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Diagnostic Method Combining Look-up Tables and
Fault Models Applied on a Hybrid Electric Vehicle

Christofer Sundström, Erik Frisk, and Lars Nielsen

Abstract—A common situation in industry is to store mea-
surements for different operating points in look-up tables, often
called maps. They are used in many tasks, e.g. in control and
estimation, and therefore considerable investments in engineering
time are spent in measuring them which usually make them
accurate descriptions of the fault free system. They are thus well
suited for fault detection, but, however, such a model can not give
fault isolation since only the fault free behavior is modeled. One
way to handle this situation would be to also map all fault cases
but that would require measurements for all faulty cases, which
would be costly if at all possible. Instead, the main contribution
here is a method to combine the look-up model with analytical
fault models. This makes good use of all modeling efforts of
the look-up model for the fault free case, and combines it with
fault models with reasonable modeling and calibration efforts,
thus decreasing the engineering effort in the diagnosis design.
The approach is exemplified by designing a diagnosis system
monitoring the power electronics and the electric machine in
a hybrid electric vehicle. An extensive simulation study clearly
shows that the approach achieves both good fault detectability
and isolability performance. A main point is that this is achieved
without the need for neither measurements of a faulty system nor
detailed physical modeling, thus saving considerable amounts of
development time.

I. INTRODUCTION

Fault monitoring and diagnosis is used to detect and isolate
faults in a system. The importance of monitoring vehicle
powertrains increases with the vehicle complexity, and in [1]
diagnosis in the vehicle application is described. There are data
driven diagnostic approaches available [2], [3], but model based
approaches [4] are typically preferred in the automotive industry.
Examples of such methods from the artificial intelligence field
is consistency based diagnosis [5], [6], [7], and from the
control community there are techniques like parity equations
[8], variable elimination [9], parameter estimation [10], state-
observers [11], [12], and residual generators [13].

A model based diagnosis system checks the consistency
between observations and a model of the system to be
monitored. The models are developed to different level of
detail, and a common approach in the automotive industry is to
use models including a look-up table containing measurement
data. These models are commonly called map based models,
and are directly calibrated from measurements of the non-faulty
case. In general these models are motivated by many tasks other
than diagnosis, and therefore considerable investments are made
in them. They are obtained after substantial calibration so they
accurately describe the outputs of the fault free system, which
directly results in good fault detection performance. However,
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one drawback with a map based model is the difficulty to isolate
faults from each other since internal physical phenomena are
not described by the model. One way to achieve fault isolability
using a map based model is to collect data when the faults
have occurred in the system to be monitored, which is a costly
solution due to the many fault cases. Another approach to
achieve good fault isolability is to use models that explicitly
describe how different faults affect the system to be monitored.
Depending on the fault mode, such models give different
reactions in behavior, both qualitatively and quantitatively,
and can therefore be used to separate faults from each other.
To achieve good diagnostic performance only using a model
explicitly including the faults, the model needs to be accurate
including detailed physical modeling, which also is costly.

A. Main idea and contributions

The main idea here is an approach to combine a carefully
measured look-up model for the fault free case with analytical
fault models that explicitly describe how the faults affect the
monitored system. The main goal is to achieve both good fault
detection and isolation performance with much less calibration
and engineering time compared to previous methods. It is
a way of making good use of all effort in calibrating the
map based model, and, further, compared to only using a
model explicitly describing the faults, less accurate models
that explicitly describe the faults can be used in the diagnosis
system based on a combination of models. Compared to a
preliminary version of the idea presented in [14], the concepts
have been clarified and generalized, but the most important
extension is in the analysis and simulation study. The approach
is applied to the design of a diagnosis system monitoring the
power electronics and the electric machine used in a hybrid
electric vehicle (HEV), where safety, component protection,
and high up-time of the vehicle are important. Evaluating the
new diagnostic approach, it is demonstrated that a main benefit
of the approach is that measurements of a faulty system is not
needed to achieve fault isolability. It is also demonstrated that
the approach decreases the accuracy demands on the model
used for fault modeling compared to designing a diagnosis
system without using the map based model.

