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Optimal Trajectories for Vibration Reduction Based
on Exponential Filters

Luigi Biagiotti, Claudio Melchiorri, Lorenzo Moriello

Abstract—In this paper, a new type of trajectories, based
on an exponential jerk, is presented along with filters for
their online generation. The goal is to generalize constantjerk
trajectories, widely used in industrial applications, in order
to reduce vibrations of motion systems. As a matter of fact,
constant jerk trajectories do not assure a complete vibrations
suppression when the damping of the resonant modes is not
negligible. The values of the parameters (decay rate and duration)
of the jerk impulses that allow residual vibration cancellation
are derived in an analytical way as a function of the dynamic
characteristics of the plant. Comparisons with the well-known
input shaping techniques and with system-inversion-basedfilters
show the advantages of the proposed method in terms of
robustness with respect to modelling errors, smoothness ofthe
resulting trajectory, time-duration of the motion under velocity
and acceleration constraints.

Index Terms—Trajectory planning, residual vibration, dy-
namic filters, input shaping, multi-segment trajectory, exponen-
tial jerk.

I. I NTRODUCTION

In many industrial applications, the reduction of machine
vibrations may be a relevant issue, as lighter structures and
faster motions are always required. For this purpose, a number
of different approaches, based on feedback and feedforward
techniques, can be applied, [1]. However, the most suitable
method for machines, which are usually based on standard
control architectures, consists of a proper design (or filtering)
of the reference input, which does not require changes in
the control scheme or additional sensors. A well-known
technique for minimizing the residual vibration in point-to-
point motions is represented by input shaping [2], [3], [4],
based on a train of impulses of proper amplitude and properly
delayed in time which are convoluted with the reference
signal. The most common input shapers are the so-called Zero
Vibration (ZV) input shaper, which assures in case of perfect
knowledge of the parameters of the oscillatory system that
no residual vibrations occur and the Zero Vibrations and zero
Derivative (ZVD) input shaper, which combines complete
vibration suppression with higher robustness with respectto
modelling errors. Input shapers have been successfully used
in a number of practical applications, such as reduction of
crane oscillations, [5], control of industrial machines like XY
stages, [6], vibration suppression in flexible robotic arms, [7].
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Alternative approaches for vibrations reduction by means of
reference signal filtering are based on lowpass and notch
filters, expressed either as finite or infinite impulse response
filters, but it is worth noticing that they do not guarantee
complete vibration cancellation [1]. A technique that assures
residual vibrations suppression exploiting the dynamic
inversion of the flexible plant has been proposed in [8].
More recently, methods for vibration reduction directly based
on a proper definition of the reference signal have been
presented, see [9], [10], [11]. These techniques rely on the
limitation of jerk impulses, whose duration must be carefully
chosen on the basis of the dynamics characteristics of the
resonant system. Constant jerk trajectories are the simplest
example of this approach, but they assure complete vibration
cancellation only in case of totally undumped plants. An
improvement has been presented in [11], where asymmetric
jerk profiles are used to take into account the damping
coefficient of the flexible system. This approach, which
is generalized and improved in the present paper, will be
discussed in Sec. II.

The paper is organized as follows. After a general overview
on limited jerk trajectories, filters for their generation and
vibration reduction are presented in Sec. II. The novel filter
that provides exponential jerk motion profiles is illustrated in
Sec. III, where the values of the parameters that guarantee the
residual vibration suppression are derived analytically.Then,
in Sec. IV the features of the proposed approach are compared
with those of alternative methods for vibration cancellation.
The results of experimental tests, conducted to validate this
novel method, are reported in Sec. V. Concluding remarks are
provided in Sect VI.

II. M OTIVATIONS AND RELATED WORKS

In order to evaluate the features and the effects of the
proposed trajectory generator in vibration suppression, the
motion system shown in Fig. 1 has been considered because
of its significance in the industrial field, where a number of
applications can be modeled in this way: a properly controlled
electric motor is used to actuate an inertial load, whose mo-
ment of inertia isJl, by means an elastic transmission lightly
damped, characterized by an elastic constantkt and a damping
coefficientbt [12], [13], [14]. By assuming that, because of the
control, the actuator behaves like an ideal position source, i.e.
qm(t) ≃ qref (t), only the mathematical model of the system
describing the elastic linkage, which causes vibrations, and the
load has been taken into account. It is a SISO (Single Input
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Fig. 1. Lumped constant model of a motion system with elasticlinkage (a)
and related block-scheme representation (b).

Single Output) LTI (Linear Time Invariant) system that can be
modelled with the transfer function

Gml(s) =
Ql(s)

Qm(s)
=

2δωns+ ω2
n

s2 + 2δωns+ ω2
n

(1)

with

ωn =

√

kt
Jl
, δ =

bt

2
√
ktJl

whereQm(s) = L{qm(t)} and Ql(s) = L{ql(t)} are the
Laplace transforms of the motor and load position, respec-
tively. Note that the inertiaJm of the motor has no influence
on this model. From (1), it follows that the dynamic relation
between the motor position, supposed to be equal to the
reference trajectoryqref (t), and the tracking errorε(t) is

E(s)

Qref (s)
=

−s2

s2 + 2δωns+ ω2
n

or equivalently

E(s)

Q̈ref (s)
=

−1

s2 + 2δωns+ ω2
n

where E(s) = L{ε(t)}, Qref (s) = L{qref (t)} and
Q̈ref (s) = L{q̈ref (t)}. In order to limit residual vibrations,
it is therefore necessary that the acceleration profileq̈ref (t)
of the reference trajectory has small spectral components
about the resonant frequency of the second order system
characterized by(δ, ωn). In [10] these considerations leaded
to a technique for the optimal selection of the parameters of
a standard third order trajectory, generated by means of three
linear filters

Mi(s) =
1− e−sTi

sTi

,

as shown in Fig. 2. In particular, parameters

r(t) q3(t)q1(t) q2(t)1− e−sT1

sT1

1− e−sT2

sT2

1− e−sT3

sT3

Fig. 2. Structure of a standard third order trajectory generator.
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Fig. 3. Residual vibration due to a third order trajectoryq3(t) with h =
30 rad,vmax = 250 rad/s,amax = 5000 rad/s2 , applied to a second order
system withωn = 260.43 rad/s andδ = 0.0083 (a) andδ = 0.083 (b).

