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Computationally Efficient Carrier Integer Ambiguity
Resolution in Multiepoch GPS/INS:
A Common-Position-Shift Approach

Yiming Chen, Member, IEEE, Sheng Zhao, and Jay A. Farrell, Fellow, IEEE

Abstract—Integer ambiguity resolution is a challenging
technical issue that exists in real-time kinematic (RTK) global
positioning system (GPS) navigation. Once the integer vector is
resolved, centimeter-level positioning estimation accuracy can be
achieved using the GPS carrier phase measurements. Recently,
a real-time sliding window Bayesian estimation approach to RTK
GPS and inertial navigation was proposed to provide reliable
centimeter accurate-state estimation, via integer ambiguity reso-
lution utilizing a prior along with all inertial measurement unit
and GPS measurements within the time window. One challenge to
implementing that approach in practice is the high computation
cost. This paper proposes a novel implementation approach with
significantly lower computational requirements and includes a
thorough theoretical analysis. The implementation results show
that the proposed method resolves an integer vector identical to
that of the original method and achieves state estimation with
centimeter global positioning accuracy.

Index Terms— Global positioning system (GPS), inertial
navigation, inertial navigation system (INS), integer ambiguity,
real-time kinematic (RTK), sliding window estimation.

I. INTRODUCTION

NTEGRATION of GPS and aided inertial navigation

system (INS) has proven useful due to their comple-
mentary nature [1]. The INS provides a continuous high-
bandwidth state vector estimate. GPS aiding corrects errors
accumulated by the integrative INS process and calibrates
the inertial measurement unit (IMU). The overall accuracy
of GPS aided INS depends on the accuracy, frequency, and
reliability of the GPS measurements. A well-designed GPS
receiver can typically reach a stand-alone positioning accuracy
of 3-8 m [2]. To reliably achieve higher accuracy positioning,
differential GPS (DGPS) is required. With a base station
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within a range of a few tens of kilometers, DGPS accu-
racy is on the order of 1 m, growing at the rate of 1 m
per 150 km of separation [3]. A user can either set up
a base station on their own or utilize publicly available
correction services: Continuously Operating Reference Station
(CORS) [4], nationwide DGPS [5], and European Geodetic
Reference Systems [6]. As mobile communication networks
(4G or Wi-Fi) become available, DGPS techniques will
become ubiquitous. In this paper, all GPS measurements are
assumed to be processed differentially.

GPS receivers provide carrier phase measurements that are
biased by an unknown integer number of wavelengths. While
the phase-locked loop (PLL) of a receiver channel maintains
phase lock, the unknown integer for the satellite being tracked
remains constant. When loss of lock eventually happens (i.e.,
a cycle-slip occurs), the new integer is most likely to be differ-
ent. The fundamental ideas underlying integer ambiguity res-
olution rely on reformulating the problem into an integer least
squares (ILS) approach, e.g., LAMBDA [7], MLAMBDA [8],
or MILES [9]. Real-time kinematic (RTK) applications solve
the ILS and position estimation problems simultaneously in
real time [10]-[12] and may involve multiple GPS epochs,
but without IMU constraints between epochs. The solu-
tion of the RTK problem is simplified, yet still challeng-
ing when dual-frequency receivers are available, because the
integers can be resolved by forming the wide-lane phase
measurements [11]. When the integer vector can be resolved,
centimeter positioning accuracy is achievable in real time on
moving platforms [13]. The performance of the conventional
single-epoch resolution is strongly influenced by the number
of available satellites, the geometry of the received satellite
constellation, and the quality of the measurements. If noisy
or faulty measurements exist, the integer resolution can be
wrong, without sufficient measurement redundancy to detect
the error. For single-frequency receivers, integer ambiguity
resolution is even more challenging due to the inability to form
the wide-lane measurement and the smaller number (i.e., half)
of measurements.

In [14], a contemplative real-time (CRT) approach was
proposed to provide a reliable DGPS/INS solution. Within
the CRT framework [14]-[19], the full nonlinear maximum
a posteriori (MAP) estimation problem is solved considering
all the information (e.g., prior, kinematics, GPS, and IMU
sensor data) available within a multiepoch window [20]-[23].
The CRT approach provides a large enough set of residuals to

1063-6536 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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extend Receiver Autonomous Integrity Monitoring techniques
[24], [25] to reduce the effects of the outlier measurements on
the estimation and to detect incorrect integers. In [17], integer
ambiguity resolution is considered within the CRT framework
for the RTK GPS/INS application.

One challenge to implementing integer ambiguity resolution
using GPS and IMU is the high computation load, especially
when the multiepoch data window is long to enhance relia-
bility or the IMU sampling rate is high. This paper considers
an alternative solution with a significantly lower computational
cost. The validity of the approach is demonstrated theoretically
and the performance is demonstrated experimentally. The
implementation results demonstrate that the proposed method
can achieve centimeter-level position accuracy on moving plat-
forms in challenging GPS environments and estimate integers
identical to those from the original CRT method.

The outline of this paper is as follows. Section II states the
RTK GPS/INS problem. Section III revisits the CRT integer
ambiguity resolution proposed in [17]. Section IV presents
the proposed common-position-shift (CPS) method. Section V
analyzes the CPS method mathematically. Section VI presents
the implementation results. Section VII concludes this paper.

II. PROBLEM STATEMENT

This section presents DGPS [26] and aided INS [1]
background and notation.

A. Aided Inertial Navigation

Let x € R"™ denote the rover state vector. For example,
the state vector at time ¢

x(t) = [pT(0), T (1), g7 (1), b (1), b (1)]T € R™

is composed of the position, velocity, attitude (e.g., quater-
nion), accelerometer bias, and gyroscope bias vectors.
The kinematic equations for the rover state are

x(t) = f(x (@), u@®) )]

where f : R™ x R® > R™ represents the kinematics and
u € R is the vector of specific forces and angular rates. The
function f is accurately known (see [1, Ch. 11]).

Given a distribution for the initial state x(t;) ~ N (x1, Py),
where x| € R" and Py € R"*"s and measurements @ of u,
the INS propagates the estimate of the rover state between
aiding measurement time instants by solving

(1) = f@E@), @) )

where X (¢) denotes the estimate of x(z).
For the convenience of later discussion, we define

s(t) = [vT(0), ¢T(0), bJ (1), b] (1)]T € R™=7Y A3)

as the state vector excluding the position. Then, we have
x(t) =[pT(t),sT()]T. Similarly, x| = [pI, sI]T for the prior
and X(t) = [pT(t),§T(¢)]T for the state estimate.

Due to prior errors, system calibration errors, and measure-
ment noise, the state estimation error ox(¢t) = x(¢) — x(¢)
develops over time. The dynamics and stochastic properties
of this estimation error are derived from (1) and (2).
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When aiding measurements

2(t) = h(x(1)) + n (1) “)

are available, various methods (e.g., the extended Kalman
filter and particle filter) are available to use the initial state,
inertial measurements, and aiding measurement information to
estimate the rover state vector [1], [27].

B. DGPS Measurements

Throughout this paper, double-differenced GPS measure-
ments are considered. For notational simplicity, it is assumed
that the double-difference approach completely removes all
common-mode errors (e.g., ionosphere, troposphere, satellite
clock, and ephemeris) as well as the receiver clock biases,
which allows these terms to be dropped throughout this paper.
This is done only to simplify the notation of the presentation,
and these errors will still affect the experimental results;
therefore, outlier measurements may exist due to multipath
error, heavy foliage, receiver failure, and so on.

