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Optimal Trajectories for Vibration Reduction Based
on Exponential Filters

Luigi Biagiotti, Claudio Melchiorri, Lorenzo Moriello

Abstract—In this paper, a new type of trajectories, based Alternative approaches for vibrations reduction by meahs o
on an exponential jerk, is presented along with filters for reference signal filtering are based on lowpass and notch

their online generation. The goal is to generalize constanerk  fitars expressed either as finite or infinite impulse resgon
trajectories, widely used in industrial applications, in ader

to reduce vibrations of motion systems. As a matter of fact, filters, but _'t 'S_Worth nOt'C'_ng that they dc_) not guarantee
constant jerk trajectories do not assure a complete vibrabns complete vibration cancellation [1]. A technique that assu
suppression when the damping of the resonant modes is notresidual vibrations suppression exploiting the dynamic
negligible. The values of the parameters (decay rate and dation) inversion of the flexible plant has been proposed in [8].

of the jerk impulses that allow residual vibration cancellaion More recently, methods for vibration reduction directlysbd
are derived in an analytical way as a function of the dynamic ’

characteristics of the plant. Comparisons with the well-krown on a proper definition of the reference S_ignal have been
input shaping techniques and with system-inversion-basefiiters ~ Presented, see [9], [10], [11]. These techniques rely on the
show the advantages of the proposed method in terms of limitation of jerk impulses, whose duration must be cargful

robustness with respect to modelling errors, smoothness dhe chosen on the basis of the dynamics characteristics of the
resulting traje_ctory, time-_duration of the motion under velocity resonant system. Constant jerk trajectories are the simple
and acceleration constraints. . . .
example of this approach, but they assure complete viloratio
Index Terms—Trajectory planning, residual vibration, dy-  cancellation only in case of totally undumped plants. An
Eglrr}gcrkf.llters, input shaping, multi-segment trajectory, @ponen- ;i nrqvement has been presented in [11], where asymmetric
jerk profiles are used to take into account the damping
coefficient of the flexible system. This approach, which
. INTRODUCTION is generalized and improved in the present paper, will be
In many industrial applications, the reduction of machingiscussed in Sec. II.
vibrations may be a relevant issue, as lighter structures an
faster motions are always required. For this purpose, a Bumb The paper is organized as follows. After a general overview
of different approaches, based on feedback and feedforward limited jerk trajectories, filters for their generationda
techniques, can be applied, [1]. However, the most suitahlration reduction are presented in Sec. Il. The novelrfilte
method for machines, which are usually based on standafidt provides exponential jerk motion profiles is illustgtin
control architectures, consists of a proper design (orifiitg Sec. Ill, where the values of the parameters that guaranéee t
of the reference input, which does not require changes rigsidual vibration suppression are derived analyticallyen,
the control scheme or additional sensors. A well-knowh Sec. IV the features of the proposed approach are compared
technique for minimizing the residual vibration in poiott with those of alternative methods for vibration cancefiati
point motions is represented by input shaping [2], [3], [4lThe results of experimental tests, conducted to validae th
based on a train of impulses of proper amplitude and propeHgvel method, are reported in Sec. V. Concluding remarks are
delayed in time which are convoluted with the referengsrovided in Sect VI.
signal. The most common input shapers are the so-called Zero
Vibration (ZV) input shaper, which assures in case of pérfec
knowledge of the parameters of the oscillatory system that
no residual vibrations occur and the Zero Vibrations an@ zer In order to evaluate the features and the effects of the
Derivative (ZVD) input shaper, which combines completproposed trajectory generator in vibration suppressibe, t
vibration suppression with higher robustness with respect motion system shown in Fig. 1 has been considered because
modelling errors. Input shapers have been successfullgt usg its significance in the industrial field, where a number of
in a number of practical applications, such as reduction applications can be modeled in this way: a properly corgbll
crane oscillations, [5], control of industrial machindeeliXY electric motor is used to actuate an inertial load, whose mo-
stages, [6], vibration suppression in flexible robotic arfiid  ment of inertia isJ/;, by means an elastic transmission lightly
o o . . damped, characterized by an elastic consta@ind a damping
L. Biagiotti is with the Department of Engineering “Enzo Feei”, Uni- . . .
versity of Modena and Reggio Emilia, Strada Vignolese 903,25 Modena, coefficientb, [12], [13], [14]. By assuming that, because of the
Italy, e-mail: luigi.biagiotti@unimore.it. control, the actuator behaves like an ideal position squree
C. Melchiqrri and L. Mor_iello are wit_h th“e De_partment _c:f Ellé_c qm(ﬁ) ~ (Jref(?f), on|y the mathematical model of the system
cal, Electronic and Information Engineering “Guglielmo idani’, Uni- . o . . .
versity of Bologna, Viale Risorgimento 2, 40136 Bolognaalyt e-mail: describing the elastic linkage, which causes vibrationd,the
{claudio.melchiorri, lorenzo.moriell@unibo.it. load has been taken into account. It is a SISO (Single Input
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Fig. 1. Lumped constant model of a motion system with eldstiage (a) )
and related block-scheme representation (b). guarantee that the trajectory from to ¢1 (h = ¢1 — qo)

complies with the velocity limitv,,,,. and the acceleration

. . ) , limit a,,.., and the choice
Single Output) LTI (Linear Time Invariant) system that can b

modelled with the transfer function Ty = kQ—F (3)
Wn
s 20wns + w2 . L :
Gmi(s) = Qus) _ (1) wherek is a positive integer numbek (= 1 is the standard

Q. 524 26w, 2 . . o .
@m(s) 8%+ 20wns + @y assumption which corresponds to the minimum duration of the

with periodTs) assures that the spectrum of the trajectory is null for
o =R s b w = w, and is therefore able to cancel the residual vibration
" Jp’ 2V ke J; when the trajectory is applied to an undumped resonantrayste

where Q. (s) = L{gn(t)} and Qi(s) = L{q(t)} are the (6 ~ 0). Unfortunately, if the damping coefficient is not zero,

