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Abstract—This paper investigates the problem of maneuvering between two consecutive joints, agdg is a joint offset used
control for planar snake robots. The control objective is tomake to control the direction of locomotion.
the center of mass of the snake robot converge to a desired  gpaye robots can be broadly classified as nonholonomic or
path and traverse the path with a desired velocity. The propsed hol ic. Nonhol . K bots h . heel
feedback control strategy enforces virtual constraints enoding o onomlg. onho onomlc_ Shake robots ave_ passwg wheels
a lateral undulatory gait, parametrized by states of dynam¢ ©On each link that are subject to nonholonomic velocity con-
compensators used to regulate the orientation and forwardgeed straints. The world’s first snake robot, developed in 1972
of the snake robot. ([1]) belongs to this class, and to date the bulk of research

Index Terms—Virtual holonomic constraints, biologically in- On snake robotics focuses on robots using passive wheels.
spired robot, path following, snake robot, hierarchical catrol,  The typical approach for locomotion control of nonholonomi

reduction theorems, stability of closed sets. snake robots is to use the sideslip constraints to define the
control input directly in terms of the desired propulsion of
|. INTRODUCTION the robot. This technique is employed in [4], [5], [6] for

Inspired by biological snakes, snake robots are under&&mputed torque control of the position and heading of snake
tuated vehicle-manipulator systems with many degrees-6@bots. In [7], a path following controller is proposed foet
freedom that can effectively be used for operations in engH  case where some, but not all, of the snake robot links are
ing environments. The large number of degrees-of-freeddibject to sideslip constraints. These constrained lirks c
enables snake robots to operate on irregular and clutteR&j lifted off the ground, giving DOFs that can be utilized
surfaces, to climb stairs, and to even climb on poles. Snal follow a trajectory while simultaneously maintaining a
robots pose significant motion control challenges arisiognf high manipulability. Similar approaches are consideref8]n
the fact that such robots typically have at least three amgravhere strategies for sinus-lifting during the lateral ufatiory
of underactuation. motion are proposed. In [9], a path following controller is

One of the basic gait patterns through which biologic&@roposed, and a Lyapunov stability analysis is presented.
snakes achieve forward motion is called lateral undulgtign ~ Holonomic snake robots do not have passive wheels, and
During lateral undulation, the snake undergoes periodipsh €xploit friction for locomotion. The motion of holonomic
changes that resemble a wave traveling backward along Sf@ke robots mimics closely the motion of their biological
body, from head to tail. As a result of this motion, the snakeounterparts [10]. This is due to the possibility of sideway
body traces out a periodic curve on the plane, which Hirope [otion, which enables the robot to perform various types
mathematically represented assarpenoid Thinking of a Of gait patterns used by biological snakes. However, unlike
snake robot as a discrete approximation of a biologicalsnakhe snake robots with sideslip constraints, locomotiortredn
researchers (see, e.g..[1], [2], [3]) have observed that pf this class of snake robots has been considered in only
serpenoid curve can be well-approximated by imposing tfefew previous works. One of the reasons might be that

sinusoidal reference signal for tfi# joint angle holonomic snake robots are harder to control. Indeed, for
] _ nonholonomic snake robots only the kinematics has to be
Pret,i(t) = asin(wt + (i — 1)) + o, (1) considered when describing the snake robot motion because

wherea denotes the amplitude of the sinusaiddenotes the 0ne may use velocity as the control input to the joints of

both the dynamics and kinematics have to be considered in
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optimization problem. In [14], two physical parametersn-co following control problem along any desired path which can b
straint forces and energy efficiency are introduced as casinsidered as an important step forward in locomotion cbntr
functions to optimize, and switching strategies are pregosof snake robots and similar multi-link robotic structures.
for generating optimal motion patterns of a snake like robot ~ Another contribution of the paper is that we propose an
[15], a framework has been put forward which allows a plannapproach that removes timed signals entirely from the obntr
to generate paths in a low dimensional work space and selkxip, and replaces them with state-dependent constraints.
among gaits, pre-planned motions in the robot's shape spaSpecifically, we replace the time-dependent tetmin the
In [16], modal decomposition has been used to modify a snalkgeral undulatory gait (1) with the stateof a compensator,
robots sidewinding gait to orient the head during loconmatiomodify the way in which the offset, affects the gait, and

In [17], numerical simulations are used to study the propiew this offset as the state of a second compensator. Thé res
erties of lateral undulation that are related to the optityalf is a state-dependent undulatory gait which can be considere
motion of the robot. In [18], controllability and stabiliadity as a dynamic virtual constraint. Virtual constraints haeerb
of planar snake robot locomotion is considered, and stabilisuccessfully used in the robot locomotion literature [26],
results for a path following controller based on numeric§27] and have been investigated in the general context of
investigations using Poincaré map are presented. In [1E}ller-Lagrange control systems [28], [29]. By eliminating
cascaded systems theory is employed to achieve straight laxogenous reference signals, virtual constraints enhtree
path following control of a snake robot described by theobustness of the feedback loop and add flexibility to the
simplified model presented in [10]. In this simplified modetontrol design.
of the snake robot, the motion of the links is approximated Comparison with existing literature. Previous research on
as translational motion instead of rotational motion, whig position and path following control of holonomic snake rtsho
valid for small joint angles. is very limited but is considered in e.g. [12], [11], [18],can

In [20], a dynamic feedback controller is proposed whicfl9]. The paper [18] was the first work to present a stability
controls the orientation of the robot to an angle that is @efinanalysis of the locomotion along a straight path. Being thase
by a path following guidance law which makes the robain a numerical Poincaré test, the analysis in [18] is onlidva
follow a straight line. In [21], the theoretical approachefor a specific set of controller parameters. In [19], pattofet
presented in [20] are validated through experimental tesuling control of snake robots along straight paths is coneidler
In [22], using the method of virtual holonomic constrairds, Using cascaded systems theory, it is proved that the prdpose
direction following controller is proposed which regulatihe path following controllerC-exponentially stabilizes a snake
orientation and the forward velocity of the robot to constamobot to any desired straight path. A drawback of [19] is that
references. A similar approach is used in [23], where thbe stability analysis is valid for a simplified model which i
design is based on the simplified dynamic model presentedly valid for small joint angles. Another drawback of [18]
in [10]. In [24], by utilizing the direction following con- and [19] is that they are only valid for straight lines and not
troller of [23] and the path following controller of [19], aall curved paths. To the best of our knowledge, to date there
maneuvering controller is proposed based on the simplifiexino proof of convergence of a path following controller for
model for snake robots which makes the robot converge ttte complete nonlinear model of a holonomic snake robot.
and follow a straight line path with a desired forward vetgpci Moreover, the control schemes in the existing literature do
However, neither of the above works have reported resutts foot control speed.
path following control along general curved paths based onThis paper presents the first control methodology applecabl
complete kinematic and dynamic models of snake robots.té the complete nonlinear model of a holonomic snake robot,
complete review on modelling and control of snake robotgith guaranteed stability properties. The methodology we
can be found in [25]. The typical control approach in thpropose is applicable to general paths, and in addition tkema
shake locomotion literature relies on the asymptotic tiregk the snake follow the path, it regulates the speed of the cefite
of suitably designed reference signals, such as (1). mass. In particular, we establish a clear link between feaqy