The double-differenced pseudorange (i.e., code) measure-
ment for the ith satellite are modeled as

P (1) = (e (1)) + nly (1) )

where h}c (x (%)) = | p(t) — p'(tx)|l2 is the Euclidean distance
at 1, between the rover position p € R3 and the position
of the ith satellite p’ € R>, and n;', ~ N(O, 03) represents
the (noncommon mode) measurement noise with standard
deviation 6, = 0.5 ~ 3m, depending on receiver design,
environmental factors, and the performance of multipath miti-
gation techniques [28]. In practice, the noise level o, will vary
temporally and spatially for each satellite.

The double-differenced carrier phase measurement for the
ith satellite is modeled as

o' (1) = hi(x (1)) + AN' (tx) + nf/,(tk) (6)

where 4 is the carrier phase wavelength and N’ is the unknown
integer ambiguity. The measurement noise has distribution
nfp ~ N0, 0(5). The noise standard deviation o, is millimeter
to centimeter level (<0.01c,).

The unknown integer N' represents the number of carrier
wave cycles between the satellite and the receiver at the time
that phase lock is achieved. If the PLL in the receiver for
the ith satellite maintains lock without cycle slips during
a time interval [f1,7,], then this integer is constant over
this time interval, ie., N'(f;) = = Ni(t,) = N
The receiver reports the lock status to enable detection of
such time intervals. The unknown integer must be estimated
exactly to enable the use of the carrier phase measurement
for precise position estimation. Note that the carrier phase
measurement model does not match the standard measure-
ment model in (4), because there is an unknown integer
variable N'.

C. Technical Problem Statement

This paper investigates integer ambiguity resolution and
trajectory estimation over a time interval [f1, ] that we will
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Fig. 1. Illustration of the CRT window measurement timeline. The window
contains a prior for the initial state, K GPS measurements, and many IMU
measurements between each pair of GPS measurements. IMU measurement
times are indicated as dots on the timeline. All of these items yield constraints
on the estimated trajectory X during the CRT window.

refer to as the CRT window. This window contains K GPS
measurement epochs, where K can be designer specified,
time varying, or data dependent. A typical but simplified
measurement scenario is shown in Fig. 1. The dots on the
timeline indicate IMU measurement times tz,,. Typically, the
number of IMU measurements between GPS measurements
is very high (ie., tiy1 — 4 > tj41 — 7). This is because
the IMU sample frequency (e.g., 200 Hz) is at least twice
the IMU bandwidth (e.g., 60 Hz), which is higher than the
vehicle motion bandwidth (e.g., 10 Hz). The GPS sample
rate is usually much lower (e.g., 1.0 Hz). The state transition
between these times is constrained by the kinematic model
of (2) and the IMU data. Additional constraints are imposed
by the initial estimate (x1, P;) depicted above the initial state
and GPS measurements depicted below the timeline. Each
of these constraints is quantified by a probability density
that enables a Bayesian estimation formulation for the CRT
estimation problem. The computation for the CRT estimation
process considering all the information over the CRT window
starts at rx and completes its computation at t* = rx + Ag,
where Ag > 0 is a small fraction of a second using standard
off-the-shelf computers. The time interval (tg,t*™) is shown
in Fig. 1 marked in red. For ¢t € (tg,t*), the real-time
state estimate is maintained by the INS. At r*, the CRT
estimation result x(¢x) is propagated by the INS with the
IMU data over (tg,t*] and used to update the real-time
estimate. Therefore, the INS is effectively free integrating
without corrections, from tx_; + Agx_1 to tx + Ak, which
is about 1 s, as in the standard EKF approach. For 1-Hz
GPS epochs, the INS error accumulation is at the centimeter
level.

To simplify the presentation of the novel ideas in this paper,
the following assumptions are made.

Assumption 1: Within the CRT window, the receiver
provides valid carrier phase measurements for m satellites,

without loss of lock. A
Assumption 2: The prior distribution for s(¢1) is
N(s1,Pys). A
Assumption 3: The GPS measurement rate is 1 Hz. A

With Assumption 1, the unknown integers in the carrier
phase measurements from these m satellites are constants
over [t1, tx]. This assumption will be relaxed in the example
section. Assumption 2 allows the system to be initialized at
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an unknown location, while the partial state estimate §(¢) is
initialized with the prior (s1, Ps,) based on other information
sources, while the position is estimated in the CRT window
based on GPS. The GPS sampling rate stated in Assumption 3
facilitates the presentation. The entire derivation goes through
for other sample rates. Under Assumptions 1-3, the CRT
estimation problem considered in this paper can be stated as
follows.

For a system described by (1), we have the following.

1) An initial distribution for the state s(t;) ~ N (s1, Py,).

2) IMU measurements U = {Uk},f:_ll, where

Ui = {a(z), tk <t < tiy1}.

3) DGPS code and carrier phase measurements Y =
{Yk},le, where

Yi = {p' @), (o' ol

Note that t1,...,% € (71, 7c]. The set {z,});_, contains the
high-frequency IMU measurement time instants. The integer
my is the total number of valid pseudorange measurements
at time fr. For simplicity of discussion in this paper, it is
assumed that my = m. The method presented in this paper
can be extended to more complicated mixes of measurements.

Then, the objective is as follows.

Objective 1: Estimate the optimal state trajectory X

(> 1>

xT(t1),...,xT(tx)]T € RE® and integers N
[NL,...,N™]T € Z™ with the given sensor measurements
U and Y, and the prior state density ps(s(1)). A

In [17], the above objective is achieved by formulating
and solving the corresponding MAP estimation problem.
The accuracy and reliability of the solution is achieved
by the nonlinear mixed ILS (MILS) method and faulty
data removal scheme. This CRT integer ambiguity resolu-
tion method is revisited in Section III to make this paper
self-contained.

ITI. CRT INTEGER AMBIGUITY RESOLUTION
Let X, £ {x(t) for t = t,...,tx}, then the joint
probability p(X, N, Y, U) can be factored as
pX,N,Y,U) = pX,U,N)p(YIX, U,N)
= pXy4, x(11), U)p(YIX,N)
= p(x (1), U)pXy|x(11), U) p(YIX, N)
= px () pXy|x (1), U)p(YIX, N)
= p(s(t))pXy|x(11), U)p(YIX,N). (D)

For a given prior (s1, Py,) and data sets Y and U, the MAP
trajectory estimate is the X and N maximizing the right-hand
side of (7)

max

ps()pXilx(n), U)p(YIX,N).  (8)
XeRnsK Nezm
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With a Gaussian noise assumption, the

log-likelihood of the right-hand side of (7) is
IV NIy = lls () = s1llp,
+ O NG, U) — x (1)1,

k
+ 22 [rr @y = o' w7,
ki

+ 2 @) + AN - o ]2 ©
k i

negative

where ||v||%,V = v W~y is the squared Mahalanobis distance
with matrix W. All terms on the right-hand side also use this
notation. The vector v is the concatenation of each of the
vectors summed in the right-hand side of (9). The operator
¢ and the covariance matrix Qi used in (9) are defined
in Appendix I. The matrix W is the positive definite block
diagonal matrix formed by the positive definite submatrices
Qx, Py, asz, and %21. Using MATLAB syntax, W can be
represented as W = blkdiag(Psl ,Qo,...,Qkx-1, asz, a(fl).
Let SywTZw = W', then

r&syv (10)

is the weighted residual and ||v||%V = ||r||>. For notation
simplicity, herein we denote the tuple (X, N) = [XT,NT]T ¢
R™%K x 7™, With this notation, the MAP problem is trans-
formed into the nonlinear NMILS problem

(X*,N*) = argmin [r(X,N)|?

