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Abstract—The interactions between the multi-link suspension
system of an open-wheeled race car and the vehicle’s aero-
dynamic performance are modelled and optimized. The closed
kinematic loops associated with the suspension mechanisms are
modelled as a set of nonlinear equations that are derived
using a first principles kinematics analysis. For the purpose of
optimal control calculations the solutions to these equations are
approximated by multivariate polynomials in the normal tire
forces. It is shown that the car’s suspension motion can have a
significant impact on the aerodynamic performance of the vehicle.
Optimal control calculations are used to illustrate the impact
of aero-suspension interactions and adjustments on the lap-time
performance of the car.

Keywords: Vehicular and wireless technologies, vehicle
dynamics, suspension systems, optimal control, lap-time sim-
ulation.

I. INTRODUCTION

SUSPENSION systems are sprung mechanisms that con-
nect the chassis of a car to the wheel carriers. This
flexible connection uses a parallel spring-damper com-

bination to support the weight of the vehicle, improve road
holding and isolate the driver from road disturbances. An
introductory discussion of vehicular suspension systems can
be found in [1]. A number of independent suspensions are
surveyed in [2], where the synthesis of suspension linkages is
studied, including their kinematic structure, their dimensions,
and their compliance properties. The well-known MacPherson
strut suspension is modelled in [3] as a three-dimensional
kinematic mechanism; both linear and nonlinear analyses are
provided. A MacPherson suspension mechanism model is also
developed [4], where a parameter estimation technique based
on the singular value decomposition is studied.

Multiple link suspension systems, of the type used in open-
wheeled race cars, have been analysed in both industrial and
academic papers. The design of a race car suspension is con-
sidered in [5]. This paper outlines a procedure for determining
optimal suspension parameters, and contains an example that
includes a heave spring, anti-roll bar, torsion bar and rocker
assembly. The kinematic and dynamic behaviours of a five-
link suspension unit is studied in [6], where the movement
of the wheel carrier is constrained by five rods terminated
at each end with a spherical joint. Rigid-body analyses of
five-rod suspensions are extended to mechanisms with flexible
joints in [7]. Flexible joints with experimentally determined
linearized compliance matrices are considered, leading to an
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algorithm for the elasto-kinematic analysis of the mechanism.
The optimal synthesis of a five-link independent suspension
system is considered in [8]. The synthesis objective is the
minimisation of variations in the wheel track, and the toe and
camber angles during the jounce and rebound of the wheel.
The kinematic design of double-wishbone suspension systems
is studied in [9], where multi-objective design optimisation
is employed. The design parameters include the lengths of
the links and the position of the ground joints. An in-plane 2-
DOF kineto-dynamic quarter-car model for a double wishbone
suspension was developed in [10] to obtain equivalent stiffness
and damping rates for response analysis and suspension syn-
thesis. The kinematics of a MacPherson strut mechanism and a
five rod Mercedes 190 series rear wheel suspension are studied
in [11] using symbolic computation and interval analysis.

Aerodynamics influences play a major role in the per-
formance of Formula One cars. It is important for high-
performance car designers to minimise drag, while simulta-
neously seeking to maximise down force effects in order to
improve road holding and tire performance. Although Formula
One regulations limit the use of ground effect aerodynamics,
they are still an effective means of creating down force with
only a small drag penalty. Since aerodynamic effects are
strongly influenced by the orientation and proximity of the
car to the road, the vehicle’s suspension system plays an
important part in determining the aerodynamic performance of
the car. A typical Formula One car deploys a double wishbone
suspension system with a push rod, or pull rod suspension
system, and a rack-and-pinion steering arrangement. One
thrust of this work is to model a general purpose double
wishbone suspension system so that its effect on aerodynamic
performance can be studied and optimised. Figure 1 shows the
24 elements of a Formula One car suspension; the wish bones
are coloured black, the push rods are coloured green and the
track rods are coloured red. The wheel carrier fixed points
are shown as blue hexagrams. The car-body fixed points, the
chassis ends of the push rods and the chassis ends of the track
rods are marked with red hexagrams.

Following its development, the suspension model will be
incorporated into a car model of the type described in [12]–
[14]. This model will be used to study a number of optimal
control problems including optimising the suspension set up
and the car’s aerodynamic configuration.

The multi-link suspension system used in this study is
analysed in Section II, with a multivariate polynomial approx-
imation of the suspension kinematics given in Section II-A.
The car and track models appear in Sections III and III-A
respectively. Vehicle-related modelling features that have been
used before are dealt with briefly with appropriate references
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Fig. 1: The suspension system of a typical Formula One car.
The wish bones are shown in black, the suspension push rods
are shown in green and the track rods are shown in red. The
origin of the SAE coordinate system is Oc.

provided. The optimal control processes employed here are
summarised in Section IV. The results appear in Section V
with the conclusions given in Section VI. The appendix de-
tails the least-squares parameter fitting procedure used in the
development the suspension meta models.

II. SUSPENSION ANALYSIS

The kinematics of a suspension system are determined by its
motion constraints. To fix ideas, we will focus on Figure 2 (A)
that shows the front-left suspension of a Formula One car.
Rods one to four make up the double-wishbone suspension
elements. Rod five is the steering track rod, which connects
the wheel carrier to the steering rack. Rod six is the suspension
push bar, which connects the wheel carrier to a suspension
strut rocker mechanism mounted within the car’s body; see
Figure 3. In the following analysis all the joints in Figure 2
are treated as spherical.

In order to describe the suspension motion constraints in
detail, we introduce car-fixed and wheel-carrier-fixed refer-
ence frames OCxyz and OWxyz respectively. As shown in
Figure 2 (A), points P1 to P4 are fixed in car chassis and are
connected to Q1 to Q4 that are fixed in the wheel carrier using
fixed-length wish bones of length li i = 1, · · · , 4. Points P5

and Q5 are at opposite ends of the steering track rod with
Q5 fixed in the wheel carrier. Point P5 is connected to the
steering rack and moves in the car body as the steering wheel
position is varied. Points P6 and Q6 are at opposite ends of
the suspension push rod with Q6 fixed in the wheel carrier.
Point P6 is connected to a rocker mechanism and moves in the
car body in sympathy with movements of the push rod; see
Figure 3. The steering track rod and suspension push rod have
lengths l5 and l6 respectively. This system has two degrees of
freedom corresponding to changes in the steering angle and
to changes in the angular position of the suspension rocker
mechanism. The suspension rockers are also connected to a
parallel heave spring and damper combination, a torsion bar
and an anti-roll bar; the damper is not considered in the quasi-
static analysis presented here. A tire moment MTL is applied
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Fig. 3: Push-rod and rocker set-up. The heave spring has
stiffness Kh. Right- and left-hand quantities are labelled with
subscripts R and L respectively.

to the wheel carrier body, with a tire force FTL applied at
the wheel’s ground contact point. Six motion constraints
derive from the fixed lengths of the six suspension elements.
If we suppose that Pi and Qi are vector representations of the
corresponding points in Figure 2 (A) (expressed in a common
reference frame), then the magnitudes of each of the six
differences Pi −Qi (lengths) must be fixed too. That is

‖Pi −Qi‖22 = l2i i = 1, · · · , 6 (1)

in which the lengths li are constant. A steering angle δ results
in a displacement of the steering rod mount point in the y-axis
direction, which is proportional to the radius r of the steering
pinion

P5 =
[
0 −rδ 0

]T
+ P 0

5 ; (2)

P 0
5 is the straight-running position of P5.
These equations determine a hypersurface over which the

twelve points in Figure 2 (A) must move. In order to describe
points that are fixed in the wheel carrier, in the car’s reference
frame, we need to recognise the relative motion of the two.
There are six degrees of relative motion movement that are
constrained by (1).