Laplace transforms of the motor and load position, respet@-e e:‘fec;tlyeﬂiss_oftthe f|Ite_r ou_t)pu'i_(and therefor_e °f.‘m| d
tively. Note that the inertia/,,, of the motor has no influence constant jerk trajectories) in vibration suppression

on this model. From (1), it follows that the dynamic relatiorf?bly decreases. In Fig. 3 the tracking errors of a resonant

between the motor position, supposed to be equal to tﬁ)ésterﬁ with § = 0.0083 andé = 0.083 when a standard third

; ; : order trajectory is used are compared. Note that grows,

reference trajectory,.r(t), and the tracking erros(t) is when the motion stops (that is f0r> Ty, — Ty + Ty + T5),
E(s) —s2 the peak value of the oscillations of the mechanical system
Qref(s) T g2 + 20wn s + w2 accordingly increases. Moreover, also very small values of
0 cause vibrations. The effects of damping are analyzed in

Fig. 4, whereV' %, the percent residual vibratiénis shown

or equivalently

E(s) -1 as a function off. The increasing of vibration’s amplitude is
Ores(s) 82+ 20wns + w2 consequence of the fact that in the design of the fil&(s)
the damping coefficient is not considered. The only way to
where E(s) = L{e(t)}, Qres(s) = L{ger(t)} and take into account is in the selection of the time constant

Qref(s) = L{Gres(t)}. In order to limit residual vibrations, 75, and therefore in the duration of the constant jerk segment,
it is therefore necessary that the acceleration prdfilg () which can be computed as
of the reference trajectory has small spectral components 9
™

about the resonant frequency of the second order system T3 = k———

characterized by, w,). In [10] these considerations leaded wn V1 — 67

to a technique for the optimal selection of the parameters where, similarly to (3)% is a positive integer number (usually

a standard third order trajectory, generated by means eéthkc = 1). Unfortunately this choice mitigates but does not
linear filters . o solve the problem, as shown in Fig. 4. In order to suppress

_o—sTi

Ml(s) - sT; ’ 1The numerical values used in [10] are considered.
) ) ) 2According to [15], percent residual vibration is definedhastatio between
as shown in Fig. 2. In particular, parameters the residual vibration to a step command with and withoupsteafilter.
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vibrations in systems whose damping is not negligible, the
use of a nonconstant limited jerk profile has been proposed

in [11]. In particular, a dynamic filter to be applied to sedon
order trajectories is devised. The filter produces asynimetr Ty t
jerk segments, characterized by a linear decrease, as showig. 8. Impulse response of filtdf; (s) for negative values of parameter
Fig. 5. The slope of these segments is computed by solving
an optimization problem aiming at minimizing the residual
vibration. This approach seems very promising as shown |if), T RAJECTORIES WITH EXPONENTIAL JERKDEFINITION
Fig. 6, where the same conditions of Fig. 3 are considered: in AND PROPERTIES
bolzhosvae?/isr tgeisre;f:sl r:/c')?ig::gn;;rzg;rgpvlvegg:z sgﬁg e;jl Given a second order trajectogy(t), obtained for instance
PRI oo |With the cascade of two filterd/; (s)- Ms(s), a multi-segment
exist in this technique: trajectory with jerk segments defined by exponential flordi
« A closed-form solution for the computation of the filtefcan be obtained by adding in the chain the filter
parameters is not available and the numerical approxima- WT T s
tion provided in the paper is valid only far sufficiently Fy(s) = —m 1—e*7e 7 (4)

close to 0. For instance, if = 0.45 the trajectory does exTr —1 s— o
not cancel the residual vibration, as shown in Fig. 7. wherea andT’; are proper parameters that determine the decay

For high values ob, it may happen that the sign of jerkrate and the time duration of impulses composing the jerk
changes within the same segment. As a consequencefthefile. As a matter of fact, the impulse responseFdf(s),
acceleration profiles exhibits undesirable overshoots, sshown in Fig. 8, is

Fig. 5(b).
- - iha(t) = ———— e m(t),  with m(t)=
In order to avoid the above mentioned problems, a shaping eaTs _ 1 ’

]-a 0 <t § T]
0, otherwise
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; £ ; (eaTr — 1) (a2 4+ 20wpa + w?) w1 — 62
andQ) = w,v1 — 62. Therefore, in order to assure thdt) =
0, V¢t > T it is sufficient that

Note that F';(s) is a generalization of a standard filters
with rectangular impulse response, which produce pie@wis
constant jerk profiles. As a matter of fact, whén= 0 and
consequentlyn = 0, the straightforward application of the
I'Hopital’s rule leads to
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lim —— = —
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and therefore

Fig. 9. Second order trajectory () with h = 30 rad, Vmae = 250 rad/s,

amaz = 5000 rad/$, and corresponding exponential jerk trajectqpy. for lim F ( ) i « 1—eaTs g=Tys 1 1—e 5Ty
_ _ m s)= lim =—

wn = 260.43 rad/s andd = 0.083 (b). 550 7 a0 eaTs — 1 s — T, S

Differently from asymmetric jerk trajectories, the parders

Therefore when applied to the trajectagy(t) characterized of EJ(s) that assure the complete vibrations cancellations are
by a piece-wise constant acceleration, the filter transforen €aSily calculable in the whole range o6f< [0,1[, and the
jerk signal composed by impulsive functiara,,q. (¢ — ;) problems tied to changes in the jerk sign are never present.
in a sequence of exponential segments, see Fig. 9. N@igeorem 2. Third order trajectories with the jerk profile com-
that the maximum value of the jerk can be computed a®sed by exponential segments satisfying (5) and (6) gtegan

I maz = Qmaz = that no residual vibrations are present in the resonanteyst
The filter F;(s), which does not modify the limit values of (1).

velocity and acceleration of the original trajectapy(t), can Proof. Third order trajectories with exponential jerk, whose

be profitably applied to suppress residual vibrations irs¢ho . o . .
resonant systems that are characterized by significantidgmpanalytIcal expression 1S repqrted n Appt_andlx A, can be
coefficients in lieu of standard third order trajectorieshwi pbtalned t_)y flltgrlng a step S|gnal of amplltude(whereh.
limited, but constant, jerk. is the desired displacement) with the cascgde of I_mears‘.llte
M, (s)-Ma(s)-F;(s). Therefore, when the trajectory is applied
to the system (1), the tracking error between the load positi

and the motor position is given by

()= g (M1<s>  Ma(s) - Fi(s) - @)

