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Health-Aware and User-Involved Battery
Charging Management for Electric Vehicles:

Linear Quadratic Strategies
Huazhen Fang, Yebin Wang, and Jian Chen

Abstract—This work studies control-theory-enabled intel-
ligent charging management for battery systems in electric
vehicles (EVs). Charging is crucial for the battery perfor-
mance and life as well as a contributory factor to a user’s
confidence in or anxiety about EVs. For existing practices and
methods, many run with a lack of battery health awareness
during charging, and none includes the user needs into the
charging loop. To remedy such deficiencies, we propose to
perform charging that, for the first time, allows the user to
specify charging objectives and accomplish them through
dynamic control, in addition to suppressing the charging-
induced negative effects on battery health. Two charging
strategies are developed using the linear quadratic control
theory. Among them, one is based on control with fixed
terminal charging state, and the other on tracking a refer-
ence charging path. They are computationally competitive,
without requiring real-time constrained optimization needed
in most charging techniques available in the literature.
A simulation-based study demonstrates their effectiveness
and potential. It is anticipated that charging with health
awareness and user involvement guaranteed by the proposed
strategies will bring major improvements to not only the
battery longevity but also EV user satisfaction.

Index Terms—Intelligent charging, battery management,
fast charging, electric vehicles, linear quadratic control, linear
quadratic tracking

I. INTRODUCTION

HOlding the promise for reduced fossil fuel use and
air pollutant emissions, electrified transportation

has been experiencing a surge of interest in recent years.
Over 330,000 plug-in electric vehicles (EVs) are on the
road in the United States as of May 2015 [1], with strong
growth foreseeable in the coming decades. Most EVs
rely on battery-based energy storage systems, which
are crucial for the overall EV performance as well as
consumer acceptance. Associated with this trend, the
past years have witnessed a growing body of work
on battery management research, e.g., state-of-charge
(SoC) estimation to infer the amount of energy available
in a battery, state-of-health (SoH) estimation to track
the battery’s aging status, thermal monitoring to avoid
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abnormal heat buildup [2]–[11]. Another essential yet
less explored problem in the battery use is the charging
strategies. Improper charging, e.g., charging with a high
voltage or current density, can induce the rapid buildup
of internal stress and resistance, crystallization and other
negative effects [12]–[15]. The consequence is fast capac-
ity fade and shortened life cycle, and even safety hazards
in the extreme case, eventually impairing the consumer
confidence.

Literature review: The popular charging ways, espe-
cially for inexpensive lead-acid batteries used for cars
and backup power systems, are to apply a constant
voltage or force a constant current flow through the bat-
tery [16]. Such methods, though easy to implement, can
lead to serious detrimental effects for the battery. One
improvement is the constant-current/constant-voltage
charging [16], [17], which is illustrated in Figure 1.
Initially, a trickle charge (0.1C or even smaller) is used
for depleted cells, which produces a rise of the voltage.
Then a constant current between 0.2C and 1C is applied.
This stage ends when the voltage increases to a desired
level. The mode then switches to constant voltage, giving
a diminishing current to charge. Yet the implementation
is empirical here, with the optimal determination of the
charge regimes remaining in question [18]. In recent
years, pulse charging has gained much interest among
practitioners. Its current profile is based on pulses, as
shown in Figure 2. Between two consecutive pulses
is a short rest period, which allows the electrochemi-
cal reactions to stabilize by equalizing throughout the
bulk of the electrode before the next charging begins.
This brief relaxation can accelerate the charging process,
reduce the gas reaction, inhibit dendrite growth and
slow the capacity fade [19]–[21]. Its modified version,
burp charging, applies a very short negative pulse for
discharging during the rest period , see Figure 2, in
order to remove the gas bubbles that have appeared the
electrodes.

A main issue with the above methods is the lack of
an effective feedback-based regulation mechanism. With
an open-loop architecture, they simply take energy from
power supply and put it into the battery. As a result, both
the charging dynamics and the battery’s internal state
are not well exploited to control the charging process
for better efficiency and health protection. This motivates
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Fig. 1: Constant-current/constant-voltage charging.

Fig. 2: Pulse charging and burp charging.

the deployment of closed-loop and model-based control.
Constrained optimal control is applied in [12], [22]–
[24], in conjunction with electrochemical or equivalent
circuit models, to address fast charging subject to input,
state and temperature constraints. In this direction, fast
constrained optimization has been leveraged recently
in [25], [26] to reduce the computational cost and push
forward real-time charging control. With the ability of
dealing with uncertain parameters, adaptive control is
used for energy-efficient fast charging in [27]. Based
on the Pontryagin minimum principle, optimal control
design of charging/discharging is studied in [28] to
maximize the work that a battery can perform over a
given duration while maintaining a desired final energy
level. However, we observe that the research effort for
feedback-controlled charging has remained limited to
date. The existing works are mostly concerned with the
fast charging scenario and employ a restricted number
of investigation tools, thus presenting much scope for
further work.