Contributions of this paper. In this paper we investigate of oscillations §) and speed.
the following maneuvering problem: make the center of massOrganization of the paper.In Section Il, we present math-
of a holonomic snake robot converge to a desired path aechatical preliminaries dealing with the reduction theosdor
traverse the path with some desired velocity while guamntestability of closed sets which will be used later in the paper
ing boundedness of the system states. Our proposed centrdt Section Ill, we present the kinematic and dynamic model
has a three-stage hierarchical structure. A virtual caigtr of the snake robot. In Section IV, we state the control design
encoding a lateral undulatory gait is stabilized at the kiweobjectives. In Section V, we consider the shape control for
level of the hierarchy. In the next level of the hierarchye ththe robot. In Sections VI-A and VI-B, we develop control
velocity of the center of mass of the snake robot is regulatsttategies for the head angle and the speed of the robot,
to some desired reference vector. The desired referentervecespectively. In Section VII, we develop a path following
is determined at the top level of the hierarchy using a pationtrol strategy. In Section VIII, we present the main resiil
following controller designed for a kinematic point-mags-s the paper. Finally, Section IX presents simulation resuttgh
tem. The block diagram of the proposed controller is dedictdlustrate the performance of the proposed control stsateg
in Figure 2. Using the proposed hierarchical structure andNotation. Given a vectorz € RY, we denote byj|z| the
based on the complete model of snake robot we solve the pgticlidean norm ofe. Given a matrixX € R™*", we denote



by || X||, the induced-norm of X. Given a sel’ € RY and a of nested closed sets, [30], [31]. In this subsection, wege
pointz € RV, we define the point-to-set distancexofo I' to  for completeness the version of the reduction theorem tieat w
be||z||r := inf{||x — y|| : y € T'}. Leta € R, thena modulo use in the paper. This theorem may be used in applications
27 is denoted byala,. The setR]a, = {[alar : @« € R} can in which the designer must simultaneously meet control-spec
be given a manifold structure which makes it diffeomorpbic tifications that can be formulated hierarchically. Consither

the unit circleS'. Finally, we denote the complex plane 8y dynamical system

Following the notation in [10], we make use of the following

matrices and vectors ¥ @=f(zu) (2)

r 1 0 ... 0 with the state spac& c R", wheref is locally Lipschitz on
= o1 1 ... 0 (N—1)xN X, with the solutiong(t, zo) at time ¢ and initial condition
- €R x(0) = =z, andu(x) is a locally Lipschitz feedback which
o makes the sef, c T'; positively invariant for the closed-loop
00 L system. This invariance property implies that for&lle T';,
I -1 ... 0 0 i = 1,2, and for allt > 0, ¢(t,z0) € I';. Furthermore,
(o0 1 -1 ... 0 (N—1)xN we say that the sef’; is (globally) asymptotically stable
D= eRr relative to T'y for X, provided that whenever, € I'y then
0 O — I', is (globally) asymptotically stable. Specifically, we have

the following definition.

e=[1,....,1]7 eRN
Definition 2.1. Let I’y andI'y, I'y € T's C X, be closed

b
e Onx1

E = c R2Nx2 positively invariant sets. We say thRf is stable relative to
Onx1 € Iy for ¥ if, for any ¢ > 0, there exists a neighbourhood
e=[1,..., 11" eRN-1 9 =10,,...,08]" €RN N(T1) such thaté¢(Rso, N(T'y) N Te) C B.(I'1) where
sin@ = [sinf;,...,sinfy]7 € RN #(R>0, N (I'1)NT2) denotes the sep(t, zo) : t € Rug, o €
T DY A
cos@ = [cosfy, ..., cosby]" € RN NN}

Se = diag(sin @) € RV*N
Cp = diag(cos 0) € RV*N

0 = (i8] ey
) yIN
b=1[0,...,0,1]7 e RN~
101 ...
0 1 ... 1
H= e RVx(N-1)
0 0 ... 1
0 0 ... 0
1
Iy = ! € RNV*N
1

V = AT(DDT)"'A
K = AT(DDT)"1D
KTSg

SCp =
° T _KTCy,

Il. PRELIMINARIES

In the above definition3.(I';) denotes the-ball given by
the setB.(I'1) ={z € X : |z|r, <e}.

Now suppose thdf; C T'; C ... C I'; is a nested sequence
of closed subsets ot which represent hierarchical control
specifications. Specifically, each sBt is associated with a
control specificationi. The property thal’; C T';1; implies
that specification is met only if specification + 1 is met, so
that specificatiori + 1 has higher priority than specification
1. Therefore, the list of nested subse&tsis associated with a
hierarchy of control specifications.

We state Part (a) of Proposition 14 in [31], and we will
use this to carry out the control design and to prove the main
result of our paper.

Proposition 2.2([31]). Consider system (1), and assume that
there exists a locally Lipschitz feedbagk:) making the sets
I'y cI'; C ... cIy, positively invariant for the closed-loop
system. Lel',; := X.If, fori =1,...,],T; is asymptotically
stable relative tol';; for the closed-loop system, aid is
compact, therd’; is asymptotically stable for the closed-loop
systemi = f(x,u(x)).

Before concluding this section, we define an operator which
will be useful in proving an important relationship latertire

paper.

As discussed in the introduction, the control design ajefinition 2.3. The complexification operator is defined to be

proach taken in this paper is hierarchical in that the designthe map¢ : R? — C, [z,y]" — = + jy, wherej is the unit
broken down in three stages corresponding to three pdedti imaginary number. A

control specifications. As we show shortly, each specifitati  according to the above definition, it can be easily seen that
corresponds to the stabilization of a suitable closed sulfse 4,4 operatok is a linear invertible map, i.e., an isomorphism

the state space of the snake robot. In this section we presggt, the real plane to the complex plane. We have the
the theoretical tool that enables the hierarchical decaitipa following lemma whose proof is omitted due to simplicity.
of the control task: a so-called reduction theorem for $itgbi



underactuation. The actuator torques have no direct effect

the center of mass dynamics (3b). The only coupling between
Lemma 2.4. Given the counter-clockwise rotation matrixthe joint dynamics (3a) and center of mass dynamics (3b)
Ry € R?**2 through an angled and a vector[z,y]T € R2?, occurs through the ground friction forgi;. This coupling is

we have€(Ry[z,y]T) = exp(j0)(x + jy), whereexp(jf) = the essential mechanism underlying snake locomotion, and i
cos(f) + jsin(). is what makes the motion control problem challenging.

For simplicity, we assume that the friction forces acting

I1l. M ODEL OF THE SNAKE ROBOT on the robot are viscous. A shake robot which is subject

In this section, we review the kinematic and dynamic mod Viscous friction qualitatively (although not quantivaty)
of a snake robot presented in [10]. We consider a snaRghaves similarly to a snake robot which is subject to Coblom

robot with N rigid links each of length2l. Each link is friction force [10]. We have:
assumed to have uniformly distributed massand moment

of inertia J. We denote the vector of absolute link angles by - fra X

6 =1[1,...,0n]" € RV, and the center of mass of the robot fr(0,0,p) = P T 1 =Qe v

in inertial coordinates by = [p., p,|T € R2. Also, we denote .R’y

the vector of joint angles by = [¢1,...,on_1]7, where IKTS90 + ep, . )

¢; = 0;—0;,1 denote the™ joint angle. Figure 1 illustrates the = Qo [ CIKTCo0 +ep, | 1QeSCo0 + QoEp
kinematic parameters of the snake robot. Table | summarizes ‘ (5)

the parameters of the snake robot used in our simulations.

Following [10], the dynamic equations of the snake robot camhere X = [z1,...,2x] € RN, Y = [y1,...,yn] € RN are

be written as follows the vectors of inertial coordinates of the centers of mass of

the links of the robot. The matri®e maps the inertial frame
velocities of the centers of mass of the links to the inertial

. .2 T Ao T
Mo + Wob —15Cq fr(0,6,p) = D" u, (32) frame viscous friction forces acting on the links, and it is

Nmjp = ET fr(6,0,p), (3b) given by
whereu € RY~! is the vector of actuator torquegr(-) €
R? is the vector of ground friction forces, and the remaining ct(Co)? + c,,(Sp)? (ct — ¢1,)SeCo
guantities are defined as follows: Qo = — (¢t — n)SeCl ¢1(S)? + cn(Cp)? , (6)

9 9 where ¢; and ¢, denote the tangential and normal viscous
Me = JIn +mi”SeV Se +mi“CeV Co, (42) friction coefficients of the links, respectively. In this g,
Wo = ml?SgV Co — mi*CoV Sp. (4b) inspired by biological snakes, we assume that > c;.
This assumption implies that each link is subjected to an
anisotropic viscous ground friction force, which meanst tha
the ground friction normal to the link is larger than the grdu

link,3 s . . . .
‘ ﬂ} ..... \ friction parallel to the link. I.t is shovv_n in [10] thz_;lt. propgibn .
: (X3,Y3) ey~ ‘ of a snake robot under viscous friction conditions requires

link,3
y

21(X N the friction to be anisotropic. In practice, one may achieve
22 0, ° (Xn,YN) On anisotropic friction on the links by equipping the undeesaf
4 1 (Px,Py) ydlobal each link of the robot with edges, or grooves, that run pelrall
(Xy1) : to each link.
O dlobal Remark 3.1. One can use the custom testbed constructed

in [32] to specify the numerical value af, and ¢,,. This
testbed utilizes a pulley, a motor, and a load cell to measure
the required forces for moving the joint module along the
locomotion substrate at different velocities. As it will flgown

Fig. 1. Kinematic parameters of the snake robot.

