two H.o controllers synthesised in this section are themselves
unstable and therefore difficult to implement in practice. This
is verified for the first controller in Fig. 6(a) which shows
an unstable response when the controller commissiong gain is
1/10th of the nominal value (i.e. @ = 0.1). The closed loop
system for the second H ., controller is similarly unstable for
a=0.1.

C. Trade-off in performance using y—plane

The first step in the geometric portrayal of feasible vibration
attenuation is the computation of the centre of the circles
corresponding to reduction at the local and remote points
for discrete frequencies using inequalities (8) and (9). B11(s)
includes seven real right half plane zeros. The filter W, (s)
is chosen here as a fourth order band-pass butterworth filter
with cut-on and cut-off frequencies of 22Hz and 1.5kHz,
respectively. Circles in the y—plane corresponding to closed
loop vibration levels at the local point (at 0.1 m) and two
remote points (at 0.5 m and 0.9 m) are plotted for the first four
resonant frequencies in Fig. 7. It can be seen that for the first
and third bending modes the circles nearest to the resonant
frequencies (at 47 Hz and 422 Hz) for both the remote points
and the local point almost completely overlap. As a result, in
these frequency regions very high levels of global reduction
are feasible as the controller can be realised using values of
~ that are close to the centres of all circles. However, close
to the second and fourth bending mode frequencies at 188 Hz
and 752 Hz, the circles for reduction at 0.9 m lie diametrically
opposite to the local vibration reduction circles. Therefore,
from the plot of circles in the y—plane it can be seen that
simultaneous reduction in the output at 0.1 m and 0.9m is
not possible for the second and fourth resonant frequencies.
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Fig. 3. Magnitude of the frequency response at local point (0.1 m) for an input
at remote point (0.9 m) on the beam without feedback control (dashed), with
Hoo feedback controller (dotted) and geometric design controller (solid), for
error signal minimisation of the local output (blue) and remote output (red).
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Fig. 4. Magnitude of the frequency response at remote location (0.9 m) for
an input at this same location without feedback control (dashed), with Ho
feedback controller (dotted) and geometric design controller (solid), for error
signal minimisation of the local output (blue) and remote output (red).

Also, a consequence of the midpoint of the beam being a
node of the second and fourth mode is that the circles for
reduction at 0.5 m are smaller and lie close to the origin. As a
result reductions in levels at the local point or remote point at
0.9 m around these frequencies would necessitate an increase
in levels at the midpoint.

D. Results of geometric controller

Geometric controllers are designed for the two cases of
optimal reduction at the local (0.2 m) or remote point (0.9 m),
as in the case of H, controller design. Target values for the
design parameter are selected at discrete frequencies from near
the centre of the circles denoting local vibration reduction
(blue circles in Fig. 7) in the first case and for remote
vibration reduction (red circles in Fig. 7) in the second case.
The magnitude of the closed loop frequency responses at
the local (0.1 m) and remote points (0.9m and 0.5m) are
shown in Figs. 3, 4 and 5 for the two cases of controller
design. It can be seen that the first four resonant peaks in the
local output are attenuated using a controller that is realised
using v values selected for attenuation at only this point.
As predicted by the results shown in Fig. 7 this controller
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Fig. 6. Time domain response (a) z1(t) with Hoo controller, designed for
minimisation of ||z1||co, switched ON at ¢ = 0.4s and (b) z1(t) with
geometric controller, designed for minimisation of ||21 /o, switched ON at
t=04s,fora=01(C)anda=1(—)

leads to enhancement at the midpoint and no attenuation in
the output at the remote point, for the second and fourth
resonant frequencies. The second controller which is designed
for optimum attenuation of output at the remote point (0.9 m)
attenuates the low frequency resonant modes. However, this
also causes enhancement in the response at the midpoint while
giving no attenuation of the second and fourth resonances at
the local point. The closed loop performance obtained using
these two controllers are broadly similar to that obtained using
the Ho, controllers but with an additional gain roll-off at
higher frequencies due to the filter T, (s). However unlike the
H o, controllers both of these controllers are stable functions
thereby enabling a straightforward implementation. This can
be verified from the simulation of the closed loop in Fig. 6(b)
that shows the response for gains lower than the nominal.
Moreover, the methodology proposed here enables the feasible
performance to be easily assessed using a simple graphical
portrayal of the design freedom (Fig. 7).