Research motivation: In this paper, we propose to per-
form control-based EV charging management in a health-
aware and user-involved way. Since the battery system
is the heart as well as the most expensive compo-
nent of an EV, health protection during charging is
of remarkable importance to prevent performance and
longevity degradation. As such, it has been a major
design consideration in the controlled charging literature
mentioned above. Furthermore, we put forward that the
user involvement, entirely out of consideration in the
state of the art, will bring significant improvements to
charging. Two advantages at least will be created if the
user can give the charging management system some
commands or advisement about the charging objectives
based on his/her immediate situation. The first one will

be improved battery health protection against charging-
induced harm. Consider two scenarios: 1) after arriving
at the work place in the morning, a user leaves the car
charging at the parking point with a forecast in mind that
the next drive will be in four hours; 2) he/she will have
a drive to the airport in one hour, and a half full capacity
will be enough. In both scenarios, the user needs can be
translated into charging objectives (e.g., charge duration
and target capacity). The charger then can make wiser,
more health-oriented charging decisions when aiming
to meet the user specifications with such information,
rather than pumping, effectively but detrimentally, the
maximum amount of energy into the batteries within
the minimum duration. Second, a direct and positive
impact on user satisfaction will result arguably, because
offering a user options to meet his/her varying and
immediate charging needs not only indicates a better
service quality, but also enhances his/her perception of
level of involvement.

Statement of contributions: We will build health-aware
and user-involved charging strategies via exploring two
problems. The first one is charging with fixed terminal
charging state. In this case, the user will give target SoC
and charging duration, which will be incorporated as
terminal state constraint. The second problem is tracking-
based charging, where the charging is implemented via
tracking a charge trajectory. The trajectory is generated
on the basis of user-specified objectives and battery
health conditions. The solutions, developed in the frame-
work of linear quadratic optimal control, will be presented
as controlled charging laws expressed in explicit equa-
tions. The proposed methods differ from those in the
literature, e.g., [12], [22]–[24], [27], [28] in either of both
of the following two aspects: 1) from the viewpoint of
application, they keep into account both user specifica-
tions and battery health — such a notion is unavailable
before and will have a potential impact on improving the
existing charging practices; 2) technically, they, though
based on optimization of quadratic cost functions, do
not require real-time constrained optimization needed
in many existing techniques [12], [22]–[24] and thus are
computationally more attractive. In addition, the linear
quadratic control is a fruitful area, so future expansion
of this work can be aided with many established results
and new progresses, e.g., [29]–[32].

Organization: The rest of the paper is organized as
follows. Section II introduces an equivalent circuit model
oriented toward describing the battery charging dy-
namics. Section III presents the development of charg-
ing strategies. Section III-A studies the charging with
fixed terminal charging state specified by the user. In
Section III-B, tracking-based charging is investigated.
Section IV offers numerical results to illustrate the effec-
tiveness of the design. Finally, concluding remarks are
gathered in Section V.
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[
Q̇b(t)
Q̇s(t)

]
=

−
1

Cb(Rb + Rs)

1
Cs(Rb + Rs)

1
Cb(Rb + Rs)

− 1
Cs(Rb + Rs)

 [Qb(t)
Qs(t)

]
+


Rs

Rb + Rs
Rb

Rb + Rs

 I(t)

V(t) =
[

Rs

Cb(Rb + Rs)

Rb
Cs(Rb + Rs)

] [
Qb(t)
Qs(t)

]
+

(
Ro +

RbRs

Rb + Rs

)
I(t)

. (1)

Fig. 3: The battery RC model, where Ro, Rs-Cs and Rb-Cb,
respectively, simulates the resistance of the electrolyte,
the surface region and the bulk inner part of an electrode.

II. CHARGING MODEL DESCRIPTION

While the energy storage within a battery results from
complex electrochemical and physical processes, it has
been useful to draw an analogy between the battery
electrical properties and an equivalent circuit which
consists of multiple linear passive elements such as re-
sistors, capacitors, inductors and virtual voltage sources.
While plenty of equivalent circuit models have been
proposed, we focus our attention throughout the paper
on a second-order resistance-capacitance (RC) model
shown in Figure 3.

Developed by Saft Batteries, Inc., this model was
intended for the simulation of battery packs in hy-
brid EVs [33], [34]. Identification of its parameters is
discussed in [35]. As shown in Figure 3, it consists
of two capacitors and three resistors. The resistor Ro
represents the electrolytic resistance within a battery
cell. The double RC circuits in parallel are meant to
simulate the migration of the electric charge during the
charging (or discharging) processes. Specifically, the Rs-
Cs circuit accounts for the electrode surface region, which
is exposed to the electrode-electrolyte interface; the Rb-
Cb circuit represents the bulk inner part of the electrode.
Seeing a fast-speed transfer of the electric charge, the
electrode surface is responsible for the high-frequency
behavior during the charging processes and associated
with the immediate amount of charge the battery can
absorb. It, however, has a rather limited storage capacity.
By contrast, the bulk electrode is where the majority
of the electric charge is stored in chemical form. Since
the diffusion of ions within the electrode proceeds at
a relatively slower speed, the Rb-Cb circuit makes up
the low-frequency part of the charging response. This
implies that Rb � Rs and Cb � Cs. Note that it has been
a significant effort to use the RC circuits to approximate

electrochemical processes at different scales of time and
frequency [36], [37]. The state-space representation of the
model is shown in (1). It can be verified that this system
is controllable and observable, indicating the feasibility
of both controlled charging and state monitoring.

