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Demand Response of a TCL population using
Switching-Rate Actuation

Luminita Cristiana Totu, Rafael Wisniewski, and John Leth

Abstract—This work considers the problem of ac-
tively managing the power consumption of a large num-
ber of thermostically controlled loads (TCLs), namely a
TCL population, and a case-study of household refrig-
erators. Control is performed using a new randomized
actuation that consists of switching units on and off
at given rates, while at the same time respecting the
nominal constraints on each individual unit. Both the
free and the controlled behavior of individual TCLs

can be aggregated, making it possible to handle a TCL

population as if it were a single system. The aggregation
method uses the distribution of the TCLs individual
states across the population. The distribution approach
has two main advantages. It scales excellently since the
computational requirements do not increase with the
number of units, and it allows data from individual
units to be used anonymously, which solves privacy
concerns relevant for consumer adoption.

I. Introduction

Wind and solar power generation have seen a significant
increase in the last decade. This global trend is predicted
to continue, and it brings the promise of a more clean and
economically stable energy future worldwide. Yet these
renewables still represent only a small fraction of the
overall power generation [1]. One of the problems is that
large scale integration in the power system is challeng-
ing. Wind and solar power production have a variable
characteristic. While averages over long time scales are
predictable, on the shorter time scales the generation
output can be volatile and unpredictable. Because the
power system needs to be in balance between consumption
and production at all times, when a large percentage of
the generation has a variable characteristic, the balancing
effort increases beyond the possibilities of the traditional
grid. Integration levels over 30% require a transformation
of the power system [2], [3]. One of the transformations
needed is including demand-side as an active participant
in the power system operations, both in the planning stage
and in the real time balancing services. The idea is to
access and organize existing demand flexibility, and utilize
it to counteract variability in the grid and, additionally,
optimize the economic dispatch of resources [4]–[7].

This work is concerned with a demand response sce-
nario consisting of a large number of thermostat-based
appliances, which have an individual on/off operation as
a main characteristic. We think of these as many, small
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and “leaky” thermal storages. These devices are of special
interest since they have the potential to deliver a fast, au-
tomated response. The focus is on aggregating a very large
numbers of units, in order to obtain a total power capacity
relevant for power system operations. Using terminology
introduced in [8], we want to achieve a control scheme that
is fully responsive in terms of the aggregated power output
and nondisruptive to the local unit operation.

The main technical challenges of the control problem
are related to the large number of individual units and
the distributed structure. Realistic solutions should have a
computational complexity that scales well in the number
of units, and use communication flows that are feasible
under cost and privacy criteria. We will therefore focus
on solutions that are aligned with the following three
principles. First, actuation should take place via broadcast
communication. The network requirements for the actua-
tion channel are thus reduced and communication is fast,
since the same signal is sent to all units. Second, the actual
physical decisions should take place at the individual unit
and account for the local conditions. This guarantees a
robust, nondisruptive local operation. Thirdly, measure-
ments on the unit level should be used sparsely and anony-
mously. This is to ensure that network requirements for
the measurement channel are not excessive, and that the
overall solution is privacy friendly. Similar implementation
principles are discussed also in [9].

The study of large groups of thermostically controlled
loads (TCLs), namely TCL populations, started in the
1980s with the works of [10], [11] and [12]. The interest
was on modeling oscillations in the power consumption
after a planned (direct load control) or unplanned (black-
out) interruption. Such oscillations are caused by the
synchronization of the thermostatic duty cycles, and can
be seen as the free response of a TCL population subject to
initial conditions. These early works set in place the “first
principles” or “physically based” modeling paradigm for
TCL populations. Previous approaches used data-driven
models fitted using historical data. The new idea was to
first model the main behaviors at the unit level and then
model the population behavior as the result of an aggre-
gation operation. The important result in [11] realizes the
mathematical aggregation of a homogeneous population of
stochastic hybrid systems as a system of partial differential
equations (PDEs) with boundary conditions. The PDEs

represent the dynamics of the temperature distributions
across the “on” and “off” modes in the population, and are
obtained in a manner similar to the modeling of physical
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transport phenomena.
After three decades, the research into TCL populations

got a resurgence motivated by the advance of demand re-
sponse concepts and enabled by the low cost of computing
and communication hardware.

For example, the recent modeling work [13] obtains
the dynamics of the temperature distributions across the
TCL population in another manner, starting with a finite
dimensional abstraction. Importantly, the error model is
derived for homogeneous populations. Furthermore, ap-
proximate error characterizations are also given for het-
erogeneous populations.

On the control side, different input channel or actuation
designs have been proposed to enable demand response.
A broadcast actuation method that shifts the set-point
temperature of the thermostat is proposed in [14], and
subsequently used in other works, e.g., [13], [15], [16]. The
broadcast signal consists of a quantity ∆T , which is either
positive or negative. All units in the receiving population
immediately react by shifting their thermostat band with
the ∆T amount. Another broadcast actuation is Toggle
Control [17]. This actuation targets subgroups of units
from the population based on the location (bin) in the tem-
perature and mode distribution. Individual units switch-on
or -off based on a random trial with success probability
corresponding to their subgroup. Thus, the broadcast
signal consists of a set of switching probabilities, one for
each subgroup. A specialized form of Toggle Control, called
Switching-Fraction actuation in this work, involves the
broadcast of only one or two switching probabilities [18]–
[20]. In this case, there are only two target subgroups,
the units in mode “on” and the units in mode “off”. The
broadcast signal consists of a switch-off and a switch-on
probability.

The Thermostat Set-Point, Toggle Control and
Switching-Fraction all allow for the development of fully
responsive control algorithms. Furthermore, the Toggle
Control and the Switching-Fraction can directly be seen
as nondisruptive, as the temperature remains bound in
the original thermostat band. The Thermostat Set-Point
method can also be used in a way that makes it practically
nondisruptive, e.g. by using only small ∆T band-shift
commands. Out of these, we see the Switching-Fraction as
having some practical, deployment advantages. Compared
to Toggle Control, it does not require local sensors
with a high resolution to distinguish between narrow
temperature intervals, and the broadcast signal has a
smaller footprint. Compared to the Thermostat Set-Point
actuation, it has a more direct effect on the power
consumption.