The translational freedoms of the wheel carrier (relative to
the car) are

D =
[

∆x ∆y ∆z
]T
. (3)

The rotational freedoms of the wheel carrier relative to the
vehicle’s chassis are described in terms of the elementary
rotations Rx(φ), Ry(θ) and Rz(ψ), which are described by
(4) in which sφ and cφ are the sine and cosine, respectively,
of φ. The same notation is used for θ and ψ. As a result

xci = Rz(ψ)Rx(φ)Ry(θ)xwi +D (5)

describes a point xwi that is fixed in the wheel carrier in
the chassis frame. When working with (1) all points are
referred to the chassis frame. Equations (1) and (5) provide
six motion constraints that determine the kinematic behaviour
of the suspension system.

As shown in Figure 3, the left- and right-hand sides of the
suspension system are coupled through a heave spring (and a
parallel damper which is not shown) and a rocker assembly.
The right- and left-hand rockers are mounted on torsion bars
with stiffnesses Ktr and Ktl respectively. The two rockers
are also coupled by an anti-roll bar that resists chassis roll.
This is represented by a moment (αR + αL)Karb applied to
each rocker, in which αR and αL are the right- and left-hand
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Fig. 2: Front-left suspension configuration of a typical Formula One car with a push rod suspension system. The axis system
OCxyz is fixed in the car body, while OWxyz is fixed in the wheel carrier with its origin at the wheel’s geometric centre.
Figure (A) shows points Pi in the car chassis (with points P1 · · · , P4 fixed in the car chassis), the points Qi are fixed in
the wheel carrier, and the wishbones l1 · · · , l4, the push rod l5 and the track rod l6. Figure (B) is a free body diagram of
the front-left wheel carrier. The reaction force magnitudes are given by RLi with their directions given by the vectors d̂i for
i = 1, · · · , 6.

Rx(φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

 Ry(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 Rz(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 (4)

rocker angles. The anti-roll bar stiffness is denoted by Karb.
In Figure 3 FPL and FPR are the magnitudes of the right-
and left-hand push rod forces, P6L and P6R are the push rod
attachment points, PHL and PHR are the end points of the
heave spring, RRPL and RRPR are the rocker pivot points
and Kh is the heave spring stiffness.

In order to compute a moment balance for the rockers, we
introduce the rotation matrix R = R(n, α) that describes a
rotation through α around the unit vector n:

R(n, α) = cos(α)I + (1− cos(α))nnT + sin(α)S(n) (6)

in which the skew-symmetric matrix S(n) is defined by

S(n) =

 0 −nz ny
nz 0 −nx
−ny nx 0

 . (7)

Taking moments around the pin joint PRPL gives

0 = (FPL(R(nRL, αL)(P6L − PRPL))× d̂6).nRL

+(Fheave(R(nRL, αL)(PHL − PRPL))× d̂hs).nRL

−KtlαL −Karb(αL + αR) (8)

in which nRL is the left rocker pivot rotation axis, d̂6 is a unit
vector in the direction of l6, d̂hs is a unit vector in the heave
spring direction pointing from PHL to PHR, Fheave is the
heave spring force magnitude, ‘.’ represents the dot product
and × represents the cross product.

In the same way one can take moments around PRPR to
obtain

0 = (FPR(R(nRR, αR)(P6R − PRPR))× d̂6).nRR

−(Fheave(R(nRR, αR)(PHR − PRPR))× d̂hs).nRR

−KtrαR −Karb(αL + αR) (9)

in which the various term in (9) must be interpreted in the
context of the right-hand suspension assembly. The heave
spring force Fheave is a function of the change in its length,
and is given by

Fheave = kh(∆L)∆L (10)

in which ∆L = |PHR − PHL| − L0 with L0 the unloaded
length. In general, the heave spring stiffness is non-linear and
tends to ‘harden’ as it is compressed.

The equations of motion describing the suspension system
will now be determined using force and moment balances with
the aid of the free body diagram shown in Figure 2 (B). We
will suppose that the reaction force acting at point Qi has
magnitude RLi and acts in direction d̂i. It should be noted that
although the reaction forces are vector-valued quantities, it is
only the magnitudes of these vectors that are unknown, since
their directions are determined by the kinematic constraints.
The external forces acting on the wheel carrier are the tire
force FTL, and the gravitational force due to the wheel
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carrier’s mass mL, which is given by

FLg =
[
0 0 −mLg

]T
. (11)

The tire force FTL and the gravitational force FLg are
expressed in the chassis reference frame, which is assumed
for present purposes to be aligned with the inertial frame.
Summing forces on the left-hand wheel carrier gives

0 = FTL + FLg +RL1d̂1 +RL2d̂2 +

RL3d̂3 +RL4d̂4 +RL5d̂5 + FPLd̂6 (12)

in which RL6 = FPL is the force acting on the left-hand
rocker. This equation provides three scalar equations in the
six left-hand unknown reaction force magnitudes. A similar
force balance on the right-hand front wheel carrier gives

0 = FTR + FRg +RR1d̂1 +RR2d̂2 +RR3d̂3 +

RR4d̂4 +RR5d̂5 + FPRd̂6, (13)

where RR6 = FPR is the force acting on the right-hand
suspension rocker. In this case

FRg =
[
0 0 −mRg

]T
(14)

with the d̂i’s interpreted in a like manner in the context of the
right-hand front wheel. This equation provides another three
equations in the six right-hand reaction force magnitudes.

As we will now show the remaining equations come from
moment balance calculations. To begin, we define a set of
vectors that point from point Q1, which is fixed in the wheel
carrier, to points Qi i = 2, · · · , 6, OW and the tire ground
contact point QGC . These vectors are given by d12, d13, d14,
d15, d16, d1W and d1GC respectively. With the exception of
d1GC , these vectors are known and fixed in the wheel carrier.

In order to find the vector d1GC , which represents a moving
point in the wheel frame, we need to study the geometry of
the ground contact point. To that end we introduce the vector
êw = [0 1 0]T , which is fixed in the wheel carrier, and points
in the direction of the wheel spindle. The wheel spindle unit
vector, expressed in the car frame, is thus given by

êcw = Rz(ψ)Rx(φ)Ry(θ)êw. (15)

If the pitch and roll of the car relative to the road is ‘small’,
the unit road-normal expressed in the chassis frame can be
approximated by êrn = [0 0 1]T . This means that the vector
pointing from the wheel centre to the ground contact point is
given by

rw = − êcw × (êcw × êrn)

‖êcw × (êcw × êrn)‖2
Rfw(FTL) (16)

and so d1GC = rw+d1W . The loaded tire radius characteristic
used here is given by

Rfw = 326.0 + 4.00× 10−3FTL + 4.075× 10−8F 2
TL, (17)

in which FTL is the normal tire load expressed in Newtons;
this impirical formula is based on tire-squash measurements.

Taking moments around Q1 in Figure 2 (B) gives

0 = MTL + d1GC × FTL + d1W × FLg +RL2(d̂2 × d12)

+RL3(d̂3 × d13) +RL4(d̂4 × d14) +RL5(d̂5 × d15)

+RL6(d̂6 × d16). (18)

A similar calculation for the front right wheel gives

0 = MTR + d1GC × FTR + d1W × FRg +RR2(d̂2 × d12)

+RR3(d̂3 × d13) +RR4(d̂4 × d14) +RR5(d̂5 × d15)

+RR6(d̂6 × d16) (19)

in which the vectors d̂2, · · · , d̂6, d1GC and d12, · · · ,d16 must
be interpreted in an analogous manner in the context of the
right-hand suspension.