XeRnsK NezZm

(1)

where r is the vector

- Sp,, (s(t1) — 51) T

20, (@(x(11), Up) — x(r2))

ZQi_ (P(x(tx-1), ﬁk—l) —x(tx))

rX,N) = o, (hi(x () — p' (1))

0, (W (1)) = " 11)
O'(;l (h%(x(ll)) + AN — (01(1‘1())

o, (Mg (x(1x)) + N~ " (tx))

The dashed lines separate the residuals into three sets:
prior, INS, and GPS. This is only to facilitate discussion
in Remark 2.

The CRT integer ambiguity resolution and trajectory estima-
tion approach from [17] can be summarized with the following
three steps.

1) Obtain the float solution by neglecting the integral nature

of the ambiguity N

(X,N)=argmin [r(X,N)|.

(X,N) cRns K+m

12)
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Standard outlier rejection techniques [14], [25],
[29], [30] can be executed to detect and remove outliers.
2) Starting from (X, N), solve the NMILS problem in (11)
to obtain the optimal solution (X*, N*).
3) Check the validity of integer estimates with integer
validation techniques [31].
The second step of this approach is computationally expensive,
especially with relinearization, which requires reintegration.
An alternative to the second step is the main focus herein.
To solve the optimization in (11) in an iterative man-
ner, the residual r(X,N) is linearized around the current
estimates (X, N)

r(X,N) ~ r(X,N) + J(X, N)(6X, 6N) (13)

where J (X, N) is the Jacobian matrix of r(X,N) evaluated
at (X,N) and (06X, 0N) = (X,N) — (X, N) is the estimation
error. Furthermore, J (X, N) can be decomposed as

JX,N) = [A, B]

where A contains the columns of J (X, N) that are partial with
respect to X and B contains the partial with respect to N.
Thus, (13) can be rewritten as

r(X,N) ~ r(X,N) + AoX + BoN.
The next step solves the MILS problem

min |7 (X, N) + AdX + BON||%. (14)
oXeRnsK SNeZm
Solution methods are well presented in [7]-[9]

and [32]-[34]. Any of these methods could be used to
solve the MILS problem embedded in Step 2) of the problem
of interest. For the presentation of this paper, we choose
to use MILES framework [9] for both the presentation and
solution. The CPS algorithm could also be implemented
using LAMBDA [7] and MLAMBDA [8]. The performance
is expected to be similar.

Remark 1: Note that the major contribution of this paper is
not a method for MILS solution; instead, it is to present an
innovative way to reconstruct the cost function in (9) into two
parts that can be solved independently and efficiently. A

Remark 2: Note that the vector defining r (X, N) is divided
by horizontal lines into three parts. Standard multiepoch RTK
would only address the residuals in the bottom portion of the
vector. The residuals from that portion of the vector come
from nonlinearities (i.e., range measurements) with a very
small curvature [i.e., 1/(20 x 10°) m] so that the problem
is essentially linear and a single MILS iteration is sufficient.
The method herein also considers the prior and the IMU
constraints. Many important applications contain an IMU
to attain a high-frequency and high-bandwidth state vector
estimate. The nonlinearities in the INS are strong, having
curvature that is significant relative to the state uncertainty,
especially at startup or during maneuvers; therefore, multiple
iterations of the MILS may be required. A

By dropping the notation X,N) in r(X,N) and defining
the QR decomposition [46]

A=1Q4.Qu] [‘ﬂ (1)
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TABLE I
COMPUTATIONAL COMPARISON

Direct MILS CPS MILS
O((nsK)3) x 71 | O((nsK)?) x 71
fKns x Jg 0
2M(Ns)? x I 2(2m)(3)? x Jo
22Km)m? x J2 | 2(2m)m? x Ja
(%) x T2 (%) x Jg
Km Km

Step | Process

1) Float solution

2a) Integrate INS
2b) QR of A

2¢) QRZ of Q', B
2d) Integer Search
3) Integer Valid.

the cost function in (14) can be factored as [9]
|r + AdX + BON |
T
R

9? r+ 4 oX+ | - T

Q4 Q,B
|QTr + R40X + QI BN|” + |Q1r + QIBsN| .

(16)

TB 2
Q ON

Note that for any fixed JN, the first term on the right-hand
side of the above equation can be made equal to zero by an
appropriate choice of 6X. Thus, solving the following ILS
problem:

Qlr +QIBsN|?

min

ONezZm

yields the optimum of (14). Typically, the ILS solution has two

steps: reduction and search [35]. Each iteration of the NMILS

is that computationally expensive and multiple iterations may

be required, this is caused by the need for relinearization in
(13) this is caused by changes in X.

Increasing the length K of the CRT window enhances
both accuracy and reliability at the expense of a higher
computational load. Later in Section V-D, the computational
load will be summarized in Table I and compared with the
CPS algorithm that is developed herein.

The main contribution of this paper is an alternative
approach to replace Step 2). The new approach requires a
significantly lower computational load. The general method
of proof will be to show first that the two approaches would
be equivalent if the GPS measurement equations were linear
and time invariant and then to develop bounds on the errors
incurred due to the GPS measurement equation nonlinear
effects and time variations. Because the bounds are small
relative to the measurement noise, these errors are irrelevant
for practical engineering purposes. The proposed method is
inspired by the observation that in practice the optimal solution
trajectory X* (with integers resolved) is different only from
the float solution X in terms of a common 3-D position
error to each state vector in the trajectory (see Fig. 2).
The mathematical analysis in Section V verifies this
observation.

a7)

IV. COMMON-POSITION-SHIFT ESTIMATION

This section presents the CPS method, which is a com-
putationally efficient alternative to the original CRT method.
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Fig. 2. Example comparison of horizontal positioning results. The blue
dashed-dotted curve is from MILS GPS/INS [17] with centimeter accuracy.
The red dashed curve shows the float solution from (12). The yellow asterisks
show the DGPS differential pseudorange solution (i.e., no carrier phase).
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Fig. 3. Example 3-D position shift. The blue curve represents the original

trajectory, the green dashed arrow represents the 3-D position shift vector,
and the red curve represents the shifted trajectory.

The key point is to construct a smaller optimization problem
to replace that in Step 2) of Section III. First, the notation for
the CPS method is defined.

A. Notation of Common Position Shift

Given a trajectory X = [xT(#1),...,xT(tx)]T and a CPS
vector Ap € R3, define the CPS operator @ as

X' =X®Ap£[xT(1)®Ap,....xT(tx) ® Ap]”

which denotes adding the constant vector A p to the position
portion p(#;) of each state vector x(t;) in X. The resulting
trajectory X' is referred to as the shiffed trajectory with respect
to the original X (see Fig. 3).

B. Outline of the CPS Method

This paper will show that the cost function Ir(X, N)|12
of (11) can be rewritten as a sum of cost functions

IrX, N) 12 = I X) 7 + 2 X1 + Ii3X, N2 (18)

These cost functions have two important related properties.
First, the term |ry(X)||> determines the shape, orientation,
and general location of the trajectory, but is insensitive to
a CPS Ap and to the integer vector N (see Proposition 2).
Second, for any given X, the terms (||r2(X)|I? + [Ir3(X, N)|I%)
are independent of s and can be minimized solely by the choice
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of (A p, N) (see Proposition 3). Therefore, if the linearization
errors and the time variation of the GPS measurement model
are ignored, Proposition 4 will show that the cost function can
be rewritten as

Ir X, N2 = [r1X) 1>+l X@Ap) P+ rs(X® Ap, N) ||

where X = X @ Ap.

These facts allow the problem of interest to be solved by

the following approach.

1) Find either the float solution X defined in (12) or the
integer-free solution X® defined in (26), which are
shown to be identical in Proposition 1.

2) Find (A p*, N*) that is the optimal solution of

min (X ® Ap)|? + |r3(X @ Ap,N)|?
ApeR3 NeZm

19)

where X is fixed when evaluating Ir212+)r3 )2

3) Check the validity of the integer estimates.