Other actuations are present in the literature, but are
outside the scope of this work. For example, there are a
number of actuations that are meant to be used infre-
quently and ensure a particular power response, see [21],
[22] or [23]. While arguably useful and relevant for different
scenarios, we consider these schemes as not fulfilling the
fully responsive property, as they do not allow a continuous
and smooth manipulation of the output power.

This work presents in detail the Switching-Rate ac-
tuation, which we briefly introduced in [24], and which
extends the Switching-Fraction by desynchronizing the
individual TCLs responses in time, across the population.
This is important because of the peak power-draw at the
TCL compressor start-up. To protect the units against fre-
quent switching, minimum on/off time constraints similar
to [25] are considered, and a switch dead-zone is included
for temperatures that are too close to the thermostat limit.
The Switching-Rate is then used to obtain relevant power
responses under two control schemes.

Another contribution of the paper is in the modeling de-
tails. In this work, we have followed a modeling approach,
for both the free and the actuated dynamics, that starts
from a continuous temperature and time domain and then
uses numerical tools to obtain discrete approximations.
Special care is taken when performing the discretization
step to obtain a high quality dynamic matrix, and finite-
volume techniques are used to preserve the probability
conservation property of the distribution model. Consid-
erations about the positivity property of the discretized
dynamics are also made.

The rest of the paper is structured as follows. Section II
describes the modeling process. Section III presents model-
based control algorithms. Section IV presents a numerical
case study and simulation results, showing the demand
response capabilities of a TCL population and the effective-
ness of the Switching-Rate actuation. Section V concludes
the article.

II. Modeling

This work considers cooling units, and in particular
domestic refrigerators. As under realistic conditions, the
units are independent of each other, do not communicate
nor share states. The main object of interest is the aggre-
gated power consumption, which is the sum of the individ-
ual power consumptions. The model for an individual TCL

is presented first, followed by the aggregation based on
distributions1. The Switching-Rate actuation is addressed
for both the unit and the distribution model.

A. TCL stochastic hybrid model

The model aims to capture only those dynamic char-
acteristics that are relevant at the population level, and
is not meant to be high fidelity at the unit level. This
approach is prevalent in literature and is supported by
verifications using simulation in [18]. The main character-
istics to be captured are the thermal dynamics, the hybrid
nature of the thermostat operation, and stochasticity.
We next present the established unit model, along with
considerations about the underlying simplifications.

The basic model is a stochastic hybrid dynamical system
(SHS) with two modes corresponding to the “on” or “off”

1Distribution in the physical sense, i.e., describing the scattering
across a domain.



SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 3

state of the cooling cycle. When the TCL is “on”, it is con-
suming power and the temperature in the cold compart-
ment is lowering. When the TCL is“off”, it is not consuming
power and the temperature in the cold compartment is
rising due to ambient conditions. The heating and cooling
processes are modeled using a lumped approach and first-
order dynamics. Although second-order dynamics should
be studied for air-conditioning or heat-pump TCLs as
argued in [18], this is not considered necessary in the case
of domestic refrigerators, since there are no outstanding
thermal masses with a pronounced dynamic coupled to
cold compartment. Random temperature fluctuations are
modeled by a white noise term. Other possible random
disturbances, not pursued at this time, are jump processes
that would correspond to “door-opening” events. Power
consumption is considered to be a positive constant when
the mode is “on”, and zero when the mode is “off”. The
assumption is again an idealization, since it is well known
(e.g., [26]) that power consumption has a sharp peak at
the start of the power cycle (the start of the single phase
induction motor) and that it also exhibits an overall first
order response pattern (the load dynamics from the vapor-
compression cycle), see Fig. 1.

Time [h]

P
ow

er
[W

]

1 2 5 6 7

60

900

Fig. 1. Power consumption pattern of a real domestic refrigerator
(laboratory set-up)

Summing up, the model of a TCL is a SHS of the following
form,

dT (t) = −UA

C

(
T (t)− Ta +m(t)

ηW

UA

)
dt+ σdw(t) ,

(1a)

=
(
αT (t) + β +m(t)γ

)
dt+ σdw(t) , (1b)

z(t) = Wm(t) , (2)

where T : R+ → R is the continuously-valued temperature
state, m : R+ → {0, 1} is the discrete-valued state
corresponding to the “off” and “on” modes respectively,
w(t) is a white noise process, and z : R+ → {0,W}
is the power consumption viewed here as model output.
The temperature dynamics are expressed using thermal
parameters in (1a), and using equivalent first-order system

parameters in (1b). All coefficients are considered to be
time invariant. In the absence of external control, the
dynamics of the discrete-valued state m(t) are given by a
standard thermostat mechanism with boundaries at Tmin

and Tmax,

m(t) =


1, T (t) ≥ Tmax ,

m(t−), T (t) ∈ (Tmin, Tmax) ,

0, T (t) ≤ Tmin .

(3)

Since the discrete-valued state m(t) has discontinuities at
the switching times, notation t− is used to represent limit
from left. The convention is that m(t) is right continuous
and has left limits.

B. Switching-Rate actuation

The Switching-Rate actuation adds a random compo-
nent on top of the deterministic thermostat mechanism,
see Fig. 2, and is characterized by two transition rates
u0 and u1. The transition rates are external inputs, to be
received over the broadcast channel.

The Switching-Rate random behavior is defined using
the Markov chain formalism, see (6). In this way, a TCL

that is “off” can be encouraged to consume power using
input u1, while a unit that is “on” can be discouraged
from further consuming power using input u0. At the
population level, the magnitude of the input is reflected by
the number/percentage of units that actually switch. This
externally generated switching is always temperature safe:
it can be activated earlier than normal, but not override
the thermostat mechanism, which remains in place.

T ≥ Tmax

T ≤ Tmin

m = 0 m = 1

u0

u1

Fig. 2. Dynamics of the discrete state m(t) as a Markov chain, in-
cluding deterministic, temperature-state dependent transitions (solid
line) and random transitions (dashed line).

