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Control of Gear Transmission Servo Systems with
Asymmetric Deadzone Nonlinearity

Zongyu Zuo, Member, IEEE, Xiaoliang Ju, and Zhengtao Ding, Senior Member, IEEE

Abstract—This brief deals with the output control problem
of Gear Transmission Servo (GTS) systems with asymmetric
deadzone nonlinearity between states. To overcome the difficulty
of controller design due to the non-differentiability of the dead-
zone, a brand new differentiable asymmetric deadzone model
is put forward, which provides an additional design degree of
freedom to approximate the real deadzone with any prescribed
accuracy. Based on the differentiability of the new model, a
global differential homeomorphism and a simple state feedback
controller are proposed to solve the output control problem.
Finally, simulation studies are included to demonstrate the main
results in this brief.

Index Terms—Deadzone, differentiability, gear transmission
servo systems, state feedback control.

I. INTRODUCTION

BACKLASH (including deadzone, hysteresis) nonlinearity
in the industrial motion control system frequently occur,

which severely limits the dynamic performance and steady
state precision of controlled systems. Deadzones, as one of the
most important nonsmooth nonlinearities, exist ubiquitously
in mechanical devices like gear transmission servo (GTS)
systems. It is quite challenging to compensate the influence
of deadzone nonlinearity because of the non-differentiable
property of the conventional deadzone model. If the impact
of backlash nonlinearity cannot be alleviated or eliminated,
the induced limit cycle may exacerbate the stability of the
controlled systems. In addition, the collisions between gears
may produce serious concussion and noise. Since the 1940s,
the study of the nonlinearity of nonsmooth deadzones has been
of great interest among the high-precision mechanical control
community.

In the past decades, many methods have been reported in
literature, using adaptive control, variable structure control,
intelligent control and nonlinear geometric theory etc., to
tackle the backlash at the inputs/outputs or between states
of controlled systems. No matter where the backlash locates,
the nonlinearities like friction and saturation come with the
controlled systems. The hysteresis model [1] is usually adopted
for the backlash nonlinearity at the input or output, based on
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the assumption that the driven part of the controlled system
keeps unchanged when the driving part is in the backlash
period. The system with input/output hysteresis is usually
transformed into a pseudo-linear system through inverse model
compensation. With the aid of suboptimal convex optimization
and Lyapunov tools, Tarbouriech et al. [2], [3] provided a
constructive solution and the sufficient LMI conditions for the
state feedback stabilization of systems with input backlash.
Actually, the basic idea in [2], [3] also reveals that the systems
with certain backlash nonlinearity can be characterized by
general sector bounded nonlinear systems and the region of
attraction for the closed-loop system can be identified by
Lyapunov functionals with quadratic terms and generalized
sector conditions via LMIs [4]. The results in [5] propose
an analytic expression of backlash characteristic description
with separated parameters using appropriate switching and
internal functions. These papers deal with an exact model of
backlash. In view of the systems in the presence of parameter
uncertainties, neural network adaptive control [6], [7], fuzzy
logic adaptive control [8], [9], and sliding mode control [10]
have been employed in the control system design. The system
with backlash nonlinearity between states, such as an electric
mechanical actuator (EMA) system, can be described by two
subsystems with backlash. In consideration that it is more
realistic to take the moments of inertia of both entities into
account, the deadzone model [1] for backlash description is
widely used due to its high coincidence with the physical
reality [11]. This deadzone model well describes the backlash
nonlinearity due to the transmission torque between the driving
and driven parts of controlled systems, which however greatly
complicates the control design problem. Although the inverse
model compensation can be applied to such systems as in [12],
[13], it is impossible for the input of the deadzone model (i.e.,
the displacement difference between the two sides) to jump
instantly due to the existence of inertia. Therefore, the inverse
model compensation for deadzone model is not preferable
in engineering practice. The results in [14] put forward a
new smooth inverse model for the backlash and propose a
corresponding robust adaptive output controller, but the inverse
model requires the differential signal of the control input. An
alternative is to establish a multi-model switching system [10],
[16], [17], [18] which consists of several subsystems and the
controllers designed separately for each of them. Su et al. [19]
proposed a continuous dynamic model to describe a class of
backlash-like hysteresis and its solution has a linear form with
respect to the input signal, which facilitates controller design,
such as the adaptive backstepping designs in [19], [20]. How-
ever, the parameter in this hysteresis model cannot be chosen
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freely due to the approximation requirement. In [15], Zou
et al. transformed the hysteresis operator into an equivalent
linear time-varying system with uncertainties, where the novel
L1 adaptive controller can be applied. Similarly, taking into
account of the unknown parameters in the deadzone model,
adaptive control [16], [17], optimal predictive control [18] and
sliding mode control [10] have been adopted in the existing
literature to deal with the parametric uncertainties, which
significantly complicates the control design of the systems
with backlash nonlinearity between states.