The trajectory-integer estimate from the CPS method is
finalized as (X @ Ap*, N*). The optimality of the solution
(X @® Ap*,N*) is discussed in Propositions 4 and 5 by
comparing with (X*, N*) obtained from the original NMILS
method revisited in Section III.

The CPS estimation in (19) is designed to replace the
original full NMILS Step 2) in Section III. The optimization
in (19) is also solved by the NMILS method outlined in
Section III; however, the dimensions are significantly smaller
and only a single (linearization) iteration is required.

C. Decomposition of GPS Cost Terms

This section defines the cost function decomposition
for (18).

Define @' = [p/(11), ..., 9" (tx)]T € RX to be the vector
stacking the carrier phase measurements of the ith satellite.
The last summation term in (9) can be rewritten as

> 2 i@y + 287 =o' @]
ki

- z |:Z Hh;c(x(tk)) + iNi — ¢i(fk)||i£i|
i k

= D IR (X) + AN — ¢'|12,, (20)
. [
1
where h' = [Ri(x(t)),....hi;(x(tx)]T € REK,
1=11,...,1]T € RX, and I is the K x K identity matrix.

In particular, 1 is rank 1 and can be QR decomposed as
[Q1, 01l [731} =1

where! [O1]1xx and [Ql]( K—1)xk contain orthonormal bases
for the column space and the left null space of 1. Let
Q = [91, 01], which is a unitary matrix. This QR decom-
position can be computed offline for different K values.

INote that Q1 and Qq are two different symbols. The former is the basis
for the column space of 1. The latter is the covariance matrix of the first INS
cost term in (9).
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The ith term in (20) can be decomposed into two parts by
projecting it on the column space and the left null space of 1

IA* (X) + A1IN' — «pl’uigl
. o
= 1QTH (X) + 4N = 0Dl gr 20

_ QI} [hix ; MNL 1}2
_H[QI K’ 4 021
_ H[thi(g;) + ARIN' — QIW} ’

O] (h' (X) — ¢') -

= | QT X) - )| 721
] QTA X) + ARiN' — Qo' 7, @D

where I~ = Qir Qy is the (K — 1) x (K — 1) identity matrix.
Note that the first term in (21) is independent of the integer
ambiguity N'.

Applying the same QR factorization to the pseudorange
summation term in (9) and reorganizing yield

Ir X, N)I1? = lls(t1) =513,

- ; (e (1), Ur) — x (tx11) 1,

+ 21O %) — o)y
LI

+ 3 o o0 - ol

+ Zl: | QT h! (X)+ARAN — QT ¢ ||j(§. 22)

Based on the above expression, it will be convenient to define
the following three cost functions. The first cost function

Ir X £ fIs(t) = s1llp,

+ O ¢ @). Un) — x (@) g,
k

SN HOL B

+ 2 [0T 0 (%) =)o

neglects the last two terms in (22). The second cost
function is

IO 2 Y [QI 0 - Qfp' |2 @3)

The third cost function is
Irs (X NP £ 3 Of R (X) + ARaN' — Q' [, (24)
i
which will define the CPS and is analyzed in Section IV-B.
With these definitions

Ir X, NI = [lr1 X + 21 + 13X, N2, (25)
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To simplify expressions in the following discussion, let:

IraX) I 2 Ir (X)) + [Ir2(X)1I?
Irs(X, N) I 2 r2(X)1I* + lIr3(X, N)|I%.

D. Integer-Free Solution
Define the integer-free solution as

X® = argmin ||r,(X)|%.
XeRnsK

Proposition 1: If the variable N is treated as a real vector,
then for X and N, as defined in (12)

Ir X, N)[I? = [Ira(X®)|1?
and X® = X, where r(X,N) is defined in (11). A
Proof 1: From (25)
Ir (X, NI = [lr1 (X) 1% + [lr2(X) 12
ay A,
+2_ | QIH X) + RN = Qo'
1

(26)

Each term in the summation is a scalar

QTR (X) + ARAN' — QlTw"lli(g. 27)

When N is treated as a real variable, then for any X, the value
. Ol — (X))

N’ 28
R (28)
makes the ith term zero. Therefore
lr X, N = (11 (X)11 + [[r2(X) |1
O

Proposition 1 indicates that the integer-free solution is
equivalent to the float solution of (12). This equivalence will
be utilized in Section V.

V. COMMON-POSITION-SHIFT METHOD ANALYSIS

This section presents the mathematical analysis of the
proposed CPS method. With the aid of several propositions
proved herein, the optimality of the CPS method is discussed
in Propositions 4 and 5.

A. Useful Constants Related to GPS

In the analysis, certain GPS facts will be used [2], [3], [26].
They are summarized in this paragraph. The standard deviation
of the differential pseudorange measurement is ¢, = 0.5-3 m.
The standard deviation of the differential phase measurement
is 0y ~ 0.010,. The minimum distance from a receiver on the
earth surface to a GPS satellite satisfies

hi(p) = Ilp(a) — p' (@)l = D £ 20000 km.

The orbital speed of the GPS satellite with respect to the ECEF
origin satisfies ||[V/| < V £ 4.0 km/s. When the DGPS base
station is within a few tens of kilometers, DGPS accuracy
is on the order of 1 m (i.e., 1¢) [3]. Herein, it is assumed
that there are always base stations (e.g., from CORS [4])
available to the rover within 20 km. Therefore, for the float
solution X

Ip@) — pt)ll < Ay =3 m.
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B. Propositions for the CPS Method

Proposition 2 quantifies the sensitivity of |r] ()A()||2
to a CPS.
Proposition 2: For any trajectory estimate, X € R"X,

1) Neglecting the time variation and the high-order terms

in the linearization of the GPS measurement model
I X e Ap)* = riX)]*. (29)

2) Accounting for the time variation and the high-order
terms in the linearization of the GPS measurement
model, for any trajectory estimate X e RuK with
lAp|l < 10 km, it is valid that

QT (W' (X ® Ap) — ') = QT (K (X) — @' +81) (30)
QT (W' X @ Ap) —p') = QT (W' (X) — p' +81) (31)

where §; € RX is a vector of perturbations caused by the
CPS. Furthermore, the magnitude of §; is bounded by

[81llcc = Bi(IlAPpII, 0)

where the real function Bj : Ri — R is defined as

(32)

Bi(|Apl.0) £ K(Ci + Cd)|Apll + |Ap|*/2D
(33)

and K is the CRT window length in seconds,
Ci £ (V/D) =20x107% C, £ (1/D) = 5.0 x
1078 s/m, ¥ is the upper bound of the rover speed over
the window, and ||A p| is the magnitude of CPS. A

Proof 2: First, a CPS A p will not cause any variation in
the prior cost and the INS cost terms

D o ® Ap). Ux) — x(tir1 ® Ap)lig,
k

=D 16 1), Up) — x (i) I, -
k

Therefore, the proof of (29) focuses on the GPS measurements.
Equations (30) and (31) are first derived by considering the
time variation and the high-order terms in the linearization
of the GPS measurement model, and then by neglecting the
perturbation §; due to linearization errors, (29) is obtained.

With the assumption ||A p|| < 10 km, the numerical analysis
in [1, Sec. 8.8.1.3] shows that

A p|?
2h; (py)

where i (py) = |p@) — p'@)ll and H; € RV is the
Jacobian matrix of h}c

hi(py + Ap) — hi(py) = Hl Ap + +hot.

i

i s i O T p)—p')
H =B =500 = [np(rk) - pi(rk)n]

Given that h};(pk) > D and e;; 2 Ap||2/(2h§((pk)), it follows
that:

hi(p + Ap) = hi(py) = H{Ap + ¢
with |¢f| < [[Ap]*/2D.