In sum, equations (1) are used to determine the right- and
left-hand Euler angles and the right- and left-hand wheel
carrier displacements in (3); twelve variables in total. Equa-
tions (8) and (9) determine the two rocker angles. Equations
(12), (13), (18) and (19) determine the twelve right- and left-
hand push rod force magnitudes. Equations (1), (8), (9), (12),
(13), (18) and (19) can be solved for the twenty six un-
knowns associated with each axle using the nonlinear equation
solver fsolve in MATLABTM. Figure 4 illustrates the force-
displacement behaviour of the front-left suspension system as
a function of the normal tire load; the front-right hand tire is
assumed un-loaded. It is evident from Figure 4 that the wheel’s
camber and toe angles vary very little as a result of normal
load variations. This figure also shows that the suspension
movement resulting from normal load variations is almost
entirely in the vertical direction. The conclusions relating to
Figure 4 are not necessarily general ones, and relate only to the
particular race car suspension geometry being studied here.

A. Aerodynamic and suspension metamodels

Given its complexity, the suspension model described by
Equations (1), (8), (9), (12), (13), (18) and (19), and the
tire squash, are replaced by a metamodel, which acts as a
“surrogate” for these equations. The intention is to preserve
the accuracy of the physical kinematic model, while seeking
simultaneously to significantly increase its solution speed in
the context of optimal control calculations. The interested
reader is referred to [15] for a review of metamodelling in the
context of general engineering design optimisation. Models
based on approximating polynomials, splines, radial basis
functions, neural networks and Kriging are all discussed.

Since the suspension deflection is dominated by the normal
tire load, the tire moments MTL and MTR, the x- and y-axis
components of FTL and FTR, and the steering angle δ are
all set to zero in the aerodynamic force studies presented in
this paper. In these studies we make use of a SAE coordinate
system that is fixed in the road.

Figure 5 shows the rear axle of the car with its associated
roll angle and ride height. In its nominal configuration1 the
front ride height is hf0 = −14 mm, while the rear ride
height is hr0 = −74.1 mm. If the tire normal loads are swept

1The car is stationary on the garage floor.
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Fig. 4: Variations in the front-left wheel carrier camber angle, toe angle, and the ground contact point as a function of tire
vertical load. These results are expressed in an SAE coordinate sytem fixed in the car body - a right-hand rule is used for
angles.
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Fig. 5: Suspension and tire squash induced roll angle φr and
ride height hr at the rear axle; the car is driving into the page
and into a right-hand bend. The rear-axle ride height in the
nominal configuration is hr0 and is measured relative to the
reference plane (fixed in the car); see Drawing 7 in [16]. The
front axle is treated in the same way with φr, hr and hr0
replaced with φf , hf and hf0. The ride height is expressed in
the inertial coordinate system given by nx and ny .

from zero to -8 kN at the rear axle, the resulting ride height
and roll angle variations are shown in Figure 6. A similar
calculation was carried out for the front axle with the normal
tire loads swept from zero to -6 kN. Broadly similar results
were obtained, but are not shown, in the interests of reducing
length.

Figure 6 shows that the rear ride height varies between -
88 mm and -27 mm, with the rear axle roll angle ranging over
± 5o. The front ride height varies between -24 mm and 7 mm,
while the front axle roll angle varies over the ± 2.4o range.
Under cornering conditions the car rolls out of the bend and
so right-hand corners result in negative roll angles; this is the
situation illustrated in Figure 5. As the tire loads increase, the
car moves towards the road (in the positive nz-axis direction;
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Fig. 6: Rear axle ride height and roll angle variations as a
function of right- and left-hand normal tire load changes. The
left-hand plot shows the rear axle ride height, while the right-
hand plot shows the rear axle roll angle.

see Figure 5).2

In optimal lap time simulations it will be necessary to
perform suspension deflection calculations many times over
and so it is necessary to perform these calculations fast. To
that end we will fit multivariate polynomials to pre-computed
data of the type shown in Figure 6 using the least squares
algorithm describe in the Appendix. The smooth (and almost
linear) nature of the ride height and roll angle data shown in
Figure 6 suggests that this data can be accurately represented
by relatively low-order multivariate polynomials. Table I gives

2The fact that the reference frame can pitch relative to the road means that
ride heights can take on positive and negative values within the suspension’s
operating range.
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- 1 Fl Fr F 2
l FlFr F 2

r

hf -21.52 -2.513 -2.513 -0.08324 0.1126 -0.08324
φf 0 0.00851 -0.00851 0.000256 0 -0.0002562
hr -89.04 -4.1305 -4.1305 -0.09450 0.1119 -0.09450
φr 0 0.0112 -0.0112 6.1×10−05 0 -6.1×10−05

TABLE I: Multivariate polynomial coefficients of the front-
and rear-axle ride height (in mm) and roll angle (in rad) in
Graded Reverse Lexicographic Order. The left- and right-
wheel normal loads Fl and Fr, respectively, are given in (kN).

the coefficients associated with the multivariate polynomial
descriptions of the rear- and front-axle ride height and roll
angles. Despite the relatively low order of these polynomial
descriptions, the largest rear axle ride height error across all
mesh points is only 0.03 mm with a corresponding maximum
roll angle error of 0.027o. The largest front axle ride height
error across all mesh points is 0.147 mm with a corresponding
maximum roll angle error of 0.038o.

The external forces acting on the car come from the tires and
from aerodynamic influences. The dynamic car model used in
the optimal control calculations compute the normal tire loads
Fzrr · · ·Fzfl, and the steering and side slip angles δ and β,
respectively, for each track location on an optimal lap. As
shown in Figure 7 these data are supplied to the suspension and
aero models to produce the aerodynamic coefficients, which
are then updated continuously. The front and rear axle down
force coefficients are given by CfL and CrL respectively, while
the drag coefficient is CD. The resulting aerodynamic down
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Fig. 7: Quasi-static aero-suspension model. The dynamic
model generates the normal tire loads, and the steering and
side-slip angles, while the quasi-static meta model generated
the aero dynamic drag and down force coefficients.

forces are computed using

F faz =
1

2
CfL ρAu

2, (20)

F raz =
1

2
CrL ρAu

2, (21)

which are applied at the centres of the front and rear axles,
while the drag is given by

Fax = −1

2
CD ρAu

2, (22)

which is applied at the car’s mass centre. The drag has a
negative sign, since it acts in the negative x-axis direction. The
drag and down-force coefficients used in this study derive from
track and wind tunnel measurements and are given in Table II.
These coefficients are responsive to the front and rear ride
heights, the side-slip angle (β); see Figure 10, and the steer
(δ) and roll (φ) angles.

CfL CrL CD Input
1.2000 0.9494 0.9455 Nominal Value
10.0000 1.0000 0.1000 hf (m)
-5.0000 -22.2222 -0.1000 hr (m)

0 -222.2222 0 h2
r (m2)

-5.1294 -10.2588 0 β2 (rad2)
-0.1641 -0.1641 0 δ2 (rad2)
-8.2070 -32.8281 0 φ2 (rad2)

TABLE II: Down force and drag coefficients and sensitivities.

III. CAR AND TRACK MODEL

The car model used in this paper is an extension of one that
has been used elsewhere [12]–[14], and so will be described
only briefly. A similar model described in [17], although the
hyper-static structure associated with the under-determined
normal force system at the wheels is dealt with in a different
way. Relative to prior art models, the key upgrades relate to the
introduction of a suspension system, and the introduction of an
aerodynamic model that is responsive to the car’s disposition
relative to the road and its direction of travel.