. . E
Theorem 1. The filter F;(s) in (4) guarantees the complete %> s2 4 20wps + w2 S

residual vibration suppression for motion systems wittstda —g2 1
transmission described by (1) fed by step inputs if = h-Mi(s) - Ma(s)- (m Fy(s) - g)
a=—dwy (5) = h M (s) - Ma(s) - E(s) 8)
T, =k 2 k=1,2,... (6) WhereE,,, (s) is the Laplace transform of the tracking error to
wp V1 — 62 an exponential jerk trajectory, arf(s) is the transform of the

. ' . . errore(t) to a step input, considered in (7). If the conditions
Proof. When a step mput filtered by (s) is applied tc_).the 5 ancg 26) are mgt(t;);é 0 only for ¢ < T§ :zmd because the
system (1), the tracking error between the load position aéfsers M, (s) and Mx(s) are characterized by a finite length

the motor position can be computed as impulse response of duratidfi; and 75 respectively, from
_ g2 1 (8) it follows thateg,, (t) # 0 for ¢ < T1 + T> + Ty and
E(s) = T %ot Fy(s)- < (7) &,4(t) = 0 otherwise. This means that after the end of the
" " reference trajectory (whose durationlis,, = 71 + 1> + T')

By inverse Laplace transforming(s) and assuming > T7, residual vibrations are completely cancelled. O

the analytic expression of residual vibrations descends: In Fig. 10 the tracking errors obtained with exponentiak jer
st (Somta)Ts trajectories are shown by considering resonant systents wit
e(t)=A [O‘G " (COS(Qt) — cos(Qt = Ty))er™n ) quite different damping coefficients, i.6. = 0.083 (a) and
_ Be—dwat (sin(Qt) — sin(Qt — Til))e(mﬁa)T‘,)} 0 = 0.45 (b). In both cases residual vibrations are completely
suppressed.



Ep——
—a0

Estep(t) rad]  Gres(t) Irad]

ST e ey e om e e e e e
@) (b) Eom / \/\/WNV‘
Fig. 10. Residual vibrations due to a third order trajectaith exponential ‘%,Mz
jerk g2, (t) under the same conditions of Fig. 3, but with= 0.083 (a) and © o Ll
§ =0.45 (b). R
z—:(t) Fig. 12. _Comparison between residual v_ibrations causechbyapplication
CT, of a step input and of a second order trajectgsyt) to system (1).
mip
ol - to avoid an excessive strain on the plant. In Fig. 12, the
1 A residual vibration caused by a second order trajectg(y)
| | /\ /\ and a step signal applied whes\(t) stops are compared: it is
h t2\/ \/ t clear that the only difference is given by the amplitude & th
oscillations, which does not influence the procedure for the
identification.
Since the identification of the optimal values of the filter
parameters does not require an explicit knowledge of the
damping coefficient and of the natural frequency of the plant

the robustness of’;(s) is evaluated by considering errors
Fig. 11. Residual vibrations caused by the applications sttp input to the ; ; i ; i
Sy%tem ), y Pp R Inp in o .a_n_d TJ.W|th respect to their nominal yalues, while the

sensitivity with respect to changesdrandw,, will be analyzed

in Sec. IV in order to compare different types of solutions

A. Parameter identification and sensitivity to errors to the problem of the vibrations suppression. In Fig. 13 the
The parameters: and T; which characterize the filter percent residual vibratiol % due to errors in the estimation

F;(s) and therefore the trajectory with exponential jerk can b f the parameter& a_n(_j T are reported for different values
easily determined once the damping coefficiérsnd natural of the (_jamplng coefficient and natural frequency of the plant
frequencyw,, of the system are known. Alternatively, with'" particular the rangef/2,24] and [1,/2,21,] about the

standard procedures it is possible to directly deduce thgl?mmal valueg(s, T;) are considered. From the figure, it is

values from the response of the plant to input signals thadea possible to conclude that

vibrations. For instance, the residual vibrations coneegto ¢ the nominal value of the natural frequency of the plant
a step input are given by does not influence the robustness of the filfg(s) while

) the damping coefficient does;
e~ Swnt (oq (wn* /1- 621+ 900) « the choice ofl’; is definitely more critical than the choice

Estep(l) = ———
AV of o

s . o an underestimation ofl’; leads to large oscillations;
where pg = arctan (—2 . Therefore, the ideal values . .

‘ 47 th wllfé idual vibrati Vel conversely, a value of’; higher than the nominal one
Of a-and £, t_ at cancel residual vi rauon; are resfpectlvey produce limited vibrations especially for high damping
the exponential decay constant and the time period of the coefficients
oscillation. If a measurement of the oscillation is avdiali is '
sufficient to detect two subsequent peak values, as higbligh

in Fig. 11, and compute the parameters of the filter as B. Sensitivity to unmodeled dynamics of the plant

According to theorem 1 the filteF';(s) in (4) and con-

Ty=t2—t sequently the exponential-jerk trajectory obtained whies t
o iln P2 filter is applied to a second order trajectogy(t), like in
Ty P Fig. 9, guarantee a complete cancellation of the vibrations

if the plant can be modelled as a second order system such
as (1). However, as already noted in Sec. Il typical indabtri

on the svstem and thev do not chanae also if different t lants include additional dynamics that may modify the @fe
ystem, y do ge YBF the proposed filter. If the model of the plant includes an
of reference inputs are considered. For instance, secatet or

trajectories, with discontinuous acceleration, can bed lise additional stable dynamicaGi(s), €.g.
order to provide the actuator with a feasible trajectory and G(s) = Gru(s) AG(s), 9

where the meaning df, t2, p1, p2 is explained in the figure.
Note that the period of the oscillation and its decay rateedép



o < - -
- SR S _ /\ \ _
RS ] R g : B
: \“QQQQ\“\\\”/ TSR 5 E

rrrrr

“oas

's] s

(a) (b)

Fig. 14. Response of a resonant system with an additionapoda, G(s) =
Gmi(s) - 51+1 with wy, = 260.43 rad/s,d = 0.083 andT = 0.0046s, forced
by a step input of amplitudé = 30 rad (a) and a step input filtered by the
filter F5(s) (b).

