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Abstract—This paper introduces an effective piecewise
linearization technique to obtain an estimation of nonlinear
models when their input—output domains include multidimen-
sional operating points. The algorithm of a forward adaptive
approach is introduced to identify the effective operating points
for model linearization and adjust their domains for the maxi-
mum coverage and the minimum model linearization error. The
technique obtains a minimum number of linearized models and
the continuity of their domains. The algorithm also yields global
minimum model linearization error. The introduced algorithm
is formulated for a wind power transfer system for a 2-D set
of input domains. The linearization error can be arbitrarily
minimized in exchange for a higher number of models. The
results demonstrate a significant improvement in the linearization
of nonlinear models.

Index Terms— Adaptive continuity, nonlinear hydraulic wind
power, piecewise linearization.

I. INTRODUCTION

INEARIZATION of nonlinear systems allows the use of

established linear system analysis and control techniques
such as Laplace transform, Fourier transform, and superposi-
tion principles [1]. The general approach in linearization of a
nonlinear system can be categorized into two major groups,
exact linearization and approximate linearization. Among
others, exact linearization [2] can be obtained using input-
state feedback linearization, input—output feedback lineariza-
tion [3], and state space linearization [4]. The approach is to
algebraically transform nonlinear system dynamics into (fully
or partly) linear models. The zero dynamics of these systems
must be stable. The main drawbacks are the need for a fairly
accurate system model, as well as the need to solve potentially
difficult nonlinear partial differential equations.

On the other hand, approximate linearization methods such
as Jacobian linearization, optimal linearization [5], and fuzzy
linearization [6] can estimate nonlinear models in a certain
region within a given tolerance [7]. To obtain a linear approx-
imation of a nonlinear model with a wide range of operating
points, the approximate linearization methods can be employed
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locally to perform a piecewise linearization. This approach
captures nonlinearities around equilibrium points. In addition,
research on linearization of stochastic dynamic systems under
excitations has led to progress in statistical and equivalent lin-
earization. The objective of statistical linearization is to replace
the nonlinear elements in a model by linear forms where the
coefficients of linearization can be generated according to a
specified criterion of linearization in an iterative procedure.
In equivalent linearization, the direct minimization of a cri-
terion based on the output probability density functions of a
dynamic nonlinear system is proposed [8].

Various methods of piecewise linearization have been intro-
duced in the literature and most of them have been effectively
utilized in engineering areas such as digital and analog cir-
cuits [9], [10] and computer programming problems [11], [12].
Approximation of strongly nonlinear systems around multiple
operating points using Taylor expansion also leads to the
piecewise linearization. The resulting linear models have a
lower complexity, fit into well-established tools for linear
systems, and are capable of representing arbitrary nonlinear
mappings [13]. Once the piecewise linearization is carried out,
the set of selected linear models can be utilized in differ-
ent control areas such as gain scheduling, multiple adaptive
control and system analysis, etc. Therefore, the accuracy and
quality of piecewise linearization can greatly affect the further
system development.

The satisfactory performance of piecewise linearization
algorithms depends on: 1) the number of linear models
required to represent a nonlinear model and 2) the location
of the operating points to obtain the maximum coverage and
continuity.

Some methods [14] suggest equal partition of the operating
points and selection of fixed number of models that has
generated suboptimal results. The extent of these intervals
depends on the nonlinearity of the original model. A simple
and common linearization strategy consists of building a linear
interpolation between samples of the nonlinear function over a
uniform partition of its domain. A tradeoff between increasing
the approximation accuracy and simplifying the approximation
by the minimum number of linearized sectors can be obtained
using genetic algorithms [15].

This paper introduces a novel adaptive piecewise lineariz-
ation algorithm to optimize the location of operating points,
minimize the number of piecewise linear models, and
preserve the continuity of the nonlinear-representing system.
The number of piecewise linear models is determined such
that the maximum number of operating points are covered
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with a globally minimized modeling error. A complementary
adaptive method is used to maintain the continuity of the
linearized models on the overlapped linear model domains.
The algorithm is formulated for an example of a nonlinear
wind power system with a 2-D input domain.

This paper is organized as follows. Section II introduces
adaptive optimum piecewise linearization as a novel algorithm
to select the proper operating points and model linearization.
A nonlinear model of wind power systems is discussed
in Section III. Mathematical modeling of the hydraulic wind
power system is represented in Section IV. Section V intro-
duces the 2-D linearization of the wind power transmission
system. Finally, Section VI represents the simulations and
results.