T1 =
|h|
vmax

, T2 =
vmax

amax

(2)

guarantee that the trajectory fromq0 to q1 (h = q1 − q0)
complies with the velocity limitvmax and the acceleration
limit amax, and the choice

T3 = k
2π

ωn

(3)

wherek is a positive integer number (k = 1 is the standard
assumption which corresponds to the minimum duration of the
periodT3) assures that the spectrum of the trajectory is null for
ω = ωn and is therefore able to cancel the residual vibration
when the trajectory is applied to an undumped resonant system
(δ ≈ 0). Unfortunately, if the damping coefficient is not zero,
the effectiveness of the filter output (and therefore of standard
constant jerk trajectories) in vibration suppression consider-
ably decreases. In Fig. 3 the tracking errors of a resonant
system1 with δ = 0.0083 andδ = 0.083 when a standard third
order trajectory is used are compared. Note that ifδ grows,
when the motion stops (that is fort ≥ Ttot = T1 + T2 + T3),
the peak value of the oscillations of the mechanical system
accordingly increases. Moreover, also very small values of
δ cause vibrations. The effects of damping are analyzed in
Fig. 4, whereV%, the percent residual vibration2, is shown
as a function ofδ. The increasing of vibration’s amplitude is
consequence of the fact that in the design of the filterM3(s)
the damping coefficient is not considered. The only way to
take into accountδ is in the selection of the time constant
T3, and therefore in the duration of the constant jerk segment,
which can be computed as

T3 = k
2π

ωn

√
1− δ2

where, similarly to (3),k is a positive integer number (usually
k = 1). Unfortunately this choice mitigates but does not
solve the problem, as shown in Fig. 4. In order to suppress

1The numerical values used in [10] are considered.
2According to [15], percent residual vibration is defined as the ratio between

the residual vibration to a step command with and without shaping filter.
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Fig. 5. Asymmetric jerk trajectoryq2,a for h = 30 rad,vmax = 250 rad/s,
amax = 5000 rad/s2 , andδ = 0.083 (a) andδ = 0.45 (b).

vibrations in systems whose damping is not negligible, the
use of a nonconstant limited jerk profile has been proposed
in [11]. In particular, a dynamic filter to be applied to second
order trajectories is devised. The filter produces asymmetric
jerk segments, characterized by a linear decrease, as shownin
Fig. 5. The slope of these segments is computed by solving
an optimization problem aiming at minimizing the residual
vibration. This approach seems very promising as shown in
Fig. 6, where the same conditions of Fig. 3 are considered: in
both cases the residual vibrations are completely suppressed.

However, it is worth noticing that some weak points still
exist in this technique:

• A closed-form solution for the computation of the filter
parameters is not available and the numerical approxima-
tion provided in the paper is valid only forδ sufficiently
close to 0. For instance, ifδ = 0.45 the trajectory does
not cancel the residual vibration, as shown in Fig. 7.

• For high values ofδ, it may happen that the sign of jerk
changes within the same segment. As a consequence the
acceleration profiles exhibits undesirable overshoots, see
Fig. 5(b).

In order to avoid the above mentioned problems, a shaping
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Fig. 6. Residual vibration due to a third order trajectory with asymmetric
jerk q2,a(t) under the same conditions of Fig. 3.
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Fig. 7. Residual vibration due to a third order trajectory with asymmetric
jerk q2,a(t) when the valueδ = 0.45 is considered.

technique based on exponential functions is proposed in the
next section.

tTJ

α
eαTJ−1

fJ(t)

|α|↑

Fig. 8. Impulse response of filterFJ(s) for negative values of parameterα.

III. T RAJECTORIES WITH EXPONENTIAL JERK: DEFINITION

AND PROPERTIES

Given a second order trajectoryq2(t), obtained for instance
with the cascade of two filtersM1(s) ·M2(s), a multi-segment
trajectory with jerk segments defined by exponential functions
can be obtained by adding in the chain the filter

FJ (s) =
α

eαTJ − 1

1− eαTJ e−TJ s

s− α
(4)

whereα andTj are proper parameters that determine the decay
rate and the time duration of impulses composing the jerk
profile. As a matter of fact, the impulse response ofFJ (s),
shown in Fig. 8, is

fJ(t) =
α

eαTJ − 1
eαt m(t), with m(t)=

{

1, 0 ≤ t ≤ TJ

0, otherwise
.
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Fig. 9. Second order trajectoryq2(t) with h = 30 rad,vmax = 250 rad/s,
amax = 5000 rad/s2 , and corresponding exponential jerk trajectoryq2,e for
ωn = 260.43 rad/s andδ = 0.083 (b).

Therefore when applied to the trajectoryq2(t) characterized
by a piece-wise constant acceleration, the filter transformthe
jerk signal composed by impulsive function±amaxδ(t − ti)
in a sequence of exponential segments, see Fig. 9. Note
that the maximum value of the jerk can be computed as
jmax = amax

α
eαTJ−1

.
The filter FJ(s), which does not modify the limit values of

velocity and acceleration of the original trajectoryq2(t), can
be profitably applied to suppress residual vibrations in those
resonant systems that are characterized by significant damping
coefficients in lieu of standard third order trajectories with
limited, but constant, jerk.

Theorem 1. The filterFJ (s) in (4) guarantees the complete
residual vibration suppression for motion systems with elastic
transmission described by (1) fed by step inputs if

α = −δ ωn (5)

TJ = k
2π

ωn

√
1− δ2

k = 1, 2, . . . (6)

Proof. When a step input filtered byFJ (s) is applied to the
system (1), the tracking error between the load position and
the motor position can be computed as

E(s) =
−s2

s2 + 2δωns+ ω2
n

· FJ (s) ·
1

s
. (7)

By inverse Laplace transformingE(s) and assumingt ≥ TJ ,
the analytic expression of residual vibrations descends:

ε(t)=A
[

αe−δωnt
(

cos(Ωt)− cos(Ω(t− TJ))e
(δωn+α)TJ

)

−Be−δωnt
(

sin(Ωt)− sin(Ω(t− TJ))e
(δωn+α)TJ

)]

with A =
α

(eαTJ − 1)(α2 + 2δωnα+ ω2
n)

, B =
αωnδ + ω2

n

ωn

√
1− δ2

andΩ = ωn

√
1− δ2. Therefore, in order to assure thatε(t) =

0, ∀ t ≥ TJ it is sufficient that

δωn + α = 0 ⇔ α = −δωn

ΩTJ = 2π k ⇔ TJ = k
2π

Ω
= k

2π

ωn

√
1− δ2

, k = 1, 2, . . .