Based on the model, the overall SoC is given by

SoC =
Qb −Qb + Qs −Qs

Q̄b −Qb + Q̄s −Qs
, (2)

where Qj and Q̄j for j = b, s denote the minimum and
the maximum allowed charge held by the capacitor Cj,
which represent the operating limits of the battery. When
the equilibrium Vb = Vs is reached, the SoC can be
simply expressed as the linear combination of SoCb and
SoCs, i.e.,

SoC =
Cb

Cb + Cs
SoCb +

Cs

Cb + Cs
SoCs. (3)

The RC model can well grasp the “rate capacity ef-
fect”, which means that the total charge absorbed by a
battery goes down with the increase in charging current
as is often stated as the Peukert’s law. To see this,
consider that a positive current is applied for charging.
Then both Qb and Qs, and their voltages, Vb and Vs,
will grow. However, Vs increases at a rate faster than
Vb. When the current I is large, the terminal voltage
V, which is largely dependent on the fast increasing
Vs, will grow quickly as a result. Then V will reach
the cut-off threshold in a short time. This will have the
charging process terminated, though Qb still remains at
a low level. Another essential phenomenon that can be
well approximated by this RC model is the “recovery
effect”. upon an interruption of charging. That is, when
the charging stops, the terminal voltage V will see a
transient decrease due to the charge transfer from Cs to
Cb.

To develop a digitally controlled charging scheme, the
model in (1) is discretized with a sampling period of
ts. The discrete-time model takes the following standard
form: {

xk+1 = Axk + Buk

yk = Cxk + Duk
. (4)

where x =
[
Qb Qs

]>, u = I, y = V, and A, B, C and
D can be decided according to the discretization method
applied to (1).

Despite being linear and straightforward, the above
RC model can satisfy the practical needs in many ap-
plications. This is because battery systems, e.g., those
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Fig. 4: The schematic diagram for charging based on linear quadratic control with fixed terminal charging state.

in electric vehicles, need to limit the minimum and
maximum SoC during operation [38], [39] for the pur-
poses of safety, life, and a consistent power capability.
Within this favorable SoC range, the battery behavior can
be approximated as linear due to battery open-circuit-
voltage profiles.

For health consideration, we need to constrain the
difference between voltages across Cs and Cb, denoted as
Vs and Vb respectively, throughout the charging process.
Note that Vs − Vb is the force that drives the migration
of the charge from Cs to Cb during charging. It shares
great resemblance with the gradient of the concentration
of Li ions within the electrode created during charging
causing the diffusion of ions. This observation is fur-
ther investigated in the Appendix. where the analogy
between the voltage difference and the Li-ion concen-
tration gradient is validated through a proof approx-
imate equivalence between the model in (1) and the
well-known single particle model (SPM) under certain
conditions. Too large a gradient value will cause inter-
nal stress increase, heating, solid-electrolyte interphase
(SEI) formation and other negative side effects [40]–[42].
Mechanical degradation in the electrode and capacity
fade will consequently happen. Thus to reduce the bat-
tery health risk, non-uniformity of the ion concentration
should be suppressed during charging, and this implies
the necessity of suppressing the voltage difference. It
is also noteworthy that such a restriction should be
implemented more strictly as the SoC increases, because
the adverse effects of a large concentration difference on
the battery would be stronger then.

Next, we will build the charging strategies on the basis
of the above RC model. The development will be laid out
in the framework of linear quadratic control, taking into
account both health awareness and user needs.

III. HEALTH-AWARE AND USER-INVOLVED CHARGING
STRATEGIES

In this section, we will develop two charging strate-
gies. For both, the user specifies the desired charging
duration and target capacity. The first strategy accom-
plishes the task via a treatment based on linear quadratic

control subject to fixed terminal state resulting from the
user objective. In the second case, charging is managed
via tracking a charging trajectory which is produced
from the user objective. A discussion of the strategies
will follow.

A. Charging with Fixed Terminal Charging State

A charging scenario that frequently arises is: according
to the next drive need, a user will inform the charging
management system of his/her objective in terms of
target SoC and charging duration. This can occur for
overnight parking at home and daytime parking at the
workplace, or when a drive to some place will set off
in a predictable time. As afore discussed, the objective
offered by the user, if incorporated into the dynamic
charging decision making process, would create benefits
for health protection compared to fast charging. This mo-
tivates us to propose a control-enabled charging system
illustrated in Figure 4. The charging objective given by
the user is taken and and translated into the desired
terminal charging state. A linear quadratic controller
will compute online the charging current to apply so
as to achieve the target state when the charging ends.
Meanwhile, a charging state estimator will monitor the
battery status using the current and voltage measure-
ments, and feed the information to the controller. In
the following, we will present how to realize the above
charging control.

From the perspective of control design, the consid-
ered charging task can be formulated as an optimal
control problem, which minimizes a cost function com-
mensurate with the harm to health and subject to the
user’s goal. With the model in (4), the following linear
quadratic control problem will be of interest:

min
u0,u1,··· ,uN−1

1
2

x>NSN xN

+
1
2

N−1

∑
k=0

(
x>k G>QkGxk + u>k Ruk

)
,

subject to xk+1 = Axk + Buk, x0

xN = x̄.

(5)
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where SN ≥ 0, Qk ≥ 0, R > 0 and

G =
[
− 1

Cb
1

Cs

]
.

In above, Gxk represents the potential difference between
Cb and Cs, and the time range N and the final state x̄
are generated from the user-specified charging duration
and target SoC. Note that the battery should be at the
equilibrium point with Vb = Vs in the final state and
that using (2)-(3), x̄ can be easily determined from the
specified SoC value. The quadratic cost function thus
intends to constrain the potential difference and magni-
tude of the charging current during the charging process.
The minimization is subject to both the state equation
and the fixed terminal state. The weight coefficient Qk
should be chosen in a way such that it increases over
time, in order to offer stronger health protection that is
needed as the SoC builds up. It is noted that x>NSN xN
represents a general formulation of the terminal cost, to
which different options can be assigned. It vanishes, for
example, if SN = 0. Or it can be set as SN = G>QNG
to constrain the voltage difference in the end state.
However, since subjected to the hard constraint xN = x̄,
the end state would reach the desired point regardless
of SN .