X
TSRS
Ak
I =

sy(}égé

q(t) [rad]
q(t) [rad]

QY%';E

T R = S T T
t's] t's]

(a) (b)
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Gru(s) %ﬂ with w,, = 260.43 rad/s,§ = 0.083 and~ = 0.046s, forced
by a step input of amplitudé = 30 rad (a) and a step input filtered by the
filter F5(s) (b).

Fig. 13. Sensitivity ofF';(s) to changes i andT; for different values of
¢ and w,, of the plant:d = 0.0083 (1), § = 0.083 (2) andd = 0.45 (3);
wy, = 260.53 rad/s (a) andv,, = 2.6053 rad/s (b). . . . .
In case of systems with multiple vibratory modes, a single

filter F;(s) is only able to cancel the oscillation due to a
it is possible to show that the properties 6% (s) remain specific mode. As a consequence, the use of a fiitgfs)
unaltered. As a matter of fact, because of the linearity titloes not guarantee the complete residual vibration sugipres

response of the system (9) to a filtered step input is but it is necessary to consider the cascade of two or more
1 filters, each one related to a specific mode. In Fig. 16 the
Qi(s) = G(s) Fy(s)— = AG(s) (Gml(s) FJ(s)—) ) step response of a plant characterized by two modes with the

§ s same damping coefficiert but different natural frequencies

Therefore, the ideal response obtained with the nomina),; andw,, 2, with w, » = 1.5w, ; without and with filtering
model G,,;(s) which, according to Theorem 1, does noaction is shown. A single filteF; ; (s) considerably reduces
have residual vibration, is simply filtered b&G(s). Note residual vibration but does not cancel all the oscillations
that the dynamic\G(s) will introduce additional modes in Therefore, a second filteF'; »(s) is necessary to completely
the response but cannot excite again the resonant modeswpress undesired vibrations with the consequent inerefas
Gmi(s) damped by the filtel; (s). the delay caused by the filters. If the two filters are not agupli
to a step signal but to a second order trajectpify), like in

In particular, if AG(s) represents a dynamics faster than theig. 17, the capability of suppressing residual vibraticas
nominal modelG,,,;(s) and completely damped, for instancédbe merged with the compliance to kinematic constraints but
a real pole with time-constant = %ﬁ the response of in this case the final trajectory is not characterized by & jer
the system to a step input without and with the filé(s) profile composed by tracts of exponential function, see Fg.
is the one shown in Fig. 14: the presence of the additional
pole involves an increased duration of the response théiiein ¢, Digital implementation of the trajectory filter

nominal case reaches the steady-state conditidiy iseconds, Since the generation of exponential jerk trajectories &eda

but the residual vibration is completely suppressed. o . .
Even if the convergency rate of the additional pole Q" the dynamic filters fed by step functions, i.e.

comparable with the rate of the undamped (complex) poles Qae(s) = Mi(s) - Ma(s) - Fiy(s) - h
that characteriz&r,,,;(s) the result is similar, that is the use s

of F;(s) cancels the oscillations that otherwise would affedt can be easily performed online by modifying the input
the response. See Fig. 15 where the unmodeled dynansigmal. However, the practical use of the proposed filter

AG(s) = =5 with 7 = £ has been considered. requires its transformation in the discrete time domaii (



Res. Vibrations

Res. Vibrations

(S S R §

o 005 01 o015 25 03 035 04 0.4 05

#q° S
@) @

qi(t) frad)

(t) Irad]
[ ‘§lz
gt) 1

0 005 01 015 02 025 03 035 04

.
) |
|
~—~ 20 1
- S
20 i Nl I
| L 10 !
10 1 a !
[ o I
° | S o 1
\ I
I
|
) |
| i
i I
I
|
|

qi(t) frad

Res. Vibrations

001
T
g ooos
Res. Vibrations
—~ 0
S

Nl i
(W-0.005 |

i

1

£(t) rrad)

1 Tt,()f
T2+ T2 -ooL;

02 03
02 _ 025 03 035 04 t [s]
1 Is]

c
’ . I . Fig. 17. Response of a resonant system with 2 vibrationalesiotlaracterized
Fig. 16. Response of a resonant system with 2 vibrationalesiodaracterized by wn,1 = 260.43 rad/s,wn 2 = 390.6450 rad/s ands = 0.083 forced

by wn,1 = 260.43 rad/s,wn, > = 390.6450 rad/s and) = 0.083 forced by : . _ =
L - 2 - ) : y a second order trajectorys (t) with h = 30 rad, Vinaz = 250 rad/s,
a step input of amplitudé. = 30 rad (a), a step input filtered by the filter amas = 5000 rad/@ (a), an exponential jerk trajectony . (¢) taking into

F;(s) designed to take into accouat; (b) and a step input filtered by two . : : .
filiers ., (s) which consider botho; andws (c). icgﬁgt:j; ((Cl;) and the trajectoryjz 2. (t) of Fig. 18 which considers both

0.4 05
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denotes the sampling period) because trajectory planrsing . . .
generally performed by digital controllers. This conversi dz() = Z{Quc(s)}. Therefore, the following expression

can be obtained with two main techniques, being the impulggn be deduced
response off’;(s) of finite length: Qo) h M(2) - Ma(2) - Fy(2) - () (10)
1) it is possible to obtain the coefficients of a FIR filter by 1—z7t
sampling the impulse respongg(t) with periodTs;  \here F7(2) is a FIR filter with unitary static gain, whose
2) it is possible to deduce the IIR transfer function Coréxpression is
responding toF;(s) by means of usual discretization
techniques. Fl(2)=foz 4+ fiz 724 fo273 (12)
In order to obtain a closed form expression Bf(z) the _
second approach has been preferred. By Z-transforming #&ing
filter F;(s) given in (4) and imposing a unitary static gain,