Additional features are added to prevent the occurrence
of multiple switches in a short time interval. Frequent
switching can damage the physical components of the TCL

such as the compressor, and can invalidate model (1) since
the first-order thermal dynamics cannot be expected to be
a good approximation on the short time scale. To this end,
a timer state τ(t) : R+ → R+ with the straightforward
dynamic

τ̇(t) = 1 (4)

is added to the model, and its value is reset to zero after
a switch. Non-thermostatic, external switches are only
allowed if a condition of the type τ(t) ≥M > 0 is satisfied.
In addition, “safe-zones” are added to ensure that switches
do not occur if the temperature is too close to a maximum
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or a minimum limit, as they would quickly be reversed by
the thermostat action, see Fig 3. Thus, switch-on actions
are allowed only if the temperature is in the interval S1

and switch-off actions are allowed only if the temperature
is in the interval S0,

S1 = [Tmin + ∆T1, Tmax) , (5a)

S0 = (Tmin, Tmax −∆T2] , (5b)

where ∆T1,∆T2 < Tmax − Tmin.

Time[min]

O
n
/
O
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Time[min]

T
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p
[◦
C
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23 37 81 91 115

23 37 81 91 115

2

3

4

5

Fig. 3. Temperature and mode trajectory with external actuation.
Thermostat actions occur at minutes 37, 81 and 115, and external
switches at minutes 23 and 91.

Both the Switching-Fraction (see [18]–[20] for a detailed
description) and the new Switching-Rate are randomized
actuations, the main difference being the time characteris-
tic. After receiving a broadcast command, the TCL needs
to take a decision about “if” and “when” to execute a
mode switch. In the Switching-Fraction actuation case, the
“when” moment is predefined to be “now”, leaving only
the “if” question to be answered by the safety checks and
a random trial. A consequence of the Switching-Fraction
mechanism is that the external switches are tightly syn-
chronized across the population. Since the power consump-
tion of a TCL exhibits a peak after switch-on, see Fig. 1,
synchronized switch-on actions lead to synchronized power
peaks. The main objective of the Switching-Rate variant is
to desynchronize the switch actions across the population.
Not only is the switch decision random, but also the time
of its occurrence. The mechanism is similar to the jumps in
a Poisson process, and as previously indicated, is described
by transition rates.

Given a small enough time interval h, and making the
informal assumption that the temperature state T does
not significantly change its value during this time (does
not leave the safe interval Sī), the probability of a switch
event can be written as

Pr
[
m(t+ h) = ī

∣∣ m(t) = i, T (t) ∈ Sī, τ(t) ≥M
]

= uīh+ o(h) , (6)

where ī
∆
= 1 − i, and ui ≥ 0, i ∈ {0, 1} are the transi-

tion rates. A mathematically rigorous formulation of the

above requires the characterization of further stochastic
processes elements, such as stopping times and survivor
functions. In this work it is only mentioned that the model
of a TCL with Switching-Rate actuation can be formally
constructed using the notion of general stochastic hybrid
systems (GSHSs) [27], [28]. These objects include the three
main characteristics of the TCL behavior: dynamics given
by stochastic differential equations (SDEs), jumps when the
continuous state hits a boundary or according to transition
rates, and state resets after jumps.

With a Switching-Rate actuation, switch-on and switch-
off events can happen at any point along the continuous
time line after the broadcast time, provided that temper-
ature and timer conditions hold safe. In this way, switches
are not synchronized across the population, although they
might be densely clustered if the received rates ui have
high values.

The Switching-Rate mechanism can be implemented
in software on a TCL unit that is equipped with a ba-
sic communication and computing digital module, which
can be expected from Smart Grid ready appliances. A
time-discretized approximation of the GSHS continuous-
time behavior, (where temperature state is obtained from
measurements, not simulation) can be implemented in
different ways. An example is sketched in Alg. 1, where
the LOOP function combines the safety checks, numerical
inequalities, with a time-discretized version of eq. (6)
for the rate-based switch generation. The local sampling
time h should be chosen to be relatively small, such that
temperature changes can be captured fast by the safety
checks, and also such that the rate generation mechanism
to be accurate, ui · h << 1.

We recall that in the Switching-Fraction case a single
binomial trial with success rate ui is performed as soon as
the broadcast signal is received. This creates synchroniza-
tion between the units. In the Switching-Rate case, Alg. 1
is performing multiple binomial trials, which are spread
out in time and have a scaled-down success rate ui · h.
This breaks the synchronization between the units.

Alternatively, an event generation scheme for the
Switching-Rate consisting of exponentially generated wait-
ing times together with a mechanism for boundary cross
detection could be developed, see also the discussion in
[29](Ch.6).

C. Distribution model

The behavior of the TCL can be described, equivalently
in effect with the SHS characterization from Section II-A,
in terms of the probability density function (pdf) over the
hybrid state space (T,m) ∈ R× {0, 1},

f i(x, t) = lim
dx↘0

1

dx
Pr
[
T (t) ∈ (x, x+ dx] ∧m(t) = i

]
.

(7)

The continuous timer state τ(t) has been omitted for
the moment, but will be reintroduced later. Building on
elements and results from Markov process theory (e.g.,
[30], [31]), [11] showed that the dynamic of f i(x, t) can
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Algorithm 1 Switching-Rate

global T,m, τ, u0, u1

const ∆T1,∆T2,M, h

function BroadcastReceived(new u0, new u1)
u0 ← new u0 . ”←” denotes an assign operation
u1 ← new u1

end function

function loop( ) . called 1/h-times per second
if (m == 1) and (T > Tmin) and (T ≤ Tmax −

∆T2) and (τ ≥M) and (rand() ≤ u0 · h) then
m← 0

end if
if (m == 0) and (T < Tmax) and (T ≥ Tmin +

∆T1) and (τ ≥M) and (rand() ≤ u1 · h) then
m← 1

end if
end function

be described analytically. In particular, the dynamic of
f i(x, t) represents the generator of the forward linear
semigroup associated with the SHS model of the TCL. For
dynamical systems characterized by regular SDEs, without
hybrid elements, this generator is known as the Fokker-
Planck equation and can be seen as a transport and
conservation law for probability. Therefore, the result in
[11] is a type of Fokker-Planck operator specific to the TCL

SHS without actuation. The advantage of this modeling is
that, unlike the SHS form, a TCL description in terms of
the pdf translates almost directly into a (homogeneous)
population model. Probability quantities simply change
meaning to population fractions, see e.g., [11], [13], [14].