Note thatFJ (s) is a generalization of a standard filters
with rectangular impulse response, which produce piecewise
constant jerk profiles. As a matter of fact, whenδ = 0 and
consequentlyα = 0, the straightforward application of the
l’Hôpital’s rule leads to

lim
α→0

α

eαTJ − 1
=

1

TJ

and therefore

lim
δ→0

FJ (s)= lim
α→0

α

eαTJ − 1

1− eαTJ e−TJ s

s− α
=

1

TJ

1− e−sTJ

s
.

Differently from asymmetric jerk trajectories, the parameters
of FJ (s) that assure the complete vibrations cancellations are
easily calculable in the whole range ofδ ∈ [0, 1[, and the
problems tied to changes in the jerk sign are never present.

Theorem 2. Third order trajectories with the jerk profile com-
posed by exponential segments satisfying (5) and (6) guarantee
that no residual vibrations are present in the resonant system
(1).

Proof. Third order trajectories with exponential jerk, whose
analytical expression is reported in Appendix A, can be
obtained by filtering a step signal of amplitudeh (whereh
is the desired displacement) with the cascade of linear filters
M1(s)·M2(s)·FJ (s). Therefore, when the trajectory is applied
to the system (1), the tracking error between the load position
and the motor position is given by

Eq2e(s) =
−s2

s2 + 2δωns+ ω2
n

·
(

M1(s) ·M2(s) · FJ (s) ·
h

s

)

= h ·M1(s) ·M2(s)·
( −s2

s2 + 2δωns+ ω2
n

· FJ (s) ·
1

s

)

= h ·M1(s) ·M2(s) · E(s) (8)

whereEq2e (s) is the Laplace transform of the tracking error to
an exponential jerk trajectory, andE(s) is the transform of the
error ε(t) to a step input, considered in (7). If the conditions
(5) and (6) are met,ε(t) 6= 0 only for t ≤ TJ and, because the
filters M1(s) andM2(s) are characterized by a finite length
impulse response of durationT1 and T2 respectively, from
(8) it follows that εq2e(t) 6= 0 for t ≤ T1 + T2 + TJ and
εq3(t) = 0 otherwise. This means that after the end of the
reference trajectory (whose duration isTtot = T1 + T2 + TJ )
residual vibrations are completely cancelled.

In Fig. 10 the tracking errors obtained with exponential jerk
trajectories are shown by considering resonant systems with
quite different damping coefficients, i.e.δ = 0.083 (a) and
δ = 0.45 (b). In both cases residual vibrations are completely
suppressed.
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Fig. 10. Residual vibrations due to a third order trajectorywith exponential
jerk q2,e(t) under the same conditions of Fig. 3, but withδ = 0.083 (a) and
δ = 0.45 (b).
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Fig. 11. Residual vibrations caused by the applications of astep input to the
system (1).

A. Parameter identification and sensitivity to errors

The parametersα and TJ which characterize the filter
FJ (s) and therefore the trajectory with exponential jerk can be
easily determined once the damping coefficientδ and natural
frequencyωn of the system are known. Alternatively, with
standard procedures it is possible to directly deduce their
values from the response of the plant to input signals that cause
vibrations. For instance, the residual vibrations consequent to
a step input are given by

εstep(t) = − 1√
1− δ2

e−δωnt cos
(

ωn

√

1− δ2 t+ ϕ0

)

where ϕ0 = arctan
(

δ√
1−δ2

)

. Therefore, the ideal values
of α and TJ that cancel residual vibrations are respectively
the exponential decay constant and the time period of the
oscillation. If a measurement of the oscillation is available, it is
sufficient to detect two subsequent peak values, as highlighted
in Fig. 11, and compute the parameters of the filter as

TJ = t2 − t1

α =
1

TJ

ln

(

p2
p1

)

where the meaning oft1, t2, p1, p2 is explained in the figure.
Note that the period of the oscillation and its decay rate depend
on the system, and they do not change also if different type
of reference inputs are considered. For instance, second order
trajectories, with discontinuous acceleration, can be used in
order to provide the actuator with a feasible trajectory and
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Fig. 12. Comparison between residual vibrations caused by the application
of a step input and of a second order trajectoryq2(t) to system (1).

to avoid an excessive strain on the plant. In Fig. 12, the
residual vibration caused by a second order trajectoryq2(t)
and a step signal applied whenq2(t) stops are compared: it is
clear that the only difference is given by the amplitude of the
oscillations, which does not influence the procedure for the
identification.
Since the identification of the optimal values of the filter

parameters does not require an explicit knowledge of the
damping coefficient and of the natural frequency of the plant,
the robustness ofFJ (s) is evaluated by considering errors
in σ and TJ with respect to their nominal values, while the
sensitivity with respect to changes inδ andωn will be analyzed
in Sec. IV in order to compare different types of solutions
to the problem of the vibrations suppression. In Fig. 13 the
percent residual vibrationV% due to errors in the estimation
of the parametersα andTJ are reported for different values
of the damping coefficient and natural frequency of the plant.
In particular the ranges[α̂/2, 2α̂] and [T̂J/2, 2T̂J ] about the
nominal values(δ̂, T̂J) are considered. From the figure, it is
possible to conclude that

• the nominal value of the natural frequency of the plant
does not influence the robustness of the filterFJ (s) while
the damping coefficient does;

• the choice ofTJ is definitely more critical than the choice
of α;

• an underestimation ofTJ leads to large oscillations;
conversely, a value ofTJ higher than the nominal one
produce limited vibrations especially for high damping
coefficients.