(34)
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Consider Hi(¢) : R — R3 as a function of time

2 (txk +1)/2 and H' £ H'(7) (35)
then by Taylor series, it follows that:
. - l
H’(t):H’+ ()(t—t‘)+hot (36)
By defining the variation
e hi - i
and using (36), I-VI,é can be written as
dH' (1)
P = txr —t) +h.o.t.
k dt —) + h.o
The derivative d H'(t)/dt is
dH' () () —v'(0)
di lp(@) = p' @] ' _
(P = p' ) (p(®) = p'))T((E) —v' (1))
lp@) —p O
(37)
and therefore, the variation of the Jacobian matrix is
bounded by
. 204 V) _
H|| < — | —1
| Hell < D |tk — 1]
since [lv(r)| < » and [v/(r)] < V. Furthermore, with

Assumption 3, (tx —t1) < K and then

R
18] < 22k — 1) = K(C1 + Cab).

We are now in a position to consider the effect of a shift A p
on the value of QTh' (X & Ap)

[ hi(py + Ap)

(38)

Ofn' X e Ap) = O] ;
K (Pg + Ap)
[ hi(py) + H{Ap+e

| Wi (Px) + Hi Ap + €k
R (P)) Hi
=9/ : |+9
| hE (Pi)

Ap + QITG’

Hy
where for €] in (34)

P [ei, . ..,e;(]T e RK.
With the notation of H' and H ,ﬁ
Q[h' (X & Ap)

(39
it follows that:

Hi HAp

Ap+9f| : |+Qf¢
HiAp

—

= Ofn' (X) + Of
;s
i

1
K
= 9] [ (X) + :|Ap+ei +0
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where the 0 term follows from the fact that the columns of O
span the left null space of 1. Thus, it follows that:

OTn' (X @ Ap) = O] (' (X) + 81 (40)
with the perturbation
$1 2 [H{Ap+el, ... ,HyAp+ek]T (41)

Then, from (38) it follows that:

1811loc = max {|H{Ap + i1}
< K(C1 + Cd) | Apll + I|Apl*/2D

where C; =2.0 x 107* and C; = 5.0 x 1078 s/m.

With (40), (30) and (31) can be derived, and then by
neglecting the perturbation 81, (29) is valid.

Remark 3: The intuition behind Proposition 2 is that due
to the small variation in h'(p(r)), for small time windows
and small perturbations A p, their effect is removed by the
linear transformation OT. For typical values (i.e., K < 10,
lApll < 1.5 m, and 0 < 50 m/s) the upper bound on the
perturbation ||1-VI,£A p|l caused by the CPS is 0.0031 m, which
is a factor of ten smaller than the centimeter noise level of the
carrier phase measurement. Because the perturbation is small
relative to the carrier phase measurement noise and multipath,
they can be neglected. A

Proposition 3 considers the cost functions [r2(X)|> and
[r3(X, N)||? defined in (23) and (24).
Proposition 3: Consider any two trajectory
estimates (Xl, Nl) and (Xz, Nz).
1) Neglecting the time variation and the high-order terms in
the linearization of the GPS measurement model, there
exists a correction (A p, ON) € R? x Z such that

Ir2X1 @ Ap)II® + r3(X1 & Ap, Ny +6N)||?
= X)) I* + Ir3 (X2, No) |1

2) Define the position errors between trajectories X, and
Xz as opk £ p%—pi, k=1,..., K. Accounting for the
time variation and the high-order terms in the lineariza-
tion of the GPS measurement model, if ||dp; | < 10 km,
there exists a correction (Ap,dN) € R? x Z" such
that

QIhi(Xl ® Ap) + AR (NI +N') — Q] ¢

integer

(42)

OTh' (Xo) + ARANL — Q] @' + Q]8> (43)
QI (X1 ® Ap) — Q'
= OTh (Xp) — 1Pl + 074> (44)
where the magnitude of §; is bounded by
[62]lc < Bi(llApIl, 0) (45)
where B and v are defined in (33). A

Proof 3: The details of this proof are in Appendix II.
Remark 4: Proposition 3 shows when K and |[Ap| are
bounded (e.g., K < 10 and ||[Ap| < 3 m), we can mini-
mize |r2(X)||1> + |Ir3(X, N)||> to within a small error, just
through a CPS A p and adjusting the integer estimates by JN.
Furthermore, the magnitude of the error 8 is small relative to
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the noise level of carrier phase measurements. For example,
for K <10, A, < 1.5 m, and o0 < 50 m/s, it follows that
162]lcc < 0.0031 m. A

C. Optimality of the CPS Method

The major propositions about the optimality of the CPS
method are presented as follows.

Proposition 4: If §; = 0 and §, = 0, then the following
identity is valid:

Ir(X ® Ap*, N[ = ||Ir(X*, N*)|? (46)

where X is the float solution from (12), (A p*, N¥) is the CPS
solution from (19), and (X*, N*) is the full NMILS estimate
from (11). A

Proof 4: See Appendix III.

Remark 5: This paper and proof introduce different tra-
jectories X X*, and X® and trajectory sets X}, Xj and
X,. The proof shows that certain components of the cost
function have the same value when evaluated for differ-
ent trajectories or trajectory sets. Taking advantage of this
allows definition of the CPS algorithm described in (19)
that vastly reduces the computational load, as summarized
in Table L. A

Proposition 4 considers the case where the linearization
errors do not exist. Proposition 5 analyzes the effect of the
linearization errors.

Proposition 5: Accounting for the time variation and the
high-order terms in the linearization of the GPS measurement
model, the following inequality is valid:

E{Ir(X® Ap*,N" |} < (1 + G3)E{||Ir(X*,N")|%}

where X is the float solution from (12), (A p*, N¥) is the CPS
solution from (19) with |Ap*|| < Ay, and

3 Km(45,% 4 30,72)[Bi(A , 0)]?

Cy =
3 QK — )ym—3
and (X*, N*) is the full NMILS estimate from (11) and E{-}
is the expectation operator. A

Proof 5: See Appendix IV.

Remark 6: When K =10, Ay =15, m=7,0,=10m
and o, = 0.020 m, and C3 = 0.04. The error between the
expected final costs of two optimizations is bounded within
4% of the expected optimum from the full NMILS approach.
For the full NMILS solution, the residuals are at the centimeter
level; therefore, the worst case perturbations would be 0.4 mm.
Thus, Propositions 4 and 5 show that the CPS is a valid and
accurate approximation to the original full NMILS approach.
A

The implementation results presented in Section VI demon-
strate that the differences between two approaches match the
expected performance.

D. Computation Analysis of the CPS Method

Table I compares the computational cost of the direct
MILS (see Section III) and CPS MILS (see Section IV-A).
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TABLE II

EXAMPLE COMPARISON OF COMPUTATIONAL LOAD: f = 200,
K =10,ng =16, Ny =160, M =297, ANDm =17

Step | Direct MILS CPS MILS
2a) | 3.20 x 10* x T 0

2b) | 1.52 x 107 x J2 | 2.52 x 102 x Ja
2c) | 1.37 x 10* x Jg | 1.37 x 103 x T3

In Table I, J; represents the number of (linearized) nonlinear
least squares iterations required to find in the float solution
of Step 1). Similarly, J, represents the number of linearized
iterations required for integer ambiguity resolution in the ILS
problem of Step 2). The IMU sampling rate (e.g., 200 Hz)
is f.