1) Distribution model without actuation: This section
introduces the main result from [11] that gives the dynam-
ics of f i(x, t) in the form of a PDE system with boundary
conditions. Before stating the result, some preliminaries
are addressed.

The temperature domain is divided into three sub-
sets: the thermostat range Sb = [Tmin, Tmax], and Sa =
(−∞, Tmin) and Sc = (Tmax,∞). This is a natural di-
vision with respect to the operation of the TCL, and is
necessary because boundary conditions apply in the points
Tmin and Tmax, and because the pdf f i(x, t) is not x-
differentiable here. Superscript indices will be used to
denote subcomponents of the pdf functions f i(x, t) over the
specific partitions, e.g., f0a or f1b. Temperatures outside
the thermostat range must be accounted for because of
the diffusive component in the thermal dynamics (1). For
example, even though the TCL is automatically “on” and
starting to cool when T (t) = Tmax, the temperature might
reach values T (t) > Tmax due to the contribution of the
white noise (diffusive) term. It is also important to note
that the pdf corresponding to the off mode, f0(x, t), is
zero-valued on the Sc domain, because if the temperature
becomes greater than Tmax the thermostat mechanism
ensures that the mode can not remain “off”. Similarly, the

Tminmin Tmin Tmax Tmaxmax

f0a

f0b

f1c

∆T1 ∆T2

f0b1 f0b2

f1b1 f1b2 f1b3

f0b3

f1b

Fig. 4. Partitions of the temperature domain and subcomponents

pdf corresponding to the on-mode, f1(x, t) is zero-valued
on the Sa domain. In numerical work, the infinity domains
limits can be bounded since it is realistic to assume that
the temperature inside a working refrigerator will not
drop below some Tminmin value and cannot rise above
some Tmaxmax value, or equivalently, that probability of
this happening is sufficiently low that it can be ignored.
These elements are summarized on Fig. 4, using the pdf

equilibrium profile corresponding to the refrigerator unit
from Section IV. Additionally, Fig. 4 contains notations
b1, b2 and b3 for the intervals (Tmin, Tmin + ∆T1), [Tmin +
∆T1, Tmax−∆T2] and (Tmax−∆T2, Tmax), relevant for the
actuation part. With this notation, the safe-temperature
zones (5) can be expressed as

S0 = Sb1 ∪ Sb2 ; S1 = Sb2 ∪ Sb3 . (8)

The evolution of the temperature state T (t) in the interior
of the Sj domains, j ∈ {a, b, c}, is driven only by the SDE

component (since the discrete dynamics only come into
play at the boundaries of the Sj domains). As a result, the
dynamic of the pdf f ij(x, t) on the interior Sj is given by
standard Fokker-Planck equations matching the thermal
dynamics (1b) for the corresponding mode,

∂f0j(x, t)

∂t
+

∂

∂x

(
(αx+ β)f0j(x, t)

)
=
σ2

2

∂2f0j(x, t)

∂x2
,

j ∈ {a, b} (9a)

∂f1j(x, t)

∂t
+

∂

∂x

(
(αx+ β + γ)f1j(x, t)

)
=
σ2

2

∂2f1j(x, t)

∂x2
,

j ∈ {b, c}. (9b)

The switching dynamics (3) are included in the bound-
ary conditions. We first introduce the probability flows
hij(x, t) as the integral over the temperature (x-) coor-
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dinate of the probability fluxes ∂fij

∂t (x, t),

h0j(x, t) = −(αx+ β)f0j(x, t) +
σ2

2

∂f0j(x, t)

∂x
, (10a)

h1j(x, t) = −(αx+ β + γ)f1j(x, t) +
σ2

2

∂f1j(x, t)

∂x
.

(10b)

The boundary conditions can then be written as

h0a(Tminmin, t) = 0, h1c(Tmaxmax, t) = 0, (11a)

f1b(Tmin, t) = 0, f0b(Tmax, t) = 0, (11b)

f0b(Tmin, t) = f0a(Tmin, t),

f1b(Tmax, t) = f1c(Tmax, t), (11c)

h0a(Tmin, t) = h0b(Tmin, t) + h1b(Tmin, t), (11d)

h1c(Tmax, t) = h0b(Tmax, t) + h1b(Tmax, t). (11e)

Equations (11a) represent impenetrable wall conditions,
i.e. there is no probability flow out-of or in-to the domain
Sa from the left side, and similarly there is no flow
out-of or in-to the domain Sc from the right side. The
rest of the boundary conditions are associated with the
thermostat switching mechanism. First, (11b) account for
the “absorption” action of the thermostat switch on the
diffusion dynamic, causing Pr[ T (t) = Tmin∧m(i) = 1 ] = 0
and Pr[ T (t) = Tmax ∧ m(i) = 0 ] = 0. Second, the fact
that the temperature state does not jump (is not reset)
by the switching mechanism is reflected in the continuity
condition (11c). Finally, (11d) and (11e) describe of the
flow of probability from mode “on” to mode “off” at Tmin,
and the flow of probability from mode “off” to mode “on”
at Tmax.

The above boundary conditions reduce to the more
familiar form presented in [11], [14] and others, if they are
made explicit by introducing the flow functions expressions
(10), and carrying out the arithmetical simplifications. The
form presented here, using flow functions h, can also be
used in the case when considering other forms for the
continuous dynamics of the hybrid branches in (1), e.g.
using different diffusion coefficients for each mode.
2) Finite-volume methods: The system (9), together

with boundary conditions (11), represents a linear, infinite-
dimensional dynamic. We approximate it with a finite-
dimensional form using finite-volume methods (FVM) [32],
[33]. While other works use a finite-difference approach
[15], [34], FVM are arguably more suitable. A main argu-
ment is that FVM preserve the invariant of the continuous
system in the discretized solution, in this case probability
(probability will always amount to 1 in the numerical
solution).