II. ADAPTIVE OPTIMUM PIECEWISE LINEARIZATION

A wide operating range of hydraulic wind power requires
several linearized models. An effective model selection is
required to cover all the operating points of the system with
the best matching on the overlapped areas. An algorithm
is introduced to locate the operating points of the system
and determine the number of piecewise linearized models.
An adaptive technique is used to linearly combine these
piecewise linearized models for model selection on overlapped
and uncovered areas. The optimization algorithm is as follows.

A. Model Selection

Step 1: In the first step, the entire range of operating
conditions can be divided into individual nodes with proper
dimensions that are determined according to the number
of inputs. The inputs to the system (disturbance input or
controlled input) will specify the operating point of a system.
Therefore, a set of values for inputs can represent an operating
point, i.e., a set of values for system states. For instance,
the whole operating range of a two-input system can be
represented in a 2-D surface, which can be discretized to
2-D nodes. Hence, the dimension of nodes can be obtained
as N = #input, Where # shows the number of input variables.
The nodes of the domain are considered as operating points.

Step 2: Each operating point (node) potentially forms a
linearized model. The obtained linearized model can be used
for other neighboring nodes if the linearization error is less
than a desired threshold. The domain of each model is deter-
mined by examining the operating points and obtaining the
error between the original model and that of the linearized
model. For instance, Fig. 1 shows the schematic domain of two
linearized models around nodes ijxn and jixy as D; or D;.
Domain is defined as a set of neighboring nodes at which the
error between the linearized model and the nonlinear model
remains less than a threshold ¢. The domain of a general
node x1xn, Dy, can be expressed as a set of nodes that show
a relative low model linearization error as follows:

Dy = {¥Vx1xnllf(x) = f(x)] <&} (D
where f(x) is the nonlinear function and f (x) is the piecewise
linearized function around node x. The domain discretization
may be considered as an even distribution. However, this
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Fig. 1. Overlap between two model domains. Shared nodes in the overlapped
area can be selected by both the models. A probability will be associated
to each model that involves a node to maintain the continuity D; and D
represent the domains of models i and j.

depends on the nonlinear behavior of the system. A higher
resolution in the domain nodes may reduce the modeling
error. However, a higher number of linearized models may
be required. Adaptive mixing can be utilized to maintain
the continuity of the domains and reach globally minimum
modeling error.

Step 3: Each operating point x is weighted as wy. The
weighting depends on the number of models n that include
this particular node in their domain D, as follows:

o= > n @)

nlxeD,

A node with a higher weight is less valuable as it can be
expressed with more possible piecewise linearized models.
The modified weight for the node x, Iy, is inversely scaled and
magnified to generate proper resolution for distinct recognition
of models as follows:

Iy =o— 3)

wherein the positive parameters a and f are the gain and shape
variables tuned to create the weighting resolution.

Step 4: Model weighting. Accumulative modified weight is
obtained according to the summation of the node modified
weights I'y existing in the domain of a model, as follows:

[p=> T i=12...n )

xeDy

where f; is the piecewise linear model of domain i.

Step 5: The models are ranked according to their accu-
mulative modified weights. The maximum weighted model is
selected as one of the piecewise linearized models as follows:

ﬁ:argmax{rﬁ}, i=1,2,...,n. (&)

Step 6: When a model is selected, the nodes associated with
the model are nullified (weighted zero) and the models will
be weighted and ranked

{Vx € Dy, Ty =0). (6)

Step 7: Domain index criterion. Model selection stops if
the number of added operating points per added linearized
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Fig. 2. Node might belong to the domain of a single model, multiple model,
and no model of piecewise linearized models.

model is less than the domain index J. This index indicates
the desired collective number of domain nodes in the model
selection procedure. A small index stops the consideration of a
new model in the linearization process. This means that adding
one more model does not include a significant number of nodes
to the domain of linearized models. The process stops and
since the models were ranked according to the importance of
nodes they would involve, stopping the increment of one more
linearized model does not introduce a significant modeling
linearization error. In addition, adaptive model mixing covers
all the operating points. The model selection’s exit condition
is expressed as follows:

Diy1

if
Zn=1,2,...,(i+1) Dy,

<6=>fi1 =9) 7

|

A tradeoff exists between the number of linearized models
and the linearization error. In a high-performance linearization
in which the deviation of the linearized model from the
nonlinear model is limited, a small modeling index ¢ should
be considered that can potentially lead to a larger number of
linearized models.