Resolving the problem in (5) will lead to a state-
feedback-based charging strategy, which can be ex-
pressed in a closed-form [29]:

Kk = (B>SN B + R)−1B>Sk+1 A, (6)

Sk = A>Sk+1(A− BKk) + Qk, (7)

Tk = (A− BKk)
>Tk+1, TN = I, (8)

Pk = Pk+1 − T>k+1B(B>Sk+1B + R)−1B>Tk+1,
PN = 0, (9)

Ku
k =

(
B>Sk+1B + R

)−1
B>, (10)

uk = −
(

Kk − Ku
k Tk+1P−1

k T>k
)

xk

− Ku
k Tk+1P−1

k x̄. (11)

This procedure comprises offline backward computation
of the matrices Kk, Sk, Tk, Pk and Ku

k from the terminal
state and online forward computation of the control
input (i.e., charging current) uk.

The state variable xk is not measurable directly in
practice, so its real-world application necessitates the
conversion of the above state-feedback-based strategy
to an output-feedback-based one. One straightforward
avenue to achieve this is to replace xk by its prediction x̂k.
This is justifiable by the certainty equivalence principle,
which allows the optimal output-feedback control design
to be divided into the separate designs of an optimal
state-feedback control and an optimal estimator [43]. The
optimal estimation can be treated via minimizing

min
x0,x1,··· ,xk

1
2
(x0 − x̂0)

>Σ−1
0 (x0 − x̂0)

+
1
2

k−1

∑
i=0

w>i Π−1wi +
1
2

k

∑
i=0

v>i Λ−1vi, (12)

where Σ0 > 0, Π > 0, Λ > 0, and

wk = xk+1 − Axk − Buk,
vk = yk − Cxk − Duk.

The one-step-forward Kalman predictor will result from
solving (12), which is given by

Lk = AΣkC>(CΣkC> + Λ)−1, (13)
x̂k+1 = Ax̂k + Buk + Lk(yk − Cx̂k − Duk), (14)

Σk+1 = AΣk A> + Π− AΣkC>

· (CΣkC> + Λ)−1CΣk A>. (15)

Substituting xk with its estimate x̂k, the optimal control
law in (11) will become

uk = −
(

Kk − Ku
k Tk+1P−1

k T>k
)

x̂k − Ku
k Tk+1P−1

k x̄. (16)

Putting together (6)-(10), (13)-(15) and (16), we will
obtain a complete description of the charging method
via linear quadratic control with fixed terminal state,
which is named LQCwFTS and summarized in Table I.
The LQCwFTS method performs state prediction at each
time instant, and then feeds the predicted value, which
is a timely update about the battery’s internal state, to
generate the control input to charge the battery. Much of
the computation for LQCwFTS can be performed prior to
the implementation of the control law. The sequences,
Kk, Sk, Tk, Pk and Ku

k can be computed offline, and
then Kk, Ku

k Tk+1P−1
k T>k and Ku

k Tk+1P−1
k are stored for use

when the control is applied. On the side of the Kalman
prediction, offline computation and storage of Lk can be
done. Then the only work to do during charging is to
compute the optimal state prediction and control input
by (14) and (16), reducing the computational burden.

B. Charging Based on Tracking
Tracking-control-based charging is another way to

guarantee health awareness and user objective satisfac-
tion. A schematic of its realization is shown in Figure 5.
When a user specifies the charging objective, a charging
trajectory can be generated. A charging controller will
be in place to track the path. The trajectory generation
will be conducted with a mix of prior knowledge of
the battery electrochemistries, health awareness and user
needs. It is arguably realistic that an EV manufacturer
can embed trajectory generation algorithms into BMSs
mounted on EVs, from which the user can select the one
that best fits the needs when he/she intends to charge
the EV. Leaving optimal charging trajectory generation
for our future quest, we narrow our attention to the focus
of path-tracking-based charging control here.

Suppose that the user describes the target SoC and
duration for charging, which are translated into the final
state x̄. Then a reference trajectory rk for k = 0, 1, · · · , N
is calculated with rN = x̄. Note that the trajectory should
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Offline backward computation (from time N to 0)
Kk = (B>SN B + R)−1B>Sk+1 A
Sk = A>Sk+1(A− BKk) + Qk
Tk = (A− BKk)

>Tk+1, TN = I
Pk = Pk+1 − T>k+1B(B>Sk+1B + R)−1B>Tk+1, PN = 0

Ku
k =

(
B>Sk+1B + R

)−1 B>

Online forward computation (from time 0 to N)
Battery state prediction

Lk = AΣkC>(CΣkC> + Λ)−1

x̂k+1 = Ax̂k + Buk + Lk(yk − Cx̂k − Duk)
Σk+1 = AΣk A> + Π− AΣkC>(CΣkC> + Λ)−1CΣk A>

Charging decision
uk = −

(
Kk − Ku

k Tk+1P−1
k T>k

)
x̂k − Ku

k Tk+1P−1
k x̄

TABLE I: The LQCwFTS charging strategy (Linear Quadratic Control with Fixed Terminal State).