It has been proved that limit cycles occur if the classical
PD/PI-Load control are applied to such systems [1]. Motivated
by the high precision control requirement in real-life engi-
neering practice, this brief studies the output control problem
of GTS systems in the presence of asymmetric deadzone
nonlinearity. A new asymmetric differentiable deadzone model
is developed, based on which the system dynamics are trans-
formed into the perturbed state space model for controller
design under a group of new coordinates. To elaborate the
idea and the contribution, a simple state feedback controller
is proposed as a benchmark for the output control problem
of the mechanical systems with non-differentiable deadzone
nonlinearity. The closed-loop stability and the tracking perfor-
mance are established by using input-output stability theorem,
from which one may find that the output tracking performance
can be improved systematically by an extra degree of freedom
in design provided by the new deadzone model. In addition,
the employment of this new model in the controller design
effectively eliminates the occurrence of limit cycles, which
is validated via simulation. To the best of knowledge of the
authors, it is the first time that an asymmetric differential
deadzone approximation model is presented with arbitrary
precision.

This brief is organized as follows: Section II presents the
GTS system dynamics and a new asymmetric differentiable
deadzone model. Section III proposes a global coordinate
transformation and a state feedback controller. In section IV,
an illustrative simulation example and a further performance
comparison with a PD controller are discussed. Finally, the
brief is ended by concluding remarks in section V.

Notation: The notations we use in this brief are fairly
standard. ∥ · ∥ and ∥ · ∥∞ stand respectively for the Euclidean
norm and the infinity norm, and I for the identity matrix with
a proper dimension. However, with a slight abuse of notation,
this brief interchangeably uses time-domain and frequency-
domain language for representation of signals. For example,
ξ(t) and ξ(s) denote the function of time and its Laplace
transform, respectively. In the interest of brevity we omit
arguments of a function without ambiguity after defining them.

II. PROBLEM STATEMENT

This section investigates the GTS system dynamics with
asymmetric deadzone nonlinearity, and introduces a brand new
asymmetric differentiable deadzone model to overcome the
non-differential ‘hard’ property of the conventional deadzone,
which greatly facilitates the controller in practice.

A. Dynamic Model of GTS Systems
A general dynamical model of GTS systems can be derived

as follows [1]{
Jm

d2θm
dt2 + cm

dθm
dt = τ − Dead[θ],

Jl
d2θl
dt2 + cl

dθl
dt = N0Dead[θ],

(1)

where Jm, θm and cm are the moment of inertia, position and
viscous friction coefficient of the driving side, respectively, Jl,
θl and cl the moment of inertia, position and viscous friction
coefficient of the load side, respectively, N0 the reduction
ratio, τ the control input (torque), θ = θm −N0θl the relative
displacement, Dead[θ] the transmission torque, defined by

Dead[θ] =

 kr(θ − αr), if θ ≥ αr,
0, if − αl < θ < αr,
kl(θ + αl), if θ ≤ −αl,

(2)

where kl ∈ R+ and kr ∈ R+ denote the rigidity coefficients,
αl ∈ R+ and αr ∈ R+ the break points.

Remark 1: The deadzone model (2) well describes the
transmission torque between the driving and driven parts of
controlled systems. It is widely used for its high coincidence
with the physical reality. In addition, the deadzone description
(2) is a typical and important non-differentiable nonlinear
factor in control theory research. In the real-life engineering
practice, the parameters of transmission gears (i.e., kl, kr, αl,
αr and N0) may be obtained from the product specification.

B. Differentiable Asymmetric Deadzone Model
Some existing methods dealing with the ‘hard’ property use

strong controls, which push the controlled systems to pass
through the deadzone quickly. However, a collision at the
deadzone end cannot be avoided. Motivated by this consider-
ation, a new smooth asymmetric deadzone model is proposed
as

Ts[θ] =
1

ϱ
ln

1 + eϱkr(θ−αr)

1 + e−ϱkl(θ+αl)
, (3)

where αl, αr, kl and kr are defined in (2), and ϱ is a positive
adjustable parameter, called soft degree as will be clear in the
following theorem.