Depending upon the criterion determined in step 6, there
might be nodes that do not belong to any of the piecewise
linearized models’ domains. There is also the possibility that
some nodes belong to more than one piecewise linearized
model. To allocate nodes to each model or a combination
of models, an adaptive model mixing algorithm is utilized.
This algorithm generates a linear combination of models with
proper weights that are estimated through an adaptive process
that assigns all the operating points (node) to a proper model.

B. Adaptive Linear Continuity

Optimum model selection, as explained in step 7, may stop
prior to covering all the operating points. There might exist
overlapping or uncovered nodes by automatically generated
piecewise linearized models. Fig. 2 shows n models with
selected domains that may have overlaps. There exist nodes
that do not belong to any system domain, in which the
continuity of domain can be lost.

To mitigate this problem, the nodes in either overlapped or
uncovered domains must be allocated to an estimated model
that can be generated through an adaptive linear combination
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Fig. 3.  Adaptive estimation as model-mixing procedure. Each node will
have multiple models with designated probabilities. The sum of all model
probabilities associated to a node at any time instance is 1.

of existing models. Adaptive model estimation techniques such
as Newton, least square, or multiple model selection have
been developed for this purpose [16], [17]. As the nodes
may contain uncertainty, noise, or disturbances, Kalman-based
models can be used. Adaptive model-based estimation is used
to combine the information contained in the local models
into a global description of the nonlinear dynamics, and then
carry out state estimation by tracking transition online. This
method has also been used for fault diagnosis in different
applications [18].

Kalman filters are used to estimate the states of linear
systems. However, if inaccurate model parameters are used to
construct the filter, the state estimate accuracy will degrade and
may even diverge [19]. Kalman filter of a linearized model k
can be represented [20], [21] as follows:

2(t;) = Prke (7)) + Brulti-1)
G(t;) = Hike(1;) ®)

where x; is the state estimation vector, Ek(t;) is the output
estimation at time #;” of the ith time sample, and tl.+_ | is the
time after the measurement update at the (i — 1)th time sample.
@y is the state transition matrix, By is the control input matrix,
u is the system input vector, zx is the measurement noise, Hy is
the output matrix, and the state estimation covariance matrix
propagation is as follows [22]:

Ze(t') = %) + K@) (zr () — Hedk (1)) 9)

where the Kalman gain Kj and the covariance matrix Py
are updated through the recursive equations, considering the
measurement noise covariance Ry, as follows:

Ke(t) = P () HE (He P ) HE + Re) ™ (10)
Pe(t") = Pe(t7) — Kie(t:)) Hi P (). (11)

A block diagram of the adaptive model-based estimation
scheme is shown in Fig. 3. The input and output data of a
plant with a wide range of operating points is collected and
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passed to a bank of Kalman filters. The Kalman bank contains
parallel filters constructed to represent a particular model in
operating point domains.

The output of each filter is compared with that of the actual
plant and the model with the lowest residual represents a
close model. The adaptive model-based estimation generates
a weighted average of all Kalman estimated values, where
the weights are obtained by a posteriori probability of the
residual signals considering a history of the input—output
variations [23]. The weights are conditional probability values
that are generated for each model [20] as follows:

Seayinzion @ilhi, Zi—1) - pr(ti-1)

pr(t) = (12)
Y e Gilhi, Zia) - pj(tih)
where
Seh i) @ilhe, Zi—1)

1
= Qo) A2

p (_%rk(ti)TAkl (li)rk(ti)) :
13)

In these equations, f;(;)h,z(_)(Zilhk, Zi—1) is the prob-
ability density function of the current measurement Z(t;)
conditioned on the hypothesized status and measurement
history Z(#;—1), based on residual signal r; and Ax. Residual
signal r¢ is obtained as a difference of the actual plant with that
of the linearized model. The output of this block is a vector of
probabilities that can be used to weight the state estimates. The
output of the algorithm is a probability weighted state estimate
that determines the models and their associated weights to be
linearly combined.

The adaptive model mixing approach maintains model
continuity because the sum of adaptive weights for n linear
combination of piecewise models is 1, i.e., > ;_; , pi=1.

Kalman filters are updated in an offline process to increase
the convergence rate and reduce model switching.

It can be concluded that the adaptive piecewise linearization
of a nonlinear system is a minimum-error linearization process.
To analyze this conclusion, assume f; represents the linearized
model value for segment i,(i = 1,...n) of nonlinear
system f(x). Adaptive mixing of piecewise linearized systems
is represented in the form of > ,_; , Pif;, which satisfies
Vi,0 < P; <1 and Zizl abi= 1. These conditions make
adaptive piecewise linearized systems a convex model.