B. Outline

The models used in the diagnosis design of the electric
machine are described in Section II, and in Section III these
models are combined to include fault models in the map based
model. The engineering value of using this combined model
in a diagnosis system is evaluated in Section V, and finally
the conclusions are given in Section VI.
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II. MODELS OF THE ELECTRIC MACHINE

In HEVs mainly permanent magnet synchronous machines
(PMSM) are used since this type of machine in general has
higher efficiency compared to other machine types [15], [16].
In this section two models of a PMSM are presented, that
later are used to illustrate the approach in the design of the
diagnosis system. The first model includes a map that describes
the power losses in the machine and is presented in Section II-A.
To model how faults affect the machine and power electronics,
which is not captured in the map based model, the second
model is based on analytical expressions and is presented in
Section II-B. Both these models are static since the dynamics
of the electric machine is considered fast compared to the
time scales used in the diagnosis systems, but the diagnostic
approach can be applied to dynamic systems as well.

A. Map based model
The map based model describes the power losses in the ma-

chine and the power electronics, and is based on measurements
to find the difference between the electrical and mechanical
powers. The inputs to the map of the power losses, Pmap

em,l is the
delivered torque, Tem, motor speed, ωem, and battery voltage,
Ub, as

Pmap
em,l = f(Tem, ωem, Ub) (1)

and the power losses are given in Figure 1. There are limitations
in the delivered torque from the machine, denoted Tem,min in
generator mode and Tem,max in motor mode, that are functions
of ωem and Ub. The delivered torque, Tem, is modeled to be
equal to the requested torque, Tem,req , if the requested torque
is within the limitations of what the machine is able to deliver

Tmap
em =

 Tem,min, Tem,req < Tem,min

Tem,req, Tem,min ≤ Tem,req < Tem,max

Tem,max, Tem,req ≥ Tem,max

(2)

The mechanical power delivered by the machine, Pem,m, is
used to calculate the electrical power

Pem,e = Pem,m + Pmap
em,l = Tmap

em ωem + Pmap
em,l (3)

The power electronics is included in the model and is assumed
to be an ideal component. The battery current, Ib, is computed
by dividing Pem,e with the battery terminal voltage, Ub

Ib =
Pem,e

Ub
(4)

B. Analytical model
A PMSM can be modeled as a separately excited DC motor

with constant field [17], since the stator of a PMSM consists
of windings, and the armature of permanent magnets. This
is done in the model based on analytical expressions, where
the resistive and frictional losses are modeled to represent the
losses of the machine. The torque is modeled to be proportional
to the current, Iem, except for the frictional losses that are
modeled to be proportional to ωem [18]

T a
em = kIem − cfωem (5)

where cf is a friction constant and k is a machine constant.
The current is calculated using the voltage, Uem, supplied by

1000

10
00

100
0

3000

3000

3
0
0
0

5000

5000

T
e
m
[N
m
]

ω
em

[rad/s]
200 400 600 800 1000 1200

−150

−100

−50

0

50

100

150

Fig. 1. The power losses [W] of the machine and power electronics. The solid
(thin) red lines show the measured losses in the map described in Section II-A,
the dashed lines the losses in the model described in Section II-B, and the
solid (thick) blue line the torque limitation of the machine.

the power electronics and the electromotive force, that depends
on the speed of the machine, ωem, as kωem

Iem =
1

Rem
(Uem − kωem) (6)

where Rem is the resistance in the electric machine. The power
losses in the machine are computed using

P a
em,l = UemIem − T a

emωem (7)

Substituting Uem and Iem from (5) and (6) gives

P a
em,l =Rem

(
(T a

em)2

k2
+

2cf
k2

ωemT
a
em+

c2f
k2
ω2
em

)
+cfω

2
em (8)

This model is fitted to the measured losses used in the map
based model. The parameters in the analytical model are found
by minimizing the least square error between (1) and (8), and
the parameters k, Rem, and cf are found to be 0.50 Nm/A,
0.065 Ω, and 0.0029 Nm/s, respectively. The battery voltage
is assumed to be the open circuit voltage, i.e. 250 V , when
using the map to find the losses. The power losses computed
in (8) are compared with the measured losses in Figure 1.