Theorem 1: Consider the deadzone model (2) and the
differentiable deadzone model (3). For any given deadzone
parameters αl, αr, kl and kr, the approximation error, defined
by η(θ) = Dead[θ] − Ts[θ], can be made arbitrarily small if
the parameter ϱ is sufficiently large, i.e., limϱ→+∞ |η(θ)| = 0.

Proof: First, it can be shown that Ts[θ] in (3) is mono-
tonically increasing with respect to θ, since we have

dTs

dθ
=

kre
ϱkr(θ−αr)

1 + eϱkr(θ−αr)
+

kle
−ϱkl(θ+αl)

1 + e−ϱkl(θ−αl)
≥ 0,

where the equality holds if and only if kl = kr = 0. It follows
that

1
ϱ ln

2
1+e−ϱkl(αl+αr) = Ts[αr] ≤ Ts[θ]

< Ts[+∞] = kr(θ − αr), if θ ≥ αr,
− 1

ϱ ln
2

1+e−ϱkl(αl+αr) = Ts[−αl] ≤ Ts[θ]

≤ Ts[αr] =
1
ϱ ln

2
1+e−ϱkr(αl+αr) , if − αl < θ < αr,

kl(θ + αl) = Ts[−∞] < Ts[θ]
≤ Ts[−αl] = − 1

ϱ ln
2

1+e−ϱkr(αl+αr) , if θ ≤ −αl.
(4)
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Next, for the conventional model Dead[θ] in (2), it can be
verified that

dDead[θ]

dθ
=

 kr, if θ ≥ αr,
0, if − αl < θ < αr,
kl, if θ ≤ −αl,

(5)

which implies that Dead[θ] is non-decreasing and monotoni-
cally increasing on (−∞,−αl] and [αr,+∞), respectively.

Using (2) and (3), we can write the approximation error
η(θ) as

η(θ) , Dead[θ]− Ts[θ]

=

 kr(θ − αr)− Ts[θ], if θ ≥ αr,
−Ts[θ], if − αl < θ < αr,
kl(θ + αl)− Ts[θ], if θ ≤ −αl.

(6)

It follows from (4) and (5) that

0 = η(+∞) < η(θ)

≤ η(αr) =
1
ϱ ln

1+e−ϱkr(αl+αr)

2 , if θ ≥ αr,

− 1
ϱ ln

1+e−ϱkl(αl+αr)

2 = η(−αl) < η(θ)

< η(αr) =
1
ϱ ln

1+e−ϱkr(αl+αr)

2 , if − αl < θ < αr,

− 1
ϱ ln

1+e−ϱkl(αl+αr)

2 = η(−αl) ≤ η(θ)

< η(−∞) = 0, if θ ≤ −αl,
(7)

which implies that

−1

ϱ
ln

1 + e−ϱkl(αl+αr)

2
≤ η(θ)

≤ 1

ϱ
ln

1 + e−ϱkr(αl+αr)

2
. (8)

Thus, limϱ→+∞ |η(θ)| = 0 follows immediately, which com-
pletes the proof.

Remark 2: Theorem 1 demonstrates that the ‘hard’ property
of the deadzone nonlinearity can be softened to any arbitrary
precision by the new differentiable asymmetric deadzone
model (3), as illustrated in Fig.1. Thus, ϱ in (3) is referred
to as ‘soft degree’ of the controlled systems (1), and η(θ) as
the softening error.

It is worthwhile mentioning that another new differential
deadzone model [23] has been put forward when kl = kr = k,
defined as

T ′
s[θ] = k

(
θ +

αl − αr

2

)
+

k

2ϱ
ln

cosh(ϱ(θ − αr))

cosh(ϱ(θ + αl))
. (9)

Further, if αl = αr = α, then (9) degenerates into the
differentiable symmetric deadzone model obtained in [24] as

T ′
s[θ] = kθ +

k

2ϱ
ln

cosh(ϱ(θ − α))

cosh(ϱ(θ + α))
. (10)

Likewise, the deadzone approximation error with respect to the
soften degree ϱ has been investigated in the existing literature,
which is summarized in the following theorem.