The ranked piecewise linearized models i, (i = 1,...n)
have noninfinite domains D; < oo, where the domain D; is
obtained by limiting the linearization error in step 2. Therefore,
adaptive piecewise linearization of a nonlinear system reaches
the minimum modeling error over all piecewise models.

III. FORMULATION FOR NONLINEAR HYDRAULIC
WIND POWER TRANSMISSION SYSTEM

A. System Configuration

Hydraulic transmission of wind power provides the capa-
bility of collecting energy from several wind turbines into one
generation unit. In this technique, kinetic energy of the turbine
is converted into hydraulic pressurized fluid at the pump [24].
This energy is transferred to the location of the generator and
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Fig. 4. Schematic of a single wind turbine system. The pump pressure and
the outlet pressure at the proportional valve indicate the power distribution
between the generators A and B. More pressure is generated because of the
torque at the shaft of the generator.

is released to the generator through a hydraulic motor. Fluid
control devices such as proportional valves and check valves
are required to maintain the desired operating conditions [25].
The system experiences a wide range of wind speeds and
accordingly a wide range of valve operations that together
cover a large area of possible operating points. At a low wind
speed, the system becomes highly nonlinear. The existence of
the proportional valve adds to the nonlinear operation of the
system by adding three state variables as pressures at the inlet
and at the two outlets.

The proportional valve-controlled hydraulic wind power
system is a nonlinear dynamic with a minimum of five state
variables. A detailed nonlinear model of the hydraulic wind
power system is provided in [26] and [27]. The system’s
input variables cover a wide area of operation. Hence, a high
performance linearization technique should consider many
operating points and consequently several linearized models
to demonstrate the system operation.

The hydraulic transmission system (HTS) comprises of
hydraulic pumps, hydraulic motors, transmission lines, and
pressure and flow control valves. Hydraulic pumps coupled
with the turbines supply flow to the hydraulic circuit. The flow
is transferred to ground level and is distributed through a pro-
portional valve between two hydraulic motors. These motors
are connected to two generators to generate the main source
of power at 60 Hz (at the main motor) and provide storage
capability for excess power (at the auxiliary motor) [28]. Fig. 4
shows a schematic of the introduced HTS.

As the turbine turns, the hydraulic pump pressurizes the
fluid medium and flows the liquid in the hydraulic circuitry.
The pressurized liquid is split between two motors and the
right amount of flow reaches the main hydraulic motor and
turns the motor and the generator coupled with it. The circuit
is complete as the return line circulates the fluid back to the

pump.

B. System Operation

As the wind speed varies with time, the wind turbine will
rotate at a variable speed and generates various amounts of
torque on the shaft. This causes a pressure or flow change
in the system. On the other hand, the proportional valve
is actively controlled to maintain a regulated flow to main
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Fig. 5. Experimental setup of the hydrostatic wind power transfer system.
Energy Systems and Power Electronics Laboratory, Purdue School of Engi-
neering and Technology. The setup shows two hydraulic pumps that can send
the harvested energy of wind through the pressurized medium to hydraulic
motors. The proportional valve distributes the flow between the motors to
adjust their speed. The hydraulic motors are connected to electric generators.
Left: prime mover stage. Middle: distribution. Right: generation.

TABLE I
LIST OF EXPERIMENTAL PROTOTYPE PARAMETERS

Symbol QUANTITY Value Unit

Dy Pump displacement 0.722 in’/rev

D Primary motor displacement 0.241 in’/rev

D Auxiliary motor displacement 0.515 in’/rev

It Primary motor inertia 9.6 1b.in?

Lns Auxiliary motor inertia 4.8 1b.in?

B Primary motor damping 0.0141 Ib.in/(rev/min)

Bms Auxiliary motor damping 0.0115 1b.in/(rev/min)

K, Pump leakage coefficient 0.046 in’/(psi.min)

Kna Primary motor leakage 0.06 in’/(psi.min)
coefticient

Kms Auxiliary motor leakage 0.01 in’/(psi.min)
coefficient

) Fluid viscosity 1.105 in%/s
Fluid bulk modulus 183695  psi

p Fluid density 0.0305 Ibm/in?

the motor under a constant load torque. As the load torque
changes, the proportional valve will be adjusted accord-
ingly [29], [30]. Consequently, the hydraulic wind power
transmission has the shaft speed and valve position as input
variables. Together, the system response and the two inputs as
wind speed and valve position cover a large area of operation.
Fig. 5 shows the experimental setup as a test-bed in our
laboratory. In addition, Table I lists the actual parameters of
the experimental setup, which are further used to derive the
actual linear state space models.