TABLE | in Section IX, our controller shows some degree of robustnes

THE PARAMETERS OF THE SNAKE ROBOT with respect to uncertainties ip andc,,. A
Symbol Description Numerical values in simulations H i _ o T —
N e e F|.nally, IettmgTueN = [cosOn,sinfxn]* and vy, =
21 Length of a link. 0.14m [— S 9]\/‘7 COS 9]\/‘] , we define
m Mass of a link. 1 kg
0 ¢ RV Vector of absolute link angles. -
RS RN -1 Vector of joint angles. -
p = [px, Pyl € R2 CM position of the robot. - Vg = ug p’ (7a)
ct Tangential viscous friction coefficient.| 0.5 N
23 Normal viscous friction coefficient. 3 Un = Ung. (7b)

The mechanical system (3a)-(3b) has+ 2 configuration The scalarsv; and v, defined above are the components
variables andV — 1 controls. It therefore has three degrees aif the inertial velocity of the center of mass parallel and



perpendicular to the angle of the head, respectively. Alingr  B. Speed ControlWe designu, to practically stabilize
to (7a) and (7b), the majpy;, v,|” +— p is a diffeomorphism v; — vef(p) While guaranteeing that,, settles into a small
given by neighborhood of the origin and is uniformly ultimately
bounded.
Ut ] ®) Stage 3: Path Following Control. Design the velocity
' function u(p) in (9) such that whetip — u(p)|| is sufficiently
small, PFP is solved.

p = Roy

n

IV.  CONTROL SPECIFICATIONS Remark 4.1. The above design methodology is based on the

In this section we present the blueprint of our control desigfollowing intuition. The first priority in the control of the
Figure 2 depicts the diagram of the proposed controller. Webot is to induce forward motion on the snake robot which

begin by stating the control specifications. is achieved through body shape control according to lateral
Velocity Control Problem (VCP): Given a desired velocity undulation. The second priority is the orientation comvbich
vector u(p) with polar representation can orient the robot towards a target in the plane, togethtar w
the velocity control that makes the robot move towards this
_ cos(bref(p)) target. Finally, we would like to have position control whic
w(p) = vrei(p) | . 9) .
sin(brer(p)) makes the robot move along the desired path. If we remove the
) o _intermediate velocity control, the robot won't track thesiled
design a smooth feedback controller achieving the follgNlrbath A
specifications: - . . _
(i) Practical stabilizatioh of the head angléy to fref(p). As dlscussgd in the mtro_duc_:tlon, snake robots move for-
(i) Practical stabilization of the tangential velocity — wards by tracing out a periodic curve. Because of this os-

ung t0 vre(p)- cillatory motion, the head angle and velocity tangentiadl an

(i) Uniform ultimate boundedness of the normal velociyormal to the snake motion will not be constant, but rather
v, = vg“Np with a small ultimate bound, and ultimate©scillate around their steady state values. This is theoreas

boundedness of the solutions of the joint dynamics aftly Practical stability is sought, as opposed to asymptotic
all controller states. stability of constant values which is not a feasible control

The above problem formulation relies on the observatioh th%bjectlve for the snake robot locomotion.

if O = bret(p), then makingy — p(p) is equivalent to making
(Ut, Un) — (Uref(p)7 0) . . . . .
Path Following Problem (PFP): Given a desired continu- !N this section, we use the control inputin (32) to stabilize
ously differentiable curve ¢ R? with implicit representation @ lateral undulatory gait for the shape variables of the tobo
{p € R2 : h(p) = 0} with dh, # 0 on ~, design a smooth Inspired by the lateral undulatory gait in (1), we stabilthe
feedback controller achieving the following specificaton ~ relations:
(i) Path stabilization: make(t) — .
(i) Velocity control: make||p|| = v on ~, wherev is the 0; — 011 = asin(A\+ (i —1)d),i=1,...,N -2, (10a)
desired speed on the path On_1— Oy = asin(\ + (N — 2)8) + ¢o, (10b)
The first control specification, i.e., the VCP, will be used to » ]
achieve the second control specification, i.e., the PFP,  Where(a, d) are positive constants referred to as gait parame-

V. BobDY SHAPE CONTROL

Solution Methodology: ters and(\, ¢p) € S' x R are the states of two compensators
In order to solve VCP and PFP, we create a hierarchy of
ghre.e control specifications, resulting in a three-staggrod A =uy, do= Uy, (11)
esign.

Stage 1: Body Shape ControlWe use the controls in (3a) to bg designed Iate_r. The relz_ﬂions (10a)—(10b) are refaae
to stabilize a virtual constraint encoding a lateral unthrig @S Virtual holonomic constraints (VHC) [28], [29], and they

gait similar to (1), in whichwt is replaced by a stata, and have the property that they can be made invariant through
¢, affects only the head angley. The evolution of), ¢y is feedback control. These VHCs are parametrized by the states

governed by two compensators, — gy and A = uy. of the dynamic compensators in (11) which will be used to
Stage 2: Velocity Control. Given a éesired velocity func- control the orientation and position of the robot in the plan
tion u(p) as in (9), this stage unfolds in two substages: Let ®i(A) = asin(A + (i —1)d),i = 1,...,N — 1 and

A. Head Angle Controlinspired by the biological obser- 2(A) = [®1(A), ... ,.ch,l(/\)]T € RV~1. Sinced = HDO +
vation that snakes keep their head pointed towards a tar?@tﬁ the relatlo.ns in (102)-(10b) can be expressed in vector
while their body undulates behind the head, we design orm as follows:
to practically stabilizedy — 6ret(p) while guaranteeing that 0 = ey + HO(N) + Hbgy. (12)

. do) is uniformly ultimately bounded.
(%0, 60) Y Y The above can also be written a6\, ¢g, 8) = 0, where

Ipractical stabilization of a variable means that by a slétathoice of
controller parameters the variable is made to converge tarlitrarily small

neighborhood of its desired value. g\, ¢o,0) = DO — B(X) — by (13)
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Fig. 2. The proposed path following controller is comprisgfdthree stages, corresponding to the three loops of thekld@gram. Stage 1, body shape
control, stabilizes an undulatory gait pattern. This stageesponds to the inner-most control loop, and it has thbdst priority. The second stage, velocity
control, regulates the velocity vector of the snake’s aeafanass to a reference. The third stage, path followingregnproduces a velocity vector reference
for Stage 2, given by.(p), making the snake robot move towards and along the desirébd Phis stage corresponds to the outer-most control loog, i
has lowest priority.

If we view g(\ ¢o,0) as an output function for systemthe robot to desired values. To this end, we first derive the
(3) augmented with compensators (11), then this outpietduced dynamics of the robot, i.e., we reduce the system to
yields a vector relative degre@, . . ., 2} everywhere becausethe invariant manifold's. By left multiplying both sides of
rank(DMngT) = N — 1. Consequently, the zero dynamicg3a) by e” , which is a left annihilator of the control input
manifold associated with output (13) is the set matrix DT, and evaluating the result on the virtual constraint

; . : : IN+8 | . manifold I's, the dynamics of the snake robot on the virtual
Ty = {(Of O,p,]/), A ')\’ ¢o,.¢o) € RV : DO = 2()) + boo, constraint manifold’s read as

DO = (M)A +bgo}.