B. Sensitivity to unmodeled dynamics of the plant

According to theorem 1 the filterFJ (s) in (4) and con-
sequently the exponential-jerk trajectory obtained when the
filter is applied to a second order trajectoryq2(t), like in
Fig. 9, guarantee a complete cancellation of the vibrations
if the plant can be modelled as a second order system such
as (1). However, as already noted in Sec. II typical industrial
plants include additional dynamics that may modify the effects
of the proposed filter. If the model of the plant includes an
additional stable dynamics∆G(s), e.g.

G(s) = Gml(s)∆G(s), (9)



6

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

0

20

40

60

80

100

α

V
%

TJ

(α̂, T̂J , 0) −0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

1
1.5

2
2.5

3
3.5

4
4.5

5

0

20

40

60

80

100

α
V
%

TJ

(α̂, T̂J , 0)

(a-1) (b-1)

−45

−40

−35

−30

−25

−20

−15

−10

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

0

20

40

60

80

100

α

V
%

TJ

(α̂, T̂J , 0) −0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

1
1.5

2
2.5

3
3.5

4
4.5

5

0

20

40

60

80

100

α

V
%

TJ

(α̂, T̂J , 0)

(a-2) (b-2)

−250

−200

−150

−100

−50

0.01
0.02

0.03
0.04

0.05
0.06

0

20

40

60

80

100

α

V
%

TJ

(α̂, T̂J , 0) −2.5

−2

−1.5

−1

−0.5

1
2

3
4

5
6

0

20

40

60

80

100

α

V
%

TJ

(α̂, T̂J , 0)

(a-3) (b-3)

Fig. 13. Sensitivity ofFJ(s) to changes inσ andTJ for different values of
δ andωn of the plant:δ = 0.0083 (1), δ = 0.083 (2) andδ = 0.45 (3);
ωn = 260.53 rad/s (a) andωn = 2.6053 rad/s (b).

it is possible to show that the properties ofFJ (s) remain
unaltered. As a matter of fact, because of the linearity the
response of the system (9) to a filtered step input is

Ql(s) = G(s)FJ (s)
1

s
= ∆G(s)

(

Gml(s)FJ (s)
1

s

)

.

Therefore, the ideal response obtained with the nominal
model Gml(s) which, according to Theorem 1, does not
have residual vibration, is simply filtered by∆G(s). Note
that the dynamics∆G(s) will introduce additional modes in
the response but cannot excite again the resonant mode of
Gml(s) damped by the filterFJ(s).

In particular, if∆G(s) represents a dynamics faster than the
nominal modelGml(s) and completely damped, for instance
a real pole with time-constantτ = 1

10
1

δωn

, the response of
the system to a step input without and with the filterFJ (s)
is the one shown in Fig. 14: the presence of the additional
pole involves an increased duration of the response that in the
nominal case reaches the steady-state condition inTJ seconds,
but the residual vibration is completely suppressed.

Even if the convergency rate of the additional pole is
comparable with the rate of the undamped (complex) poles
that characterizeGml(s) the result is similar, that is the use
of FJ (s) cancels the oscillations that otherwise would affect
the response. See Fig. 15 where the unmodeled dynamics
∆G(s) = 1

τs+1 with τ = 1
δωn

has been considered.
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Fig. 14. Response of a resonant system with an additional real pole,G(s) =
Gml(s)

1
τ s+1

with ωn = 260.43 rad/s,δ = 0.083 andτ = 0.0046s, forced
by a step input of amplitudeh = 30 rad (a) and a step input filtered by the
filter FJ (s) (b).
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Fig. 15. Response of a resonant system with an additional real pole,G(s) =
Gml(s)

1
τ s+1

with ωn = 260.43 rad/s,δ = 0.083 andτ = 0.046s, forced
by a step input of amplitudeh = 30 rad (a) and a step input filtered by the
filter FJ (s) (b).

In case of systems with multiple vibratory modes, a single
filter FJ (s) is only able to cancel the oscillation due to a
specific mode. As a consequence, the use of a filterFJ(s)
does not guarantee the complete residual vibration suppression
but it is necessary to consider the cascade of two or more
filters, each one related to a specific mode. In Fig. 16 the
step response of a plant characterized by two modes with the
same damping coefficientδ but different natural frequencies
ωn,1 andωn,2, with ωn,2 = 1.5ωn,1 without and with filtering
action is shown. A single filterFJ,1(s) considerably reduces
residual vibration but does not cancel all the oscillations.
Therefore, a second filterFJ,2(s) is necessary to completely
suppress undesired vibrations with the consequent increase of
the delay caused by the filters. If the two filters are not applied
to a step signal but to a second order trajectoryq2(t), like in
Fig. 17, the capability of suppressing residual vibrationscan
be merged with the compliance to kinematic constraints but
in this case the final trajectory is not characterized by a jerk
profile composed by tracts of exponential function, see Fig.18.

C. Digital implementation of the trajectory filter

Since the generation of exponential jerk trajectories is based
on the dynamic filters fed by step functions, i.e.

Q2e(s) = M1(s) ·M2(s) · FJ (s) ·
h

s

it can be easily performed online by modifying the input
signal. However, the practical use of the proposed filter
requires its transformation in the discrete time domain (Ts
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Fig. 16. Response of a resonant system with 2 vibrational modes characterized
by ωn,1 = 260.43 rad/s,ωn,2 = 390.6450 rad/s andδ = 0.083 forced by
a step input of amplitudeh = 30 rad (a), a step input filtered by the filter
FJ(s) designed to take into accountω1 (b) and a step input filtered by two
filters FJ(s) which consider bothω1 andω2 (c).

denotes the sampling period) because trajectory planning is
generally performed by digital controllers. This conversion
can be obtained with two main techniques, being the impulse
response ofFJ (s) of finite length:

1) it is possible to obtain the coefficients of a FIR filter by
sampling the impulse responsefJ(t) with periodTs;

2) it is possible to deduce the IIR transfer function cor-
responding toFJ(s) by means of usual discretization
techniques.