Theorem 2: Consider the deadzone model (2) and the dif-
ferentiable deadzone model (9) or (10). The approximation er-
ror, defined by η(θ) = Dead[θ]−T ′

s[θ], satisfies |η(θ)| < k ln 2
ϱ

and limϱ→+∞ |η(θ)| = 0.
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Fig. 1. Deadzone Approximation with Different Soft Degrees: kl = 1; kr =
2;αl = 0.5;αr = 1.5.

A natural question is whether the model derived in (9) or
(10) is a special case of the model (3). The answer is negative,
which is clarified in the following theorem.

Theorem 3: For kl = kr = k, the differential deadzone
models (3) and (9) are equivalent if and only if k = 2.

Proof: Let φ1 = θ−αr and φ2 = −(θ+αl) for notation
simplicity. The gap between (3) and (9) can be written as

Ts − T ′
s =

1

ϱ
ln

1 + eϱk(θ−αr)

1 + e−ϱk(θ+αl)
− k

(
θ +

αl − αr

2

)
− k

2ϱ
ln

cosh(ϱ(θ − αr))

cosh(ϱ(θ + αl))

=
1

ϱ
ln

1 + eϱk(θ−αr)

1 + e−ϱk(θ+αl)
− 1

ϱ
ln

[
1 + e2ϱ(θ−αr)

1 + e−2ϱ(θ+αl)

] k
2

=
1

ϱ
ln

1 + eϱkφ1

(1 + e2ϱφ1)
k
2

− 1

ϱ
ln

1 + eϱkφ2

(1 + e2ϱφ2)
k
2

, (11)

from which it follows that Ts − T ′
s = 0 if and only if k = 2.

This completes the proof.
For the case k ̸= 2, a further quantitative comparison

between (3) and (9) may be made. Since the both functions
(3) and (9) are odd symmetric with respect to the point
C(αr−αl

2 , 0), without loss of generality we focus only on the
gap between (3) and (9) for αr−αl

2 ≤ θ ≤ αr. It follows from
(2), (3), (7) and (9) that Ts[θ] > Dead[θ] and T ′

s[θ] > Dead[θ]
for θ > αr−αl

2 , and Ts[θ] = T ′
s[θ] = Dead[θ] = 0 for

θ = αr−αl

2 .
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To facilitate the analysis, we define the following auxiliary
function

D(x) =
1

ϱ
ln

1 + eϱkx

(1 + e2ϱx)
k
2

. (12)

Differentiating D(x) in (12) against x yields

dD(x)

dx
=

k(eϱkx − e2ϱx)

(1 + eϱkx)(1 + e2ϱx)
,

which implies that

dD(x)

dx

{
> 0, if k > 2,
< 0, if 0 < k < 2.

(13)

Since θ > αr−αl

2 is considered, we have φ1 > −αr+αl

2 and
φ2 < −αr+αl

2 , and thus φ1 > φ2 follows. Based on the
piecewise monotonicity derived in (13), it is straightforward
to obtain from (11) that

Ts − T ′
s = D(φ1)−D(φ2)

{
> 0, if k > 2,
< 0, if 0 < k < 2.

Thus, the model (9) has a better approximation to (2) between
the break points for k > 2 while the model (3) better for
0 < k < 2.

Remark 3: The deadzone model derived in (3) is differen-
tiable and approximates the conventional deadzone (2) with ar-
bitrary precision. Different from the existing deadzone models
in literature, the key feature of this brand-new model is more
general, as it includes totally symmetric case. In addition,
from the practical point of view, the backlash parameters
may vary due to the concussion, abrasion and wear of the
mechanical parts, which may destroy the original symmetry.
Thus, the proposed asymmetric model is more practical in
some occasions.

C. State Space Description of GTS Systems

Let x = [x1, x2, x3, x4]
T = [θl, ωl, θm, ωm]T ∈ R4 be the

state vector of a GTS system, where ωl and ωm denote the
speed of the load side and driving side, respectively. It follows
from (3) and (6) that the state space equations of the GTS
system in (1) can be formulated as follows:

ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

N0Ts[xθ]
Jl

− cl
Jl
x2 +

N0η(xθ)
Jl

x4

−Ts[xθ]
Jm

− cm
Jm

x4 − η(xθ)
Jm

+


0
0
0
1

Jm

 τ,

y =
[
1 0 0 0

]
x = x1, (14)

where xθ , x3 −N0x1.
The control objective is to design a full-state feedback

controller with an appropriate selection of ϱ such that 1) the
closed-loop system are stable for any given bounded reference
signal r(t) and 2) the output y(t) tracks the step reference
r(t) = r∗ = const with desired accuracy.