IV. NONLINEAR MATHEMATICAL MODEL

The state space representation of the hydraulic wind
power system can be derived by considering the integrated

configuration of the hydraulic components such as pumps,
hydraulic motors, proportional valves, and check valves. The
nonlinear model of hydraulic circuit components and the
nonlinear state space representation of the hydraulic wind
energy transfer are also introduced in [26].

Considering the dynamics of each hydraulic component, the
governing equations of flow and torque are presented in this
section. These equations are used to represent the HTS in the
form of nonlinear state space variables defined in vector x as
follows:

xZ[Pp Pua Pup Oma me]T (14)

where P, is the pump pressure, P4 is the main motor inlet
pressure, Py, p is the auxiliary motor inlet pressure, w4 is the
main motor angular velocity, and w,,p is the auxiliary motor
angular velocity.

The proportional valve consists of one inlet and two outlets.
A spool controls the flow passage areas at the outlet orifices.
The fluid enters the valve and based on the spool’s position, the
flow is distributed between the outlets: main and auxiliary. The
spool is displaced by electromagnetic force generated from
a coil. The governing equation of flow rate for each outlet
is obtained from fluid mechanics principles [31], using the

pressure as
2AP
0=CpA ==
p

where A is the orifice area and A P is the pressure differential
across the orifice. Cp and p are discharge coefficient and the
fluid density, respectively. The governing equation for motor
flow and delivered toque to the load are

15)

don

Om = Doy + Kips Py

(16)
(17)
Considering the input vector U = [h; a)p]T, where w, is

the pump speed and A; is the valve position, the state space
model of the system is represented as

X = f(x)+gu

18
y = h(x) (18)

where functions f(x) and g(x) are expressed as follows:

2(Py — Pup
%{_DmACUA — KinaPua)
2(P, — Pyp)
fx) = ﬁ Cp Amax A
V3 p

— Dypwp — KiupPup

Dya Pua — Bua®ma — Tima
Dy, Py — Bupomp — Timp

(19)
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6
ﬁ Amax 2(Pp - PmA)
Z Y | cp /
Vi hmax P
+ CD Amax 2(Pp - mB) Dp
Nmax P

g(x) = ﬁ Cp Amax 2(Pp - mA) 0
V2 hmax P
ﬁ CD Amax 2(Pp - mB) 0
V3 Nmax 14
0 0

(20)

where f is the damping factor, Dy, is the displacement of the
motor or pump, and K(,) is the leakage factor of the pump or
motor. Finally, 7,4 and T, p are a constant load torque on
motors that represent the rotating shafts friction.

V. 2-D LINEARIZATION

To analyze the system behavior or to control the original
nonlinear system, a well-developed linear model can be used
through linearization of the nonlinear system. This provides
an approximation of the system’s dynamical behavior within
a neighborhood vicinity of variables and operating conditions.
Hydraulic wind power systems operate under a wide range of
conditions due to various disturbances such as wind speed,
valve position, and load on the generators.

From (15), it can be inferred that the pressure differential
variation disturbs the flow through the valve’s orifices. Thus,
for maintaining the flow rate, specifically through the main
motor, the proportional valve’s spool displacement must be
adjusted to compensate for this disturbance. Intermittent wind
speed imposes a variable pump speed and consequently varies
the flow rate in the valve’s inlet.

Even if the valve maintains the main motor’s flow rate as
constant, the speed can deviate from synchronous speed due to
pressure variations and load torques. These types of nonlinear
systems with a wide range of operating points can be linearized
using multiple linear models to represent the entire system
dynamics. The linearization technique used in this paper is to
utilize a local linear model for each of the different plants’
operating conditions.

For a wide range of operations, piecewise linearization
technique can be used to cover the entire possible operation.
Each model should satisfactorily describe the plant in a region
around a set of specific operating points (domain). This
linearized plant will have an effective range of linearization,
in which the system generates a limited deviation from the
original plant. The operating points out of this range result in a
reduced performance as the output deviates from the nonlinear
model. Hence, a new plant with shifted operating conditions is
required. A 2-D or higher order inputs impose larger selection
regions and consequently the linearized models may show
overlap in some areas and no coverage on others. One solution
might be the introduction of a new model for uncovered
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Fig. 6. Nonlinear model of hydraulic wind power transfer system for a fixed
load. The valve displacement and pump pressure were varied, which resulted
in pressure variations. The increase in pressure at a constant pump speed when
the displacement varies is nonlinear. In addition, the pressure shows a highly
nonlinear variation at a constant valve displacement and varying pump speed.

areas. This will increase the number of linearized models,
and might consequently increase the overlapped areas. Hence,
selection of the operating points and effective consideration
of the overlapped areas in piecewise linearization becomes
critical [32].