(14) i : : :
We refer tol's as _the constrainF manifo_ld associata_eq .With the Oy = U1 (0N, 0N, A\, A, b0, do, 0, D) +
VHC (10) (the virtual constraint manifold). Stabilizing eth Wa(On, A, do)ux + U3(0n, A, do)ug,, (16a)
VHC (10) corresponds to stabilizin;. To this end, we use . Wa(O, M b0)p + Us (0, \, o )9- +
the input-output linearizing control law p= 4N, A PoJP T TSN, A PoJIN
\IJG(GNaAv(bO)A—i_ \117(9N7)\7¢0)¢07 (16b)
u= (DM ' DT)"{ DMy Wo" ¢§ = U (ig’g)
—IDMG'SCE fr+ @  (WA% + & (Vuy - (16d)
+bug, — Kp[DO — (N) — beo] where () = T MpHD" () e
~Kp[D6 — & (M)A~ bul}, (15) X e’ Moe
)
where Kp, Kp are positive definite diagonal matrices con- m{WOG —1SCq fr()}, (17a)
taining the joint controller gains. i T MoH® (V) -
Remark 5.1. Under the assumptiors,, > ¢, it can 2()=- eT Mge (17b)
be shown that7= < [Qellz < 1.2071c, — 0.2071¢, Tyl = eT Mg Hb (170
because =[|Qo1 < [Qollz < /IIQol1[Qoll (see N =T M e
[33]). On the other hand,||Qelli = [Qollec = R
11<n_zl>§v{ctcos(9i)2 + cpsin(f;)? 4+ 3% sin(20;)|} = Pal) = NmE Qok, (17d)
max o, + 5% (25in(0:)? + lsin(20,)))}. Therefore, the Ws() = " QoSCoe, (17¢)
ground friction force magnitudéfr(.)| increases with in- I r /
creasing friction coefficients,, and ¢, according to (5). This Vo() = WE QeSCeH P (M), (171)
shows the dependence of motor control torques given by (15) I _r
on the friction coefficients,, and¢,. A Vr() = WE QoSCoHb. (179)

After asymptotically stabilizingl's, we are left with two Inthe above, eacl;(-) is evaluated on the constraint manifold
control inputs, (ux,u4,) to solve the direction following I's. The equations in (16) describe a control system with two
problem. As described in Section 1V we will use the dynamimputs,(ux, ue, ). This system completely describes the motion
compensators to regulate the head angle and the velocityobthe snake once the VHC (10) has been enforced. The control



specification for system (16) is to stabilidg to an arbitrarily next section we define a feedback controllgrguaranteeing
small neighborhood of)s; to stabilize v, = ueTNp to an that for any initial condition, the closed-loop system has n
arbitrarily small neighborhood aff; and finally, to guarantee finite escape time (see Remark 6.3). This will guarantee that
thatv, = vng converges to a neighborhood of the originthe above proposition is applicable. A
Meanwhile, we also requiré\, ¢o, ¢o) to remain bounded. In Proof. Viewing the states\(¢), }

) ) t), A(t), and the inputux(t) as
the process of developing controllers for the reduced dmmexogenous signals, the co(nt)rol(si/stem (18) can be(viewed as
system, we will require some knowledge of eakf{-) which ’

. . . : a time-varying system with staté8y, 6y, ¢o, ¢g). Under the
is summarized in the following remark. control inp}lljt ?193)/, the closed-loﬁp dynamics o?‘ system (fh8)
Remark 5.2. We make some numerical observations that atee standard singular perturbation form become

important in the subsequent development of our control laws

It can be numerically verified that for all gait parameters %

(a,8): (@) V3(-) = —eTMgHb/eT Mge is bounded away 91:7 TN : .

from zero and negative for afly, A, ¢o; (b) v W4(-)ve, ~ €N = €[Oref + 91.(15, ¢0,¢0,0n,0N) +

—cp/m for all Oy, A, ¢o; (c) There existsys > 0 such that Us(-) (k1o + kago)]

—uj We(-) < —ve for all Oy, and small values o —(@n + knOn), (20)

and for ¢, > ¢ (d) There existseg > 0 such that we

have |vf We(-)| < ae for all Oy, ), ¢ Where o denotes where
the amplitude of sinusoidal joint motion in (10a)-(10b)) (e

V()| < en/m for all Oy, A, ¢o; (f) There existsy; > 0 ; SN ; ; ;
!UCIEI 2'!3.“@7(/)” < 7 for all 9N7 )\’ ¢O’ (g) |U(5FN‘IJ4(')U9N| < gl(t7 ¢07 ¢07 9]\], 9N) - fl(eN, HN, A(t)v )\(t), QSO’ ¢07u)\(t))-
ci/m for all 6x,)\ ¢o. Note that the above observationsdere we use time-scale separation to make the analysis in-
are independent of the parametéysm, i, J, because these dependent of the choice af,. Note that (20) is a singularly
parameters can be factored out of thgs as it can be seen perturbed system with reduced dynamics
from (17). AN )

On = —knOy, (21)
VI. VELOCITY CONTROL

A. Head Angle Control

In this section, we use the control inpuj, to control the 4y _ —q, (22)
head angle of the robot in order to meet specification 2A. To dr
this end, we consider the statéy, Ox, ¢, ¢o) of the con- wherej = @y + knOy. The origin is an exponentially stable
strained system (16a)-(16c). We design a high-gain fegdbagyuilibrium point of the reduced system. Also, the origimis
ug, (0N, 0N, b0, o) that makes(fn — bref(p),n — bref(p)) exponentially stable equilibrium point of the boundaryda
converge to an arbitrarily small neighborhood of the orgml  system. According to the singular perturbation theoremmn a
(0, do) uniformly ultimately bounded. This analysis is madénfinite interval (see Theorem 11.2 in [33]), for @li; (0) € R
independent of the choice afy, using time scale separation.andt, > 0, the singularly perturbed system (20) has a unique
By (16a) and (16c), the dynamic equations governing thestasolution (O (¢, €), @n (¢, €)) such that
(0N, 0N, b0, do) Of the constrained system can be written as

and boundary-layer dynamics

On(t,€) — exp(—kn(t — to))On (0)

GN = fl(eNvéNaAv)'\aqsanBOvu)\) +\I/3(')u¢07 (18) _ O(E) (233)

Po = ton: O (t€) + ki exp(—kn (t — t))dx (0)
Proposition 6.1. Consider the head angle control law for t
system(18) - eXP(—E)yo = O(e), (23b)

for all ¢ € (0,00). Note that the closed-loop dynamics

1 1z ~ . i ]
Uy = e {Z(ON n kNeN)} — k1o — kado.  (19) governing the stategpg, ¢o) become

wherefy = On — Orer(p). If ux (1), A(t), \(t) are defined for bo + kado + k1o = 1 {l(ézv + /fzvézv)}- (24)
all t > 0, then for anyk,, ko, €1 > 0, there exisk, kn,e2 > 0 Us(-) Le

and a positive definite _functiokr(qso,qSo) such that the set

{(On, 0N, B0, D0)| |(On, On +hnON)|| < €1,V (o, Po)
is asymptotically stable.

In(t.e)

< &2} From (23a)—(23b), it can be seen th&t (¢, ¢) is uniformly
bounded and of orded(1), i.e., there exist positive constants
Remark 6.2. The result of Proposition 6.1 can be interpretetly and ¢y such that|fn(¢,¢€)| < ko for all |¢|] < ¢o. Since
as follows. Under (19), the head angle error can be made athie unforced systend, + kado + k1o = 0 is an LTI system
trarily small provided that is chosen to be sufficiently small.and has a globally exponentially stable equilibrium point a
Also, ¢ and¢, remain uniformly ultimately bounded. In thethe origin (¢o, ¢20) = (0,0), the system (24) is input-to-state



stable. Therefore, there exists an I1SS-Lyapunov functior)
and e, such that the sefV(¢o, ¢o) < €2} is asymptotically

stable (see Theorem 10.4.1 in [34]). Now, we consider the ' — u"N\Ij‘l( Juo v+ gy Wa )UONTU” + 91\{”" +
change of variablg = &y +kn0y. The closed-loop dynamics UeN Us(-)0n + UeN‘I’ﬁ( A+ ug, Ur(-)do (31a)
become Uy, = v(,N Wy()ugyve + v(,N Uy( )vgpvn — Onvg +
. vg W5 ()N +vg Te()A + vy U7 (-)go. (31Db)
On =9 — knOn, Thus, the velocity error dynamics have the form
€ = elbret + 91t 60, 90, O, b) + A= fo(On, 6, o, do, Avr, ) +
Us(-) (k1o + kado) + kn (9 — knOn)] — 9, ug We ()N — (dvrer)pp, (32a)
(23) b= fa(On.6x. N A G0, do, Ay, o) +
Nextwe consider the Lyapunov function candiddfe = Vg Ua () Vg Un, (32b)
(1/2)0% + (1/2)9%. We have A= . (32c)
In order to stabilize the solutions of (32a), (32b) to a
Vi = 0OnG — kn0% + 41 (26) neighborhood of the origin, we use the following controlunp
It can be shown that there exisfs; > 0 such thatjj < ux = —K:(A+ KaAvy) . 33)
—(1/2¢)3? + Lsj (see proof of Theorem 11.1 in [33]). We — Ka[fa() 4+ ug, Wo ()X — (dvrer)pp].
have where K, > 0 and K, > 0 are positive constants. Note

that u(,TN\IJG(~) is bounded away from zero by part (c) of

. ~ = 1, . Remark 5.2 provided that the ultimate bound ¢ from
Vi <On§ —knOy — 507 + Lsy (27) Proposition 6.1 is small enough.
Completing the squares, we get Remark 6.3. Consider the state vectorz =
[V, Un, A, A, b0, do]T. Under the control laws (19) and
) 1 - 1 1 (33), we haver = f(x) for the closed loop system. Because
Vi < —(kny — 5)9?\7 - (§ - 1§+ §L§ (28)  of the uniform bounds o;,i = 2,...,7, it can be seen that