The power electronics is assumed to be an ideal component
also in this model, and the battery current is described by

Ib =
IemUem

Ub
(9)

1) Controller: The energy management operating on vehicle
level requests a torque, Tem,req , from the electric machine. The
machine controller computes a requested voltage, U ctrl

em , from
the power electronics in order for the machine to, if possible,
deliver the requested torque. The controller is an open loop
controller and U ctrl

em is computed by

U ctrl
em =

(
Tem,req

k
+
cf
k
ωem

)
Rem + kωem (10)

The model for the power electronics supplies this voltage to
the machine when the component is fault free, i.e.

Uem = U ctrl
em (11)
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Fig. 2. Schematic structure of the map based model extended with ∆Tem

and ∆Pem,l to include the possibility to model faults in the machine.

III. COMBINING MAP WITH ANALYTICAL FAULT MODELS

As stated above, the map based model presented in Sec-
tion II-A is beneficial to model the nominal behavior of the
machine due to its high accuracy. However, the model has
the disadvantage that the parameters affected when a fault
has occurred are not explicitly included in the model. In the
fault free case, the map based model of the machine delivers
the requested torque, as long as the machine is capable of
delivering the torque, as can be seen in the schematic structure
of the model in Figure 2. The battery current, Ib, is calculated
using the mechanical power, Pem,m, and the power losses,
Pem,l, that is a map and depends on the operating points of
the machine, as described in Section II-A. The superscript NF
indicates a non-faulty signal, e.g. Tmap,NF

em is the nominal
delivered torque computed by (2).

The two main ways to model faults in a map based model is
to modify the input or output signals of the map. Here a fault
affecting the delivered torque is modeled to affect the input of
the map using ∆Tem according to Figure 2. This results in that
the power losses changes when there is a fault affecting the
delivered torque. A fault directly affecting the machine power
losses affects the output of the map, i.e. the battery current, and
is modeled using ∆Pem,l. Expressions for ∆Tem and ∆Pem,l

are derived in Sections III-A and III-B respectively.
Three fault modes are considered in the design of the

diagnosis systems described in Section V, and these faults
are also used to evaluate the diagnosis system in simulations.
Two of the faults affect the electric machine, by modifications
in the resistance of the machine and the lumped torque and
speed constant k used in the analytical model. A fault in the
power electronics is modeled to result in that the voltage on
the electric machine is not the requested voltage. The faults
are modeled as

k = knom(1 + fem,k) (12a)
Rem = Rnom

em (1 + fem,R) (12b)

Uem = U ctrl
em (1 + fpe) (12c)

where knom and Rnom
em are the nominal values of the parameters

and according to (11) Uem = U ctrl
em in the fault free case. Note

that the faults in (12) are examples of how a fault in the electric
machine and power electronics can be represented in the model.
However, the selected faults are important to monitor since
they affect the delivered torque from the electric machine, as

can be seen by combining (5) and (6) for the analytical model

T a
em = k

(
Uem

Rem
− k

Rem
ωem

)
− cfωem (13)

In the analytical model of the electric machine described in
Section II-B, it is straightforward to induce the faults described
in (12) since these parameters are included in the model. The
accuracy is however generally lower in this category of models
compared to the map based model. Therefore, the map based
model is used to model the fault free case, and the analytical
model is used to model the influence of the faults on the
electrical machine to achieve both good fault detection and
fault isolation performance.

A. Finding an expression for ∆Tem

From (13) it is seen that all three fault modes in (12)
affect the delivered torque of the electric machine, and is
here modeled according to

Tem = Tmap,NF
em + ∆Tem (14)

where ∆Tem is the difference between T req
em and Tem due

to a fault in the system. To find the expression for ∆Tem,
the torque delivered by the faulty machine is computed using
(13), and the delivered torque in the fault free case, T a,NF

em , is
also computed using (13), but with the nominal values of the
parameters in the machine. The parameters k and Rem, and
the voltage Uem used to calculate T a

em, include models for the
faults according to (12), and ∆Tem is expressed by

∆Tem = T a
em − T a,NF

em

=
k

Rem
(Uem − kωem)− knom

Rnom
em

(
UNF
em − knomωem

)
(15)