IV. EXPERIMENTAL VALIDATION
A. Blade test rig

The efficacy of the control design methodology is further
demonstrated in this section using the experimental test rig
that was previously used to illustrate the geometric-based
controller designed for tonal excitation [7]. This facility was
constructed to replicate the problems associated with vibration

transmission in rotary based propulsion systems that were
discussed in the introduction. As illustrated in Fig. 8 unsteady
forces generated at the blade propagate along the shaft and
transmit via the thrust bearing into the supporting structure. A
strategy for remote vibration attenuation is to control both the
blade vibration and onward transmission through the propeller
shaft using only sensors and actuators located at the thrust
bearing end of the shaft’. Although this represents a case
where it is not practically viable to provide in-service sensing
and actuation of the blade, it is assumed that all the necessary
transfer functions can be identified from measurements during
a commissioning phase when the shaft is stationary.

The test rig is made up of a long hollow shaft pinned
at one end to the centre of a flexible beam element which
represents the rotor blade. The other end of the shaft is
fixed to a steel block rigidly connected to the supporting
foundation, which represents the thrust bearing. The beam
can be excited by two small inertial shakers to simulate the
effect of hydrodynamic or aerodynamic loading on the blades
(represented by d in Fig. 8); and a shaker at the fixed end of
the shaft implements the control force (u). An accelerometer
measures the acceleration of the block which is used as a
feedback signal (y). The vibration in the beam is measured
by two accelerometers located close to the shakers for solely
monitoring the performance. The frequency response of the
summed beam acceleration (z) to a common excitation signal
for the shakers located on the beam shows that the first
bending mode resonance occurs around 244 Hz (Fig. 10). This
resonance leads to a peak in the transmission along the shaft,
as can be seen in Fig. 9 for the thrust block response to the
same excitation signal. It should be noted that unlike the beam
simulation example in the previous section, the control force
is applied here at a non-resonating part of the interconnected
structure.

B. Hoo controller

In order to highlight the potential benefits of the design
approach proposed in this paper an H, controller is consid-
ered for the feedback path at the thrust block. The design
specifications are selected so as to minimise the response of
the thrust block. The controller design requires parametric
model identification for all four paths between the control
and disturbance inputs, and the local and remote outputs.
The closed loop response predictions using this controller
are shown in Figs. 9 and 10. The H., controller gives a
reduction of around 10 dB in the thrust block response at
244 Hz, however, there is deterioration at low frequencies
due to the unmodelled actuator dynamics. The closed loop
blade response is similar to the open loop case. The controller
has four unstable poles at 12.89+j1526.58 and 0.84+j5171.54.
Therefore its implementation is not straightforward and as a
result experimental validation is not undertaken.

C. Geometric control design

Unlike H o, controller design the geometric-based control
design requires parametric model identification for only the