[If(x)|]| < B(1+ ||z||) for some constanB. Because of this
For ky > (1/2)(L3/4€f + 1) ande < 1/(L3/4¢; + 2) we linear growth condition, there is no finite escape time ared th

have signals)\(t),uk(t) are defined for alt > 0 as required by
Proposition 6.1. AN
v, < L3 V+ L2 (29) We_ have the following proposition regarding the forward
velocity control system.
By the comparison lemma [33], we get Proposition 6.4. Consider the control systenf32a}(32c)
under the controllen33) with ¢,, > ¢;. If the ultimate bound
12 on ¢ from Proposition 6.1 is small enough thagN\IJG(~)
Vi(t) < V1(0) exp(——3t) + 2¢7 (30) is bounded away from zero, then for af > 0 and for
dey sufficiently large controller gain'y > 0, there exists, > 0
This implies that] [fx,§]7|| converges to a neighborhood ofSUCh that the compact set; = {0, A”tli”" bI|AUt| <
the origin given bye,. Therefore, the self|[fx, 77| < e} is €3 = ~EaAv, [va] < e} is asymptotically stable
asymptotically stable. Note that is a design parameter thatRemark 6.5. The result of Proposition 6.4 can be interpreted
we can choose arbitrarily. as follows. Under (33), the velocity errakv; can be made

O arbitrarily small provided that the gai®, is chosen to
be sufficiently large. Also, the normal velocity, remains

B. Speed Control uniformly ultimately bounded. AN

We now turn our attention to specification 2B. Consider the
reduced dynamics (16). In the previous section, we coetioll
the statesdy, O, do, do. Now, we are left with the states
p,p, A\, A. The mapp — (vt,vy,) is a diffeomorphism so for
velocity control we may consider the subsystem with states Ady = fo) — KAugTN\IJG(-)Avt — (duret)pp (34)
(Avg, v, A, N), With Av, = v — vret(p). In order to obtain
the tangential and normal velocity dynamics evaluated en t
constraint manifold, we take the time derivatives of Equiadi
(7a), (7b), which using (16b) yields Q= {(\ A Av, ) 2 |Av| < VA, |un| < Val, (35)

roof. The control law (33) is a feedback linearizing controller
or system (32a) with output = A + K»Auv,, and it makes
the setA; = {(}, A, Avg,vy) A= — K\Awv; } asymptotically
stable. On the seks, the subsystem (32a) becomes

hlow, we find a positively invariant set



such that [f2(fn,0n, )\, do, b0, Avg,v,)| is uniformly where~ is some positive constant and we have used Young’s
bounded on{). Note that¢g, ¢y have been proven to beinequality,ab < (v/2)a2 + (1/2v)b%. We conclude that there
uniformly ultimately bounded in Proposition 6.1. Thereforexists a sufficiently small positive constahtsuch that

we need to show boundedness Afv;, v,. We pick 1}

. 1
arbitrary and determin’s such that|f3(-)| < K3. Note that Vo < =BV + 2—732- (42)
K3 depends orV;. Next, we pickV, > K3/K,,. Finally, we ] ) 7
choose Using the comparison lemma [33], we have, fortalt 0,
1
_ Va(t) < exp(=pt)Va(0) + 3. (43)
K, > Bt Kol (36) 7
g Vi Thereforep,, converges to a ball of radiugv2/(v3). Letting

e1 = \/72/(18), the seth; = {(\, A, Av,v,) € Ay : u,] <
€4} is asymptotically stable relative th,. This set is compact
because\ € S1, which is a compact set and oty, |Av| <
—Kx6Av; — K1 — Ka|vg| < Aty < —Kxv6Auy €3, and A = —K)Awv,. In the above analysish; C Ay C
As. Also, A; is asymptotically stable relative th, ., for the

We claim thatQ is positively invariant. Note that

—K1 + Kal|v,|, 37 ; .
1 Kalon| (37) closed-loop system for = 1,2. On the other hand); is a
and compact set. Using Proposition 2.2, we conclude that the set
A; is asymptotically stable. O
—Kpvp — K3 <0, < —Kyv, + K3. (38) VII. PATH FOLLOWING CONTROL OF SNAKE ROBOTS
On Av, = Vi, we haveAs, < —KxygVh + Ky + Kolvn| < In this section we carry out the last design stage: the path

—Kyy6Vi+ K1+ KaVa <0.0nAv, = —V3, we haveAd, > following control. Thus far we have developed a velocity
KyvVi — K1 — Ks|v |_> KayVi — K; _ KoV > 0. on controller that asymptotically stabilizes the directiofidwing

v, = V2, we havei, < —K,Vo+ K3 <0.0nv, = —V3, we manifold

havev, > K, V> — K3 > 0. The inequalities above prove that

on 9%, the vector field given by (32a)-(32b) points i_n_s'ﬁe Ty = {(0, 0,p,p,\, \, do, éo) €Ty

Therefore, by Nagumo’s theorem [35], the §kis positively - - .

invariant. For all initial conditions irf2, we have|fs(-)| < 1O, On + knOn)ll < El’V(be’%) < €

v2 = K1 + K,V,. Now, we employ the Lyapunov function |vr — vret(p)| < €3, |vn| < €4, A = =K Aw}.
candidateV; = 1Av?, we haveV; < —KyysAv? + 72A0;. (44)

Therefore we have
The next objective is to desighei(p) and vei(p) in (9) to

stabilize an arbitrary small neighborhood of the planawveur
{h(p) = 0} while regulating the velocity along the curve. To
this end, we define the path following manifold as follows

. 1 1
Vi < —(Kxye — 5)00] + 573 (39)

Using the comparison lemma [33], we have, foraft 0

Va(t) < exp(—(Knrs — 2)DVA(0) + = n3 Iy = {(8,6.p.5. X A do. o) € T2 : [h(p)] < es},  (45)
= expl— A6 — = ——" .
1 co2 2(Kx\v6 — 3) ? wherees is a small constant.

(40) Remark 7.1. The setl'; is compact. The reason is that the

Therefore, Av, converges to a ball of radiusinequality|i(p)| < es implies thatp is bounded because(-)
’Y%/(KWG—%)- Choosing K, large enough makes|sacontlnuousfunctlon. Sind&g:1(-) anduyet(-) are continuous

. . functions,fer(p) andvrer(p) are bounded. Thereforéy and
the ultimate bound ofAv, less thane; for any desired v; are bounded. Since; andwv,, are boundedp is bounded.

e > 0. Letting e3 = /75/(Kxys —3), the set gincesy and¢, are bounded ané = ef + H®(\) + Hbgy
Ay = {(\ A, Avg,v,) € Ag ¢ |Avy| < €3} is asymptotically on the sefl's, 6 is bounded. Sinc® = efy + H® (M)A +
stable relative ta\3. On the sef\,, the dynamics are describedH b¢y, andfy, A, and¢, are bounded@ is bounded. A
by subsystem (32b). The functigfj(-) is uniformly bounded
on Ay, namely, there existss > 0 such that| f3(-)| < 3 on
A2. Employing the Lyapunov function candidatg = 1/2v2
and using part (b) of Remark 5.2 yields

Recalling that w(p) =

[vref(p) cos(Bref(p)), vref(p) sin(brer(p))]T,  we have the
following lemma:

Lemma 7.2. Let A; = On — Oret(p). We have the following
) —cp cn relationship between the velocity vector of the center aésna
Vo < in +73Un < _Evi + p and the reference velocity vectp(p):

) L 5 .
20t 3y (41) b= Ra, n(p) + d(ve, va, O, veet(p)), (46)
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where [|d(-)|| < e3 + €4 on the direction following manifold

T. ___dhyRadh]
Proof. Applying the operatol to the vectorp — Ra, u(p), y= || dh,||2 trard) +
we have

dh,Ra,

1 )
dhl — 4+ dh,d(-) (49

P~ Raulp)) = € Roy
Equation (8)
cos(ref(p)) ] )

sinrep)) ]/ oina 2.4

eXp(jeN)(Ut + ]Un) - ’Uref(p) eXp(jAl) eXp(jeref(p)) .

v

vt ] Now, we consider the Lyapunov function candidate=

" 1y%. We pick ¢ > 0 and defineQ. = {|y| < c}. By
assumption, or{p : h(p) = 0} it holds thatdh, # [0 0].