The voltages UNF
em and Uem are computed by (11) and (12c),

respectively, where U ctrl
em is used. The voltage U ctrl

em is not
modeled in the map based model, and is therefore computed
using the controller in the analytical model given in (10)
using the limited requested torque Tmap,NF

em computed by
(2). Information about if the system is faulty or fault free is not
assumed to be known in the controller of the machine where
U ctrl
em is set, and therefore Rem and k in (10) are the nominal

values even if there is a fault in the machine affecting these
parameters. The expression for U ctrl

em used to compute ∆Tem
and ∆Pem,l is thereby

U ctrl
em =

(
Tmap,NF
em

knom
+

cf
knom

ωem

)
Rnom

em + knomωem (16)

B. Finding an expression for ∆Pem,l

The expression for the power losses in the analytical model
is given in (8), and the expression states that fem,k and fem,R

affect the power losses in the model. The losses also considering
the faulty cases are modeled as

Pem,l = Pmap,NF
em,l + ∆Pem,l (17)

where Pmap,NF
em,l is the nominal map from (1), and ∆Pem,l

describes the difference in the power losses in the machine
in the fault free and faulty cases of the machine. The losses
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in the faulty case are computed by (8), and the losses in the
fault free case, P a,NF

em,l , are also computed by (8), but with
the nominal values of the parameters Rem and k. The torque
used in the computations of P a

em,l and P a,NF
em,l is the delivered

torque Tem from the machine in the map based model, see
Figure 2. The modifications in the power losses is computed
by

∆Pem,l = P a
em,l − P a,NF

em,l

=

(
Rem

k2
− Rnom

em

(knom)2

)(
T 2
em + 2cfωemTem + c2fω

2
em

)
(18)

IV. ISOLABILITY GAIN BY COMBINING MODELS

In this section the maximum theoretical isolability perfor-
mance of a diagnosis system based on the map based model is
discussed. A single-fault assumption is made in the diagnosis
system design since the probability for a fault to occur is
low in the automotive application. The theoretical isolability
performance using only the map based model is compared
with the performance when combining the map based model
with the fault models obtained in Section III.

A. Theoretical fault isolability using map based model

First, consider the case when using only the map based
model, without any fault models. There are three fault modes
to be monitored, see (12). On the basis of using only the map
based model, it is reasonable that all three faults affect the
delivered torque

Tem = g1(fem,k, fem,R, fpe) (19)

while the power losses only depend on the fault modes in the
electric machine since the power electronics is modeled as an
ideal component.

Pem,l = g2(fem,k, fem,R) (20)

Note that g1 and g2 also depend on other variables.
Based on these two equations it is obvious that it is not

possible to achieve full fault isolability, e.g. since both fem,k

and fem,R affects both equations and no information about
how the faults affect the system is available.

B. Theoretical fault isolability using a combined model

Now consider the case where fault models are used in
combination with the map. As stated in Section IV-A, fault
models are required to isolate the fault modes from each
other in the diagnosis system. Here the faults’ influence on
∆Tem and ∆Pem,l described in (15) and (18) are used in the
diagnosis system. It is assumed that the faults are constant or
slowly varying, and this is modeled as ḟ = 0. Note that the
parameters k and Rem, and the voltage Uem all are included
in the expression for Tem, and that the faults affect the torque
in different ways. This means that full fault isolability can be
achieved using only information about how Tem is modified
i.e. by only using (12) and (15). The information from how
the faults affect ∆Pem,l is however also used in the estimation
of the faults using observers in the next section.

V. DESIGN OF A DIAGNOSIS SYSTEM

To evaluate the influence of the new approach on the
diagnosis performance, residual generators are designed based
on 1) the combined model and 2) only the analytical model.
The residual generation approach used in the evaluation is a
state-observer design technique.