FVM consist of three main steps. First, the continuous
spatial domain (in this case, the temperature domain) is
partitioned using a relatively fine grid of non-overlapping
cells2. The second step consists of building the FVM

2This is the semi-discrete FVM approach, as only the spatial
domain is discretized. The result is a finite-dimensional, continuous-
time dynamic in the form of an ordinary differential equation system.
The discrete-time dynamics can be obtained later, and separate from
the spatial discretization process. Fully-discrete FVM techniques grid
the spatial and temporal coordinate simultaneously.

equation. This is done by integrating the dynamical PDE

equation over a cell of the grid. For a generic conservation
dynamic in one spatial dimension x with drift field φ(x, t),

diffusion coefficient D = σ2

2 , and source term s(x, t),

∂ρ

∂t
(x, t) +

∂
(
φ(x, t)ρ(x, t)

)
∂x

= D
∂2ρ(x, t)

∂x2
+ s(x, t), (12)

integrating over the spatial cell Kq gives∫
Kq

∂ρ

∂t
(x, t)dx =

(
− φ(x, t)ρ(x, t) +D

∂ρ(x, t)

∂x

)∣∣∣∣K+
q

K−
q

+

∫
Kq

s(x, t)dx , (13)

where q ∈ {1, . . . , N} is the cell index, and K−q ,K
+
q are

the left and right edge points of the cell. Notice that flow
quantities evaluated at K−q appear with a negative sign
(outgoing) in the dynamic of the cell Kq, and with a
positive sign (incoming) in the dynamic of the cell Kq−1.
The outgoing flow from one cell is incoming flow to the
neighbor cell, resulting in the conservative property of
the method (in this way, the system invariant will not
change/be corrupted by the numerical steps). Next, the
left side of (13) can be further expressed as∫

Kq

∂ρ

∂t
(x, t)dx =

d

dt

∫
Kq

ρ(x, t)dx = ∆xq
dΘq

dt
(14)

with Θq the average value of ρ(x, t) over the cell Kq and
∆xq the cell size. Equations (13) and (14) can be combined
to give the exact expression for the evolution in time of the
average quantity Θq,

∆xq
dΘq

dt
=

(
− φ(x, t)ρ(y, t) +D

∂ρ(x, t)

∂x

)∣∣∣∣K+
q

K−
q

+

∫
Kq

s(x, t)dx . (15)

However, equation (15) is not closed since the right side
expression uses the ρ(x, t) terms, which are unknown.
The third step thus consists of applying a numerical
scheme for approximating the right side of (15) using only
Θq,Θq+1,Θq−1, . . . terms. This step is a combination of re-
construction techniques (interpolation and extrapolation)
on stencils, numerical approximation for differentiation
and integration operations, and also heuristics such as the
up-wind scheme [32]. Once this step is complete, a finite
dimensional ordinary differential equation (ODE) system
with N equations can be used as an approximation of the
original infinite dimensional dynamic.

In the particular case of the TCL PDE system, the
temperature sub-domains j ∈ {a, b, c} are each divided

into a number Nj of cells, Sj = ∪Nj

q=1Kjq. It is convenient
to use uniform griding, meaning equal cell sizes ∆xjq =
∆x, ∀j, q. As a result of the FVM spatial discretization
procedure, the pdf states f ij(x, t) are replaced by vector
states F ij ∈ RNj , see Fig. 5. These components are
ordered as F = (F 0a, F 0b, F 1b, F 1c), leading to a vector
in a state-space of dimension Na + 2N b + N c = N .



SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 7

Tminmin Tmin Tmax Tmaxmax

F 0a

F 0b

F 1c

∆T1 ∆T2

F 0b1 F 0b2

F 1b1 F 1b2 F 1b3

F 0b3

F 1b
∆x

Fig. 5. From the infinite dimensional state f to the final dimensional
state F ∈ RN , N = Na + 2Nb +Nc, Nb = Nb1 +Nb2 +Nb3 .

Subcomponents F ib1 , F ib2 and F ib3 are relevant when
considering actuation. Their dimensions are N b1 , N b2 , and
N b3 , with N b1 +N b2 +N b3 = N b. Each entry in the vector
state F represents the average probability density value in
its corresponding cell,

F ijq(t) =
1

∆x
Pr
[
m(t) = i ∧ T (t) ∈ Kjq

]
, (16)

i ∈ {0, 1}, j ∈ {a, b, c}, q ∈ {1, 2, . . . , N j} .

Because of the linear form of the Fokker-Planck equa-
tions and TCL boundary conditions, and by choosing FVM

with linear features, the PDE system can be approximated
by a linear ODE system,

Ḟ (t) = AF (t) . (17)

Matrix A is guaranteed to conserve probability i.e., has
the property that columns sum to 0.

However, A is not guaranteed to be a proper transition
rate matrix, as it can have a number of negative non-
diagonal elements. Since the finite dimensional approxi-
mation of the PDE system can be seen as a Markov chain
representation of the TCL SHS [13], [17], having matrix A
in the form of a transition matrix is a desirable property.
FVM do not guarantee, in general, the positivity property
[35]; however, the FVM scheme proposed in [36] specifi-
cally preserves a number of relevant structural properties,
among which positivity. This FVM scheme is based on an
alternative formulation of the Fokker Planck equation (12)

φ(x, t)
∆
= −dµ(x, t)

dx
, (18a)

∂ρ(x, t)

∂t
= D

∂

∂x

(
e−

1
Dµ(x,t) ∂

∂x

(
e

1
Dµ(x,t)ρ(x, t)

))
+ s(x, t). (18b)

The equivalence can be easily checked by expanding the
∂
∂x differentiation.

The method in [36] is valid also for multidimensional
spatial domains. We found numerically that, to obtain
a good dynamic approximation, the structure preserving
method requires denser grids than more typical schemes,
see Sec. IV-A.