In order to study suspension-related influences, one might
consider augmenting existing vehicle models with dynamic
suspension models, and main-body heave, roll and pitch
freedoms, which would inform the aerodynamic maps given
in Table II with the appropriate ride height and body-angle
information. A model of this type would be complex, since
it would have to include three new main-body freedoms
and the multi-link suspension system described in Section II.
Another complication, from an optimal control perspective,
related to the fact that the suspension dynamics would contain
‘fast’ dynamics requiring a fine integration mesh. Rather than
pursuing this line of investigation, we will use the quasi-static
meta model given in Table I to compute the front- and rear-
axle ride heights, and the front and rear vehicular roll angles.
These suspension-related variables are then fed diretly into the
aerodynamic map — see Figure 7

If one wishes to model the car body as ‘rigid’, the front- and
rear-axle roll angles can be constrained in the optimal control
problem to be equal. The remaining modelling elements are
now described briefly, with further details widely available in
the literature.

As has been explained elsewhere [12], [13], [18], the track
and car kinematics are modelled using ideas from classical
differential geometry. The car model is standard and is based
on a rigid-body representation of a chassis with longitudinal,
lateral and yaw freedoms. We will use the tire description
given in [19] in combination with the upgraded aerodynamic
model given in Table II. The important geometric modelling
quantities are shown in plan view in Figure 8.

A. Track Model

We will model the track using a curvilinear coordinate
system that follows the vehicle using the track spine (centre
line) position as the curvilinear abscissa [20]. Referring to
Figure 9, we describe the location of the mass centre of the
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b a
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yb

Fig. 8: Plan view of a Formula One car with its basic geometric
parameters. The car’s mass centre is at Mc, with the body-fixed
axes xb and yb in the ground plane beneath Mc.

vehicle in terms of the curvilinear abscissa s(t) and the vector
n(s(t)). The former quantity defines the distance travelled
along the track centre line, while the latter gives the position
of the vehicle’s mass centre in a direction perpendicular to
the track spine tangent vector t(s(t)). It is assumed that the
travelled distance s(t) is an increasing function of time, and
that ‘time’ and ‘distance’ are alternate independent variables.
The standard dot notation will be used to signify derivatives
with respect to time. At any point s, the track’s radius of
curvature is given by R. The track spine tangent vector t
will be described in terms of the track orientation angle θ,
with the track’s (possibly unequal) half-widths given by Nr
and Nl. The yaw angle of the vehicle is given by ψ and the
angle between the vehicle and the track by ξ; ψ = θ + ξ.
In this coordinate system constraints on the track width are
easily expressed in terms of constraints on the magnitude of
n. The car and track kinematics have been extended to three
dimensions in [14] and [18].

s

ZNr
R

θ

nx

ny n t

ψ
ξ

Fig. 9: Curvilinear-coordinate-based description of a track
segment Z . The independent variable s represents the elapsed
centre-line distance travelled, with R(s) the radius of curva-
ture and Nr(s) is the the track’s right-hand half-width; nx and
ny represent an inertial reference frame.

It follows by routine calculation [12] that

ṡ =
u cos ξ − v sin ξ

1− nC , (23)

in which u and v are the longitudinal and lateral components
of the car’s velocity. This equation shows how the car ‘drags’
s along the track’s spine. The rate of change of n is given by

ṅ = u sin ξ + v cos ξ. (24)

Differentiating ψ = ξ + θ with respect to time results in

ξ̇ = ψ̇ − Cṡ. (25)

1) Change of Independent Variable: The ‘distance trav-
elled’, rather than time, will be used as the independent
variable. This has the advantage of maintaining an explicit
connection with the track position, as well as reducing (by
one) the requisite number of state variables. Suppose

dt =
dt

ds
ds = Sf (s)ds,

where Sf comes from (23) as follows

Sf =

(
ds

dt

)−1

=
1− nC

u cos ξ − v sin ξ
. (26)

The quantity Sf is the reciprocal of the component of the
vehicle velocity in the track-tangent direction (on the centre
line at s). There follows

dn

ds
= Sf (u sin ξ + v cos ξ) (27)

from (24), and
dξ

ds
= Sfω − C (28)

from (25); ω = ψ̇ is the vehicle yaw rate.

B. Car Model

Each tire produces longitudinal and lateral forces that are
responsive to the tires’ slip [21]. These forces together with
the steer and yaw angle definitions are illustrated in Figure 10.

nx

ny

uv

ψ
β

δ

δ

Frlx
Frly

Frrx
Frry

Fflx

Ffly

Ffrx
Ffry

Fig. 10: Tyre force system. The car’s yaw angle is given by ψ
relative to the inertial reference frame nx and ny . The body
side-slip angle is given by β = tan−1

(
v
u

)
, where u and v are

the longitudinal and lateral components, respectively, of the
car’s mass centre velocity.
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Balancing forces in the longitudinal and lateral directions,
while also balancing the yaw moments, gives

M
d

dt
u(t) = Mωv + Fx

M
d

dt
v(t) = −Mωu+ Fy

Iz
d

dt
ω(t) = a (cos δ(Ffr y + Ffl y) + sin δ(Ffr x + Ffl x))

+wf (sin δFfr y − cos δFfr x)− wrFrr x +

wf (cos δFfl x − sin δFfl y) + wrFrl x −
b (Frr y + Frl y) , (29)

in which Fx and Fy are the longitudinal and lateral forces,
respectively, acting on the car. These forces are given by

Fx = cos δ(Ffrx + Fflx)− sin δ(Ffry + Ffly)

+(Frrx + Frlx) + Fax (30)
Fy = cos δ(Ffry + Ffly) + sin δ(Ffrx + Fflx)

+(Frry + Frly) (31)

in which Fax is the aerodynamic drag force. These equations
can be expressed in terms of the independent variable s as
follows:

du

ds
= Sf (s)u̇ (32)

dv

ds
= Sf (s)v̇ (33)

dω

ds
= Sf (s)ω̇. (34)

C. Tyre Forces

The tire forces have normal, longitudinal and lateral com-
ponents that act on the vehicle’s chassis at the tire ground
contact points and react on the inertial frame. The rear-
wheel tire forces are expressed in the vehicle’s body-fixed
reference frame, while the front tire forces are expressed in
a steered reference frame; refer again to Figure 10. In each
case these forces are a function of the normal load and the
tire’s longitudinal slip coefficient κ and a slip angle α; further
details are available in [12].

1) Load Transfer: In our optimal control codes the tire
normal forces are treated as time-varying non-positive inputs
normal to the ground plane that must be constrained by the
laws of mechanics. To this end we balance the forces acting
on the car in the nz direction and balance moments around
the body-fixed xb- and yb-axes; see Figure 8. Balancing the
vertical forces gives

0 = Frrz + Frlz + Ffrz + Fflz +Mg + F faz + F raz, (35)

in which the F··z’s are the vertical tire forces for each of its
four wheels, g is the acceleration due to gravity, and F faz and
F raz are the front and rear, respectively, aerodynamic down
forces acting on the car. Balancing moments around the car’s
body-fixed xb-axis gives

0 = wr(Frlz − Frrz) + wf (Fflz − Ffrz) + hFy, (36)

in which Fy is the lateral inertial force acting on the car’s
mass centre; see (31). Balancing moments around the car’s
body-fixed yb-axis gives

0 = b(Frrz+Frlz+F raz)−a(Ffrz+Fflz+F faz)+hFx, (37)

where Fx is the longitudinal inertial force acting on the car’s
mass centre (see (30)).

Equations (35), (36) and (37) are a set of linear equations in
four unknowns. A unique solution for the tire loads is obtained
by including the suspension-related roll constraint

φf = φr, (38)

which ensures that the front- and rear-axle roll angles are the
same; see Figure 5. Equation (38) enforces a rigid vehicular
main body, which is not the same as using a suspension roll
stiffness parameter [12]–[14].