In order to obtain a closed form expression ofFJ(z) the
second approach has been preferred. By Z-transforming the
filter FJ (s) given in (4) and imposing a unitary static gain,
the following expression descends

FJ(z) =
1− eαTs

1− eαTs eαNJ

1− eαTs eαNJ z−NJ

1− eαTs z−1
(10)

whereNJ = round(TJ/Ts). In Fig. 19 the complete structure
of the discrete-time filter for online generating exponential
jerk trajectories is shown. Note that in order to guarantee that
the sequenceq2e(k) of values of the discrete time-trajectory
coincides with the continuous-time profileq2e(t) at sampling
times, its expression should be obtained by Z-transforming
the overall chain of continuous filters with a step input, i.e.
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Fig. 17. Response of a resonant system with 2 vibrational modes characterized
by ωn,1 = 260.43 rad/s,ωn,2 = 390.6450 rad/s andδ = 0.083 forced
by a second order trajectoryq2(t) with h = 30 rad, vmax = 250 rad/s,
amax = 5000 rad/s2 (a), an exponential jerk trajectoryq2,e(t) taking into
accountω1 (b) and the trajectoryq2,2e(t) of Fig. 18 which considers both
ω1 andω2 (c).

Q2e(z) = Z {Q2e(s)}. Therefore, the following expression
can be deduced

Q2e(z) =
h

1− z−1
·M1(z) ·M2(z) · FJ(z) · F ′(z) (11)

whereF ′(z) is a FIR filter with unitary static gain, whose
expression is

F ′(z) = f0 z
−1 + f1 z

−2 + f2 z
−3 (12)

being

f0 =
−2 + 2eρ − 2ρ− ρ2

2(eρ − 1)ρ2

f1 =
4− 4eρ + 2ρ+ 2ρeρ − ρ2 + ρ2eρ

2(eρ − 1)ρ2

f2 =
−2 + 2eρ − 2ρeρ + ρ2eρ

2(eρ − 1)ρ2

and ρ = αTs. By comparing (11) with the discrete-time
generator of Fig. 19, it comes out that the difference between
the two output sequences is only caused by the filterF ′(z),
whose main effect consists in a time delay of two sampling
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r(k) q2e(k)q1(k) q2(k)1

N1

1− z−N1

1− z−1

1

N2

1− z−N2

1− z−1
FJ (z)

Fig. 19. Structure of the discrete-time filter for exponential jerk generation.

intervals3. By neglecting this filter, a time anticipation is
therefore introduced in the generator, as shown in Fig. 20,
where the step response of the continuous-time filter and the
sequences obtained with the exact discretization and with the
approximated generator of Fig. 19 are reported. In order to
emphasize the approximation error the sampling period has
been intentionally assumed very large (Ts = 0.1 s). In this way
it is possible to appreciate that, besides the time anticipation,

3Since the sampling frequencyωs is generally chosen by assuming that
ωs ≥ 10ωn, the parameterρ = −δωn

2π
ωs

results quite small in magnitude,
i.e. −0.6283 ≤ ρ ≤ 0. As a consequence, the range of variation of the
coefficients definingF ′(z) is rather limited (0.1412 ≤ f0 ≤ 0.1667,
0.6666 ≤ f1 ≤ 0.6656, 0.1667 ≤ f2 ≤ 0.1932). Moreover,f1 is con-
siderably higher than other coefficients and therefore a rough approximations
of F ′(z) can be obtained by neglectingf0 and f2, and assuming that that
F ′(z) ≈ z−2.
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Fig. 20. Comparison between the trajectories produced by exponential jerk
trajectory filters defined in the continuous- and discrete-time domain with
T1 = 1 s, T2 = 0.6 s (Ni = ceil(Ti/Ts)), TJ = 0.2 s andα = −3.

q1(k) = q1(k) + a1
(

r(k)− r(k −N1)
)

q2(k) = q2(k) + a2
(

q1(k)− q1(k −N2)
)

q2e(k) = a3 q2e(k) + a4
(

q2(k)− a5 q2(k −NJ)
)

TABLE I
DIFFERENCE EQUATIONS CORRESPONDING TO THE TRAJECTORY

GENERATOR OFFIG. 19 (THE VALUES OF THE CONSTANT PARAMETERSai
ARE a1 = 1

N1

, a2 = 1
N2

, a3 = eαTs , a4 = 1−eαTs

1−eα Ts eα NJ
,

a5 = eαTs eαNJ ).
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Fig. 21. Complex motion profileq2e(k) with vmax = 250 rad/s,amax =
5000 rad/s2 , ωn = 260.43 rad/s andδ = 0.083, obtained by applying to the
system in Fig. 19 a reference signalr(k) composed by several step functions
starting at generic time instants.

the discrete-time filter provides an excellent approximation of
the desired trajectory. Obviously, when the sampling period
decreases, the difference betweenq2e(t) and the approximated
q2e(k) tends to vanish.
A last remark concerns the computation complexity of the
proposed trajectory generator. As illustrated in Tab. I, where
the difference equations of the trajectory generator of Fig. 19
are reported, at each sampling time the computation of the
output of the cascade of filters requires a total of 6 additions
and 5 multiplications. If the filterF ′(z) is considered, 2 more
additions and 3 multiplications must be performed. Moreover
3 memory areas are necessary, in order to store the lastN1

values ofq1(k), the lastN2 values ofq2(k) and the lastNJ

values ofq2e(k). Note that the trajectory generation based on
the cascade of dynamic filters is considerably more efficient
than the direct calculation of the closed form equations of
the trajectory reported in Appendix A, which, besides a larger
number of additions and multiplications, requires 2 divisions
and the computation of an exponential function depending on
t.
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to a resonant systemGml(s) of a second order trajectoryq2(k) (ε2(t))
and the corresponding exponential jerk trajectoryq2e(k) shown in Fig. 21
(ε2e(t)).

When a reference signalr(k) composed by several step
functions starting at generic time instants is applied to the
trajectory generator of Fig. 19, the profiles shown in Fig. 21
are obtained. If the time-instants in which a new trajectoryis
triggered comply with the conditions reported in [10] a com-
plex motion profileq2e(t) that meets velocity and acceleration
constraints and cancels residual vibrations is obtained. Note
that in this case the jerk profiles is no longer composed by
tracts defined by an exponential function because of overlaps
between adjacent jerk impulses. However, the capability of
suppressing vibrations remain unaltered, as shown in Fig. 22
where the residual vibrations obtained with a second order
trajectoryq2(k) and withq2e(k) are compared.