_ p_ _ 52
the following expression descends fo= 242 —2p—p

2(er —1)p?
1—eTs 1 —eaTsgaNs =Ny 4 — deP + 2p + 2peP — p? + p2eP
Fy(z) = (10) _ A2t e —pt e
1 —eaTs caNy 1 —eaTs z—1 fi= 2(6”—1)p2
whereN; = roundT;/T5). In Fig. 19 the complete structure —2 4 2eP — 2peP + pPeP
of the discrete-time filter for online generating exponainti J2 = 2(er — 1)p?

jerk trajectories is shown. Note that in order to guaranie t

the sequence.. (k) of values of the discrete time-trajectoryand p = «7s. By comparing (11) with the discrete-time
coincides with the continuous-time profifg. () at sampling generator of Fig. 19, it comes out that the difference betwee
times, its expression should be obtained by Z-transformitige two output sequences is only caused by the filtgr),

the overall chain of continuous filters with a step input, i.avhose main effect consists in a time delay of two sampling



(k) = 1 (k) + a1 (r(k) = r(k = N1))
42(k) = a2 (k) + a2 (a1 (k) — q1(k — N2))
q2e(k) = a3 q2e (k) + as <q2(k) —as q2(k — NJ))

TABLE |
DIFFERENCE EQUATIONS CORRESPONDING TO THE TRAJECTORY
GENERATOR OFFIG. 19 (THE VALUES OF THE CONSTANT PARAMETERS;

_ 1—eTs
ARE a1 = 1_ecaTs @ Ny

— T —
az =e“ s, a4 =

1 .
VI’GQ_NQ’

G2e (k) [rad]

) 0.05 # [s] 015 02

38
Fig. 18. Profiles of the trajectoryy 2.(t) obtained by applying to the
trajectory g2 (¢) of Fig. 9(a) two exponential filters with,, ; = 260.43
rad/s,wy 2 = 389.2971 rad/s andd = 0.083 (b).

r(k: L 1— M Q1(k') il N2 g2 (k) FJ(Z) q2c (k)
N1 1—21 N2 1—2-1

Fig. 19. Structure of the discrete-time filter for exponahnjerk generation.

interval$. By neglecting this filter, a time anticipation is
therefore introduced in the generator, as shown in Fig. 20,
where the step response of the continuous-time filter and the
sequences obtained with the exact discretization and Wwéh t
approximated generator of Fig. 19 are reported. In order to , , |
emphasize the approximation error the sampling period has 0 5 kT, ° 15
been intentionally assumed very largé & 0.1 s). In this way

it is possible to appreciate that, besides the time anticipa Fig. 21. Complex motion profilgze (k) With Vimaee = 250 radfs,amae =
5000 rad/g, wy, = 260.43 rad/s ands = 0.083, obtained by applying to the

3Since the sampling frequenays is generally chosen by assuming thatSYStem in Fig. 19 a reference signdk) composed by several step functions
starting at generic time instants.

ws > 10wy, the parametep = —&uni—’: results quite small in magnitude,
i.e. —0.6283 < p < 0. As a consequence, the range of variation of the
coefficients definingF”’(z) is rather limited (.1412 < fo < 0.1667,
0.6666 < f1 < 0.6656, 0.1667 < f» < 0.1932). Moreover, f1 is con-  the discrete-time filter provides an excellent approxioratf
siderably higher than other coefficients and therefore ghlrapproximations . . . . .
of F’(z) can be obtained by neglectinfyy and f2, and assuming that that the desired trajectory. Obviously, when the sampling merio
F'(2) = 272, decreases, the difference betweent) and the approximated

¢2¢(k) tends to vanish.

A last remark concerns the computation complexity of the
—— ‘ ‘ ‘ ‘ proposed trajectory generator. As illustrated in Tab. lereh
T e the difference equations of the trajectory generator of Efjy
T s are reported, at each sampling time the computation of the
output of the cascade of filters requires a total of 6 addition
4 1 and 5 multiplications. If the filte#”(z) is considered, 2 more
additions and 3 multiplications must be performed. Moreove
3 memory areas are necessary, in order to store theNast
values ofg; (k), the lastN, values ofgz(k) and the lastV,;
1 values ofg. (k). Note that the trajectory generation based on
the cascade of dynamic filters is considerably more efficient
s | 1 | than the direct calculation of the closed form equations of
t1s] the trajectory reported in Appendix A, which, besides adarg
Fig. 20. Comparison between the trajectories produced pyrential jerk number of additions and multiplications, requires 2 dums

trajectory filters defined in the continuous- and discreteetdomain with and the computation of an exponential function depending on
Ty =1s,T> = 0.6s (V; = ceil(T; /T's)), Ty = 0.2s anda = —3. t.

N

Q2¢ [rad]
AW




0.‘5 t sl i 15

rad/s’yy
) tradi$1q"%) (1)

Fig. 22. Comparison between the residual vibration caugretde.‘oapplication3;3 = o
to a resonant systert,,,;(s) of a second order trajectoryz(k) (e2(t)) =R - (
and the corresponding exponential jerk trajectgsy (k) shown in Fig. 217" | L . L - .
(e2¢(1)). s i
(a) (b)
. Fig. 23. Reference signals obtained by filtering the secan@ratrajectory
When a refgrence S|gna_|(k)_ composed py Sevefral SteP,, (1) of Fig. 9(a) with a ZVD input shaper (a) and with the inversatyics
functions starting at generic time instants is applied te thf the plant (b).
trajectory generator of Fig. 19, the profiles shown in Fig. 21
are obtained. If the time-instants in which a new trajectisry
triggered comply with the conditions reported in [10] a cqmqref(t) Controlled motofZm (£l G (3) q(t)
plex motion profileg. (¢) that meets velocity and acceleration (Vonams Amas) 3
constraints and cancels residual vibrations is obtainexte N
that in this case the jerk profiles is no longer composed by , , o
tracts defined by an exponential function because of overldp?: 24 Complete model of a motion system with elastic lgka
between adjacent jerk impulses. However, the capability of

suppressing vibrations remain unaltered, as shown in EAg. 2,4 the elastic transmission of a more complex system which
wh.ere the residual v_|brat|ons obtained with a second order des also the actuator, supposed to be able to perfectly
trajectoryq(k) and with gz (k) are compared. track the reference trajectoty. ; (¢). Therefore the simplified
scheme of a standard motion system with elastic linkage
V. COMPARATIVE ANALYSIS WITH ALTERNATIVE results as in Fig. 24. Unfortunately, any kind of actuation
TECHNIQUES FOR VIBRATION SUPPRESSION system is characterized by physical limitations on veloaitd