D. Wheel Torque Distribution

In order to optimise the vehicle’s performance, one needs to
control the torques applied to the wheels. The braking system
applies equal pressure to the brake callipers on each axle,
with the braking pressures between the front and rear axles
satisfying a design ratio, which is stipulated by the Formula
One technical regulations [16]. The drive torques applied to
the rear wheels are controlled by a differential mechanism.

1) Brakes: We approximate equal brake calliper pressures
with equal braking torques when neither wheel on a particular
axle is locked. If a wheel ‘locks up’, the braking torque applied
to the locked wheel may be lower than that applied to the
rolling wheel. For the front wheels this constraint is modelled
as follows

0 = max(ωfr, 0) max(ωfl, 0)(Ffrx − Fflx), (39)

in which ωfr and ωfl are the angular velocities of the
front right and front left wheel, respectively. If either road
wheel ‘locks up’, the corresponding angular velocity will be
non-positive and the braking torque constraint (39) becomes
inactive.

2) Differential: The drive torque is delivered to the rear
wheels through a limited-slip differential, which is modelled
by

R(Flrx − Frrx) = −kd(ωlr − ωrr), (40)

in which ωlr and ωrr are the rear-wheel angular velocities, R is
the wheel radius and kd is a torsional damping coefficient. The
special cases of an open- and a locked-differential correspond
to kd = 0 and kd arbitrarily large respectively. Limited
slipping occurs between these extremes.

IV. OPTIMAL CONTROL

General purpose numerical optimal control problem solvers
are now widely available. When solving new problems for
the first time, it is prudent to check the solutions from mul-
tiple initial conditions, and if possible against measured data.
One should also verify that parameter changes produce the
trends expected, and if possible, consistency against alternative
optimisation algorithms should be checked. Other important
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issues include: (A) the selection of a suitable discretisation
technique; (B) scaling the problem; (C) the approximation
of non-smooth features; (D) regularization when the problem
when the solution contains singular arcs; (E) the efficient
computation of gradients and (F) mesh refinement strategies.
The reader may wish to consult [12]–[14], [18] for further
information on the practical implementation of numerical
optimal control solvers in the motor sport context.

We will use a direct numerical method based on an orthogo-
nal collocation technique to solve the optimal control problems
studied here.

A. Continuous-Time Problem

A wide class of optimal control problems can be posed in
the Mayer-Pontryagin form. The more familiar Bolza formu-
lation can be converted into this form if so desired [22].

Suppose the system to be controlled is described by the
state-space model:

dx

dτ
= f (x(τ), u(τ), τ) x(−1) = x0, (41)

where f : Rn × Rm → Rn, with the intial value of the
state-vector x given by x0; the controls are given by u.
The general optimisation interval [t0, tf ] can be transformed
into the interval [−1, 1], which is particularly well suited
to pseudospectral methods, with the affine transformation
t = (tf − t0)τ/2 + (tf + t0)/2. The control vector u may
be subject to control constraints with u ∈ U , where U is some
region in the control space. The problem may also have path
constraints, but these are omitted for clarity of exposition. The
optimization problem is to find a trajectory (i.e., a solution of
(41) consistent with the boundary and control constraints) and
that minimizes

Φ(x(1)) (42)

for some scalar function Φ(·) of the terminal state.
In accordance with any of the standard texts such as [23]–

[25], first-order necessary conditions for optimality are given
by the Pontryagin minimum principle (PMP)

u∗ = arg min
u
H(x, λ, u, τ), (43)

in which H is the control Hamiltonian

H(x, λ, u, τ) =< λ, f >, (44)

where < ·, · > is the inner product. The control u∗ is an
extremal control with λ an n-dimensional costate vector that
is a continuous function of time. In this notation (41) and λ
are given by

ẋ = ∇λH x(−1) = x0 (45)
λ̇ = −∇xH λ(1) = ∇Φ(x(1)). (46)

Equations (45) and (46), in combination, form a two-point
boundary value problem in which the initial state and the
terminal costate are specified. In the case of arcs for which u
is in the interior of U , assuming the existence and continuity
of the relevant partial derivatives, (43) implies that

∇uH = 0 (47)

with the weak Legendre-Clebsch condition

∇uuH ≥ 0 (48)

also satisfied.

B. Discretisation

The optimal control problems studied here will be solved
using GPOPS-II [26], which is a direct pseudospectral
method based on Legendre-Gauss-Radau (LGR) collocation
and Radau’s integration formula; see page 103 in [27]. In this
framework the state and controls are treated as parameters
on a finite collocation, or implicit integration mesh that is
determined by N Radau points (τ0, · · · , τN ). These points are
the roots of PN+1(−τ)+PN (−τ), in which PN (τ) is the N th-
degree Legendre polynomial; these roots lie in [−1, 1) with
one root at τ0 = −1 always. The Radau integration formula
is exact for polynomials of degree 2N − 2 and lower. In this
discretisation process the state is approximated in a basis of
Lagrange polynomials

Li(τ) =

N∏
j 6=i
j=0

τ − τj
τi − τj

i = 0, · · · , N. (49)

The point τ0 = −1 is not collocated and the time derivative
of the state is not approximated there. The state in (41) is
approximated by

x(τ) ≈
[
L0(τ) · · · LN (τ)

]  x(τ0)
...

x(τN )

 (50)

in which the state vector is treated as a row vector[
x1(τ) · · · xn(τ)

]
∈ Rn. This means that ẋ(τ1)

...
ẋ(τN )

 ≈
 L̇0(τ1) · · · L̇N (τ1)

...
. . .

...
L̇0(τN ) · · · L̇N (τN )


 x(τ0)

...
x(τN )

 .
(51)

The N × (N + 1) matrix on the right-hand side of (51) is
a constant differentiation matrix. If the first column of the
differentiation matrix in (51) is removed, the resulting N ×N
matrix is non-singular with its inverse an implicit Legendre-
Gauss-Radau integration matrix. Using this discretisation, the
optimal control problem given in Section IV-A can be trans-
formed into a nonlinear programming problem (NLP).

In some problems, including those studied here, the state
equation (41) and performance index (42) may be functions
of adjustable static parameters. In these cases the static param-
eters can be included as decision variables in the NLP decision
vector and optimised alongside the state and controls. These
details are explained in [26], which also provides a detailed
description of the general-purpose optimal control problem
solver GPOPS-II that is used to perform all the calculations
presented in this paper. The solution of similar problems,
using GPOPS-II, are described in [13], [14], where additional
references are provided.
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C. Scaling

Scaling can have a significant influence on the performance
of optimisation algorithms. One scaling methodology is to
transform variables from their original physical quantities
into dimensionless variables that have desirable optimisation
properties. In our work we take the length of the car to be
the fundamental unit of length — after scaling the car has a
dimensionless length of one. In the same way the fundamental
unit of mass is the mass of the car. To scale time we choose
a non-dimensional gravitational constant of unity and so a
time scale of

√
g/l0 is used in which l0 is the car’s length.

This scaling of the basic length, mass and time variables
induces a scaling on all the other physical quantities involving
acceleration, velocity, force, torque, power and so on. This
scaling scheme forces the NLP’s decision variables into a
‘more spherical’ space than that associated with the original
physical units.