IV. COMPARATIVE ANALYSIS WITH ALTERNATIVE

TECHNIQUES FOR VIBRATION SUPPRESSION

As mentioned in the introduction, the main techniques for
complete residual vibration suppression based on a proper
filtering of the reference signal are input shaping and inversion
of the plant dynamics. A first important difference between
these techniques and the proposed filterFJ(s) is that they
do not increase the smoothness, i.e. the order of continuous
derivatives, of the filtered input. They are generally applied to
reference trajectories with bounded velocity and acceleration
and therefore at leastC1, that is with continuous first-order
derivative, and provide as output a trajectory of the same
class in case of input shapers or even of lower class if filters
based on system inversion are applied. In Fig. 23 the reference
signals obtained by filtering the second order trajectoryq2(t)
with a ZVD input shaper and with a system-inversion-based
filter are shown. Note that the trajectoryq2,zvd(t) remains
C1, i.e. with discontinuous acceleration, and is compliant with
the desired bounds imposed to the original trajectoryq2(t).
The trajectoryq2,inv(t) filtered by the inverse dynamics of
the plant becomesC0, because some discontinuities appears
in the velocity profile. Moreover the bounds on the trajectory
derivatives are not met anymore, see the acceleration profile
of q2,inv(t). This behavior of the system-inversion-based filter
can be rather troublesome, since as shown in Fig. 1 the
systemGml(s) that causes vibrations only models the load
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Fig. 23. Reference signals obtained by filtering the second order trajectory
q2(t) of Fig. 9(a) with a ZVD input shaper (a) and with the inverse dynamics
of the plant (b).

Gml(s)
ql(t)qm(t)Controlled motor

qref (t)

(vmax, amax)

Fig. 24. Complete model of a motion system with elastic linkage.

and the elastic transmission of a more complex system which
includes also the actuator, supposed to be able to perfectly
track the reference trajectoryqref (t). Therefore the simplified
scheme of a standard motion system with elastic linkage
results as in Fig. 24. Unfortunately, any kind of actuation
system is characterized by physical limitations on velocity and
acceleration and if these bounds are not met the trajectory
becomes unfeasible. Moreover, the requirement of perfect
tracking relates the smoothness of the reference trajectory,
supposedCp, with the relative degreer of the linear time-
invariant system describing the actuation system [16], i.e

p ≥ r − 1.

As a consequence, in case of an electric actuator, withr = 3,
the reference position for the motor4 must be at leastC2. This
implies that if an input shaping filter is used for vibrations
suppression, the second order trajectoryq2(t) is not sufficient
but aC2 function is required. With an inverse dynamics filter
a C3 trajectory must be used. Conversely, the proposed filter

4Note that the transfer function of a standard DC motor is

Ga(s)=
Qm(s)

V (s)
=

Ki

LaJms3 + (RaJm +BmLa)s2 + (KbKi +RaBm)s

whereKi is the torque constant,Kb the back-emf constant,Ra the armature
resistance,La the armature inductance,Jm the rotor inertia,Bm the viscous-
friction coefficient andV (s) denotes the Laplace transform of the input
voltage [17]. The feed-forward control that in nominal caseassures perfect
tracking is

Vff (s)=G−1
a (s)Qref (s)

=

(

LaJm

Ki

s3+
RaJm +BmLa

Ki

s2+
KbKi + RaBm

Ki

s

)

Qref (s)
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Fig. 25. Percent residual vibration as a function of the damping coefficient
δ about the nominal valuêδ = 0.081 (a) andδ̂ = 0.45 (b).

FJ (s), that increases the smoothness of the input trajectory,
needs a simpleC1 function, like the functionq2(t) which leads
to the exponential jerk trajectory of Fig. 9.
From a functional point of view, input shapers, system-
inversion-based filter and the proposed filterFJ (s) guarantee
the complete vibration suppression in nominal conditions.
However, since all these techniques rely on a precise modeling
of the plant, it is necessary to evaluate their robustness with
respect to errors in model parameters, i.e.δ and ωn in (1).
To this aim, the different approaches have been evaluated by
considering the percent residual vibration of system (1) as
a function of the errors in the estimation of its parameters.
Since the inverse-dynamics filter requires a continuous input
function, the comparative analysis has been conducted by
using the trajectoryq2(t) as test function in lieu of the standard
step signal. By means of extensive simulations, the curves
reported in Fig. 25 and Fig. 26 have been obtained. For the
sake of clarity, the variations of parametersδ and ωn with
respect to their nominal values are considered separately.In
Fig. 25 the percent residual vibration is shown as a function

which corresponds to

vff (t) =
LaJm

Ki

q
(3)
ref

(t) +
RaJm +BmLa

Ki

q
(2)
ref

(t)

+
KbKi +RaBm

Ki

q
(1)
ref

(t).

The control actionvff (t) is feasible, that isvff (t) < ∞, only if q(3)
ref

(t) is
limited and accordingly the reference trajectoryqref (t) ∈ C2.
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Fig. 26. Percent residual vibration as a function of the ratio ωn/ω̂n, where
ωn is the actual natural frequency ofGlm(s) and ω̂n is the nominal value
used to define the filter, forδ = 0.081 (a) andδ = 0.45 (b).

of δ. Since the nominal valuêδ influences the results, two
different values have been considered in order to show the
behavior of the different filters for small and large damping
coefficients (̂δ = 0.081 and δ̂ = 0.45 respectively). For the
natural frequency, the nominal valuêωn = 260.53 rad/s has
been assumed, but it is worth noticing that the percent residual
vibration does not depends on this particular value.
The relationship between actual value of natural frequencyand
percent residual vibration is shown in Fig. 26, where the ratio
ωn/ω̂n has been considered. Also in this case two different
values ofδ have been taken into account.
These curves highlight that for all the filters the value of
the natural frequency is significantly more critical than the
damping coefficient. The proposed filterFJ(s) is characterized
by an intermediate robustness betweenZV andZVD input
shapers, and results much more robust than system-inversion-
based filters. Moreover, for high values ofωn, FJ (s) offers the
best performances, see Fig. 26. The filterM3(s), that produces
constant jerk trajectories, provides similar results for small val-
ues ofδ (see Fig. 26(a)), but cannot reduce residual vibrations
when the damping coefficient is significantly different from
zero.
Finally, a fair comparison between these methods requires also
an estimation of the time-delay that the filters introduce and
of the consequent increase of the motion duration. With this
respect, it is well-known that an higher robustness of Input
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Shapers is obtained by increasing the number of impulses that
form the shapers and accordingly the delay introduced in the
motion generation.
System-inversion-based filters do not cause any delay in the
reference signal tracking. However, the need for smoother tra-
jectories implies higher durations of the motion with respect to
lower order trajectories, the bounds on velocity, acceleration,
and higher derivatives being equal. Input shapers, like ZV and
ZVD filters, introduce in the system time-delays similar to that
caused by theFJ (s) filter; in particular the additional delays
areTJ/2 for ZV and TJ for ZVD, but also in this case the
need for higher order input trajectories with respect to thefilter
FJ (s) may increase the total duration of the motion.