A. State space formulation of the model

The model considered below is the combined model of the
electric machine. The model is static since the dynamics of the
electric machine is fast compared to the time scales considered
here. In the model the faults are included as states, x1, that are
estimated in the observers. The model is given in the form

x1,t = x1,t−1 + ωt (21a)
x2,t = G(x1,t, ut) (21b)
yt = h (x1,t, x2,t, ut) + νt (21c)

where x2 is the vector of algebraic variables, u is the vector
of known input signals, ω is the uncertainty in the faults to
be estimated, ν is the measurement noise, and the subscript
t is the time index. The algebraic variables x2 and G(x1, u)
are from (1), (2), (3), (4), (11), (12), (14), (15), (16), and (18)
given by

k
Rem

Tmap,NF
em

U ctrl
em

Uem

UNF
em

∆Tem
Tem
Pem,m

∆Pem,l

Pmap,NF
em,l

Pem,e

Ib


︸ ︷︷ ︸

x2

=



knom(1 + fem,k)
Rnom

em (1 + fem,R)
min {max {Tem,min, Tem,req} , Tem,max}
Rnom

em

knom

(
Tmap,NF
em + cfωem

)
+ knomωem

U ctrl
em (1 + fpe)

U ctrl
em
k

Rem
[Uem−kωem]− knom

Rnom
em

[
UNF
em −knomωem

]
Tmap,NF
em + ∆Tem
Temωem[
Rem

k2 − Rnom
em

(knom)2

][
T 2
em+2cfωemTem+c2fω

2
em

]
f(Tem, ωem, Ub)

Pem,m + Pmap,NF
em,l + ∆Pem,l

Pem,e

Ub


︸ ︷︷ ︸

G(x1,u)

(22)
The input signals of the model are the requested torque, Tem,req ,
angular speed, ωem, and the battery voltage Ub

u = [Tem,req ωem Ub]
T (23)

The output signals are the delivered torque, Tem, and the battery
current, Ib, that are calculated in (21c) and are given by

h(x1, x2, u) = [Tem Ib]
T (24)

The torque can be estimated from other sensors and an extended
model [19], but here a torque sensor is used for simplicity.

B. Fault estimation

The designed diagnosis systems are based on state-observers
estimating the considered faults in (12). A direct way is
to estimate all three faults in one single observer. Several
approaches are available and here an Extended Kalman Filter
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Fig. 3. Estimated faults when k = 0.97knom after 400 seconds using Oall.

(EKF) [20] is used. A constant gain observer is not applicable
due to that the sign of the feedback gain parameter, K, to
ensure a stable observer depends on the operating point of
the system. The observer denoted as Oall is using the model
equations given by (22), and is described by

Oall :

{
x̂1,t+1 = x̂1,t +Kt (yt − ŷt)
ŷt = h (x̂1,t, G (x̂1,t, ut) , ut)

(25)

where x1 = [fem,k fem,R fpe]
T . These states are observable

since the faults affect the output signals in different ways, see
the model in (22) and (24). The measurement noise in (21c)
is modeled as Gaussian distributed white noise and is denoted
as νTem

and νIb respectively

y =

[
Tem,sens

Ib,sens

]
=

[
Tem + νTem

Ib + νIb

]
(26)

To evaluate the designed observer, the faults in (12) are induced
one by one in the vehicle model and the observer estimates the
faults. The gain parameter Kt is computed in each time step
using the covariance matrices for the measurement noise R
and the process noise Q. The faults are induced as a step after
400 seconds in the simulations, and the sizes of the induced
faults are fem,k = −0.03, fem,R = −0.03, and fpe = −0.01.
The driving cycle used is FTP75 and the estimated faults when
fem,k has occurred, i.e. x1 = [−0.03 0 0]

T , are presented in
Figure 3. As can be seen in the figure, all faults are nonzero after
the fault is induced, and the estimated faults have converged
to almost constant values that are x̂1 = {f̂em,k, f̂em,R, f̂pe} =
{−0.0067, 0.049, 0.024}. This is significantly separate from
the true values, x?1 = [−0.03 0 0]

T , and to understand the
reason for this, the outputs Tem and Ib for the two cases
x1 = x̂1 and x1 = x?1 are investigated.