As mentioned in the introduction, the main techniques sGcceleration and_if these bounds are not_met the trajectory
complete residual vibration suppression based on a proP€comes unfeasible. Moreover, the requirement of perfect
filtering of the reference signal are input shaping and isieer (racking relates the smoothness of the reference trajector
of the plant dynamics. A first important difference betweef!PPOSEL?, with the relative degree of the linear time-
these techniques and the proposed filEer(s) is that they invariant system describing the actuation system [16], i.e

do not increase the smoothness, i.e. the order of continuous p>r—1.

derivatives, of the filtered input. They are generally agqblio . . .
reference trajectories with bounded velocity and accttgra AS & consequence, in case of an electric actuator,QwvﬁhS,

and therefore at least!, that is with continuous first-order the reference position for the motanust be at least®. This
derivative, and provide as output a trajectory of the sanff@plies that if an input shaping filter is used for vibrations
class in case of input shapers or even of lower class if filtepgppression, the second order trajecigi) is not sufficient
based on system inversion are applied. In Fig. 23 the referefut aC* function is required. With an inverse dynamics filter
signals obtained by filtering the second order trajectpry) @ C® trajectory must be used. Conversely, the proposed filter
with a ZVD input shaper and with a system-inversion-based, . .
filter are shown. Note that the trajectoqg zvd(t) remains Note that the transfer function of a standard DC motor is
C!, i.e. with discontinuous acceleration, and is compliarthwi Ga(s)—Qm(s) = Ki

the desired bounds imposed to the original trajectgrit).

|
o

2,inv

(3)

q,

0.05 0.15 02

T V(s)  LaJms®+ (RaJm + BmLa)s? + (KpK; + RaBm)s

; . . ; ; where K; is the torque constanfs, the back-emf constanf?,, the armature
The tra]eCtorqumV(gﬁ) filtered by the Inverse_ d?’ham'cs OfresistanceLa the armature inductancé,,, the rotor inertia,B,, the viscous-
the plant becomeg®, because some discontinuities appeafgction coefficient andV(s) denotes the Laplace transform of the input

in the velocity profile. Moreover the bounds on the trajegtoroltage [17]. The feed-forward control that in nominal camssures perfect
derivatives are not met anymore, see the acceleration grofif<nd is

of ¢, jny (t). This behavior of the system-inversion-based filte¥; s (s) =G ' (s)Qre ()

can be rather troublesome, since as shown in Fig. 1 the " (Ladm 5 Radwm+ Bmla 5 KyKi+ RaBum
systemG,,,;(s) that causes vibrations only models the load ( K, K, s X, s) Qref(s)
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Fig. 25. Percent residual vibration as a function of the dageoefficient Fig. 26. Percent residual vibration as a function of theoratj, /&, , where
& about the nominal valué = 0.081 (a) andd = 0.45 (b). wn, is the actual natural frequency 6f;,, (s) and @, is the nominal value
used to define the filter, foy = 0.081 (a) andé = 0.45 (b).

Fj(s), that increases the smoothness of the input trajectory,

needs a simplé! function, like the functiony, (¢) which leads .
to the exponential jerk trajectory of Fig. 9. of §. Since the nominal valué influences the results, two

From a functional point of view, input shapers, systenflifferent values have been considered in order to show the

inversion-based filter and the proposed f|lféf( ) guarantee behavior of the different fllters for small and Iarge damplng
the complete vibration suppression in nominal conditiongoefficients § = 0.081 andd = 0.45 respectively). For the
However, since all these techniques rely on a precise muglelnatural frequency, the nominal valde, = 260.53 rad/s has

of the plant, it is necessary to evaluate their robustnesis wPeen assumed, but it is worth noticing that the percentuesid
respect to errors in model parameters, deand w, in (1). Vibration does not depends on this particular value.

To this aim, the different approaches have been evaluated Bye relationship between actual value of natural frequemcly
considering the percent residual vibration of system (1) &€rcent residual vibration is shown in Fig. 26, where thrat
a function of the errors in the estimation of its parameters:/&n» has been considered. Also in this case two different
Since the inverse-dynamics filter requires a continuoustinp/alues ofé have been taken into account.

function, the comparative analysis has been conducted Byese curves highlight that for all the filters the value of
using the trajectory, (¢) as test function in lieu of the standardthe natural frequency is significantly more critical thare th
step signal. By means of extensive simulations, the curvé@mping coefficient. The proposed filt€lj(s) is characterized
reported in Fig. 25 and Fig. 26 have been obtained. For tR¥ an intermediate robustness betweeVi and ZV D input
sake of clarity, the variations of parametersand w,, with shapers, and results much more robust than system-ingersio
respect to their nominal values are considered separatelybased filters. Moreover, for high valueswf, F;(s) offers the

Fig. 25 the percent residual vibration is shown as a functidgst performances, see Fig. 26. The filtéy(s), that produces
constant jerk trajectories, provides similar results foa# val-

which corresponds to ues ofd (see Fig. 26(a)), but cannot reduce residual vibrations
LaJm RoJm + BmLa when the damping coefficient is significantly different from
vrs(h) == 0oy (O + Tgi)f@ zero. P ’ ’
4 KoKit+ RaBm (1) ). Finally, a fair comparison between these methods requises a
Ki rel an estimation of the time-delay that the filters introducd an

The control action; ;(t) is feasible, that iwrs 7 (t) < oo, only if ¢ (t) is of the consequent increase of the motion duration. With this
limited and accordingly the reference trajectagy. 7 (t) € C. respect, it is well-known that an higher robustness of Input
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Shapers is obtained by increasing the number of impulsés tha PC + /O board
form the shapers and accordingly the delay introduced in the :
motion generation.