Fig. 5: The schematic diagram for charging based on linear quadratic tracking.

constrain the difference between Vb and Vs to guarantee
health. A linear quadratic state-feedback tracking can be
considered for charging:

min
u0,u1,··· ,uN−1

1
2
(xN − rN)

> SN (xN − rN)

+
1
2

N−1

∑
k=0

[
(xk − rk)

> Q (xk − rk) + u>k Ruk

]
,

subject to xk+1 = Axk + Buk, x0

(17)

where SN ≥ 0, Q ≥ 0 and R > 0. Referring to [29], the
optimal solution to the above problem is expressed as
follows:

Kk = (B>Sk+1B + R)−1B>Sk+1 A, (18)

Ks
k = (B>Sk+1B + R)−1B>, (19)

Sk = A>Sk+1(A− BKk) + Q, (20)

sk = (A− BKk)
>sk+1 + Qrk, sN = SNrN , (21)

uk = −Kkxk + Ks
ksk+1. (22)

Resembling (6)-(11), the execution of the above proce-

dure is in a backward-forward manner. Specifically, (18)-
(21) are computed offline and backward prior to charg-
ing, and (22) online and forward from the moment when
charging begins.

Following lines analogous to the development of
LQCwFTS, the output-feedback tracker for charging can
be created based on (18)-(22) running with the Kalman
predictor in (13)-(15). That is, (22) will use x̂k rather than
xk in practical implementation, i.e.,

uk = −Kk x̂k + Ks
ksk+1. (23)

Summarizing (18)-(21), (13)-(15) and (23) will yield the
linear quadratic tracking strategy, or LQT, for charging,
see Table II. Similar to the aforeproposed LQCwFTS,
the LQT can have much computation completed offline.
Then only the Kalman state prediction and optimal
tracking control (23) need to be computed during the
actual control run.

The computational cost of LQT can be further reduced
if we use its steady-state counterpart, making it more
desirable in the charging application. The steady-state
tracker is deduced as follows. It is known that, if (A, B) is
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Offline backward computation (from time N to 0)
Kk = (B>Sk+1B + R)−1B>Sk+1 A
Ks

k = (B>Sk+1B + R)−1B>

Sk = A>Sk+1(A− BKk) + Q
sk = (A− BKk)

>sk+1 + Qrk, sN = SNrN

Online forward computation (from time 0 to N)
Battery state prediction

Lk = AΣkC>(CΣkC> + Λ)−1

x̂k+1 = Ax̂k + Buk + Lk(yk − Cx̂k − Duk)
Σk+1 = AΣk A> + Π− AΣkC>(CΣkC> + Λ)−1CΣk A>

Charging decision
uk = −Kk x̂k + Ks

ksk+1

TABLE II: The LQT charging strategy (Linear Quadratic Tracking).

Offline computation of DAREs and gains
S = A>SA− A>SB(B>SB + R)−1B>SA + Q
Σ = AΣA> − AΣC>(CΣC> + Λ)−1CΣA> + Π
K̄ = (B>SB + R)−1B>SA
K̄s = (B>SB + R)−1B>

L̄ = AΣC>(CΣC> + Λ)−1

Offline computation of s0 (from time N to 0)
sk = (A− BK̄)>sk+1 + Qrk, sN = SNrN

Online forward computation (from time 0 to N)
Battery state prediction

x̂k+1 = Ax̂k + Buk + L̄(yk − Cx̂k − Duk)
Charging decision

sk+1 = (A− BK̄)−>sk − (A− BK̄)−>Qrk
uk = −K̄x̂k + K̄ssk+1

TABLE III: The SS-LQT charging strategy (Steady-State Linear Quadratic Tracking).

stabilizable and (A, Q
1
2 ) is detectable, Sk, as N− k→ ∞,

will approach a unique stabilizing solution of the dis-
crete algebraic Riccati equation (DARE)

S = A>SA− A>SB(B>SB + R)−1B>SA + Q.

Then Kk and Ks
k will approach their respective steady-

state values, K̄ and K̄s. In a similar way, the Kalman
gain Lk will achieve steady state L̄ as k → ∞ given
the detectability of (A, C) and stabilizability of (A, Q

1
2 ),

which is the unique stabilizing solution to the DARE

Σ = AΣA> − AΣC>(CΣC> + Λ)−1CΣA> + Π.

According to the DARE theory, S and Σ can be solved
for analytically. With the steady-state gains K̄, K̄s and L̄,

the optimal prediction and control for charging will be

uk = −K̄x̂k + K̄ssk+1, (24)
x̂k+1 = Ax̂k + Buk + L̄(yk − Cx̂k − Duk). (25)

If (A− BK̄) is invertible, the backward computation of sk
can be substituted by the forward computation governed
by

sk+1 = (A− BK̄)−>sk − (A− BK̄)−>Qrk. (26)

Its implementation is initialized by s0 computed offline
by (21). We refer to this suboptimal charging strat-
egy (24)-(26) as the steady-state LQT, or SS-LQT and
outline it in Table III. The SS-LQT strategy, due to its
exceptional simplicity, has more computational appeal
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in terms of time and space complexity.

C. Discussion

The following remarks summarize our discussion of
the proposed charging strategies.