V. EXPERIMENTAL VALIDATION

In order to experimentally test the proposed method the
setup of Fig. 27 has been arranged. This simple system
is characterized by a linear motion but the dynamic model
described in Sec. II remains valid. It is composed by a linear
motor, LinMot PS01-37x120, whose slider is connected to an
inertial load by means an elastic transmission obtained with
a coil spring. The load is placed on a linear guide in order
to guarantee the axial alignment with the motor slider and to
reduce static friction. The control system is based on the servo
controller LinMot E2010-VF that performs the basic current
control, while the position control (based on a PID controller
and a feedforward action) has been implemented on a standard
PC with a Pentium IV 3 GHz processor and 1 GB of RAM,
equipped with a Sensoray 626 data acquisition board, used to
both communicate with the servo controller and acquire the
sensors signals. The position of the motor is measured by an
incremental encoder with a resolution of1µm integrated in the
stator, and the monitoring of vibrations is obtained via a load
cell connected between the slider and the elastic transmission.
As a matter of fact, the forcefk exerted by the spring is
proportional to the errorε between motor position and load
position, and, if the inherent damping of the transmission is
considered, like in Fig. 1, forcefk is simply a scaled, low-pass
filtered version ofε.
The real-time operating system RTAI-Linux on a Debian
SID distribution with Linux kernel 2.6.17.11 and RTAI 3.4
allows the position controller to run with a sampling period
Ts = 500µs. For the design of the control scheme and of tra-
jectory generator, the MatLab/Simulink/RealTime Workshop
environment has been used.
In Tab. II the main characteristics5 of the mechanical system

are reported. The value of the internal dampingbt is unknown,
but it can be easily deduced from the parametersα and

5The symbols refer to the model of Fig. 1(b).

Parameter Symbol Value Unit
Slider mass Jm 0.599 kg
Load mass Jl 0.623 kg
Spring stiffness kt 6490 N m

TABLE II
MOTION SYSTEM PARAMETERS.

Inertial load
elastic

transmission
linear motor

linear guide

(spring)

load cellmotor slider 

PC + I/O board

servo controller

current

control

motor

position

control

load cell

monitoring

qm ql

fk

Fig. 27. Experimental setup.

TJ of the filter FJ (s). The value of these parameters is
obtained as described in Sec. III-A but the oscillation is
induced by physically blocking the motor slider and applying
an initial deformation to the spring. In Fig. 28, the forcefk(t)
recorded during an experiment is shown together with the
force of the identified system characterized byδ̂ = 0.0246 and
ω̂n = 101.3724 rad/s, which correspond tôα = −2.4958 and
T̂J = 0.0620 s (indeed, several tests have been performed and
the mean value of the parameters has been assumed). Note that
the value ofωn found in the experiments is consistent with
the theoretical value

√

kt/Jl = 102.0653 rad/s. The main
difference between the responses of real and ideal system lies
in the manner in which the oscillation vanishes, see Fig. 28
for t ≥ 0.9 s: the model’s output goes to zero asymptotically
while the real system suddenly stops probably because of the
(unmodeled) static friction. Moreover, besides the vibratory
dynamicsGml(s) the model of the real system should include
the poles of the controlled actuator, but since the control
feedback has been designed with a very high bandwidth these
poles have been neglected. As a matter of fact, as already
noted in Sec. III-B unmodeled poles faster than the mechanical
dynamics that induces vibrations do not modify significantly
the results of the application of the filterFJ(s) and of the
exponential jerk trajectories.

In Fig. 29, the response of the system to second-order
trajectory q2(t) used as basic motion profiles is reported.
This trajectory, characterized by a total displacementh of 30
mm, has been obtained by means of the first two filters in
Fig. 19 with Ni = Ti/Ts, i = 1, 2, being T2 = 1.5 T̂J =
0.0930s andT1 = 2T2 = 0.1860 s. With these parameters,
the maximum velocity and the maximum acceleration are
vmax = 0.1613m/s andamax = 1.7343m/s2 respectively.



12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−20

−10

0

10

20

30

40

50

60

70

80

 

 

p
1 p

2

measeured f
k

estimated f
k

t [s]

f k
(t
)

[N
]

Fig. 28. Oscillations of the system of Fig. 27 used for the identification of
the parameters of filterFJ (s).
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Fig. 29. Residual vibrations induced in the system of Fig. 27by the
application of a second order trajectoryq2(t).

Obviously the behavior of the system at the end of motion
(highlighted in the plots with the white background) is very
similar to that of the uncontrolled system of Fig. 28.
When the filter FJ (z) is added and the exponential jerk
trajectory is applied to the resonant system, the residual
vibration is considerably reduced, see Fig. 30(a). However,
it is not completely cancelled. Note that the residual vibration
seems not due to additional unmodeled (linear) dynamics of
the plant since its period is exactlŷTJ . Instead, the cause
must be probably sought in nonlinear phenomena (i.e. the
static and Coulomb friction on the motor slider) and external
disturbances (such as the cogging which is present in the
linear motor) affecting the system. These effects are probably
not completely compensated by the motor controller and the
actuator does not behave like an ideal position source.
In order to evaluate the benefits of the proposed method in
real applications, its behavior has been compared with those
of the alternative approaches mentioned in Sec. IV, which
should lead to a complete cancellation of residual vibrations.
In particular, in Fig. 30(b) the response of the experimental
setup to the trajectoryq2(t) filtered by a ZVD input shaper is
shown, and in Fig. 30(c) the result with the inverse dynamics
filter is reported. The actual capabilities of the exponential jerk
trajectory and of the input shaper in vibrations suppression are
comparable, while the filter based on the dynamics inversion
shows a lower robustness with respect to the above mentioned
non-idealities: the level of vibrations decreases with respect to
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Fig. 30. Comparison between residual vibrations induced inthe system of
Fig. 27 by the application of an exponential jerk trajectory(a), a second order
trajectory filtered by a ZVD input shaper (b) and a second order trajectory
filtered by the system inverse dynamics (c).