The output signals based on x̂1 and x?1 are denoted as
T̂em, Îb, and T ?

em, I
?
b , respectively, and the differences between

the outputs are computed as

∆Tem
= T̂em − T ?

em, ∆Ib = Îb − I?b (27)

The maximum magnitudes of ∆Tem
and ∆Ib in the simulation

are 0.002 Nm and 0.01 A respectively, which corresponds to
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Fig. 4. The estimated faults in the three observers Oem,k , Oem,R, and Ope

when k = 0.97knom.

as small values as 0.01‰ of the maximum magnitude of both
output signals. A conclusion of this is that even though the
model is observable, the sensitivity is small and thereby the
estimation is difficult in practice.

1) Three observers estimating one fault each: To overcome
the observability difficulty using one observer, the single-fault
assumption is utilized and three observers are designed to
estimate one fault each. In each observer it is assumed that the
other two faults are zero, and the three observers estimating
fem,k, fem,R, and fpe, are denoted Oem,k, Oem,R, and Ope,
respectively.

All three observers use the same model equations, except
for which fault that is to be estimated, and the model equations
are given by (22). As stated above, the single fault assumption
is used leading to that two faults in (22) are assumed to be
zero in the observers, and x1 in (21a) only includes the fault
that is to be estimated in the observer. The observer used to
estimate the fault fem,k is e.g.

Ofem,k :


f̂em,k,t+1 = f̂em,k,t +Kt (yt − ŷt)

ŷt =h

f̂em,k,t

0
0

, G
f̂em,k,t

0
0

, ut
, ut

 (28)

Note that it is only one of the three observers that ideally
estimates a correct value of the fault. For example, when fem,k

has occurred, f̂em,R and f̂pe estimated in Oem,R and Ope

respectively, can take a value separated from zero even though
the actual faults fem,R = fpe = 0.

The faults are induced one by one in the vehicle model to
evaluate the designed observers. The estimated faults using the
three observers when {fem,k, fem,R, fpe} = {−0.03, 0, 0} are
shown in Figure 4. In the upper plot, f̂em,k is shown and it can
be seen that the fault is accurately estimated using Oem,k. The
lower two plots present f̂em,R and f̂pe, and since the induced
fault in the simulation is fem,k and the three faults affect
the model (22) differently, f̂em,R and f̂pe do not converge to
constant values. The reason is that f̂em,R and f̂pe varies with
the operating point of the machine to achieve the same outputs
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Fig. 5. The estimated faults in the three observers based on the analytical
model when fem,k = −0.03.

of the system as the measurements do. The information about
what estimated faults that converge to constant values will later
be used in the diagnosis system design to pinpoint what fault
that has occurred. The results when inducing any of fem,R and
fpe in the vehicle model are similar to the results in Figure 4
when fem,k is induced.

Note that the computational complexity of the three single
fault observers is lower compared the single observer estimating
all three faults simultaneously.

2) Three observers based on only the analytical model:
In the above designed observers the combined model (22) is
used. To investigate how the modeling error in the analytical
model, see Figure 1, affect the diagnostic performance, three
observers are designed based on the analytical model. The three
observers, denoted by Oa

em,k, Oa
em,R, and Oa

pe, are designed
using the same principle as in Section V-B1, and the inputs u
and outputs y are the same as in (23) and (24). The algebraic
variables are denoted by xa2 , and are computed from Ga(x1, u)
given by (5), (6), (9), (12), and (16) as

k
Rem

U ctrl
em

Uem

Iem
T a
em

Ib


︸ ︷︷ ︸

xa
2

=



knom(1 + fem,k)
Rnom

em (1 + fem,R)
Rnom

em

knom (Tem,req + cfωem) + knomωem

U ctrl
em (1 + fpe)
1

Rem
(Uem − kωem)

kIem − cfωem
UemIem

Ub


︸ ︷︷ ︸

Ga(x1,u)

(29)

The same fault case as in Section V-B1 is considered, i.e.
fem,k = −0.03, and the estimated faults using (29) are shown
in Figure 5. By comparing Figures 4 and 5 it is clear that
the different models used in the observers results in different
values of the estimated faults. Note especially that the fault
that is induced, fem,k, is more accurately estimated in Ofem,k

compared to Oa
fem,k, see the upper plots in Figures 4 and 5.