2Note that this general concept is the subject of several patents
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local control path transfer function. The first step in the control
design is to determine a linear time invariant model for the
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open loop control path between the control shaker and thrust
block acceleration. A 15th order transfer function model using
the MATLAB’s built-in function invfreqgs (based on the
method defined in [15]) is identified for the open loop control
path as shown in Fig. 11, which is non-minimum phase with
one right half plane zero. It will be noted that the model does
not include the low frequency resonant modes associated with
the actuator dynamics since this is outside the frequency band
of interest. The filter W, (s) is therefore chosen as an 8th
order bandpass butterworth filter with low cut-on and high
cut-off frequencies as 100 Hz and 600 Hz respectively. The
circles in the y—plane corresponding to reduction in vibration
levels at the local and remote points for frequencies around
the first bending mode are shown in Fig. 12. The circles
corresponding to a reduction in the blade vibration are very
large from 200 Hz to 220 Hz and above 270 Hz. The distance
between the centre of both circles will be large and so it will
not be possible to achieve considerable vibration reduction at
the blade end without amplifying vibration levels at the thrust
bearing end of the shaft. In practice however the controller
objective is to minimise the transmission through the thrust
bearing subject to the constraint that the blade vibration is
not enhanced. It can be seen that + points that achieve this
objective can be obtained by selecting points that are close
to the centre of the unit circle but that remain within the
red circles. However as shown in Fig. 13 the « points for
frequencies from 220 Hz to 245 Hz selected from within the
region of intersection of both sets of circles would lie close
to the origin. This would correspond to low control action
and hence the intended attenuation of thrust bearing response
would not be achieved. Therefore the v points are selected
from near the centre of the blue circles which will lead to a
slight deterioration in blade response near this frequency. A
stable ~(s), determined using the Nevanlinna-Pick interpola-
tion technique, also satisfies the controller stability condition.
However, due to inversion of the minimum phase counterpart
of the control path transfer function the antiresonances of
this transfer function can manifest as peaks in the controller
FRF. Here, a minimum in the control path FRF as seen in
Fig. 11 associated with a lightly damped conjugate pair of
zeros could cause enhancement in the closed loop response
or even reduce stability margins. This could either be dealt
with by excluding this region from the parametric model or
by further shaping the design freedom parameter. However, a
notch filter is utilised here to reduce the peak at this frequency
without affecting the gain or phase of the controller below
500 Hz. The magnitude of the controller frequency response
is shown in Fig. 14. The predicted magnitude of the closed
loop frequency response of the thrust block and blade vibration
using this controller are plotted in Figs. 9 and 10. They show
good attenuation of the peak response in the thrust block at
244 Hz, while slightly deteriorating the response between 400
Hz and 500 Hz. The peak response of the blade output only
shows marginal reduction using this controller, as predicted
by Fig. 13.

The compensator transfer function is derived initially in the
continuous time domain and then converted to a discrete time
function using a first order hold approximation with a sampling
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Fig. 15. Power spectral density of thrust block acceleration when disturbance
shakers are excited by an uncorrelated random signal
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Fig. 16. Power spectral density of the summation of blade acceleration when
disturbance shakers are excited by an uncorrelated random signal

frequency of 5 kHz. The resulting controller function is then
implemented on the rig using a dSPACE rapid prototyping
control system. The power spectral density of the acceleration
response measured at the thrust bearing with and without
feedback control when the blade is excited by a random white
noise signal is shown in Fig. 15. This shows that the controller
provides an attenuation of around 12 dB in the peak response
relative to the uncontrolled case. The corresponding blade
response for the same excitation is shown in Fig. 16 where it
can be seen that although the peak response is only marginally
reduced under the action of the controller it is not enhanced.
As a result all of the controller design objectives have clearly
been achieved therefore demonstrating the practical value of
the proposed methodology.

V. CONCLUSION

For many practical applications of active control it is not
feasible to locate actuators and sensors in all regions where
vibration attenuation is required. In a series of recent papers
a geometric design methodology was introduced to provide a
systematic procedure for optimising global performance with
a single control loop. A drawback of this original method,
however, was a requirement to assume that the local control
path dynamics are minimum phase in order to guarantee both
internal stability and that the controller is itself stable. In this
paper the original methodology has been extended to provide

a systematic procedure to obtain a stable and stabilising
controller for the more general non-minimum phase case. A
modified design freedom parameter has been introduced such
that a controller can be implemented using the inverse of the
minimum phase counterpart of the local control path transfer
function. The theoretical results have been verified and the
design procedure illustrated using a simulated beam vibration
problem. A stable and stabilising controller was designed for
this system to provide excellent reductions in global vibration
levels relative to the uncontrolled case across a broad range
of frequencies. Finally, the methodology has been validated
experimentally using a rig that replicates the problems of
vibration transmission in rotor blade systems. This specific
problem provided the motivation for the development of the
original geometric design methodology. The rig although hav-
ing a near collocated actuator-sensor pair has non-minimum
phase characteristics. It has been shown that despite this the
new design methodology can be used to develop a strongly
stabilising controller that provides significant attenuation of
the transmitted vibration into the supporting structure without
enhancing blade vibration.
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