3) Distribution model with Switching-Rate: The
Switching-Rate actuation can be introduced in the PDE

description (9), from where it will propagate into the
state-space description (17). We first address the case
without the timer locking mechanism. The new terms
that are included in the PDE dynamics are marked with
under-brackets,

∂f0b

∂t
= − ∂

∂x

(
(αx+ β)f0b

)
−λ1(x)f0b + λ0(x)f1b +

+
σ2

2

∂2f0b

∂x2
, (19a)

∂f1b

∂t
= − ∂

∂x

(
(αx+ β + γ)f1b

)
+ λ1(x)f0b − λ0(x)f1b +

+
σ2

2

∂2f1b

∂x2
, (19b)

where

λ1(x) =

{
u1, x ∈ S1,

0, x 6∈ S1,
λ0(x) =

{
u0, x ∈ S0,

0, x 6∈ S0.
(19c)

The terms u1f
0b and u0f

1b give a fitting dynamic for
the exchange of probability from off-to-on and on-to-off
respectively due to the design of the external switching,
see the infinitesimal contribution given in (6).

The discontinuity in the λi(x) functions, and thus the
discontinuity in the PDE coefficients, may raise concerns.
The effect of the discontinuity in the coefficients, combined
with the smoothing effect of the diffusion term, is that
the solution remains continuous but is non-differentiable
at points Tmin + ∆T1 and Tmax − ∆T1, similar to the
behavior at Tmin and Tmax. The rigorous formulation is
then to split the solutions f ib into subcomponents b1, b2
and b3, and connect these with boundary conditions using
flow functions h, that is

f ib1(Tmin + ∆T1, t) = f ib2(Tmin + ∆T1, t),

f ib2(Tmax −∆T2, t) = f ib3(Tmax −∆T2, t), (20a)

hib1(Tmin + ∆T1, t) = hib2(Tmin + ∆T1, t),

hib2(Tmax −∆T2, t) = hib3(Tmax −∆T2, t). (20b)

FVM can again be applied to reduce the PDE dynamics
to a finite dimensional form. The resulting system has the
following form,

Ḟ (t) = AF (t) + u0(t)B0F (t) + u1(t)B1F (t). (21)

We remark that the Switching-Rate input enters the
dynamic equations in a bilinear form in (21) (and later
(28)), which is also the case for the Switching-Fraction,
and for the Thermostat Set-Point actuation [15].

We highlight also the main difference between the
Switching-Rate and the Switching-Fraction, namely the
continuous-time nature of the first, and the discrete-time
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nature of the second. For piecewise-constant input signals,
discrete-time form of (21), is

F (k + 1) = e

(
A+u0(k)B0+u1(k)B1

)
∆tF (k), (22)

which is not equivalent to the Switching-Fraction model,

F (k + 1) =
(
eA∆t + u0(k)B0 + u1(k)B1

)
F (k) . (23)

4) Timer-Lock modeling: The modeling principle for the
timer-lock is to explicitly track the part of the pdf that be-
comes locked for the external actuation. Two density func-
tions are introduced to correspond to the locked condition
for mode “off” and for mode “on”, L0 : (Tminmin, Tmax) ×
[0,M)× [0,∞)→ R+ and L1 : (Tmin, Tmaxmax)× [0,M)×
[0,∞)→ R+,

Li(x, y, t) = lim
dx↘0

dy↘0

1

dxdy
Pr
[
T (t) ∈ (x, x+ dx] ∧

∧ τ(t) ∈ (y, y + dy] ∧m(t) = i
]
. (24)

The part of f i(x, t) which remains responsive to the
actuation is evaluated by subtracting the probability of
being locked, and the following updates are made to (19a)
and (19b),

λ1(x)f0b → λ1(x)

f0b −

amount of locked f0b∫ M

0

L0(x, y, t)dy

 , (25a)

λ0(x)f1b → λ0(x)

f1b −

amount of locked f1b∫ M

0

L1(x, y, t)dy

 . (25b)

The dynamics of Li are given by standard Fokker-Planck
equations in the two-dimensional state space (T, τ) (tem-
perature and timer state), with the underlying process
driven by (1b) and (4), with no external switching con-
tributions. The dynamics are thus,

∂Li

∂t
(x, y, t) = − ∂

∂x

(
(αx+ β + iγ)Li(x, y, t)

)
−

− ∂

∂y
Li(x, y, t) +

σ2

2

∂2

∂x2
Li(x, y, t) , (26)

with boundary conditions,

hL0(Tminmin, y, t) = 0, hL1(Tmaxmax, y, t) = 0, (27a)

L1(Tmin, y, t) = 0, L0(Tmax, y, t) = 0, (27b)

Li(x, 0, t) = λī(x, t)
(
f īb(x, t)−

∫ M

0

Lī(x, y, t)dy
)
. (27c)

Equations (27a) represent impenetrable walls conditions
where the probability flow h defined in (10) is zero, and
(27b) represent absorbing boundaries due to the ther-
mostat action. Finally, (27c) accounts for the incoming
probability of a new switching event and the zero reset of
the timer state. This is a condition that has discontinuities
in the x-space and in time, see (19c) and the fact that

ui(t) is, due to the nature of broadcast communication,
a piecewise constant function. Again, discontinuities can
be a problem for the current mathematical description.
A solution can be to modify the TCL behavior to an
ideal version where a smooth approximate of the λi(x, t)
is used. However, such modifications do not change any
of the practical considerations and have little impact on
the results of the computational algorithms, including
the FVM procedure. The main difference introduced by
the modeling of the locking mechanism is that a two
dimensional FVM scheme needs to be used for the state
Li. The final form of the finite-dimensional dynamic is,

Ẋ(t) = AXX(t) + u0(t)BX0 X(t) + u1(t)BX1 X(t) ,

X = (F, L0, L1) , (28)

where L0 ∈ R(Na+Nb)Md , L1 ∈ R(Nb+Nc)Md , X ∈
RN(Md+1), and Md is the number of grid cells with size ∆y
used to discretize the timer-state domain [0,M ]. A linear
coordinate change can be used to create a Markov chain
formulation, by separating the unlocked from the locked
states,

X ′ =
(
F 0 −∆y

Md∑
l=1

off, locked, τ∈[(l−1)∆y,l∆y)

L0
(l−1)Na+b+1:lNa+b

,

F 1 −∆y

Md∑
l=1

on, locked, τ∈[(l−1)∆y,l∆y)

L1
(l−1)Nb+c+1:lNb+c

,

L0, L1
)

= TXX , (29)

where TX denote the coordinate change defined by the left-
hand side of (29) and X ′ denote X in the new coordinates.