The reason is that the analytical model (29) does not describe
the outputs Tem and Ib as good as the combined model (22).
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Fig. 6. Residuals based on f̂em,k computed by Oa
em,k in the upper plot and

Oem,k in the lower plot for the faulty and non-faulty cases.

C. Residual generators and test quantities for fault isolation

When an estimated fault is nonzero the system is assumed
faulty, and it is clear from Figures 4 and 5 that the estimated
faults becomes nonzero fast after the fault is induced in the
model and the faults are thereby easily detected. However, to
pinpoint what fault that has occurred is more difficult since the
faults can not be accurately estimated using one observer, Oall.
The three observers Oem,k, Oem,R, and Ope are now used to
generate residuals and test quantities for fault isolation.

1) Residual generators and test quantity formation: The
faults affect the system to be monitored in different ways,
see (22) and (29), which in combination with the constant fault
assumption is used to isolate the faults. The basic idea is that
with an observer dedicated to estimate fault fi, the estimate
f̂i will converge to a constant if fi is the true fault. However,
if fj 6= fi is the true fault, the estimate f̂i will in general not
converge to a constant, i.e. f̂i,t 6= f̂i,t−1. For each observer,
a residual is generated based on the change in the estimated
faults in the observers between two time steps as

rt = f̂i,t − f̂i,t−1 (30)

The residual generator based on f̂em,k estimated in Oem,k is
denoted as rem,k, and this signal is presented in the lower plot
in Figure 6 for the different faults induced in the vehicle. As
can be seen, rem,k reacts in a similar way in the fault free
case and when fem,k = −0.03. When any of the faults fem,R

and fpe occurs the signal is clearly separated from the fault
free case, and therefore the residual has reacted as expected.

In Section V-B it is stated that the faults are more accu-
rately estimated using the observers Oem,k, Oem,R, and Ope,
compared to Oa

em,k, Oa
em,R, and Oa

pe, see Figures 4 and 5.
To evaluate the influence of this in the diagnosis system, the
corresponding residual to rem,k based on Oa

em,k is shown in the
upper plot in Figure 6, and is denoted as raem,k. This residual
is not expected to react to the fault fem,k, but as can be seen
in the figure, the residual is significantly separated from the
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TABLE I
DECISION STRUCTURE FOR THE DESIGNED DIAGNOSIS SYSTEM.

fem,k fem,R fpe
T1 X X
T2 X X
T3 X X

fault free case when fem,k = −0.03. To achieve a correct
diagnostic decision there is a need to investigate what causes
this separation, and to compensate for the difference in the
residual. The results are the same for all three residuals based on
the analytical model, and therefore it is more time consuming
to design a diagnosis system based on Oa

em,k, Oa
em,R, and Oa

pe,
compared to Oem,k, Oem,R, and Ope. Due to this result, the
residuals used in the further diagnosis system design process
are based on the combined map and analytical models.

To reduce the impact of noise in the residuals in the
decision making, the residuals are post processed to form
test quantities. There are many approaches available. Here the
CUSUM algorithm is used [21], [22]

Tt = max {0, Tt−1 + |rt| − ν} (31)

where ν is a design parameter that corresponds to the noise
level in the residuals. To evaluate the performance, normalized
test quantities, Tnorm, are calculated based on the maximum
value, TNF

max , of T in the fault free case. An alarm is generated
when Tnorm > 1 and the design parameter Φ ∈ [0, 1] states the
margin to false alarm, and is here set to 0.5

Tnorm =
T

TNF
max

Φ (32)

The decision structure in Table I describes what faults the
different tests are expected to react to. Full structural fault
isolability is achieved since a unique set of tests ideally react
for each fault. The tests T1, T2, and T3 are based on Oem,k,
Oem,R, and Ope respectively.