System-inversion-based filters do not cause any delay in the |
reference signal tracking. However, the need for smootiaer t
jectories implies higher durations of the motion with restjge
lower order trajectories, the bounds on velocity, accélemna
and higher derivatives being equal. Input shapers, like A% a
ZVD filters, introduce in the system time-delays similartait
caused by thd’,(s) filter; in particular the additional delays
areT;/2 for ZV and T; for ZVD, but also in this case the
need for higher order input trajectories with respect tofitber
F;(s) may increase the total duration of the motion.

I motor
current load cell

| position
control |
,,,,, control

V. EXPERIMENTAL VALIDATION

elastic
transmission
(spring)f

In order to experimentally test the proposed method the linear motor Inertial load
setup of Fig. 27 has been arranged. This simple system
is characterized by a linear motion but the dynamic model
described in Sec. Il remains valid. It is composed by a linear &
motor, LinMot PS01-37x120, whose slider is connected to an
inertial load by means an elastic transmission obtained wit

. . . . . - ]—V ’—>
a coil spring. The load is placed on a linear guide in order 4m q
to guarantee the axial alignment with the motor slider and fo .

. L. . ig. 27. Experimental setup.

reduce static friction. The control system is based on thase

controller LinMot E2010-VF that performs the basic current

control, while the position control (based on a PID congoll T, of the filter F;;(s). The value of these parameters is
and a feedforward action) has been implemented on a standgfthined as described in Sec. IlI-A but the oscillation is
PC with a Pentium IV 3 GHz processor and 1 GB of RAMynq,ced by physically blocking the motor slider and appdyin
equipped with a Sensoray 626 data acquisition board, used,ipinitia| deformation to the spring. In Fig. 28, the forget)
both communicate with the servo controller and acquire thg.orded during an experiment is shown together with the
sensors signals. The position of the motor is measured by @8fe of the identified system characterizedSby 0.0246 and
incremental encoder with a resolutionigfm integrated in the &, = 101.3724 rad/s, which correspond t = —2.4958 and
stator, and the monitoring of vibrations is obtained via adlo T, = 0.0620 s (indeed, several tests have been performed and
cell connected between the slider and the elastic tran&miss ine mean value of the parameters has been assumed). Note that
As a matter of fact, the forcg, exerted by the spring is {he value ofw, found in the experiments is consistent with
proportional to the erroe between motor position and loadine theoretical value /—kt/Jz — 102.0653 rad/s. The main
position, and, if the inherent damping of the transmiss®n §itterence between the responses of real and ideal sysésm ||
considered, like in Fig. 1, forcg, is simply a scaled, low-passjn the manner in which the oscillation vanishes, see Fig. 28
filtered version oft. _ _for t > 0.9 s: the model’s output goes to zero asymptotically
The real-time operating system RTAI-Linux on a Debiagije the real system suddenly stops probably because of the
SID distribution with Linux kernel 2.6.17.11 and RTAI 3.4 unmodeled) static friction. Moreover, besides the vibrat
allows the position controller to run with a sampling perioéynamics&‘ml(s) the model of the real system should include
Ts = 500us. For the design of the control scheme and of trape poles of the controlled actuator, but since the control
jectory generator, the MatLab/Simulink/RealTime Workshogeedhack has been designed with a very high bandwidth these
environment has been used. _ poles have been neglected. As a matter of fact, as already
In Tab. Il the main characten;tﬁmf the mechanical system nneq in Sec. 111-B unmodeled poles faster than the mechanic
are reported. The value of the internal dampings unknown, gy namics that induces vibrations do not modify significantl
but it can be easily deduced from the parameier&nd ihe results of the application of the filter;(s) and of the
exponential jerk trajectories.

In Fig. 29, the response of the system to second-order
trajectory ¢2(t) used as basic motion profiles is reported.

— - E N
motor slider | load cell linear guide |

5The symbols refer to the model of Fig. 1(b).

Parameter Symbol _ Value _ Unit This trajectory, characterized by a total displacenfewt 30
f"der mass  Jm 0599 kg mm, has been obtained by means of the first two filters in
oad mass Jy 0.623 kg . . . . ~
Spring stiffness k¢ 6490 Nm Flg. 19 with N; = Ti/Ts, 1= 1,2, belng T, = 1.5T; =
TABLE || 0.0930s and7}; = 27, = 0.1860s. With these parameters,
MOTION SYSTEM PARAMETERS the maximum velocity and the maximum acceleration are

Vimar = 0.1613m/s anda,,., = 1.7343m/s* respectively.
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Fig. 28. Oscillations of the system of Fig. 27 used for thentifieation of
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Fig. 29. Residual vibrations induced in the system of Fig. 87 the
application of a second order trajectogy(t).
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Obviously the behavior of the system at the end of motion

(highlighted in the plots with the white background) is very

similar to that of the uncontrolled system of Fig. 28.

When the filter F;(z) is added and the exponential jerk

trajectory is applied to the resonant system, the residual

vibration is considerably reduced, see Fig. 30(a). However . : :

it is not completely cancelled. Note that the residual ibra tfs]

seems not due to additional unmodeled (linear) dynamics of ©

the plant since its period is exactly);. Instead, the causerig 30. comparison between residual vibrations inducethinsystem of

must be probably sought in nonlinear phenomena (i.e. thig. 27 by the application of an exponential jerk trajectay, a second order

static and Coulomb friction on the motor slider) and externgaectory filtered by a ZVD input shaper (b) and a second rotdgectory
lltered by the system inverse dynamics (c).

disturbances (such as the cogging which is present in the

linear motor) affecting the system. These effects are figba

not completely compensated by the motor controller and thigose obtained with the direct application @f(¢) only for a
actuator does not behave like an ideal position source. positive displacement of the motor, while it remains pieadty

In order to evaluate the benefits of the proposed method jAchanged if the motion occurs along the negative diregtion
real applications, its behavior has been compared withethagote that the vibrations reduction shown in Fig. 30 with
of the alternative approaches mentioned in Sec. IV, whigBspect to Fig. 29 is marginally caused by the increase of the
should lead to a complete cancellation of residual vibreio time-duration of the trajectory because of the additiorrk.