= Therefore, there exists > 0 such thatdh, # 0 for all

p € {p: |h(p)] < c}. Let Q. = {p : |h(p)|] < c}. We will

now show that for sufficiently largé(iran, 2. is positively

invariant. To this end, it is enough to show that there exists

exp(jOn) K* > 0 such that for allKyrgn > K*, V < 0 for all

Applying ¢~ to both sides of the above equality, we have p € 9. On 9., dh, is bounded. Thereforédh,d(-)| < K.
By continuity, for small enougla; (note thate; can be made

—Uref(p)RAl

) vy — Uref(p) arbitrarily small by Proposition 6.1), there exist,as > 0
p— Ra,pu(p) = Roy . : such that
Vt,Un, 0N, Uref dh,Ra,dhT
d(vt,0n, 00 svrer()) _Wliadhy (50)
Therefore, we havéld(.)|| < v/(v: — vref(p))2 + 2. On the lldhy ||
direction following manifoldl's, we have|v; — vet(p)| < €2 and
and|v,| < es. It follows that ||d(.)|| < €2 + €3. O
If we lety = h(p), we wanty — 0 to meet specification (i) |dh, Ra, 0 1 ] dh§L| < ay (51)
of the PFP. On the direction following manifold,, we have -10 [
We have
y = dhpp = dhyRa, pu + dhyd(-) (47)
We propose to use the following control law for determining V =yj < —Kyanry® + azy + dhypd(-)y <
the reference velocity —Kyanc® + ase| + K|¢| (52)
dnT ) Therefore, ifKiran > aﬁK ,we getV < 00nodf.. This means
w(p) = P 5 Kyanh(p) + 0 dhg v (48) thatQ. is positively invariant. Onf2., we haveldh,d(-)| < K.
(| dhy|| -1 0 [[dhy|| because). is compact. Therefore, we get
i p) ul (p)
where Kyan is a positive constant. V < —Kyana1y® + (Ko + a2)|y| <
1 1
Remark 7.3. Sincedh] = Vh(p) is perpendicular to the level — Kyany? + §y2 + §(Kc +a)? =
sets ofh(-), the control law (48) can be intuitively described ) 1 1
as follows. The reference velocity(p) is composed of two V < —(Kyan — §)y2 + §(Kc + as)? (53)

components: (a) the componant (p) is perpendicular to the )

level sets ofh(-) and decreases the distance of the center bherefore forKian > 3, we have (by the comparison lemma)
mass to the curve = h~1(0); (b) the component! (p) is

tangent to the level sets @f(-) and regulates the velocity of 1 LK.+ ay)?

the center of mass on the curye= h~1(0). A V(t) < exp((—Kuan+ 5)H)V(0) + Kuan— L (54)
We have the following proposition regarding the path fol- - .
lowing controller. Therefore, y converges to a ball of radiu f(f((it“f)
tran™ 3

Proposition 7.4. Consider systen{47) where |A;| < ¢. ChoosingKyan large enough makes the ultimate boundyof
For sufficiently smalk; the following property holds: for any less thane; for any desiredes > 0. Therefore, the path is
€5 > 0 there existsKyan such that the sef|h(p)| < e} is practically stable with domain of attraction containiftg. On
asymptotically stable fof47). Moreover, the velocity control the pathy, 2(p) = 0, and we have

specification, i.e.,||p|| = v, is approximately met ony:
1Bl = v| < €3+ ea.

ok
Pt P Jdhy]

1
0 ] dh? —— 4 d(") (55)
Proof. Using the control input (48) in (47) the closed loop
equation is obtained as follows Therefore, we have
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the snake robot satisfies the asymptotic bolindsup ] lpIl —

. . v| < €3 + €4.
v=[ldC)|| < [Ip]l < v+HIldO) = [ 1pll—v| < [1dC)]| < eates |

(56) Proof. Consider the setB;, I';, I'; defined in (45), (44), (14)
Therefore, we have approximate velocity control-an and note thal’y C I'; C I's. Also, by Proposition 7.41"; is
0 asymptotically stable relative tbs and by Propositions 6.1
and 6.4,I'; is asymptotically stable relative td5 for the
VIII. M AIN RESULT closed-loop system. On the other haid, is a compact set
see Remark 7.1). Using Proposition 2.2, we conclude tleat th

For the snake robot model (3a)—(3b), we proposed t &Fl is asymptotically stable O

following control law

IX. SIMULATION RESULTS

. 2
u= (DM, ‘DY) I{DNMB '1W99 Simulation parameters.In this section, we present the sim-
—lDMngC’QTfR +O (M)A + <I>’()\)u,\ ulation results which illustrate the performance of thegmsed
+bug, — Kp[DO — () — beho] path foIIlovLing Cﬁnltroller:. We consider a snake I:obot ;vith
: NN : N = 10 links with length2! = 0.14 m, massm = 1kg, an
—Kp[D6 — & (M)A — beo]}, 57) moment of inertiar — 3.0016 kg.nm?. The friction coefgf:]icients
wheregy, o, A, and) are the states of the following dynamicare ¢c; = 0.5 and¢,, = 3. The parameters of the VHC are
compensators chosen to bex = 307/180rad, andé = 727 /180rad. The
model parameters are chosen based on the snake robot Wheeko
. in the NTNU snake robotics laboratory.

A= U, o = Ugy, (58) Circle tracking. We would like to follow a circular path
and the control input.,, is given by with radius2 m. ThTe initial conditions z;ré(p) =[0,..., O]i,
1 1 A(0) = A(0) = ¢(0) = ¢(0) = 0. We run the simulation for
Ugy = W0 {_(éN + kNéN)} — k1¢o — kathy,  (59) 600 seconds. The controller parameters are listed in Table II.
3(-) Le

Note thate determines the ultimate bound on head angle
wheredy = 0x — Oe(p). Also, the control inputuy is given €O Also, ky determines the rate of convergence of
by to Oer. The gainsk; and ke have influence on the ultimate
bound of ¢y. The gainsK, and K, determine the rate of
uy = —KZ()'\ + K)\Aw) (60) convergence and ultimate bounda;. Finally, Kyan controls
_ ) T N . the path following error. In order to show the performance
Fl2() + gy W6 () = (dvrer)p; of the proposed control scheme in the presence of angular
where K, > 0 and K, > 0 are positive constants. The referposition measurement noise, we subject evidhlink angle
ence signalsrei(p) andurer(p) in (59) and (60) are determinedy; to an additive noise by using Matlab functiorandn()
from the identity u(p) = wvret(p)[cos(frer(p)), sin(fret(p))]  which generates normally distributed pseudorandom nusnber
where(p) is given by that can be considered as measurement noise for the joint
angles. The root mean square (RMS) of the noise applied to

dhT 0 1 v the joint angle measurements was 0.1 rad.
1(p) = — 7= Kunanh(p) + dhy, (61)  The simulation results show that the snake robot follows
[[dhy | -10 [[dhy | - : :
the desired path while the states of the compensators in (11)
where Kyan is a positive constant. We have remain uniformly ultimately bounded. Figure 3 depicts the

shake robot and the trajectory of the center of mass of the

robot. Figure 4 depicts the path following error. The RMS
Orer(p) = atar(ui (p), p2(p)), (62)  value of the path following error in the steady state is 0.12
vret(p) = [|1(p)]- (63) m. Figure 5 depicts the dynamic variahlg. As it is shown

Note thatiu(p) = [vrer(p) cos(Bret(p)), vrer(p) sin(Bret(p))], i.€., 5 Theorem 8.1, the variabl¢, remains uniformly ultimately

. : ounded. Figure 6 depicts the dynamic variahleand thus
Orer(p) and urer(p) are generated according to Equations (624 " o frequency of the undulatory motion. This is within

and (63) whereu(p) is determined using (61). We have th acceptable range of frequency of oscillations of the existi

following theorem regarding the snake robot control SyStemsnake robots at the NTNU snake robotics laboratory (up to 2

Theorem 8.1(Main Result). Consider the snake robot modelrad/sec). Figure 7 depicts the shape variable error. Asiibea
(3a){3b)with feedback57), (59), (60), and(61). Suppose that seen from the figure, the error converges exponentially ¢o th
the ultimate bound oy, from Proposition 6.1 is small enoughorigin. Figure 8 depicts the actual and the reference tarajen
such thatueTN\Ilﬁ(-) is bounded away from zero. For amy > velocities. The reason for the steady state error is that the
0, there exist a sufficiently smadlin (59), a sufficiently large gain K in control law (33) is not large enough. Choosing
K, in (60) and Kyan in (61) such that the path following K sufficiently large causes the velocity ertaw, to become
manifoldI'; in (45)is asymptotically stable and the velocity ofarbitrarily small. However, such large gain values causgela



oscillations and large control torques. Figure 9 depices th
head angle tracking error. As it is shown in Theorem 8.1, the
tracking error remains uniformly ultimately bounded. Hipa
Figure 10 depicts the norm of the control torque vector, from
which we can see that the control torques are within the
physical limitations/saturation values of the existingalen
robots at the NTNU snake robotics laboratory (up to 7 Nm).