To obtain the values for the linear state space models,
first, the symbolic derivate of the nonlinear state space model,
mentioned in (19) and (20), around a parameterized operating
point is provided. Then the selected operating points based on
the described algorithm as well as the experimental system
parameters are replaced into it.

VI. DISCUSSION

As explained in Section V, a hydraulic wind power transfer
system is largely sensitive to the valve position and the wind
speed disturbances. The system operation due to the existence
of the proportional valve is highly nonlinear. The system
pressure variations due to the valve position and the wind
speed are shown in Fig. 6. The surface shows a nonlinear
response of the system while the load is constant. As the load
changes, the system response also changes and consequently
affects the rotational speed of the wind turbine. This indicates
that the system requires to be linearized around multidimen-
sional operating points. The total number of operating points
can be unlimited as the surface may contain viable nodes
with domains that involve a large group of operating points.
Finding suitable nodes with a large domain is of interest as
this optimizes the number of piecewise linearized models.

As mentioned in Section II-A, the criteria to include a
possible node in a particular domain is the error and its
weight, which is inversely proportional to the number of
system domains claiming the node in their domain, i.e., as a
particular node belongs to more domains of linearized systems,
it loses its value.

In a small signal model of a linearized system, the system
behavior and its linearized counterpart are similar, generating
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Fig. 7. Linearized model of hydraulic wind power system around all the
possible operating points. The model shows that the nonlinear behavior of
the pressure versus valve displacement and pump speed has been linearized.

little deviation in their response in a small enough distance
from the neighboring nodes. A piecewise linearized model of
the nonlinear system (Fig. 6) is shown in Fig. 7. The linearized
system has many operating points that may also be influenced
by disturbances in the form of measurement and system noise.
In this case, the linearized model’s output deviates more from
the nonlinear model behavior.

This discrepancy between the linearized and the nonlinear
model increases when the operating point moves further away
from the linearized model effective range.

Considering an acceptable deviation range between the
linearized and the nonlinear model determines the domain of
each piecewise linearized model (7% error in this paper).

A count on the number of models that share a partic-
ular node determines the weight of the node. Among all
the possible nodes to be considered as operating points, an
optimum number with the optimum location must be selected
to minimize the number of piecewise linearized models and
maximize the matching and coverage.

The range of variables in the input of a hydraulic wind
power system is 200-600 rpm for shaft speed (in some systems
between 10 and 30 rpm) and from O to 0.5 in for valve
position. The piecewise nonlinear modeling is formulated for
hydraulic wind power in three major steps as: 1) selection
of optimum model number; 2) selection of operating points;
and 3) adaptive combination of models to obtain model
continuity. For better comparison, the introduced piecewise
linear modeling is compared with an evenly distributed model
selection.

A. Evenly Distributed Model Selection

For the first step, the value of the operating points was
determined through evenly distributed nodes in the domains.
Selecting six models, a limited error with the maximum
coverage was achieved. Fig. 8 shows all the nodes that are
associated to each model. Piecewise linearized models and
their operating points are also shown in Fig. 8 along with the
domain of the model. Overlapping and no-coverage nodes are
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oo S = B T R [ c B = R =
0.4 A Model 1(3000.128) § i R W e e e
= O Model 2 (300,0375) 8 )
§ 0.3} 3¢ odel 3 (300,0.05) 0@8 sl e
a O Model 4 3000.45) | | ; 1
o H |
2 0.2 % Model 5 800,0.378) |7 § TR TR TR
5 i i o b4 o
= 7 Model 6 (800,0125) | ! : T -
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: H : X X X X X X
H 3 X s X X X X K X X 3
0 i i i [ i [ i i P
0 50 100 150 200 250 300 350 400 450 500 550 €00
Hydraulic Pump Shaft Speed (rpm)
Fig. 8.  Domain associated to each piecewise linearized model. A total of

six models at the designated operating points were selected. Each sign shows
the domain associated to the models. There are nodes that belong to no model
and some nodes that belong to one or more linearized models.