D. Non-smooth features

Interior point nonlinear programming algorithms such as
IPOPT require first- and second-order derivative information
for the functions defining the cost and constraints. For this
reason non-smooth problem features have to be approximated
in a way that does not change significantly the problem’s
solution. Functions such as min(x, 0) and max(x, 0) have
undefined derivatives at x = 0, and are therefore approximated
[14]. One may also make use of max(a, b) = a+max(0, b−a).
In the case of |x|, one might use

|x| ≈
√
x2 + ε

in this case
∂

∂x

√
x2 + ε =

(
x√
x2 + ε

)
,

with the derivative approximation at x = 0 again well defined.
These approximations become more accurate as the value of ε
is reduced, with values in the range 10−5 ≤ ε ≤ 10−2 typical
for the results given here.

E. Regularisation

When the controls enter the system dynamics and perfor-
mance index linearly, the possibility of singular arcs exists.
If the control Hamiltonian ceases to be an explicit function
of the control variable u, no information about the optimal
control can be gleaned from the PMP; these problems are
referred to as ‘singular’. In other words, if H does not depend
upon u explicitly, the usual procedure of selecting u∗ so as
to maximize H breaks down and the PMP cannot determine
directly a unique optimal control as a function of the state
and costate variables. Instead, the optimal control must be
determined by a new set of necessary conditions [28]–[31].
All the general-purpose optimal control software known to
the authors assume the strong form of the Legendre-Clebsch
necessary condition (ie., ∇uuH > 0), and so these codes
cannot be used to solve problems containing singular arcs.

In order to avoid oscillatory solutions and non-convergent
NLP behaviour in these problems, it is often useful to intro-
duce into the performance index small terms that are quadratic
in the controls. These terms ensure, at least in theory, that the
Pontryagin Minimum Principle can be used to find the optimal
controls (for the perturbed problem). If these terms are ‘small’
relative to the elapsed time, they do not change the problem
in a significant way. In our case we used an index of the form

J =

∫ T

0

(1 +

m∑
i=1

εiu
2
i )dt (52)

in which the εi’s are small constants with the ui’s the controls.
This is clearly no longer a pure minimum-time problem, but it
is close to one if the ε’s are chosen sufficiently small. Instead
of using J as a measure of the minimum lap time, the ‘true’ lap
time is computed as a separate auxiliary state. In our case the
minimum value of J is of the order 80 s, while the computed
‘true’ lap time is typically 0.05 s smaller; these differences are
comparable with the changes obtained with variable numbers
of mesh refinement steps.

F. Computing gradients

Gradient-based methods for solving NLPs require the
derivatives of the objective function and constraints with
respect to the states and the controls. The most obvious way to
computing these derivatives is analytically, either by hand, or
by using a computer algebra package. While the exactness of
this approach is appealing, and generally results in faster rates
of convergence, it is burdensome to compute derivatives this
way. Another approach is to compute derivatives numerically
using finite differencing. In the case of forward differencing
one uses

df

dx
≈ f(x+ ∆)− f(x)

∆

in which ∆ is the step length. The difficulty with this approach
is that ∆ must be chosen small enough to provide a good
approximation to the derivative, but not so small that round-off
errors occur when calculating the difference f(x+∆)−f(x).
Another approach is complex-step differentiation, which is
both accurate and efficient [32], [33]. In the case of higher
order derivatives, a more general version of the complex-
step derivative approximation, called the multi-complex-step
derivative approximation, can be used as a way of computing
Hessians without truncation errors [34]. Another powerful
approach is automatic differentiation that computes function
derivatives to the precision that one would achieve using
analytic or symbolic differentiation. While any of these ap-
proaches can be used, in our experience automatic or symbolic
differentiation produce the most reliable results.

G. Mesh Refinement

The numerical solution of optimal control problems using
direct transcription methods involves three key steps: (A)
Transcribing the optimal control problem into a nonlinear
programming (NLP) problem using a numerical integration
scheme; (B) Solving the NLP and (C) Reviewing the accuracy
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of the solution and, if necessary, refining the mesh and re-
solving the (refined) problem. The accuracy and efficiency
of this process can be influenced by many things including
the choice of integration scheme, the solution mesh, the
mesh refinement strategy (if one is used), and the problem
characteristics themselves (cf. singular arcs, stiff and/or non-
smooth dynamics and/or rapidly varying path constraints).

In the case of global orthogonal collocation methods the
state and costate are approximated by polynomials over the
entire optimisation interval, with increased accuracy coming
from increasing the degree of the approximating polynomials
used. For problems with smooth solutions pseudospectral (or
orthogonal collocation) methods converge rapidly. In the case
of non-smooth problems, however, the convergence rate of
global pseudospectral methods will be slow (as the degree of
the approximating polynomial increases), and a poor approx-
imation may result even if high-degree polynomials are used.

In order to deal with non-smooth problems segmentation is
used with global orthogonal collocation techniques within each
segment. GPOPS II uses a two-tiered grid refinement strategy
that refines both the problem segmentation and the orthogonal
polynomial orders [35]. If the error across a particular segment
has a uniform behaviour, the number of collocation points is
increased. If the error at an isolated point within a segment is
significantly larger than the errors at other points within the
segment, the segment is subdivided. The interested reader can
refer to Figures 5 and 6 in [13] for an example of adaptive
grid refinement in a race car application.

V. RESULTS

As with earlier research [12], [13], the study presented in
this paper is based on minimum-time optimal laps of a 2D
model of the Circuit de Barcelona-Catalunya, which is shown
in Figure 11 (A). This particular track has sixteen corners
with their approximate distances from the start-finish given in
Figure 11 (B). The track’s corner distances are useful features
when seeking to understand the detailed behaviour of the car.

We will begin our study by considering the case when the
car’s suspension is ‘frozen’ in its nominal configuration (hf = -
14 mm and hr = -74.1 mm), and with an aero map that has no
angular sensitivities; in this case the last three rows of Table II
are set to zero. The optimal lap time is computed as 83.10 s
as shown in case (A) in Table III. Introducing the steer angle
sensitivity (row 6 in Table II) causes a marginal increase in the
lap time that is too small to compute reliably. As shown in row
(B), when the steer and sideslip sensitivities are recognised,
the lap time increases to 83.45 s.

The baseline car, corresponding to row (C) Table III, in-
cludes the aerodynamic coefficients given in Table II and
the suspension system described by Table I. Nominal values
for the car and tire parameters can be found in [12]. The
introduction of the suspension system means that the car has
roll and pitch freedoms and all the rows in Table II come into
effect. As compared with rows (A) and (B) in Table III, the
car will now benefit from increased down force due to reduced
ride heights at high speed, but it will also suffer the detrimental
effects of roll motions on the downforce coefficients.

Figure 12 (A) shows the whole-track speed profile of the
baseline car, with the optimal racing line for the baseline car
between turns 9 and 16 illustrated in Figure 12 (B); this figure
shows the trajectory of the car’s mass centre. In the optimal
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Fig. 12: Speed (A) and racing line (B) for one lap of the
Circuit de Barcelona; the red trajectory shows the car’s mass
centre. The suspension and aerodynamic parameters are set to
their baseline values; see row (C) in Table III.

control problem formulation used here the car’s mass centre
is constrained to remain within ±4 m of the track centre. The
track width is approximately 12 m on almost all parts of the
track. This constraint ensures that the car’s front wheels remain
on the track whatever the vehicle’s orientation (relative to the
track). This explains why the racing line in turn 10 appears
slightly conservative, where the track widens to approximately
20 m. A constraint set that allows for a variable width track,
and which ensures that each of the four wheels remain on
the track, is easy to implement, but takes longer to process.
The differences between the solutions with these alternative
problem formulations are not visible on plotted graphs and so
the more complex constraint formulation was not used.