As it can be seen from (48), when the path following error
[lh(p)| is large, the reference spedd.(p)|| = wvret(p) will
be large. Tracking such a large reference speed will require
very fast oscillations of the snake robot and large control
torques. In order to avoid such large initial oscillatiomsla Fig. 3.
joint control torques, ifi|h(p)| > 0.4 we setvf(p) = 0.05 P of
m/sec. If||a(p)|| < 0.3, we setvygf(p) = [|1(p)|| wherepu(p)
is determined from (46). Finally iD.3 < [h(p)|| < 04,
we let the reference speed be determined from the smooth
interpolation betweer0.05 and ||u(p)||, i.e., from (0.5 —

10[(p) DA ()| + (4]|(p)]] — 0.15).

TABLE Il
CONTROLLER PARAMETERS

y [m]

Numerical values in simulations
1014
1015
e (19) 101
(19) 10
(19) 1
(19) 1
(33) 50
(33) 50
(48) 06
v (48) 0.05

Controller parameter Controller expression
(15)

(15)

h(p)

Remark 9.1. According to Equation (15), the magnitude
of the control torque input depends an,,. According to
Equation (19), the magnitude af,, depends on the head angle
error. Therefore, if we have large head angle errors, lavig |
torques will be applied to the body. However, we can saturate
the exceedingly large torques and use anti-windup design fo
our robotic system [36]. AN

Remark 9.2. (Control Algorithm Computational Time)
We implemented the controller using Matlab R2012a on a
MacBook Pro with CPU 2.9 GHz Intel Core i7 and 8 GB
of RAM. We usedodel(), which implements the forward
Euler method of order 1 (a non-adaptive method), in order to
measure how long it takes to compute the control law using
a fixed step size ode solver. According to our results, itgake
0.0026 seconds for the control law to be computed at each
time step of length 1 ms for a snake robot with 10 links.

In order to get a machine-independent metric of how
efficient our control law is, we used tHeLOPS() function
[37] to compute the number of floating-point operations each
time our control law is computed. For a snake robot with
4 links, the number of required flops is 7956. For a snhake
robot with 10 links, the number of required flops is 91614. B
considering a conservative value of 10 million flops per séco
as computational capability for the snake robot’s congrothe

Fig. 4. The
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time needed for the algorithm computation would be less th&emark 9.3. (Implementation of the Controller) The
1 ms for a snake robot with 4 links and less than 10 ms forcamera-based position measurement system of the robot
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the robustness of the path following controller (57)—(64) t
uncertainties in the friction parameters and to noise in the
joint angle and center of mass measurements. Specificaly, w
present three tests.

Test 1.To simulate the inaccuracy of the encoder measure-
ments, we replace in the feedback law (57)—(61) B+n(t),
wheren(t) is a vector of zero average white Gaussian noise
signalé whose standard deviatianis 10% of the maximum
joint angle observed in steady-state under nominal operati
o = 0.1 - max; limsup, |0;(t) — 6;+1(¢)|. In our simulations
we foundo = 0.07 rad, or approximatelyl degrees. This
is quite high, as in practical experiments with the snaketob
Wheeko the angle measurements are seen to be accurate within
1-2 degrees.

Test 2. Here we simulate errors in the measurement of the
center of mass positiomy. To this end, we replace with

Wheeko enables us to calculate the global frame coordinates ™(t) in the feedback law (57)~(61), wherst) is a vector
of the head link(z, yx), and the absolute angle of the headf wh_|te G_aussmn noise s_|gnals (we gengrgte this S|gnals_, as
link 6y (see [10] for more details). Also, the snake robotdescribed in footnote 2) with standard deviation 0.1 m. Whil

magnetic encoders measure the joint angles, i.e., the vedftf camera tracking system in the NTNU Snake Robotics
¢ = [p1,...,6n_1]7 is available from measurements instegh@boratory has sub-millimeter accuracy, we have chosen thi

of the absolute link angles. We can use the following kinénal2rge measurement error to reflect that in the absence of an

relationships to calculate the center of mass positiorand
the vector of absolute link angle8; 6 = H¢ + ey, p =
= eiHAC?S(G) L] A
e’ HAsin(0) YN
Robustness analysis for circle tracking.We now test

indoor camera system, position estimation would have tp rel
on on-board camera data and suitable vision algorithms. In

270 ease the numerical integration of the closed-loop systeengenerate
the noise signals by producing 10,000 white random noisepkanover 600
seconds (one noise sample every 0.06 seconds), and useirtigpgolation
to deduce the noise signal in between two consecutive sample
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this setting, it is reasonable to assume a measurementadrror

the order of 0.1 m. such a situation, the loop will measure a large trackingrerro
Test 3. Since mass and moments of inertia can be dand the overall performance will be affected. On the other

termined with high accuracy, the most relevant parametti@and, if the time parametrization is removed from the loogh an

modelling uncertainty is in the friction coefficients andc;. the control objective of tracking is replaced by the stahiiion

In this test, we replace,, and¢; by 0.9¢,, and0.9¢; in the of a suitable relation (the VHC in this paper), then the caintr

feedback law (57)—(61). This corresponds to a 10% uncéytaitoop no longer mandates a specific time parametrization for

in these parameters. the output. It only requires the enforcement of the implicit
Performance metrics.In order to assess the robustness a€lation. Such a loop, therefore, is completely insensitiy

the feedback law (57)—(61) in the three tests above, we ussues of timing of the reference signal, and typically @igp

four performance metrics: a greater robustness to uncertainties or disturbances. e w

« The first performance metric?,, is the RMS value of llustrate this principle next.
the path following errot(p(t)) = p2(t) + p3(t) — 4 in

steady-state. TABLE Il
. . . . ROBUSTNESS ANALYSIS FOR CIRCLE TRACKING
« The second performance metrig;, is the settling time
of the path following error: the largest time after which | Test No. Py Py P; Py
the absolute value of the path following error remains 0 0.1m | 47.2895sec| 2.775Nm | 0.2887 Nm
within one third of its initial value. 1 0.1071 m | 48.6097 sec| 2.9136 Nm | 1.9076 Nm
o The third performance metric,P;, is the largest 2 0.2056 m | 47.4095 sec| 11.8068 Nm| 3.2157 Nm
torque magnitude applied to each individual joint, i.e, 3 0.1m | 47.2895 sec| 2.6894 Nm | 0.2708 Nm

; < g3 < — 1. i . .
s%p(mzax |u’(t)|)’ l=is N 1. This value should Performance indicators for the VHC controller (57)-(61)tfve presence of
remain within the physical actuator limit of 7 Nm. noise in the angle measurements (Test 1), noise in the cefteass position
. Finally P, represents the RMS value of the torque nordﬁ\easurements (Test 2), and uncertainty in the friction fimefits (Test 3).

. - est 0 refers to the nominal performance of the robot in treelabe of noise
signal ||u(t)|| in steady-state. and uncertainties.