Remark 1: (Soft-constraint-based health awareness). As is
seen, the proposed LQCwFTS, LQT and SS-LQT strate-
gies incorporate the health awareness as part of the
cost functions rather than hard constraints. This soft-
constraint-based treatment will bring the primary ben-
efit of computational efficiency and convenience. This
compares with the techniques based on real-time con-
strained optimization, which are relatively more time-
consuming and on occasions, face the issue that no
feasible solution exists in the constrained region. In the
meantime, soft constraints are acknowledged as less
powerful than hard constraints, e.g., [12], [22]–[26], in
terms of preventing violation of certain physical limits
during charging. However, we argue that the use of soft
constraints does not compromise the effectiveness of the
proposed strategies to protect the battery health. This is
fundmentally because the usual cause of an actual limit
violation is too aggressive a charging current and an
essential part of the proposed strategies is to suppress
the magnitude of the charging current. For instance,
it is noted that the harm to health is associated with
a weighted penalty for the LQCwFTS. When a proper
weight Qk is selected, minimizing the penalty cost will
ensure a sufficient consciousness of the health.

Remark 2: (Robustness of SS-LQT). The SS-LQT strat-
egy is based on a combination of linear quadratic tracker
and a Kalman filter. Such a design may engender weak
robustness in terms of gain and phase margins. To
overcome this limitation, the loop transfer recovery can
be used to build robust control design on the linear
quadratic control structure [29].

Remark 3: (Choice of Qk and R for LQCwFTS). When
the weight coefficients Qk and R take different values,
the charging profiles generated by the LQCwFTS strategy
will change accordingly. This implies the importance of
finding appropriate Qk of R for the implementation. A
basic guideline is as follows:
• Qk should increase over time to suppress the use of

a large current when SoC becomes larger, because
of a battery’s susceptibility increasing with SoC to
the charging current.

• Qk � R, because the Q-weighted term in J is much
smaller than the R-weighted term.

• The larger Qk is, the less aggressive charging action
will be. However, the overall charging action also
depends on the final state constraint.

It should be noted that the selection of α and β is a
multi-faceted issue, because it needs to account for both
battery health protection and charging speed and more
broadly, the economic cost and user satisfaction. Since
these factors depend on specific application scenarios,

we leave this issue for practitioners to resolve based on
the above guideline.

Remark 4: (Generality to other models). The proposed
development has a potential applicability to other bat-
tery models. First, the investigation, though based on
a linear model, can be extended to nonlinear battery
models. It is observed that, for variaous control-oriented
battery models, the nonlinearity exists only in mea-
surement equation that relates the state and applied
current with the measured output voltage. Thus, an
extension can be readily made by deploying a nonlinear
Kalman filter for state estimation without changing the
control structure. We can also generalize the design to
the well-known single particle model (SPM). This model
represents each battery electrode as a spherical particle
and delineates the migration of ions in and between the
particles as a diffusion process [44]. The PDE-based SPM
can be converted into the standard linear state-space
form, as shown in [2]. Then following similar lines to
this work, linear quadratic problems can be established
and solved for charging tasks, where the difference of
ion concentration gradients are constrained to penalize
charging-induced harm. It is also worth pointing out that
extensions can be made to accommodate the temperature
dynamics as a means to suppress the charging-induced
heat build-up. Specifically for the considered model in
Equation (1), a thermal coupling can be performed as
shown in [35]. We can then follow similar lines to
accomplish the linear quadratic charging design based
on the modified model.

IV. NUMERICAL ILLUSTRATION

In this section, we present two simulation examples
to illustrate the performance of the proposed charging
strategies. Let us consider a lithium-ion battery de-
scribed by the RC model in (1) with known parameters
provided by Saft Inc. for hybrid electric vehicles, with
Cb = 82 kF, Rb = 1.1 mΩ, Cs = 4.074 kF, Rs = 0.4 mΩ,
and Ro = 1.2 mΩ [33]. It has a nominal capacity of 7 Ah.
The model is discretized by a sampling period of ts = 1
s. The initial SoC is assumed to be 30%. The user will
specify that certain SoC must be achieved within certain
duration.

Example 1 - Application of LQCwFTS: Suppose that the
user wants to complete the charging in 2 hours. The total
number of time instants thus is N = 7200. Meanwhile,
he/she specifies the target SoC value. For the simulation
purpose, different target SoC values, 55%, 65%, 75%, 85%
and 95%, are set here. We apply the LQCwFTS method
to carry out the charging tasks. For the control run,
Qk = 0.1 · (5 × 107)k/N and R = 0.1. The exponential
increase of Qk is due to the growing vulnerability of
the battery to a larger charging current when the SoC
increases. The practical system will be subject to certain
noises, the covariances of which should be included in
the Kalman filter implementation. Here, we assume that
W = 10−4 I and V = 10−4.
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Fig. 6: Example 1 - Application of LQCwFTS to charge the battery from an initial SoC at 30% to 55%, 65%, 75%,
85% and 95%: (a) the SoC trajectories over time; (b) the charging current profiles; (c) the output voltage profiles;
(d) the potential differences as health indicator; (e) potential difference due to constant current charging.
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Fig. 7: Example 2 - Application of LQT to charge the battery from 30% to 55%, 65%, 75%, 85% and 95%: (a) the SoC
trajectories over time; (b) the charging current profiles; (c) the output voltage profiles; (d) the potential differences;
(e) tracking of x1 (i.e., Qb) for 95% target SoC; (f) tracking of x2 (i.e., Qs) for 95% target SoC.
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The computational results are illustrated in Figure 6.
It is shown in Figure 6a that the different target SoCs are
satisfied when the charging ends right after two hours,
meeting the user-specified objectives. The SoC increases
approximately proportionally with time for the first 1.25
hours. Then the rate slows down gradually to zero as the
charging objective is being approached. This results from
a much larger weight Qk in the later stage for health pro-
tection. The charging current is kept at almost a constant
level initially during each charging implementation, as
illustrated in Figure 6b. For a higher target SoC, the
magnitude of the current is larger accordingly. However,
the current drops quickly in each case as the SoC grows
further. The profiles of the corresponding output voltage
is shown in Figure 6c. They in general follow a similar
trend with the SoC trajectories, rising steadily at first and
then at gradually declining rates. The voltage difference
between Cs and Cb, which quantifies the harm incurred
to the battery, is characterized in Figure 6d. In each
case, Vs − Vb remains around a constant value in the
first hour, despite high-frequency fluctuations due to
noise. This is because a battery can accept a higher
current at a low SoC level. Yet the differences decreases
drastically as more charge is sent into the battery, in
order to maximize the health of the battery’s internal
structure. For comparison, we enforce a constant current
of appropriate magnitude to flow through the battery
for 2 hours to reach the desired SoC. The consequent
potential differences are shown in Figure 6e, which are
kept at a fixed level unsurprisingly. This, however, will
cause much more detrimental effects to the battery when
SoC grows, thus expediting the aging processes.