III. CONTROLLER DESIGN

In this section, we first introduce a global coordinate trans-
formation for controller design, and then a simple controller
is proposed for output control problem of the GTS systems.

Since the relative degree of the system in (14) is 4, define
a global differential homomorphism as

z =


z1
z2
z3
z4

 =


x1

x2
N0Ts−clx2

Jl
N0ι(xθ)(x4−N0x2)

Jl
− cl(N0Ts−clx2)

J2
l

 ,

(15)
where

ι(xθ) =
kre

ϱkr(xθ−αr)

1 + eϱkr(xθ−αr)
+

kle
−ϱkl(xθ+αl)

1 + e−ϱkl(xθ+αl)
. (16)

Note that ι(xθ) in (16) satisfies min{kl, kr} = km ≤ ι(xθ) ≤
kM = max{kl, kr}, i.e. ι(xθ) is lower bounded away from
zero. It is straightforward to verify from (15) that | ∂z∂x | =
(N0ι

Jl
)2 > 0 holds. Thus, the coordinate transformation (15) is

global.
Let

λ(xθ) =
ϱk2re

ϱkr(xθ−αr)

[1 + eϱkr(xθ−αr)]2
− ϱk2l e

−ϱkl(xθ+αl)

[1 + e−ϱkl(xθ+αl)]2
.

Choose the control torque τ as

τ =
Jm
N0ι

[
u−N0λ(x4 −N0x2)

2 +
N0ι

Jm
(Ts + cmx4) −(

c2l
Jl

−N2
0 ι

)
N0Ts − clx2

Jl
+ clN0ι(x4 −N0x2)

]
, (17)

where u will be designed later. With (15) and (17), the system
in (14) can be transformed into the following form{

ż = Az + bu+ σ(t),
y = cTz,

(18)

where

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , b =


0
0
0
1

 ,

σ(t) =


0

N0η
Jl

−cl
N0η
J2
l

−N0ιη
JlJm

+
(

c2l
J2
l
− N0ι

Jl

)
N0η
Jl

 , c =


1
0
0
0

 .

With the introduction of the deadzone model (3), the system
modeling error σ(t) needs to be investigated.

Lemma 1: The modeling error σ(t) in (18) is uniformly
bounded by

∥σ(t)∥ ≤ 1

ϱ
σ∗, (19)

where

σ∗ =
N0

Jl

√
1 +

c2l
J2
l

+

(
kM
Jm

+
N0kM
Jl

−
c2l
Jl

)2

· ln 1 + e−ϱkm(αl+αr)

2
,
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where km = min{kl, kr} and kM = max{kl, kr}. In addition,

lim
ϱ→+∞

∥σ(t)∥ = 0. (20)

Proof: It follows from the definition of σ(t) and the fact
km ≤ ι(xθ) ≤ kM that

∥σ(t)∥ =
N0

Jl

√
1 +

c2l
J2
l

+

(
kM
Jm

+
N0kM
Jl

−
c2l
Jl

)2

|η(xθ)|

≤ 1

ϱ
σ∗,

where Theorem 1 is applied to obtain the second inequality.
It further implies limϱ→+∞ ∥σ(t)∥ = 0.

Before proceeding to the controller design, two definitions
and a lemma need to be presented.

Definition 1: For a signal ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)]
T

∈ Rn defined for all t ≥ 0, the L∞ norm is ∥ξ(t)∥L∞ =
maxi=1,2,...,n(supτ≥0|ξi(τ)|).

Definition 2: The L1 gain of an asymptotically stable and
proper single-input single-output (SISO) system is defined as
∥H(s)∥L1 =

∫∞
0

|h(t)|dt, where h(t) is the impulse response
of H(s).