The results of the tests are found in Table Ill. In order Comparison with PD control. We now compare the perfor-
to examine the influence of the measurement noise on the "¢ o proposed VHC controller (57)—(61) with the PD
performance_of the controller in Tests 1 and 2, we ran the sal IS troller proposed in [18]. Since the results in [18] aréyon
tests for 10 times, and took the average O_f th? results. In ¢ Splicable to straight line paths, the comparison is madedba
table, Test O corresponds to the nominal situation wheneeth

: . L ) ) n straight line path following. In the VHC controller, this
are no noise and mo_delhng uncertainty in the simulatiore TQorresponds to settint(p) — [0 1]p. Accordingly, we let the
results in the table illustrate the robustness of the pregos h be the horizontal straight lipe — 0. Letd — L "V g,
controller. Specifically, the performance of the contnolie pat . ight fing : N £wi=1 "

. o enote the heading (or orientation) of the snake robot. The P
only marginally affected by noise in the angle measuremendtgntrol law from [18] is given as follows:
and uncertainty in the friction coefficients (Tests 1 and 3?. g '

Also, the peak torque remains within the physical actuator
limit of 7 Nm. Furthermore, as it is shown in Remark 5.1, the ;i = kp(iret — Pi) — kqds, (64)
peak and the RMS torques decrease slightly with decreasinﬂ
friction coefficients in Test 3. In Test 2, the large noiselie t wriere
center of mass position measurement has no significant effec
on the settling time, and it causes a gracious degradation of Giret = asin(wt + (i — 1)8) + ¢o. (65)
the RMS value of the path following error, which increases . . ) ) )
from 0.1 m to approximately 0.2 m. However, we note thathe joint angle offset is determined according to the folfayv
the peak torque in this case exceeds the actuator limit. TR
degraded performance in Test 2 is not surprising, since the
position measurement error is in the magnitude of the snake b0 = ko(0 — Orer), (66)
robot’s link length in this test. _ .

As we mentioned in the Introduction, the intrinsic robustvhered is the mean of the link angles and
ness of the VHC controller is to be ascribed to the fact
that this C(_)ntroller does_ no_t rely on any exogenous re_zferenc Oret = —arctam&), (67)
signal. This general principle can be roughly explained as A
follows. A feedback control loop aimed at tracking a refeen where A > 0 is a design parameter referred to as the look-
signal reacts to errors between the system output and #teead distance.
reference. As such, it attempts to make the output conform toThe gains of the VHC controller (57)—(61) are once again
the timing of the reference signal. When the loop is affectédund in Table Il. The gains of the PD controller are chosen
by uncertainties or disturbances, it may happen that the tino bek, = 10, ky = 0.25, k¢ = —1 and A = 2. Also, we set
parametrization of the reference signal becomes unfeasibl o« = 407/180 rad, w = 707/180 rad/sec, and = 757/180
that the system output cannot “keep up” with the referente. dad. This choice is made in such a way that, when using the PD
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variables to their references. Furthermore, since theligyab

controller in the absence of noise and modelling uncestainproofs were derived for generaV, J, and m, then the
the RMS value of the path following error in steady-statepproach can be used for any robotic snake with any inertial
is equal to that of the VHC-based controller. Moreover, thearameters. We have also validated the performance of the
settling times of the path following error of the two contess controller in the presence of reasonably large measurement
are approximately the same. noise in the simulations. A main topic of future work is to

In Table IV we present a comparison of the four perfolimplement the controllers on a robotic snake to validate the
mance metricsP;—P, for the two controllers in response topractical effectiveness of the approach. As it can be sean fr
the four tests 0-3 defined in the previous section. Similar the simulations, the performance of the VHC controller is
the circle tracking simulations, we ran Tests 1 and 2 for Igbod and according to what is predicted by Theorem 8.1. Our
times, and took the average of the results. While in all testontrol design shows some degree of robustness to modelling
the settling times of the two controllers are comparable, vegrors and noise. In particular, our controller shows a more
see from the table that in Tests 1 and 2 (robustness to anglbust performance in response to modelling errors andenois
and position noise), the value of the RMS path followingh comparison with the PD controller. In terms of implementa
error of the PD controller (indicatoP;) is 40% worse than tion of the controller one might saturate the output of the tw
that of the VHC controller. In Test 3 (uncertainty in friatio dynamic compensators and use anti-windup design. A main
coefficients) indicatorP; is the same for the two controllers.advantage of the proposed maneuvering controller is that it
Finally, in all tests the RMS value of the torque norm of the PBan be applied to any type of existing wheel-less snake sobot
controller (indicatorPy) is larger that of the VHC controller, In particular, provided that the electric motors mountedhon
and in Test 2, the peak torque (indicaté}) of the PD joints of a typical snake robot can provide enough torque,
controller exceeds the physical limit of 7 Nm. In conclusiorthe proposed control laws can be used for any snake robot
the VHC controller proposed in this paper outperforms thegith any given mass, moments of inertia, number of links,
PD controller of [18], while requiring significantly lessmmol while moving on a planar surface with any friction propestie
effort. This observation confirms the rationale presensetier  For practical implementations, actuator saturationspvaisent
about the intrinsic robustness of controllers not relying dimitations on the achievable torques and torque rates, and
exogenous reference signals. In particular we posit that tthe tuning must be done accordingly. The gain tuning will
larger control effort required by the PD controller is dudghe thus be a trade-off between making the ultimate bound®n
fact that measurement noise and friction uncertaintieseadrom Proposition 6.1 sufficiently small and staying withiret

the tracking error to be artificially large. actuator limitations.
TABLE IV
ROBUSTNESS ANALYSIS OFVHC AND PD CONTROLLERS FOR STRAIGHT X1. CONCLUSIONS
LINE PATH FOLLOWING We considered the problem of path following control for a

Test Py Py Py Py planar snake robot. We definéd— 1 constraint functions for
VHC-0 | 0.0015 m| 58.3691 sec| 0.5962 Nm | 0.2345 Nm directly actuated shape variables of the robot. These @nst
PD-0 | 0.0015 m| 58.3691 sec| 2.7307 Nm | 0.2717 Nm functions were dependent on the variations of the states of
VHC-1 | 0.0054 m| 60.0858 sec| 3.4265 Nm | 1.8731 Nm dynamic compensators which were used to control the head
PD-1 | 0.0143 m| 63.5193 sec| 3.9407 Nm | 1.9034 Nm angle and the forward velocity of the robot on the constraint
VHC-2 | 0.0095 m| 58.3702 sec| 4.2266 Nm | 0.3764 Nm manifold. The given approach is to our best knowledge the firs
PD—2 | 0.0161m | 64.8069 sec| 12.1186 Nm| 1.6271 Nm analytically designed maneuvering controller for snakeote
VHC-3 | 0.0015 m| 58.4022 sec| 1.2062 Nm | 0.2345 Nm without nonholonomic constraints, which presents forniad s
PD-3 | 0.0015 m | 58.3691 sec| 2.7307 Nm | 0.2717 Nm bility proofs for the controlled system. Simulation resuliere

Comparison of the performance of the VHC controller (57}}(&nd the PD presented that IIIUStra_te and Va“,dat? the theoreticalltesin .
controller of [18] in the case of straight line path followin future work, an experimental validation and also an extansi
of our solutions to hon-smooth paths will be pursued.

X. DISCUSSION

The simulation results presented in this section validate t
performance of the proposed control strategy. The given ajjit] S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and

; : ; eesui;' ’ Manipulators Oxford University Press, 1993.
proaCh IS t.o our best knOWIedge the first analytlcally d n [2] C.Ye,S.Ma,B.Li,and Y. Wang, “Turning and side motionsmiake-like
maneuvering controller for snake robots without nonholo-" ronot” in IEEE Int. Conf. Robot. Automvol. 5, 2004, pp. 5075-5080.

nomic constraints, which presents formal stability profuis [3] M. Sato, M. Fukaya, and T. Iwasaki, “Serpentine locomotiwith
the controlled system. Among the advantages of this aphroac  [0Po%c snakes/1EEE Control Systems Magazineol. 22, no. 1, pp.
!S that it .IS analytical in the sense that the effect of Chang% F. Matsuno and H. Sato, “Trajectory tracking control ofake robots
in any given control or robot parameter on the controlled based on dynamic model,” iroc. IEEE Int. Conf. Robot. Auton2005,

system can be investigated through the mathematical asalys  PP- 3029-3034. _ _
Y. Hoshi, M. Sampeiet al., “Locomotion control of a snake-like robot

: ]
g'Ver_]. throuqh(_)m the paper. Consequently* through formé‘ based on dynamic manipulability,” iRroc. IEEE/RSJ Int. Conf. Intell.
stability analysis we can guarantee the convergence otélte s Robot. Syst.vol. 3, 2000, pp. 2236-2241.
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