Compared with solving the full NMILS in (11) directly,
the computational cost in (19) is significantly reduced due
to the much smaller dimension of the real unknown variable
Ap € R3 versus X € R™K In particular, this dimen-
sion reduction facilitates the QR decomposition in (15)
[see Row (2b) in Table I]. The dimensions of the corre-
sponding A matrices in the full MILS and CPS MILS are
M x N, versus 2m x 3, where M 2 n,K + 2mK — 3
is the dimension of the residual vector, Ny = nyK is the
total state dimension of X, and 2m is the total number
of GPS measurements at a single epoch (code and carrier
phase). Furthermore, while each NMILS iteration of the direct
approach requires the expensive INS reintegration, the CPS
NMILS of (19) does not [see Row (2a) in Table I]. In the ILS,
the reduction step is cast as a QRZ decomposition, which is
actually a QR factorization with column pivoting (or column
reordering) [35]. In CPS MILS, the computation cost on QRZ
decomposition is lower due to the smaller dimension of Q;';B
[see Row (2c) in Table I]. On the other hand, the computation
of the integer search represented with (x) in Row (2d) of
Table I will not vary significantly, since the dimension of N
is the same in both approaches. The computation of the float
solution and the integer validation is the same in both the
direct MILS and CPS MILS methods.

To give a better sense of the computation improvement
achieved by the CPS approach, Table II shows an numerical
example of computation costs in Row (2a—c) of Table L. In this
example, the IMU frequency is 200 Hz, the CRT window
length is K = 10 epochs, the dimension of navigation state
is ng = 16, the average GNSS satellite availability is m = 7,
Ny = 160, and M = 297. Table II indicates in each step
that the CPS approach saves at least 90% of computation.
In particular, the computation cost of the QR decomposition
in Step 2b) is significantly reduced by an order of 10°.

Note that neither approach being compared involved any
type of algorithm that would reduce computations by taking
into account the significant level of sparsity in the matrix A.
Sparse matrix implementations are an area of future research
that could further significantly reduce the computational
load.

VI. EXPERIMENTS

This section discusses the experimental implementations
of the proposed CPS method. The results demonstrate that
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Fig. 4. Maximum norm of horizontal positioning error and posterior L1 phase measurements residuals within each K = 10-s CRT window for the CPS method.

the CPS state estimates are close to those of the original
approach.

A. Solution Validation

In addition to the integer validation techniques, a threshold
Ay for the CPS is used as a sanity check. This threshold can
be picked by the designer based on the expected positioning
accuracy of the float solution. After the CPS estimation
in (19), if |Ap*l < Ay and N* can be validated with
standard integer validation techniques [31], then the estimate
of (X,N) that resulted from this CPS approach is finalized
as (X @ Ap*,NY).

Various alternatives are possible if the CPS solution is
invalidated. The residuals could be analyzed in an attempt to
detect and remove satellites with noisy or invalid measure-
ments to improve performance within the current epoch. The
original full NMILS in (11) could be executed to attempt to
get (X*, N*). Alternatively, the float solution X could be used
to update the real-time state estimates, while at future epochs,
the CRT window could be augmented with additional data for
the next trial of integer resolution. For example, the designer
can choose to slide the current window to the next epoch(s) or
extend the length of the current window to accumulate more
data. Or the scheme could just skip the current window and
wait for a new window with larger m, which should yield a
higher success rate. In the following experiments, A y =3 m.

B. Experimental Description

For performance evaluation, the proposed approach is
implemented in C++ and applied to RTK GPS/INS data sets
collected from an automotive vehicle. The on-vehicle GPS/INS
suite consists of a NovAtel OEMV3 receiver that outputs
GPS pseudorange and carrier phase measurements at 1 Hz,
and a 200-Hz NV-IMU1000 IMU from NAV Technology
Company Ltd that outputs the specific forces and angular rate

measurements along the three orthogonal axes. The DGPS
information, including the raw dual-frequency GPS measure-
ments (Message 1004 in RTCM3.1) and the base position
(Message 1006 in RTCM3.1), is broadcast by the UC River-
side (UCR) Ntrip Caster (ntrip.engr.ucr.edu:2101) publicly
over the Internet at 1 and 0.1 Hz, respectively [36], [37].

Two data sets logged on the vehicle are processed by the
CPS approach:

1) a stationary 12-h (43200-s) data set collected on UCR
campus on March 29, 2014;

2) a moving 640-s data set collected while driving near the
UCR Center for Environmental Research and Technol-
ogy (CE-CERT) on January 23, 2014.

Since the purpose of the IMU is to cause the residuals to be
insensitive to vehicle motion, the performance (i.e., position
error and residual analysis) on the two data sets should be
similar. The accuracy of the stationary data is more easily
verified.

The algorithms were executed on a desktop computer with
Intel Core2 Q9400 four-core CPU at 2.66 GHz, 8-GB DDR3
1333-MHz memory, and 240-GB SSD disk drive. The pro-
gram runs in Ubuntu 12.04 64-bit OS within a VMware
virtual machine for Windows 7. The total memory used by
the virtual machine is up to 4 GB. Under this implemen-
tation environment and picking the CRT window length to
be K = 10 s, the average computing time for one CPS iteration
is approximately 0.25 ms versus 150 ms for the original full
MILS method, indicating significant (600x) computational
performance improvement. The code is capable of real-time
or postprocessed modes of operation. The results presented
here are from postprocessing, still running in real time, using
stored data.

For the stationary data, the 3-D ground-truth position is
known, so positioning errors are presented to show the CPS
performance. For the moving data sets, the ground truth is
unavailable; therefore, the trajectory and integer estimates
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from the CPS and the original full MILS method [17] are
compared to show that the CPS is an efficient alternative
to the full MILS method, while achieving the same level
of accuracy. For both implementations, dual-frequency carrier
phase measurements are utilized to form wide-lane phase mea-
surements [1]. For both stationary and moving data, histograms
of the L1 carrier phase measurements residuals are used as a
second method to illustrate CRT accuracy. A 10° elevation
mask is applied to GPS satellites. Integers were resolved
only when the CRT windows contained at least five satellites.
In the evaluation of the CPS approach, the initial condition
and the prior term in the cost function of (9) include only s
defined in (3). There is no prior for the position or integer.
Therefore, the integer solutions for each CRT window are
independent. After estimation at each time step, a residual
check is used to validate the integer estimates. If the mag-
nitude of a carrier phase measurement residuals with fixed
integer estimate is larger than 0.06 m, the integer estimate
is rejected. Other integer validation techniques, e.g., ratio
test, can be applied [31], [38]. Only the validated results are
recorded.

C. Stationary Data

For the stationary data, the antenna position p is surveyed
with accuracy at the millimeter level. The algorithm itself has
no knowledge of this ground-truth position.

For each 10-s CRT windows, the algorithm estimates
X = [x(t)T, x()T,...,x(t10)T]T. For the 43200-s station-
ary data, 569 trials failed with m < 5, 38167 trials are
validated (i.e., m > 5 and the residual check is passed).
The positioning results are presented through comparison
with the ground truth (i.e., p(%) — pg). To evaluate the
positioning performance, the maximum norm of the hori-
zontal position error over each CRT window was logged
and is shown as a histogram in Fig. 4 (top-left). Accura-
cies below 0.02 m are typical, which matches the expected
performance of RTK GPS positioning. Fig. 4 (bottom-left)
shows that the vast majority of the L1 phase residuals lie
in [—0.02, 0.02] m.

D. Moving Data

The route and satellite availability while logging this
data set are shown in Fig. 5. The average vehicle speed
is 35 km/h.

Since the ground truth is not available for this data set, the
implementation results of the CPS method are compared with
those of the original full MILS method [17]. The implementa-
tion results show that all the validated integers from CPS are
identical to those from the full MILS method. Furthermore,
Fig. 4 (top-right) shows that the maximum norm, during each
CRT window, of the horizontal position error between CPS
and full MILS are bounded by 0.04 m and typically less
than 0.02 m. This demonstrates that the CPS method is a good
approximation of the full MILS method in terms of integer
ambiguity resolution and positioning. Fig. 4 (bottom-right)
shows that most of the L1 phase measurement residuals lie
in [—0.02, 0.02] m.
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Fig. 5. Route and the satellite availability of the 640-s moving data
experiment. The x- and y-axis are the longitude and latitude in degrees,
respectively. The colors along the route indicate the number of satellites visible
to the receiver at that location and time.
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Fig. 6. Magnitude of the 3-D position shift estimated by CPS and the
variations of ||r4||2 caused by the CPS.