Example 2 - Application of SS-LQT: We consider the
use of SS-LQT for charging in this example, which is
an upgraded version of LQT but more computationally
efficient. The problem setting and the tasks are the same
as in Example 1 — charging the battery from an SoC of
30% to 55%, 65%, 75%, 85% and 95% in 2 hours for the
same battery. The charging trajectory is generated based
on the task. For simplicity and convenience, we assume
that the desired trajectories for x1 and x2, denoted as rb
and rs, are generated by

rj,k =
1− e−kts/τj

1− e−Nts/τj
(rj,N − rj,0) + rj,0,

where j = b or s, k = 1, 2, · · · , N− 1 and rj,0 is the initial
charge, rj,N the target charge, and τj the time coefficient
for j = b or s. Note that rj,0 and that rj,N can be calculated
from the initial SoC and user-specified target SoC. The
resultant trajectories have a steep increase followed by
a gentle slope, which are reasonable in view of health
protection. Letting τb = τs = Nts/4, Vs and Vb are forced
to be equal through the charging process. Thus at the
trajectory design stage, we put the minimization of the
detrimental effects well into consideration.

With the reference trajectories generated, the SS-LQT
strategy is applied to charging. The actual SoC increase

over time is demonstrated in Figure 7a. All the targets
are reached. In each case, the SoC grows at a fast
rate when the SoC is at a low level but at a slower
rate when the SoC becomes higher. Figure 7b shows
the current produced by SS-LQT. The current usually
begins with a large magnitude but decreases quickly.
Figure 7c demonstrates the output voltage profiles of the
battery, which see a progressively decelerating growth.
The potential difference, given in Figure 7d, has a similar
trend to the current profiles. It is relatively high when the
charging starts, and then reduces fast. The state tracking
for the task of 95% SoC is shown in Figures 7e and 7f.
It is observed that tracking of rb by x1 exhibits high
accuracy. Tracking of rs by x2, however, is increasingly
accurate, despite a minor deviation in the first hour.
Overall, the closer the target SoC is approached, the
smaller the tracking error becomes.

In the above examples, different charging current pro-
files are generated for the same charging task. While
the contributory factors include the selection of Q and
the reference charging trajectory generation, such a dif-
ference poses another important question: how to as-
sess and compare the charging strategies? There is no
clear-cut answer yet as it involves a mix of battery
electrochemisitry, charging performance, computational
complexity, economic cost, and even user satisfaction.
Though beyond scope of this paper, evaluation of charg-
ing strategies through theoretical analysis and experi-
mental validation will be part of our future quest.

V. CONCLUSIONS

Effective battery charging management is vital for the
development of EVs. Recently, fast charging control has
attracted some research effort. However, the problem of
health-aware and user-involved charging has not been
explored in the literature. In this paper, we propose a
set of first-of-its-kind charging strategies, which aim to
meet user-defined charging objectives with awareness
of the hazards to health. They are developed in the
framework of linear quadratic control. One of them
is built on control with fixed terminal state, and the
other two on tracking a reference charging trajectory. In
addition to the merits of health consciousness and user
involvement, they are more computationally competitive
than most existing charging techniques requiring online
real-time optimization solvers. The usefulness of the
proposed strategies is evaluated via a simulation study.
This work will provide further incentives for research
on EV charging management and is also applicable to
other battery-powered applications such as consumer
electronics devices and renewable energy systems. Our
future research will include battery-type-specific voltage
difference limit identification, optimal charging trajec-
tory generation, and a comprehensive assessment of the
charging strategies.
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APPENDIX

ON APPROXIMATE EQUIVALENCE BETWEEN (1) AND
SPM

This appendix is to present a proof of approximate
mathematical equivalence between the RC model in (1)
and the SPM. This will demonstrate that the difference
in voltages across Cb and Cs in Figure 3 approximates
the Li-ion concentration gradient in the SPM.