Locking effects after a thermostatic switch are not con-
sidered. The reason why this is not necessary is due to
the temperature safe-zones feature. After a thermostatic
switch, the unit is prevented from switching again until it
is some distance ∆T away from the thermostat boundary.
This temperature distance can be chosen such that its
effects are practically equivalent to a timer condition.

This completes the main part of the Switching-Rate
modeling.

5) Model output and extension: The expected power
consumption output of a TCL can be obtained by calculat-
ing the total probability of a unit being “on”, and scaling
it with the power rating parameter W ,

z(t) = CF (t), (30)

with C = W∆x
[
01×(Na+Nb) 11×(Nb+Nc)

]
.

The Fokker-Planck approach to modeling the distribu-
tion dynamics can also be used when considering other
elements in the TCL model, such as nonlinear terms or
jump noises. Another remark is that coefficients and pa-
rameters characterizing the dynamical behaviors can take
different values in mode “on” compared to mode “off”, for
example the entire drift field, the diffusion coefficients, and
temperature safe zones ∆T , and the timer setting M .
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6) Population Heterogeneity: As mentioned, when con-
sidering a large group of units with identical parameters
(a homogeneous population), probabilities simply change
meaning to fractions. This means that models (21) and
(28) can be initialized in with values for F (or X) re-
flecting the fraction distribution of the temperature and
mode (and timer) values across the population, instead of
the probability distribution of a unit’s initial state. The
dynamics with naturally propagate the distributions over
time and under inputs.

Small heterogeneities of the TCL population should not
cause severe modeling errors, but large heterogeneities will
cause a significant departure from the homogeneous case.
However, exact modeling of heterogeneous population is
impractical since it suffers from “curse of dimensionality”
(the distribution state-space needs to be extended with an
extra dimension for each parameter). Therefore, hetero-
geneity is not explicitly accounted for in the distribution
model. Instead, this work makes use of the fact that the
switching actuation has a certain amount of robustness to
model variations due to its percentage formulation, and
furthermore, measurements and estimations can be used
to periodically update the distribution state in real-time
operation.

For a more pronounced dispersion of parameters, a
clustering strategy e.g., [18], should be applied first. There-
fore, the models and control proposed in this work are to
be applied for each individual cluster in a heterogeneous
population. In the numerical simulations, moderate levels
of heterogeneity are considered for the TCL population.

III. Model-based Control Algorithms

This section presents two model-based control al-
gorithms that can be used to manipulate the aggre-
gated power consumption of the TCL population via the
Switching-Rate actuation. The control objective is to have
the power output track an input reference. At the end,
considerations are made about the measurement channels.

A. Control System

The TCL population model has a continuous-time, bilin-
ear [37], [38], homogeneous input form, for both the basic
and timer-lock augmented versions,

Ḟ (t) =
(
A+

∑
i

ui(t)Bi
)
F (t), (31a)

Ẋ(t) =
(
AX +

∑
i

ui(t)B
X
i

)
X(t) , (31b)

with ui ∈ [0, umax]. The aggregated power consumption is
a linear combination of the states,

za(t) = nCF (t), (32)

where n is the number of units in the population, and for
the timer-lock augmented system F is recovered as the
first N -coordinates in X according to (28).

The free dynamics of the system are given by matrix
A, which has stable eigen values, except one which is

exactly zero. This is due to the FVM procedure producing
a dynamic matrix that conserves the probability invariant
of the system state, by having columns that sum to 0. This
fact can be used to reduce the system dimension by one
state. Given an initial state F (0) such that the sum of
its elements is f (in particular f = 1

∆x ), the sum of the
F (t) elements will remain equal to f . Therefore, one of the
states can be written as the difference between f and the
sum of all others.

F (t) =

[
F̄ (t)
FN (t)

]
, F̄ ∈ RN−1, FN ∈ R, (33a)[

˙̄F

ḞN

]
=

([
A11 A12

A21 a22

]
+
∑
i

ui

[
Bi,11 Bi,12

Bi,21 bi,22

])[
F̄
FN

]
,

(33b)

FN = f − 1TN−1F̄ , (33c)

˙̄F = A11F̄ +A12(f − 1TN−1F̄ ) +
∑
i

uiBi,11F̄ ,

=

(
Ā+

∑
i

uiB̄i

)
F̄ + ā. (33d)

In (33b) matrix Bi,12 = 0 for the switching actuation
(because FN belongs to the c-temperature domain, which
is not affected by the actuation), in (33d) Ā = A11 −
A121TN−1 ∈ R(N−1)×(N−1), ā = A12f and B̄i = Bi,11 . The
dynamical system matrix Ā of the transformed system is
Hurwitz. Furthermore, a change of variables can move the
equilibrium state of the affine system (33d) to 0, resulting
in linear, stable free dynamic at the expense of an added
affine input term,

F̄0 = F̄ + Ā−1ā , (34a)

˙̄F0 =

(
Ā+

∑
i

uiB̄i

)
F̄0 −

∑
i

ui

b̄i

B̄iĀ
−1ā . (34b)

In summary, we started with matrix A which has a one-
dimensional null-space, identified the equilibrium state in
the null-space by the ”sums to f” constraint given by
the initial state, and then shifted the equilibrium to zero
using a change of variable. Notice also that the equilibrium
distribution can be calculated as

F̄e =
[
−Ā−1ā, f + 1TN−1

(
Ā−1ā

)]
. (35)

The same process of changing from a marginally stable to
a fully stable dynamic description can be applied to the
AX timer-lock system matrix. Since the algorithms used
in this work do not require strict stability, in the following
we will continue to use the forms (31).