The purpose of Fig. 6 is to validate Proposition 2. For the
ith satellite in each time window, define

Ar' £ QT(h (X @ Ap*) — ¢') — QT (W' (X) — ')
which is the variation of the integer-free phase measure-

ment residuals (see Proposition 2) caused by the estimated
CPS Ap*. Furthermore, Ar' can be rewritten as

Ar' = QT (' (X @ Ap*) — k' (X)).

For the moving data, the maximum magnitude of Ar' over
each CRT window, i.e., 8max = max;{||Ari|sc}, is recorded
along with the magnitude of CPS ||Ap*|| for each CRT
window.

Proposition 2 implies that a CPS will cause only small
variations, Ar’, that are upper bounded by Bi(||Ap*|,d).
Fig. 6 validates this claim by plotting dmax, || Ap*||, and the
bound Bj calculated in (33). Fig. 6 also shows that in this
data set, all the CPS estimates have norm less than 1.2 m, as
expected.
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Fig. 7.

Fig. 7 shows the maximum differences between the CPS
estimates and the full MILS estimates of attitude, velocity,
and bias. Fig. 7 shows that the roll and pitch estimate errors
are smaller than 0.1°, and for yaw angle, most of the errors
are smaller than 0.5°. The velocity estimate errors between
two methods are smaller than 0.02 m/s.

VII. CONCLUSION

This paper proposes a novel integer ambiguity resolution
approach over a time window of GPS/IMU data. The purpose
of processing a window of data is to enhance the relia-
bility of obtaining high-accuracy position estimation, using
carrier phase measurements, even in challenging environments.
Enhanced reliability will require further research into outlier
detection methods that are beyond the scope of this paper.

The CPS method focuses on the reduction of computa-
tional cost. Theoretically, the achievable computational savings
should be on the order of 10*, while 600 has been demon-
strated. Future research could further reduce the computational
load by taking advantage of the potential sparsity of the
linearized matrix denoted by A. The analysis shows that the
estimation accuracy of the original and CPS algorithms would
be identical if the GPS measurements were linear and time
invariant and presents bounds on the errors incurred due to
the measurement nonlinearity and time dependence.

The theoretical approach is also interesting in that it shows
that the cost function can be decomposed into one part that
determines the shape and vicinity of the trajectory, but is
insensitive to the carrier phase integers and a position shift
vector, and a second part that is sensitive to the carrier
phase integer and can be solved to determine the required
position shift so that the location of the trajectory is accurately
known.

Maximum attitude, velocity, and bias estimation errors between the CPS and full MILS results of the moving data.

Theoretical analysis is presented for the CPS method. The
implementation results show that the proposed CPS method
obtains integer estimates identical to those from the original
full MILS method and obtains centimeter positioning accuracy
and that other state estimation errors are small.

APPENDIX I
INS REVIEW

For any initial state x(zx), the solution to (1) for
t € [tk, tkt1] is

x(t) = x(z0) + / F @), u(e)ds. @)

While nature solves (47) in continuous time, the INS has
only IMU and aiding measurements at discrete-time instants;
therefore, the INS numerically solves

X(tkg1) = @(X(x), u(ry))

—teo+ [ FE@.a@)dT @)

Tk

where ¢ is defined as the integration operator. The result of
the numeric integration of (48) is the INS state estimate of
X (tx41) for the given x (7x) and & (zx). The numeric integration
repeats to propagate the state measurements between the times
of aiding measurements. The aiding measurement times can be
unequally spaced in time without causing any complications.

Let ﬁj = {a(tx), t € [tj,tj+1]}, then (48) can be called
recursively to compute ¥(¢;41) from %(z;) and ij; denote
this by x(t;411) = ¢(fc(tj),l~Jj). At the same time, nature is
integrating (47) which it denoted as x(t;11) = ¢(x(;), Uj).
The linearized error growth model is

0x(tj11) = ®;0%(tj) + @;
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where @; ~ N(0,Q;) and ®; = (6¢(x)/6x)|(£(tj),ﬁj). The
INS provides both Q; and ®; (see [1, Sec. 7.2.5.2]).

APPENDIX II

This appendix proves Proposition 3.

Proof 6: The linearization error term €’ is not included
in this proof, but can be added by following the idea in the
proof of Proposition 2.

The proof first shows the existence
for (43) and (44) and then allows §, =
existence of (A p, N) for (42).

From its definition in Section IV, Q7 is a unit column matrix
whose column spans the range space of 1 = [1, ..., 1]T € RX

oT =[1/VK,...,1/VK] € RX,

of (Ap,N)
0 to prove the

Therefore
g
=VKH'

Q|
g

(49)

for the row vector H' as defined in (35).
Starting from (43), our goal is to show that there exist
Ap € R3 and integer ON' for i =1, ..., m, such that

QT (X1 @ Ap) + AR1(N! + 6N')

= OJh' (Xo) + ARIN} 4+ Qf82.  (50)

Let X 2 X, — X and Dy € R3? be the position estimates
in X1, then

QTh' (X2) = QTh' (X; + 6X) (51)
[ B (P + Apy)
=9 : (52)
| Wi (Pg + Apk)
[ hil(i’l) HliApl
=ol| : |+af| (53)
| W (Py) HiApg
[ (py) ] H'Ap, H{Ap,
=09f : + o] + 9] (54)
| hi (b)) ] H' Apg HiApg
(M0 H{(Ap+Ap))
=of| +ﬁ2Apk+QI :
| i (Prc) ¢ Hi(Ap+Apg)

where H' is the average of Jacobian matrix H}. Define

K
1
i=1

as the average of the position adjustments in J0X and
AP, = Ap,— Ap as the variation of the position adjustments.
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Continuing, using (55) and then (49) yields

ofh' (X3)
1 (py) Hi(Ap+ Ap))
=Qf : +VKH Ap + Q] ;
h(Py) ﬁ;‘((AP‘*‘ Apg)
K (py) (A + H))Ap HiAp,
=Qf| 1 |+9f : +0Qf
hie (Px) (H' +I-}}'()Ap I-VI}'(AIVJK
[ hi(py) + H{Ap H{Ap,
= Q] : + 9 : (56)
il (Px) + Hi Ap I‘VI}'(AIVJK
[ i (py + Ap) H{Ap,
=9 : + 9] : ] (57)
| i (bx + Ap) HiApg
HiAp,
= oJh (X, ® Ap)+ Q] : (58)
HiApg

Thus, with N{ + 6N = Nﬁ, it follows that:
QTh (X1 @ Ap) + AR1(Ni + oN')
= OTh' (X2) + AR NS + Q8>

where 8 £ [H{Apy,...,HiApglT. With (38),
IApl < A, and |e,’;| < |lAp|l?/2D, and the bound
in (45) can be derived. This conclusion can also apply to
code measurements such that (44) is also valid.

By neglecting the perturbation §, in (43) and (44),
(42) can be obtained and this concludes the proof. Note that
the definition of A p in (55) is independent of i; therefore, the
proof can be repeated for each satellite.