In particular, in Fig. 30(b) the response of the experimentas a matter of fact, both for the exponential jerk trajectang
setup to the trajectory,(?) filtered by a ZVD input shaper is for the trajectory filtered by the input shaper the duratibthe
shown, and in Fig. 30(c) the result with the inverse dynamiggotion isTior = T +To+1T; = 0.3410s. Therefore, in order
filter is reported. The actual capabilities of the exporaiéirk to perform a more precise comparison, a second-order trajec
trajectory and of the input shaper in vibrations suppresai@ tory ¢, (¢) with the same total duration (that & = 0.1137s

comparable, while the filter based on the dynamics inversign — 27, and7,,, = 71 + T» = 0.3410s) has been applied
shows a lower robustness with respect to the above mentioned

non-idealities: the level of vibrations decreases witlpeesto  ®Several tests have been performed but the result was allveysame

fe(t) N
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Fig. 31. Residual vibrations induced in the system of Fig. 87 the
application of a second order trajectagy(¢) with 75 = 0.1137s.
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to the mechanical system. The result, illustrated in Fig,. | ; ! ;
confirms that the reduction of the residual vibration oledin Ll ' tSSI

X . . o s ) . (c) (d
with a simple time-scaling is rather limited if compared twit

the proposed approach, the overall duration of the motioFig. 32. Residual vibrations induced in the system of Figahyexponential
jerk trajectory withT'; = 0.57’; (a) andT'; = 1.57’; (b), and by a second

in l. )
be. g equa . . order trajectory filtered by a ZVD input shaper wiiyy = 0.57%; (c) and
Finally, the robustness of the filtef’; with respect to , _ 57 ().

errors in the parametef; has been experimentally tested.

In Fig. 32(a) and Fig. 32(b) the responses of the system to

the exponential jerk trajectory computed with the paramete

T; equal t00.57; and 1.57"; are reported, and confirm that VI. CONCLUSIONS

an underestimation of’; makes the filterF; less effective

while an overestimation df; lead to small residual vibrations.  The use of exponential jerk trajectories, which can be effi-

Conversely, with ZVD input shapers only the nominal valueaenﬂy generated by filtering standard trapezoidal trajees,

of the parameters produce good performances. In fact, baifyys to considerably reduce the vibrations level in motio

u.nder.estlmanon _and overestimationiof cause large residual systems with elastic transmission. Ideally, the propodtetdi

vibrations, see Fig. 32(c) and (d). Note that in the testmeo o racterized by the parametersnd7’; which can be easily

in Fig. 32(b) the residual vibration is even smaller than thg.qyced from the response of the resonant system, is able to

vibration obtained with the nominal value of paraméffgrand  completely cancel the residual vibration. Experimentatse

shown in Fig. 30(a). This is probably due to the fact that the,ye demonstrated that the proposed approach has perfor-

higher duration of the trajectory, ., = T1 +T>+1.577 = mances similar to well-known input shaping techniques and

0.3808s, with respect to the nominal trajectory, for whichyygiem_inversion-based filters, but compared to theseadsth

Tior = 0.3410s, mitigates the above mentioned non"deeh'yguarantees a superior robustness with respect to emors i

phenomena, like friction and cogging, and allows the motge harameters estimation. Moreover, this technique ®ffer

to better track the given profilg.. (¢). considerable advantages in terms of smoothness of the motio
profiles: if the input trajectory i€? (e.g.p = 1 for trapezoidal
velocity trajectories) the filtered trajectory will k&' and
the peak values of the firgt + 1 derivatives of the original
trajectory will not be exceeded by the new trajectory. Irsthi
way, it is possible to design exponential jerk trajectodem-
pliant with kinematic constraints on velocity and accdiiera
and with vibrations cancelling capabilities.

APPENDIXA
ANALYTIC EXPRESSION OF A SEVENSEGMENT
TRAJECTORY WITH EXPONENTIAL JERK

The expression of a point-to-point third order trajectory
compliant with constraints on the maximum velocity,, ..
and acceleratiom,, .., and with jerk impulses characterized



by a duration?’; and a decay rate is

0<t<Ty

q2(t, @), Ty <t<Ty

gs(t, @), Ty <t<Ty+Ty

qa(t, @), To+T;<t<Ty
(
(

q1 (ta Oé),

R2.e(t) =
h_q3 Ttot_t7_a)) Tl §t<T1+TJ

h—q(Tiot —t,—a), Th +T; <t <Ty +T>
h—q(Tior —t,—a), Th + T <t < Thoy

[10]

[11]

[12]

[13]

[14]

whereh is the total displacement from initial point (supposed
to be zero) to the final point,,; = T} + T» + T denotes the 19

total duration of the trajectory (which starts#gt= 0), and

[16]

q1 (t; 04) = Amax

QQ(t; O‘) = Amaz |:—

2-2e" +at(2+at)
2a2(1 —exTy)
24+ at(2+ at)

2@2(1 _eaTJ)
7606TJ(2 +a2+alt—Ty))(t - T]))]
2@2(1 _ eaTJ)

24012 L o Ty (2(1 +at) —aTy)

2a2(1 —exTr)

Q3(t, 04) = Amax [ -

q4(t; 04) = Vimax

e?Tr(24+2a(t —Ty) + a2t —Ty)?)

2a2(1 —exTr) ]

2+2at—aTy — 17 (24+a(2t—2T;—1Ty))
2a(1 —exTr)

The time intervalsl; and7, must be computed according to
(2) with the additional conditions

which guarantee that all the seven segments composing the

TW>To+T;, Ty>Ty

trajectory are present.

(1]

(2]
(3]

(4

(5]

6]

(7]

(8]
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