those obtained with the direct application ofq2(t) only for a
positive displacement of the motor, while it remains practically
unchanged if the motion occurs along the negative direction6.
Note that the vibrations reduction shown in Fig. 30 with
respect to Fig. 29 is marginally caused by the increase of the
time-duration of the trajectory because of the additional filters.
As a matter of fact, both for the exponential jerk trajectoryand
for the trajectory filtered by the input shaper the duration of the
motion isTtot = T1+T2+ T̂J = 0.3410s. Therefore, in order
to perform a more precise comparison, a second-order trajec-
tory q2(t) with the same total duration (that isT2 = 0.1137 s
T1 = 2T2 andTtot = T1 + T2 = 0.3410 s) has been applied

6Several tests have been performed but the result was always the same
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Fig. 31. Residual vibrations induced in the system of Fig. 27by the
application of a second order trajectoryq2(t) with T2 = 0.1137s.

to the mechanical system. The result, illustrated in Fig. 31,
confirms that the reduction of the residual vibration obtained
with a simple time-scaling is rather limited if compared with
the proposed approach, the overall duration of the motions
being equal.

Finally, the robustness of the filterFJ with respect to
errors in the parameterTJ has been experimentally tested.
In Fig. 32(a) and Fig. 32(b) the responses of the system to
the exponential jerk trajectory computed with the parameter
TJ equal to0.5T̂J and 1.5T̂J are reported, and confirm that
an underestimation ofTJ makes the filterFJ less effective
while an overestimation ofTJ lead to small residual vibrations.
Conversely, with ZVD input shapers only the nominal values
of the parameters produce good performances. In fact, both
underestimation and overestimation ofTJ cause large residual
vibrations, see Fig. 32(c) and (d). Note that in the test reported
in Fig. 32(b) the residual vibration is even smaller than the
vibration obtained with the nominal value of parameterTJ and
shown in Fig. 30(a). This is probably due to the fact that the
higher duration of the trajectory, i.e.Ttot = T1+T2+1.5T̂J =
0.3808s, with respect to the nominal trajectory, for which
Ttot = 0.3410s, mitigates the above mentioned non-ideal
phenomena, like friction and cogging, and allows the motor
to better track the given profileqref (t).
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Fig. 32. Residual vibrations induced in the system of Fig. byan exponential
jerk trajectory withTJ = 0.5T̂J (a) andTJ = 1.5T̂J (b), and by a second
order trajectory filtered by a ZVD input shaper withTJ = 0.5T̂J (c) and
TJ = 1.5T̂J (d).

VI. CONCLUSIONS

The use of exponential jerk trajectories, which can be effi-
ciently generated by filtering standard trapezoidal trajectories,
allows to considerably reduce the vibrations level in motion
systems with elastic transmission. Ideally, the proposed filters,
characterized by the parametersα andTJ which can be easily
deduced from the response of the resonant system, is able to
completely cancel the residual vibration. Experimental tests
have demonstrated that the proposed approach has perfor-
mances similar to well-known input shaping techniques and
system-inversion-based filters, but compared to these methods
it guarantees a superior robustness with respect to errors in
the parameters estimation. Moreover, this technique offers
considerable advantages in terms of smoothness of the motion
profiles: if the input trajectory isCp (e.g.p = 1 for trapezoidal
velocity trajectories) the filtered trajectory will beCp+1 and
the peak values of the firstp + 1 derivatives of the original
trajectory will not be exceeded by the new trajectory. In this
way, it is possible to design exponential jerk trajectoriescom-
pliant with kinematic constraints on velocity and acceleration
and with vibrations cancelling capabilities.

APPENDIX A
ANALYTIC EXPRESSION OF A SEVEN-SEGMENT

TRAJECTORY WITH EXPONENTIAL JERK

The expression of a point-to-point third order trajectory
compliant with constraints on the maximum velocityvmax

and accelerationamax, and with jerk impulses characterized
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by a durationTJ and a decay rateα is

q2,e(t) =



















































q1(t, α), 0 ≤ t < TJ

q2(t, α), TJ ≤ t < T2

q3(t, α), T2 ≤ t < T2 + TJ

q4(t, α), T2 + TJ ≤ t < T1

h− q3(Ttot − t,−α), T1 ≤ t < T1 + TJ

h− q2(Ttot − t,−α), T1 + Tj ≤ t < T1 + T2

h− q1(Ttot − t,−α), T1 + T2 ≤ t ≤ Ttot

whereh is the total displacement from initial point (supposed
to be zero) to the final point,Ttot = T1+T2+TJ denotes the
total duration of the trajectory (which starts att0 = 0), and

q1(t, α) = amax

2− 2 eαt + α t (2 + α t)

2α2(1 − eαTJ )

q2(t, α) = amax

[

2 + α t(2 + α t)

2α2(1− eαTJ )
−

−eαTJ (2 + α(2 + α(t− TJ))(t − TJ))

2α2(1 − eαTJ )

]

q3(t, α) = amax

[

2 eα(t−T2) + αT2 (2 (1 + α t)− αT2)

2α2(1− eαTJ )
−

− eαTJ (2 + 2α(t− TJ) + α2(t− TJ)
2)

2α2(1− eαTJ )

]

q4(t, α) = vmax

2+2αt−αT2 − eαTJ (2+α(2t−2TJ−T2))

2α(1− eαTJ )

The time intervalsT1 andT2 must be computed according to
(2) with the additional conditions

T1 ≥ T2 + TJ , T2 ≥ TJ

which guarantee that all the seven segments composing the
trajectory are present.
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