Figure 7 presents the normalized test quantities based on
Oem,k, Oem,R, and Ope, when fem,k is induced as a step in
the vehicle model after 400 seconds. According to Table I
T2 and T3 are expected to react, but as can be seen in the
upper plot also T1 reacts since Tnorm > 1 when the fault is
induced. When a fault occurs in the system, the constant fault
assumption is not valid. This may lead to that a residual that
should not react to the fault according to Table I becomes
non-zero, and the corresponding test quantity reacts. To avoid
this behavior the time for the fault estimate to converge after
the fault occurrence is identified and during this time period
the test quantity is not updated.

2) No test quantity update during transients: The start and
end times of the time period where the test quantities are not
updated is denoted as tu,s and tu,e respectively, i.e. the time
interval is τu = [tu,s, tu,e]. Let τr be the set of time points
where the considered residual computed as in (30) changes sign.
To find the times tu,s and tu,e, the first time the magnitude of
the estimated fault is above a threshold Jf is used

tu,f = min{t :
∣∣∣f̂i,t∣∣∣ > Jf} (33)
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Fig. 7. Test quantities based on the estimated faults presented in Figure 4
when fem,k = −0.03.

After fault occurrence, depending on the fault sign, the residual
has a has a positive or negative transient until the estimate has
converged. At convergence, the estimate is a constant and the
residual changes sign due to noise and uncertainties. Therefore,
convergence is detected when the residual start making sign
changes again after the initial transient. However, when the
operating point of the electric machine results in low fault
excitation, the estimated fault does not change much in time
even though there is a difference in the real fault and the
estimated fault. This results in that the residual may change
sign due to noise and uncertainties, even though the estimated
fault has not reached the final value when the fault is induced.
The magnitude of the electric machine torque is closely related
to the fault excitation, and all time instances the torque is
above a threshold JTem

is defined as

τex = {t : |Tem,t| > JTem
} (34)

Based on the defined times, tu,s and tu,e are computed by

tu,s = max{t : t ∈ τex ∩ τr, t < tu,f} (35a)
tu,e = min{t : t ∈ τex ∩ τr, t > tu,f} (35b)

In Figure 8 the estimated fault f̂em,k is shown, as well as the
corresponding residual and test quantities. In the figure the
times tu,f , tu,s, and tu,e are also shown. Figure 9 shows the
test quantities when these are not updated in the time interval
τu. The upper plot shows that there is no false alarm when the
fault is induced in the system, and the other two tests react
to the fault as expected. The reaction time for these tests is
longer compared to when updating the test quantities at all
times, and how long this time is depends on the excitation of
the monitored system. Therefore are the test quantities updated
at all times used for fault detection and the test quantities
presented in Figure 9 are used for fault isolation.

The induced faults occur as a step, and even though the
assumption was that the faults are constant or slowly varying,
the diagnosis system accurately detects and isolates these step-
faults, i.e., works well even in this worst case situation.
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Fig. 9. The test quantities based on the estimated faults in Figure 4, but the
test quantities are not updated when the fault is induced in the model.

D. Summing up

In the case study the diagnostic performance is demonstrated
to be significantly better using the combined model (22)
compared to the analytical model (29) in the diagnosis system
design, see e.g. Figure 6. Further, a scheme of using several
observers estimating one fault each is used to isolate the faults.
At the time instant when a fault occurs in the system the fault
is obviously not constant, thus violating ḟ = 0, and to avoid
false test reaction due to this, an approach by not updating the
test quantities is successfully used, compare Figures 7 and 9.

VI. CONCLUSIONS

Development time is crucial for the total cost, and the main
contribution here is a methodology that reduces engineering
time for the design of the diagnosis system while still achieving
desired fault detection and isolation properties. A key enabling
observation is that steps earlier in the development process,
e.g. in control and in powertrain management steps, usually

develops carefully measured look-up models for the fault free
case. The main idea here is to combine these models with
analytical fault models that explicitly describe how the faults
affect the monitored system. The approach is illustrated in the
design of a diagnosis system for the power electronics and the
electric machine in an HEV, where an extensive simulation
study shows the benefits of the approach. This includes the
specific scheme of using several observers estimating one
fault each. In summary, the clear improvement in overall
performance demonstrates that the method achieves both good
fault detectability and isolability performance, without the
need for neither measurements of a faulty system nor detailed
physical modeling.
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