Lemma 2 ([22]): For an asymptotically stable proper SISO
system H(s), if the input r(t) ∈ R is bounded, then
the output x(t) ∈ Rn is also bounded, and ∥x(t)∥L∞ ≤
∥H(s)∥L1

∥r(t)∥L∞ .
The following theorem presents a simple controller for the

GTS system in the presence of deadzone nonlinearity.
Theorem 4: Consider the GTS system in (1) with the con-

trol input defined in (17). If u in (17) is given by

u(t) = −kTz(t) + kgr(t), (21)

where k = [k1, k2, k3, k4]
T ∈ R4 is the control gain vector

such that Ac = A−bk is Hurwitz, r(t) the uniformly bounded
reference signal, and kg = −1/(cTAcb) the feedforward gain,
the closed-loop system is stable and the transient response of
the output satisfies

∥y(t)∥L∞ ≤∥cT(sI−Ac)b∥L1
∥kgr(t)∥L∞

+
1

ϱ
∥cT(sI−Ac)∥L1σ

∗ + ρin, (22)

where ρin = ∥scT(sI − Ac)
−1b∥L1z0. In addition, if the

reference signal input r(t) = r∗ is a constant, the steady
state output, defined by yss = limt→∞ y(t), depends on ϱ.
Furthermore, as a limiting case of ϱ, the steady state output
satisfies

lim
ϱ→+∞

yss(ϱ) = r∗. (23)

Proof: With the global coordinate transformation (15) and
the control torque defined by (17), the system dynamics (1)
can be transformed into (18). Substituting (21) into (18) gives{

ż(t) = Acz(t) + bkgr(t) + σ(t),
y(t) = cTz(t),

, z(t0) = z0. (24)

Taking Laplace transformation of both sides of (24) yields

z(s) = (sI−Ac)
−1bkgr(s)+(sI−Ac)

−1σ(s)+(sI−Ac)
−1z0,

and
y(s) = yr(s) + yσ(s) + cT(sI−Ac)

−1z0,

where yr(s) = cT(sI − Ac)
−1bkgr(s) and yσ(s) = cT(sI −

Ac)
−1σ(s). Since the matrix Ac is Hurwitz, using Lemma 2,

we have
∥z(s)∥L∞ = ∥(sI−Ac)

−1b∥L1∥kgr(s)∥L∞

+ ∥(sI−Ac)
−1∥L1∥σ(s)∥L∞ + ∥s(sI−Ac)

−1∥L1z0.

It follows from the uniform boundedness of r(t) and σ(t) that
the closed-loop system is stable. Similarly, the output signal
of the closed-loop system is bounded by

∥y(s)∥L∞ ≤∥yr(s)∥L∞ + ∥yσ(s)∥L∞ + ρin

=∥cT(sI−Ac)
−1b∥L1∥kgr(s)∥L∞

+ ∥cT(sI−Ac)
−1∥L1∥σ(s)∥L∞ + ρin,

where ρin = ∥scT(sI−Ac)
−1b∥L1z0, and Lemma 2 is used.

Since ∥ · ∥∞ ≤ ∥ · ∥ and the bound in (19) is uniform, the
bound above yields

∥y(s)∥L∞ ≤∥cT(sI−Ac)
−1b∥L1∥kgr(s)∥L∞

+ ∥cT(sI−Ac)
−1∥L1

σ∗

ϱ
+ ρin.

Further, if r(t) = r∗ = const, the steady-state output can be
derived, using yss = lims→0 sy(s) by the final value theorem,
as
yss =yssr + yssσ + yρin

= lim
s→0

scT(sI−Ac)
−1bkg

r∗

s
+ lim

s→0
scT(sI−Ac)

−1σ(s)

+ lim
s→0

[scT(sI−Ac)
−1z0]

=r∗ + lim
s→0

scT(sI−Ac)
−1σ(s),

which depends on ϱ due to σ(s). In view of the uniform
boundedness of yσ(s) and Theorem 1, steady-state output
component yssσ is also bounded and limϱ→+∞ |yssσ| = 0,
which implies that the result in (23) holds.

Remark 4: The selection of the feedforward gain kg =
−1/(cTA−1

c b) in (21) achieves zero steady-state error with
respect to the step reference signal if σ(t) = 0. It is worth
noting that kg(s) is a feedforward prefilter which can be
redesigned using standard linear system theory for different
reference signals.

Remark 5: However, the modeling error due to the intro-
duction of a new approximated deadzone cannot be eliminated
because it is unmatched. Fortunately, the new deadzone model
provides an extra degree of freedom ϱ to achieve arbitrarily
high precision in design for tracking a step reference signal.
In addition, we want to highlight that the differentiability of
the new model (3) provides great flexibility for the coordinate
transformation (like the one given in (15)) and the controller
design.

Remark 6: It is worth emphasizing that a tradeoff between
the veracity of steady response and the placidity of transient
response has to be evaluated when selecting ϱ. Extreme large
ϱ will recover the non-differential deadzone and leads to
very aggressive closed-loop responses, which may degrade
the closed-loop performance due to the limited closed-loop
bandwidth.