Valve Position (in)

(300.0.05)
250 300 350 400 450 500 550 600

Hydraulic Pump Shaft Speed (rpm) Error (%)

Fig. 9. Acceptable domain for a random selection of nodes and the piecewise
linearized models. Colors show the error in the linearized models compared
with the nonlinear model. Blue indicates low error while red-yellow indicates
the high deviation in modeling. In this particular case the maximum modeling
error was 7%.

clearly shown with double, triple, or no signs. Fig. 9 shows
a selection of the operating points and model linearization
errors and their deviation from the nonlinear model. Dark areas
illustrate the higher errors while the white areas demonstrate
nodes out of the linearization domains and coverage.

B. Adaptive Linear Continuity

Kalman filters have been designed for the linearized models
and used in multiple model adaptive mixing to determine
the optimum model for overlapping and no-coverage nodes.
Adaptive model-based estimation was used to estimate the
output variables of hydraulic wind power as pressures of the
fluid in different points of the hydraulic circuit and their
comparison with that obtained from the nonlinear model.
Two inputs, as proportional valve position and the hydraulic
motors’ shaft rotational speed, were used to determine the
piecewise linearized models.

Limiting the maximum modeling error to 7%, the utiliza-
tion of adaptive model-based estimation improved the node
coverage to 80.75% for all nodes. Fig. 10 shows the smooth
coverage of the nodes.
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TABLE II

SCALING FACTOR SELECTION. EFFECT OF VARIABLES ON THE SCALING
FACTOR. HIGHER SCALING FACTOR IS DESIRABLE AS IT MAGNIFIES
THE IMPORTANCE OF NODES IN THEIR MODEL SELECTION

0.4 5
E
503
.‘§
o
£o02
3 2
0.1 1
o T T T T T T T 1 0
200 250 300 350 400 450 500 550 600
Hydraulic Pump Shaft Speed {rpm) Error (%)
Fig. 10. Effect of adaptive model mixing on the overall model estimation

and error. Red areas contain nodes with a higher error. Most of the domain
nodes belong to at least one model and the entire region was converted into a
low error region (blue). The areas with a high error have been shifted to the
outer band of the domain where the practical operating points never reach.

9 9 9 9 9 8 8 8 8
05 10 1 11 9 10 10 10 9
ToRk7T 20 16 24 21 17 14 10 10
2932 27 3 41 29 22 1 14
045 26 39 46 47 72 43 33 27 23
27 37 52 62 81 64 58 50 45
04726 37 56 65 77 70 66 60 57
25 42 60 63 72 68 69 62 63
25 41 59 62 66— 63 70 64 64
0.35 29 44 58 56 61 64 70 69 63
29 46 56 53 60 63 67 69 66
T 03 27T 44 59 53 61 65 69 67 65
= 31 46 60 52 59 65 67 7 72
< 30 4 54 48 60— 68 71 71 73
2025 28 46 55 46 63 71 72 74 77
@ 31 48 48 50 68 74 75 77 77
g 02 B2 49 47 50 73 7 77 79 76
P 30 50 38 56 76 83 83 76 66
2 374 37 59 77 7 76 66 51
g 015 39 37 37 70 82 69 60 50 44
33 34 42 75 62 50 42 36 31
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7 " 15 20 20—19 16 13 10
005 7 6 6 7 7 8 8 8
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0 [ [ [ [

200 250 300 350 400 450 500 550 600

Pump Speed [rpm]
Fig. 11.  Digits determine the number of models that represent a node.

For instance, 20 shows that the node can possibly belong to 20 piecewise
linearized models, if the modeling is continued to involve 20 models.

C. Adaptive Model Selection

In the first step, to select the models the values of the
nodes must be calculated. The node values are the likelihood
that the node belongs to the nearby model domains. The
more the models cover a node, the less worthy the node
becomes. Fig. 11 shows the value of each node based on the
number of models that can potentially cover it. Scaling factor
was used to select the optimum nodes. The gain and shape
variables o and £ will result in various scaling factors. It is
recommended to select these two variables within reasonable
orders so that the scaling factor would magnify the importance
of the nodes and provide a simpler representation. Through
trial and error, values of 100 and 1 can be selected for a and S,
respectively. Table II shows the selection process for a and .
These values result in enough resolution to select the models.
The models are valued based on the weight of the nodes in
their domains. The model with the highest rank covers an
optimum number of nodes. Therefore, the model with the
highest rank is selected as a candidate for piecewise linearized
model.