Figure 13 shows that as the car accelerates out of turn 16
onto the 1 km straight towards turn 1, the air flow over the
front wing causes the front of the car to move closer to the
road under the influence of increased down force.
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Fig. 13: Suspension ride heights and roll angles with the
suspension and aerodynamic parameters set to their base-case
values; see row (C) in Table III. The left-hand figure shows
the vehicle speed (black dot-dash), the front ride height (blue)
and the rear ride height (red). The right-hand diagram shows
the front and rear axle roll angles, which are constrained to
be equal in the optimisation process; see equation (38).

The car’s increasing speed, and the increased airflow under
the vehicle, also causes the car’s rear axle to move closer to the
road. The high-speed straight running car operates with a very
small roll angle on this section of the track. Figure 13 shows
these increased ride heights (in road-fixed SAE coordinates)
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Fig. 11: Plan view of the Circuit de Barcelona-Catalunya with its corner numbers and the start-finish line (SF); the axes are
in (m). Table (B) gives the approximate distances to the mid corner (in metres from the start-finish line).

between track positions 4400 m and 600 m, relative to the start-
finish line, with an essentially zero roll angle over this track
section. As the car’s speed drops into the right-hand turn 1,
the cars suspension is unloaded and car moves away from the
track surface, with the vehicle simultaneously rolling out of
the corner; see the roll angle decrease at 725 m. Following
on immediately after turn 1, is the left-hand corner 2, which
causes the roll angle to switch from approximately -1.8o to
1.8o. As the car accelerates towards turn 3, the vehicle moves
closer to the track with the roll angle remaining negative in the
long, fast right-hand corner 3. Figure 13 illustrates the speed,
roll angle and ride heights of the car as it traverses the rest
of the track. The roll angle and ride heights are derived from
the normal tire loads and the suspension meta model given
in Table I. The variations in the suspension posture produce
changes in the aerodynamic drag and down force coefficients
in accordance with Table II. These changes, as well as the
accompanying changes in the drag and down forces, are shown
in Figure 14. It is evident that the drag Coefficient CD is
essentially constant (at approximately 0.95). To explain this,
we observe that the aerodynamic model in Table II shows that
the drag is linearly dependent on the difference between the
front and rear ride heights; CD = 0.9455 + 0.1(hf − hr).
Further, a pitch angle of 1o, which is large for a F1 race car,
would produce a ride-height difference of about 59mm. This
difference represents a change of 0.006 to the drag coefficient.
For that reason the drag coefficient is not significantly affected
by suspension pitch movements, or differential ride height
variations. In contrast the down force coefficients CfL and CrL
vary significantly between approximately 1.3 and 1.6. It is also
evident that the total down force reaches approximately 20 kN,
which is roughly 3.5 times the weight of the car.

The remainder of Table III shows the effect on the optimal
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Fig. 14: Aerodynamic coefficients (left) and aerodynamic
forces (right) with the suspension and aerodynamic parameters
set to their base values; see row (C) in Table III. The drag force
and drag coefficient are shown in black, the front down force
and down force coefficient are shown in blue, and the rear
down force and down force coefficient are shown in red.

lap time of a variety of suspension and aerodynamic set up
changes, some of which act in combination. In row (D) the
front and rear ride heights can be adjusted by ± 10mm and
± 30mm respectively. In order to minimise the lap time, the
optimiser finds that the front ride height should be maximised,
while the rear ride height should be adjusted by 12.7 mm.
It appears that the rear ride height adjustment is effectively
optimising the aerodynamic balance of the car (the position
of the aerodynamic centre of pressure). These ride height
adjustments reduce the predicted lap time by 0.50 s.

In the next three tests, rows (E-G) in Table III, the effect of
changing the aerodynamic sensitivities to side slip, steer and
roll are investigated. If the changes in the yaw, steer and roll
sensitivities are ∆CψL , ∆CδL and ∆CφL, then changes in the
nominal down force coefficients ∆CL is constrained by

∆CL = −
(
w1∆CψL + w2∆CδL + w3∆CφL

)
wi ≥ 0,
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— ∆Rrh ∆Frh
∂CL

∂ψ2
∂CL

∂δ2
∂CL

∂φ2 Aero Balance a Lap Time

(A) Rigid suspension
(no aero sensitivities)

— — — — — — 83.10

(B) Rigid suspension
(with aero sensitivities)

— — — — — — 83.54

(C) Suspension BaseLine — — — — — — 84.55

(D) RH offsetb 0.0127 0.01 — — — — 84.05

(E) Side slip sensitivity — —
-10

-5c
— — — 84.43

(F) Steer angle sensitivity — — — -0.15
-0.15 — — 84.55

(G) Roll angle sensitivity — — — — 20
5 — 84.44

(H) Fixed aero balance — — — — — 0.1936 83.66

(I) All-angle sensitivity
RH and aero balance

0.0015 0.01
-10

-5

-0.15

-0.15

20

5
0.2200 82.75

(J) Point-wise aero balance — — — — — Continuous 82.49

a Positive values move the aero-dynamic centre of pressure rearwards.
b Optimised ride height offset in metres.
c Front axle quantities are in the North-East corner.

TABLE III: Aero-dynamic properties of the car and suspension. All data is associated with a racing lap of Barcelona.

for weights wi. The purpose of this constraint is to ensure
that the optimisation process is not offered a ‘free lunch’,
whereby the benefits of reducing the aerodynamic sensitivities
can be introduced without reducing the nominal down force
coefficient in compensation. One example of a constraint of
this form is a water-bed constraint that preserves the “area
under the aerodynamic down force curves”. In this case the
change in the nominal down force coefficients are given by

0 =

∫ ψmax

−ψmax

∫ δmax

−δmax

∫ φmax

−φmax

(
∆CL + ∆CψLψ

2

+∆CδLδ
2 + ∆CφLφ

2
)
dψdδdφ,

which means that

∆CL = −
(
ψ2
max

3
∆CψL +

δ2
max

3
∆CδL +

φ2
max

3
∆CφL

)
(53)

in which ψmax = 4π
45 rad, δmax = π

12 rad and φmax = π
90 rad

are the ranges of validity of the aerodynamic maps.

In row (E) we allow the front and rear side slip aero-
dynamic sensitivities to be changed by ±5 and ±10 respec-
tively, with the down force coefficients constrained by (53).
The nominal values for these sensitivities are -5.1294 and -
10.2588 respectively; see the fifth row in Table II. In this case
the optimal strategy is to maximise the front and rear side slip
sensitivities (more negative values) in order to increase the
nominal front and rear down force coefficients. The associated
lap-time reduction is 0.12 s. In row (F) the front and rear steer
aerodynamic sensitivities are allowed to change by ±0.15.
The nominal values for these sensitivities are -0.1641; see the
sixth row in Table II. Again, the water bed constraint allows
a higher nominal down force coefficient to be ‘bought’ with
increased sensitivity. There is no discernible change in the
predicted lap-time in this case. In row (G) the front and rear
roll aerodynamic sensitivities are allowed to change by ±5 and

±20 respectively. The nominal values for these sensitivities
are -8.2070 and -32.8281 respectively; see the seventh row in
Table II. In this case the sensitivities are minimised thereby
decreasing the nominal front and rear down force coefficients.
The predicted lap-time reduction is 0.11 s.