The SPM simplifies each electrode as a spherical par-
ticle with area equivalent to the active area of this
electrode [45]. Striking a balance between mathematical
complexity and fidelity toward capturing key physical
and electrochemical phenomena, it has found significant
use in the study battery management, e.g., [2], [3], [10].
At the core of the SPM is the conservation of Li ions in
the electrode phase. Specifically, the migration of Li ions
inside a solid particle is caused by the gradient-induced
diffusion. It follows from the Fick’s laws of diffusion that

∂cj(r, t)
∂t

=
1
r2

∂

∂r

(
Djr2 ∂cj(r, t)

∂r

)
, (A.1)

where c is the concentration of Li ions in the solid elec-
trode, D the diffusion coefficient, r the radial dimension
of the spherical particle representing the electrode, and
j = n, p with n for the negative electrode and p for
the positive one. The associated initial and boundary
conditions are given by

cj(r, 0) = c0,
∂cj

∂r

∣∣∣∣
r=0

= 0,
∂cj

∂r

∣∣∣∣
r=Rj

= − 1
Ds,j

Jj. (A.2)

Here, Jj is the molar flux at the electrode/electrolyte
interface of a single particle. When j = n and p, respec-
tively,

Jn(t) = −
I(t)
FSn

, Jp(t) =
I(t)
FSp

, (A.3)

where I is the charging (I > 0) or discharging (I < 0)
current, S the surface area, and Rj the radius of the
particle.

Next, we consider convert the PDE-based diffusion
equation into a system of ODE equations using a finite-
volume approach. That is, we subdivide the particle
along the radial coordinate into a set of continuous finite
volumes, as shown in Figure 8a. The finite volume at
the center is a ball with a radius r0, and the rest hollow
spheres. The i-th sphere for i = 0, 1, · · · , N has an outer
radius of ri with rN = R. Note that r−1 = 0.

The total Li-ion amount within the i-th finite volume
can be quantified as

Qj,i(t) =
∫ ri

ri−1

cj(r, t)dV

=
∫ ri

ri−1

cj(r, t) · 4πr2dr. (A.4)

(a) (b)

Fig. 8: (a) Subdivision of the spherical particle represent-
ing the positive electrode into multiple finite volumes
along the radial coordinate; (b) subdivision of the par-
ticle into two finite volumes, named the core and shell,
respectively.

Inserting (A.1) into (A.4), we have

Q̇j,i(t) =
∫ ri

ri−1

∂cj(r, t)
∂t

· 4πr2dr

=
∫ ri

ri−1

d
(

4πDjr2 ∂cj(r, t)
∂r

)
= 4πDjr2 ∂cj(r, t)

∂r

∣∣∣∣ri

ri−1

= −4πDjr2
i−1

∂cj(r, t)
∂r

∣∣∣∣
ri−1

+ 4πDjr2
i

∂cj(r, t)
∂r

∣∣∣∣
ri

.

(A.5)

To proceed, we assume that the Li ions are uniformly
distributed within each finite volume. That is, the Li-ion
concentration for the i-th sphere is

cj(r, t) =
Qj,i(t)

∆Vi
for ri−1 < r ≤ ri,

where ∆Vi = 4π(r3
i − r3

i−1)/3. Then, the concentration
gradient at ri can be approximated as

∂cj(r, t)
∂r

∣∣∣∣
ri

=

Qj,i+1(t)
∆Vi+1

− Qj,i(t)
∆Vi

ri+1−ri−1
2

=
Qj,i+1(t)

∆Vi+1∆ri+1
−

Qj,i(t)
∆Vi∆ri+1

, (A.6)

where ∆ri+1 = (ri+1− ri−1)/2. Then, according to (A.5)-
(A.6) and the boundary conditions in (A.2), we obtain

Q̇j,0(t) = −
4πDjr2

0
∆V0∆r1

Qj,0(t) +
4πDjr2

0
∆V1∆r1

Qj,1(t), (A.7)

Q̇j,i(t) =
4πDjr2

i−1
∆Vi−1∆ri

Qj,i−1(t)

− 4πDj

(
(r2

i−1
∆Viri

+
r2

i
∆Vi∆ri+1

)
Qj,i(t)

+
4πDjr2

i
∆Vi+1∆ri+1

Qj,i+1(t),
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for 1 ≤ i < N, (A.8)

Q̇j,N(t) =
4πDjr2

N−1
∆VN−1∆rN

Qj,N−1(t)−
4πDj(r2

N−1)

∆VN∆rN
Qj,N(t)

±
4πr2

N
FSp(n)

I(t). (A.9)

Now let us consider only the positive electrode with-
out loss of generality and suppose that its particle is
subdivided into only two finite volumes, the bulk inner
domain (core) and the near-surface domain (shell), with
r0 � r1 − r0. This approximates the charge diffusion
at the interface between the near-surface area and the
inside of the particle. By (A.7)-(A.9), we have[

Q̇p,0(t)
Q̇p,1(t)

]
=

[
−η0 η1
η0 −η1

] [
Qp,0(t)
Qp,1(t)

]
+

[
0
γ

]
I(t) (A.10)

where η0 = 4πDpr2
0/∆V0∆r1, η1 = 4πDpr2

0/∆V1∆r1, and
γ = 4πr2

0/FSp.
It is seen that η0 � η1 in (A.10) due to ∆V0 � ∆V1

and that Rs/(Rb + Rs) is close to 0 because Rs � Rb +
Rs in (1). With this observation and comparing (A.10)
with (1), we can find that they share an approximately
equivalent mathematical form. Thus, from the perspec-
tive of physical abstraction, we can associate the shell
of the particle with the surface capacitor Cs and the
core with the bulk capacitor Cb. Meanwhile, an analogy
can be drawn between the voltage difference Vs −Vb =
Qs/Cs − Qb/Cb and the gradient of the Li-ion concen-
tration in the two finite volumes, which is expressed as
Qp,1/∆V1 − Qp,0/∆V0. This finding justifies the use of
the voltage difference in Sections II and III.
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