APPENDIX III

This appendix proves Proposition 4. The proof will use the
following symbols:

X; = argmin |[r; (X)[|I?, X3 = argmin [|r2(X)|

XecRnsK XecRns K
A .
X, N,) 2 argmin  |rp(X,N)|I?
XeRmsK Nezm
and

Apiy = argmin [r2(X] @ Ap) .
ApeR3

Note that X7, X3, and X, are sets of trajecto-
ries. At each time ¢, with the definition in (3), any
trajectory X can be rewritten as X = [PT,ST]T,
where P = [pT(r1),...,pT(tx)]T € R3X and § =
[sT(t1), ..., sT(tk)]T € REK(:=3) Because by definition ||r2||?
(or ||rb||2) is independent of S, the set X; (or X,) contains
all trajectories with the same sequence of positions P73, but
distinct values of S. Each trajectory in X3 (or X,) has the same
value for ||r2]|2 (or ||rp]|?), but will be penalized differently
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by ||r1]?>. Similarly, X7 is a trajectory set, each having the
same shape S¥, but with P shifted by a common vector A p
by Proposition 2. Each trajectory in X} has the same value
for ||r1 || but different penalty for ||rb||5.

Proof 7: By the definition of (X, N,), it follows that for
the float solution X defined in (12), V(Ap,N) € R3 U Z":

75 (X, NI < lIrp(X @ Ap,N)|%. (59)
Given (X, N) and (X4, N,), the unique (A p*, N*) such that
Ilrp(X ® Ap*, N9)|? = [Irp(X., NI (60)

is provided in Appendix II in the proof of Proposition 3. From
Proposition 2 (with §; = 0), it follows that:

IriX & ApH)|* = lri (X))

Similarly, by Proposition 2 (with §; = 0), it can also be
proved that

(61)

I (X @ aph,)|* = | (X5)[.

By Proposition 3 (with §; = 0) and considering the identical
optimality achieved by p7, and XJ, it follows that:

[r2(X; @ Ap})|* = |2 (X3)
Since X is the float solution such that

Ira X% < IraX) > VX e R%K

(62)

7. (63)

we have
lr )1 + [r2(X) 2
< |ri(Xi® Aph) 12 + |2 (X} @ Ap},)
Substituting (62) and (63) into (64), it follows that:
I K12+ 2017 < ra (XD + [r2(X3) [
By the definition of X} and X}

I, (64

I (X)[? < Ir )12 VX € R:K
[r2(X35)[* < I X7 VX e R™K (65)
Combining these three inequalities yields

I GO = | (X712
By the definition of (Xy, N,), it follows that:
7o (X, NOIP < 15X, N) > V(X,N) € R™K 2. (67)
With (65), (67), and ||r{||?> + |Irp||? = ||Ir||?, it follows that:

|71 (X5) | + 76 (X NI < [I-(X, N2 ¥(X, N).

(66)

Then, it follows that:
2
lre (X7 + e X, NI < e (X*, N9
From (60), (61), and (66)

I (X @ Ap")|? + [rsX @ Ap*, N[> < |r(X*,N)|?
(69)

(68)

that is

Ir(X @ Ap*, N9II* < r(X*, N9, (70)
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On the other hand, from (11), we have
Ir(X*, N9)2 < Ir(X,N) 12 VX e RBK N e 77,
Thus, only equality can stand
Ir(X & Ap*, N[> = [[r(X*,N")|*

and this concludes the proof.

APPENDIX IV

This appendix proves Proposition 5 using similar tech-
niques as were used for proving Proposition 4. In this proof,
X and A p* are known and fixed.

Proof 8: Proposition 1 shows that the float solution X is
equal to the integer-free solution, which optimizes the cost
lro(X)|1? such that

Ira X2 < [raX) 2 VX € RMK,

Taking the norm of (30) after replacing &§; with (41),
it follows that:

|OT(h X @ Ap") — )2
= QT %) — )0z

I:I{Ap*—i—e{ T
i _ R .
+2 : O1(a, 1) O] (W' (X) — @)
I:I}'(Ap*—i—e%
I-VlliAp*—i—e{
+Qf (71)

H;(Ap*—f-flK o’%l_

Given the Gaussian noise assumptions, after convergence
of the float solution optimization process, the residual
QI (K (X) — ¢') is a zero-mean random variable modeled as
Gaussian. Therefore, the expected value of (71) yields

E{| Q10 (X @ Ap*) — o175,
< E{] Q' (X) - qf’)nigr} +0, 2 K[Bi(IAp*], 5)1
(72)
because Q = [Q1, O1] allows that
HiAp* + €
of : <

Hi Ap* + €l

HiAp* + ¢
or :

T i * i
o1 Hy Ap™ + € o2

and |HyAp*+€l| < Bi(Ap*, ), forany k = 1,..., K. Note
that an inequality analogous to inequality (72) also applies to
pseudorange measurements

E{| Q' X @ ap") — o3y}

< E{| QW' %) — o721} + 0, 2K LB (1A P, )1
73)
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Since a CPS A p will not cause any variation in the prior cost
and the INS cost terms, it follows that:

E{lriX® ApH)IP — Irn X))
<m(o,2+0,2)K[Bi(|Ap*D)]* (74)

where m is the number of available satellites.
Similarly, with Proposition 3 and its proof, it can be derived
that

E{llrsX ® Ap*,N9)|? — [Irp(X., NP}
<m(o,* + 0, 2)K[Bi(|Ap*5)1*. (75)
Similarly by Proposition 2, it can also be proved that
E{|r1(X; @ Aph)|* - | (X))
<m(o; 2+ 0, )K[Bi(|ApL |0 (76)
By Proposition 3
E{|r2(X; @ Ap},)|” — |r2(X3)]%)
<ma,?K[Bi(|Aph].9)]". (7D
Since X is the float solution such that
IlraX)I* < lIraX)|1> VX € R™K
we have
e X)? + [lr2(X) 12
< Iri(Xi @ Aph) |7 + |2 (Xf @ ApT)[*. (78)
With inequalities (76), (77), and (78), it follows that:
E{Ir1 )12 + r2 K17 — 71 (X5) |* = [ r2(X3) |}
<m(20,2 +0,2)K[Bi(| AP, 5)].
and then
E{Iri X117 = |ri (X7)]%)
<m0, +0,)K[Bi(| AP}, . 5)]*
since [[ra(X) 2 — [r2(XH)I?> > 0 is always true. From
inequalities (74) and (79), it follows that:

E{|riX e apM)I® — |1 (X))}
<m(30,? +20,%)K[Bi(A,D)]

(79)

where A £ max(||Ap*], || Ap7, ). Along with inequality (75)
and the inequality

|71 (X)) 7+ s (X, NOIZ < 117 (X*, N¥) 12

it follows that:
E{|r(X® Ap*,NY|)

= E{llriX® Ap")|* + Irs(X & Ap*, NY)|I*}
E{[|ri(X5) | + lIrp (X NI
+m(4o,? + 30, °)K[B1(A, D).
Following the steps from (67) and (68), it yields that:
E{|r(X® Ap*,NY|?)
E{|r(X*,N")|1*} + m(40, > + 30, *)K[B1(A, )]
E{|r(X*,N")[1*}(1 + C3)

IA

(80)

IA
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where
m(40,% + 30, %) K[Bi(A,0)]
E{jlr(X*,N9)]1?}

Cy =

The optimum ||r(X*, N*)||? is referred as the a posteriori
variance factor in classical least squares literature [45]. It can
be shown that

E{|r(X*,N")|I*} = @K — )m — 3
where 2K —1)ym —3 = (ngK +2Km —3) — (ng;K +m) is the

difference between the total number of measurements and the
total dimension of unknown variables, which is also referred
as the degree of freedom. Thus, it follows that:
m(40,% +30,%)K[Bi(A, D))

QK —-1)m -3 '
Herein, both ||A p*|| and ||A p7, | are upper bounded by A,
so A < Ay and this concludes the proof.

Cy =
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