In row (H) the aerodynamic balance of the car is adjusted by
facilitating a relocation of the aerodynamic centre of pressure.
The optimal control calculation is allowed to add a fixed
aero offset −1 ≤ aoff ≤ 1 to the nominal rear down force
coefficient of 0.9494; see Table II. If aoff is added to the rear,
then it is subtracted in compensation from the front nominal
down force coefficient of 1.20 in order to keep the total down
force constant. In effect, positive values move the centre of
pressure (CoP) rearwards, while negative values move the
CoP forwards. In the case of the vehicle, tires and aero map
used here, the optimal aero balance adjustment is to move the
CoP rearwards by aoff= 0.1936, with a resulting lap time
reduction of 0.89 s. Row (I) shows the effect of adjusting
the front and rear ride heights in combination with the three
aerodynamic sensitivities and the aero balance parameter aoff
described above. The optimal aero balance coefficient is 0.220,
with the front ride height dropped by the maximum 10 mm,
while the rear ride height is dropped by only 1.5 mm. It
appears that adjusting the aero balance coefficient renders
rear ride height adjustments virtually unnecessary, because
these changes produce the same effect. These changes, in
combination, reduce the predicted lap time of the base line
car by a significant 1.8 s.

The study given in row (J) treats the aero balance coefficient
as an idealised and continuously variable control input −1 ≤
uCoP (t) ≤ 1. The front down force coefficient is given by
CfL − uCoP (t), while the rear down force coefficient is given
by CrL + uCoP (t) thereby keeping CL = CrL + CfL constant.
Positive values of uCoP (t) move the CoP rearwards, while
negative values move the CoP forwards. Figure 15 shows the
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Fig. 15: Continuously adjustable aero-balance uCoP (blue) and
vehicle speed (red); see row (J) in Table III. The blue curve
shown a continuously variable aero-balance control; positive
values increase the rear down force coefficient.

aero balance control uCoP (in blue) with the vehicle speed
(red). The optimal strategy is to move the CoP rearwards under
firm acceleration when high normal loads on the rear tires are
required. The CoP is then moved forwards under braking and
prior to turning into corners when high front tire side forces are
needed. The influence of this hypothetical control is substantial
and reduces the lap time by over 2 s, thereby emphasizing the
importance of good aerodynamic balance.

By way of comparison, Figure 16 shows the changes in the
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Fig. 16: Aerodynamic coefficients (left) and aerodynamic
forces (right) with optimised suspension and aerodynamic
parameters (see row (I) in Table II). The drag force and drag
coefficient are shown in black, the front down force and down
force coefficient are shown in blue, and the rear down force
and down force coefficient are shown in red.

aerodynamic coefficients and aerodynamic forces produced by
optimised suspension and aerodynamic parameters; compare
with Figure 14. It is evident that the rear down force coefficient
has been increased with its minimum value rarely less than 1.4,
whereas this minimum is approximately 1.3 in the base case.
In the optimised case the front down force coefficient is rarely
less than 1.5, while this minimum is approximately 1.4 in the
base case. The increased front and rear down force resulting
from the optimisation process is self-evident, while there is
virtually no change in the vehicle’s drag force.

Figure 17 shows the effect of suspension and aerodynamic
parameter optimisation on the optimal lap speed profile. The
main optimisation gains appear to be on the long straight
between turn 16 and turn 1, the long high-speed turn 3, the
straight between turns 9 and 10, with some small benefit
achieved almost everywhere else.
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Fig. 17: Speed comparison between the baseline case (blue)
and the study with optimised ride heights, aero-balance and
aero-sensitivities (red); see rows (C) and (I) respectively in
Table III. The right-hand plot shows the speed difference;
positive values indicate that the optimised car is faster.

VI. CONCLUSION

Pseudospectral methods for solving numerical optimal con-
trol problems are a useful tool for the aerodynamic perfor-
mance optimisation of high-performance race cars. The results
presented in this paper focus on the interactions between
the vehicle’s aerodynamic performance and its suspension
system. The kinematics of multi-link suspension systems that
are typical of open-wheeled race cars involve the solution of
a complex set of nonlinear algebraic equations. One source
of complication are the torsion bars and heave spring rocker
assemblies that produce coupling influences between the road
wheels on each axle. It is not practical, or necessary, to
include these equations in the vehicle dynamics model used
for optimal control calculations. Instead, the solution to these
equations can be accurately approximated by a multivariate
polynomial, or ‘meta’ model, which is fitted off-line to the
solution of the describing kinematic equations. In this way the
interactions between the car’s aerodynamics and its pull-rod
suspension system can be accurately represented by smooth
(almost linear) polynomials that can be quickly evaluated as
part of an optimal control calculation. It is shown that param-
eter optimisation problems, involving the car’s suspension and
aerodynamics, are readily soluble. The results demonstrate that
the track-specific optimisation of these systems can substan-
tially reduce the lap time. The specific figures will depend on
the track, the tire and vehicle properties, and the closeness of
the base vehicle to its optimal set up. This work suggests that
ever more complex vehicular optimisation problems may now
become tractable.
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APPENDIX

The set of all multivariate polynomials in n variables up to
degree d over the field of complex numbers C, together with
addition and multiplication with a scalar, form a vector space
Cnd . A basis for this vector space consists of all monomials
from degree 0 up to d. Since the total number of monomials in
n variables from degree 0 to degree d is given by q = (n+d)!

d!n! ,
it follows that dim(Cnd ) = q. The degree of a monomial
xa = xa11 · · ·xann is defined as |a| = ∑n

i=1 ai. The degree of a
polynomial p is the degree of the monomial of p with highest
degree. The terms of multivariate polynomials can be ordered
in different ways. A formal definition of monomial orderings
together with a detailed description of some orderings in
computational algebraic geometry is given in [36]; we will
use the Graded Reverse Lexicographic Order. In this ordering
system, a > b if |a| =

∑n
i=1 ai > |b| =

∑n
i=1 bi, or if

|a| = |b| and a >xel b, if in the vector difference a − b the
leftmost nonzero entry is negative. The ordering is ‘graded’
because it first compares the degrees of the two monomials
and then applies the >xel ordering when there is a tie.

Example (2, 0, 0) > (0, 0, 1), because |(2, 0, 0)| >
|(0, 0, 1)|, which implies that x2

1 > x3. Likewise, (0, 1, 1) >
(2, 0, 0), because (0, 1, 1) >xel (2, 0, 0) and so x2x3 > x2

1.
A monomial ordering allows a multivariate polynomial p to

be represented by a vector of its coefficients in a consistent
way. To do this one orders the coefficients in a row vector
that is induced by the chosen ordering system. Suppose that
p = 2 + 3x1 − 4x2 + x1x2 − 8x1x3 − 7x2

2 + 3x2
3 ∈ C2

3 ; since
5!

3!2! = 10, the associated basis is 10 dimensional. As a result
p can be represented by the vector of coefficients in graded
reverse lexicographic order

1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

2 3 −4 0 0 1 −8 −7 0 3

The least-squares fitting of multivariate polynomials to
given data is an easy extension of the univariate case. Suppose
that we wish to fit a multivariate polynomial of the form

[
1 x1 x2 · · · xdn

]

p1

p2

...
pq

 (54)

to given data, in which the terms are listed in graded reverse
lexicographic order. Since the of dimension of Cnd is q, we
will suppose from now on that we have k ≥ q independent
experimental outcomes, which can be stacked as (55) in which
e is a k-vector of errors, f is a k-vector of experiment
outcomes, and p is a q-vector of polynomial coefficients. More
compactly we have

e = f − Φp. (56)

Optimum values for the parameter vector p can be found by
completing the square

eTe = (p− (ΦTΦ)−1ΦTf)T (ΦTΦ)(p− (ΦTΦ)−1ΦTf)

+fT (Ik − Φ(ΦTΦ)−1ΦT )f . (57)

Since the first term on the right-hand side of (57) is non-

negative for any choice of p, the optimal polynomial coeffi-
cients come from making this term zero by setting

popt = (ΦTΦ)−1ΦTf (58)

with the resulting optimal estimation error

‖e‖22 = fT (Ik − Φ(ΦTΦ)−1ΦT )f . (59)
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