6

TABLE I
GTS SYSTEM PARAMETERS

Notations Values Notations Values
Jl 0.5 [kg ·m2] Jm 0.01 [kg ·m2]
αl 0.002 [rad] αr 0.001 [rad]
kl 0.2 [Nm/rad] kr 0.3 [Nm/rad]
cl 0.12 [Nm/rad] cm 0.1 [Nm/rad]
N0 5

IV. SIMULATION

To evaluate the effectiveness of the proposed controller, the
parameters of a GTS system (1) with the deadzone nonlinearity
(2) employed as in [21] are shown in Table I. The initial
states x1 = 2[rad], x2 = 0.5[rad/s], x3 = 10[rad] and
x4 = 1[rad/s] are set in the simulation. The soft degree in
(3) is selected with different values as ϱ1 = 2 and ϱ1 = 20
for comparison, respectively. The controller gain in (21) is
fixed as k = [81, 108, 54, 12]T, which corresponds to the
desired closed-loop poles at −3 in the complex plane with
the algebraic multiplicity 4.

Consider the step reference signal given by r(t) = 2[rad].
Fig. 2 shows the responses of the output (i.e., the position
of load side) for different soft degrees, from which we see
that the tracking accuracy can be improved by larger ϱ at the
cost of more aggressive transient behavior. The time history
of the control input is plotted in Fig. 3, which shows that the
control effort is proportional to the soft degree. The phase plot
in Fig. 4 demonstrates that no limit cycle occurs due to the
introduction of the new smooth deadzone model in (3) for the
controller design. Clearly, the simulation result validates that
the new deadzone model based controller achieves the control
objective with sufficient tracking performance.

To highlight the contribution of this brief, we made a
performance comparison with a proportional derivative (PD)
controller, defined by

τ(t) = kdė(t) + kpe(t), (25)

where e(t) = r(t) − x1(t), kp and kd stand, respectively, for
the proportional and the derivative gain. In the simulation,
kp = 0.5 and kd = 0.05 are fixed without re-tuning any other
parameters including initial states. Figs. 5 and 6 show the step
response and phase plot of the closed-loop system with PD
controller, from which we see that the constant oscillation and
the limit cycle occur in the steady phase. Thus, the tracking
performance under the controller proposed in this brief is more
appealing in practice.

Finally, we end this section with an additional simulation
scenario by considering a periodic square-wave profile as the
reference input. Without any re-tuning the control parameters,
Figure 7 shows the satisfactory output tracking performance
without any undesired vibration, although there is a little lag
at each switching instant of desired tracking direction when
the backlash mode occurs (i.e., Dead[θ] = 0, −αl < θ < αr).
Figure 8 shows the benign control input responses during the
transition between the backlash gap back and forth. To make
a comparison in this scenario, a load observer [1] (also known
as the Brandenburg’s observer [25]) is introduced into the PD

controller (25) for the system (1)–(2):

Brandenburg’s observer:
{

Jm ˙̂ωm = −cmω̂m − T̂Dead + τ

T̂Dead = ko(ω̂m − ωm)

Controller: τ(t) = kdė(t) + kpe(t) + ksT̂Dead, (26)

where T̂Dead denotes the estimated transmission torque, ko is
the observer gain and 0 < ks < 1 is the partial compensation
gain to avoid that the motor would be entirely decoupled
from the load. It has been pointed out in [1] that the load
observer based PD Control overcomes the limitations of PID
control (e.g., the limit cycle). With ko = 1 and ks = 0.6 and
without re-tuning other design parameters, the output tracking
trajectories under the controller (25) and (26) are shown in Fig.
9, which demonstrates that the PD controller with the load
observer is superior to the pure PD controller. By a further
comparison with Fig. 7, we find that the closed-loop system
with our controller has faster and better transient responses,
which demonstrates the benefit of the proposed controller
based on the newly-developed differentiable deadzone model.
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V. CONCLUSIONS

This brief presents a new asymmetric differentiable dead-
zone model for the controller design of GTS systems in the
presence of asymmetric deadzone nonlinearity. A baseline
state feedback controller is developed using this new model to
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achieve the output control, especially with assignable perfor-
mance for the step reference signal. Future work includes the
extensions to the output feedback control and adaptive control
for parametric uncertainties in the deadzone model.
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