Scaling Model Scaling
Variables Ranks Factor
1 0.0387
a=1 2 0.0155
B=3 3 0.0053
4 0.0040
1 124.9603
a=100 2 73.5714
p=1 3 75.8166
4 35.2784
1 3.8782
o=100 2 1.5511
B=3 3 0.5318
4 0.4073
TABLE III

MODEL RANKING IN EACH ITERATION. WEIGHT OF EACH MODEL
IS DETERMINED AS THE NUMBER OF NODES IT INCLUDES
IN ITS DOMAIN. AS THE HIGHEST WEIGHT MODEL IS
SELECTED, THE NODES ASSOCIATED TO THIS MODEL
WILL BE ELIMINATED FROM THE DOMAIN

Model Model
Rank Weight
1 147.42
iti i 2 145.99
Initial weigh 2 T
4 145.30
1 145.62
i 2 130.35
Iteration 1 3 e
4 124.96
1 124.96
Iteration 2 2 124.96
3 121.14
4 119.96
1 121.14
Tteration 3 2 114.66
3 114.66
4 113.46
1 105.55
Iteration 4 2 105.55
3 105.55
4 105.55
1 97.39
Iteration 5 2 94.42
3 94.42
4 91.51
i 1 88.65
Iteration 6 > =
3 81.82
4 81.64

The nodes that configure the domain of the selected models
are eliminated from the weighting process. With new existing
nodes, the linearization and model selection process continues.

As each model is optimized to contain the highest node
weights, the model selection is inherently optimized. The
model ranking and iteration process is given in Table III.
As Table III shows, the first four models are ranked in each
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TABLE IV

NUMBER OF ADDED COVERED NODES IN EACH ITERATION AND
THE DOMAIN INDEX. DOMAIN INDEX SHOWS THE NECESSITY
OF ADDING ONE MORE MODEL TO THE LIST OF
LINEARIZED MODELS. ONCE THE ADDED
VALUE Is LESS THAN EXPECTED,

MODEL SELECTION STOPS
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Fig. 12. Selected models through the introduced algorithm and their domains.
Compared with Fig. 9, a considerable reduction in the estimation error can
be observed. The target was to locate operating points and linearized models
that cover most of the nodes and generate less error. See the Appendix for
the linearized model parameters.

iteration and the model associated to the highest rank was
selected. As the nodes were eliminated from the domains,
the weight of other iterations decreased such that in the ratio
of weight to number of nodes (domain index), an added
model covered became a small value. At some point (selected
arbitrarily), adding a model does not add enough domain
coverage to the overall coverage of the system. Table IV gives
the decreasing number of nodes added to the overall coverage
in each iteration.

Therefore, five iterations were sufficient for this system and
six models were selected to fulfill the system requirements.
Table IV gives the number of added models over the total
covered nodes in each iteration, i.e., the domain index.

The selected optimum piecewise linearized models are
shown in Fig. 12. These models cover 86.2% of the entire
domain and generate errors less than 7%. The performance of
adaptive model mixing to optimize the coverage and minimize
the overall error is shown in Fig. 13.

As can be seen by the selected models from the introduced
algorithm, the overall accuracy of the adaptive piecewise
linearization has increased by 5.45%. In addition, compar-
ing Figs. 10 and 13, it can be concluded that besides the
increase in the overall coverage of the node domains, the error
between the nonlinear system and the multiple model adaptive

reduced the overall error in modeling the noncovered nodes. The outer band
of operating points has less error than what is shown in Fig. 10. This shows
the improvement that the introduced algorithm can provide along with the
adaptive model mixing.

estimation was optimized. These improvements are observed
in the accurate increase of the state variable estimation as an
important measure in approximate piecewise linearization.

VII. CONCLUSION

This paper introduced an automatic algorithm to select
the optimum operating points for piecewise linearization of
nonlinear systems with multidimensional inputs. The algo-
rithm is operated based on the weighting factor for each node
to be included in the domain of all the possible models.
All the possible models are ranked and the model with the
highest weight was selected. The domain and model were
removed from the ranking and model selection was continued
until reaching a point where adding one more model to the
set of linearized models did not involve a significant number
of nodes. At this point, there were nodes that might belong
to one, many, or none of the models. An adaptive mixing
was introduced that allocated a probability to each model
for each operating point to keep the domain continuity and
minimum model linearization error. Without loss of generality,
the introduced algorithm was formulated for a 2-D input
wind power system. The introduced systematic linearization
approach was compared with a random selection of models.
The coverage of domains and the overall modeling error were
significantly improved.
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