B. Input Reference Tracking

This section presents two control algorithms for track-
ing an external power reference. By necessity (the geo-
graphically distributed nature of the control structure),
all control algorithms operate in discrete-time. Thus, the
TCLs maintain the switching rates u constant until the
next broadcast event (piecewise constant actuation). The



SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 10

first algorithm uses switch-off and switch-on actions one
at a time, while the second algorithm uses an energy
storage heuristic and simultaneous switch-off and switch-
on actions. The algorithms use the distribution model
as internal model, and measurements of the total power
consumption at every step, perform calculations or opti-
mizations over short time horizons, and require an esti-
mate for the initial state (which is expected to be close to
equilibrium in the absence of actuation). The algorithms
can benefit from - but do not require - frequently updated
state information. The control structure is shown in Fig. 6.

Σ

z1

z2

zn

z3

........................

ST1 TCL1

ST2 TCL2

ST3 TCL3

STn TCLn

u
Controller

za

F̂
Observer

r

TCL population

Ti,mi, τi

Fig. 6. Controller structure. The dotted lines indicate signals with
low update frequency.

1) Basic reference tracking: The main elements of the
first control strategy are sketched in Alg. 2. This is a
predictive scheme with a single time-step lookahead. First,
a prediction is made about the power output in the absence
of control. If this is bigger than the reference r, the switch-
off action is selected for activation. In the opposite case,
the switch-on action is selected. Consequently, the main
step consists of calculating the precise input value that
would bring the internal model of the controller to the
desired reference. An input-output linearization technique
[39] is used, together with the simplified assumption that
the output velocity remains constant in the control sample
time ∆t,

za(k + 1) = za(k) + ża(k)∆t , (36a)

ża(k) = nCAF (k) + ui(k)nCBiF (k) , (36b)

ui(k) =
−nCAF (k) + v

nCBiF (k)
, (36c)

za(k + 1) = za(k) + v∆t , (36d)

v =
r(k + 1)− za(k)

∆t
, (36e)

where (36d) is obtained from (36a)-(36c). For robustness
to heterogeneity and other prediction errors, the actuation
is wrapped in an error integration structure (PI control),
preferably with anti-windup. Algorithm 2 is suitable for
both the simple and the augmented models, since the
computation load is light. In Alg. 2, the integration gain
Ki is a design parameter.

While arguably practical, Alg. 2 manages the power
flexibility of the TCL population in a simplistic manner.

Algorithm 2 Step k

e = Kie+ za(k)− r(k) . tracking error at k
ep = nCeA∆tF (k)− (r(k + 1)− e)

. predicted error at k + 1 if no actuation is used
if ep > 0 then . Need to decrease output, use u0

u0(k) = Control(B0)
else if ep < 0 then . Need to increase output, use u1

u1(k) = Control(B1)
end if

function control(B)
v =

(
r(k + 1)− za(k)

)
/∆t

u =
(
− nCAF (k) + v

)
/
(
nCBF (k)

)
u =Limit(u,0,umax) . saturation cut
F (k + 1) = e(A+uB)∆tF (k)
return u

end function

This is because, in most cases, there exists more than one
actuation option for bringing the output of the system to
the reference power consumption r(k + 1). By having a
lookahead horizon of just one step, and using a preset
strategy for choosing between the actuation options, Alg. 2
is not able to track challenging references. An example of
a challenging reference is a step-down to zero.

2) Zero power reference: The second control algorithm
is an example of heuristics that can maintain a zero power-
reference over a time horizon of reasonable length. This
control uses a slightly modified version of the switching ac-
tion. Since the TCL temperature sensor is already required
to distinguish between three domains in the thermostat
band (b1,b2,b3), we can consider an actuation variant with
four input channels: u0b1 , u0b2 , u1b2 and u1b3 . This means
that it is possible to use one switch-off rate for the on-units
in the temperature range Sb1 and another for the on-units
in the temperature range Sb2 , and similarly, two different
switch-on rates for the off-units in the Sb2 and Sb3 ranges.

The control strategy is composed of three phases,
sketched in Fig. 7. Each phase of the strategy is controlled
by a different algorithm. In the first phase, the units are
pushed away from the right (hot) thermostat band using
the switch-on action u1b3. In order to keep the power
consumption close to a normal level, this action must be
compensated by switching-off units from the left (cold)
side of the thermostat using the u0b1. The combined effect
is equivalent to a narrowing of the thermostat band to the
Sb2 interval. In this operation mode, the duty cycle of a
unit will be only slightly higher than the normal value, and
the aggregated power output of the population can remain
close to the baseline value. The second phase corresponds
to the zero power consumption period. The on- and off-
distributions are now collected in the midband range Sb2 .
Therefore, it is possible to switch-off all units using input
u0b2 . Power consumption will remain zero as the collected
off-distribution is slowly moving right (heating) across
the Sb1 domain and up until the Tmax threshold of the
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thermostat is reached. The third stage is recovery. The
population needs to be controlled so as to slowly return to
the equilibrium distribution, while maintaining a power
consumption level close to the baseline. We do not solve
the recovery problem in this work, but simply apply Alg. 2
to return power consumption to the baseline level. We
notice that in this way the system output is returned and
maintained to the equilibrium values, but not also the
system state.

Algorithm 3 details this second control strategy. The
storage phase consists of a multi-objective optimization
over each control sample time,

minimize
u1b3

(k),u0b1
(k)

[ − u1b3 ,
P∑
p=1

(nCX(p)− r(p))2
]

subject to

X(0) = F (k) ,
X(p+ 1) = exp

((
A+

∑
j∈{1b3,0b1}

uj(k)BjX(p)
)

∆t
P

)
X(p) ,

u1b3(k) ≥ 0 ,
u0b1(k) ≥ 0 .

We want to switch-on as many units as possible using
u1b3, and compensate by the switching-off action u0b1 in
order to keep the power consumption close to a baseline
reference. To avoid large fluctuations within the con-
trol sample time ∆t, the reference tracking objective is
formulated using a series of p intra-period time points.
The multi-objective optimization was implemented using
fgoalattain() MATLAB R© function, based on the goal
attainment method [40]. While the optimization approach
has the potential of becoming computationally heavy, it
is sufficient to use the unaugmented distribution model
for both populations with and without minimum on/off
time constraints. This is because the input actions are
well separated between different temperature zones, thus
also separated in time, and the locking effect is inherently
respected. With this observation, Alg. 3 remains compu-
tationally feasible.

C. Measurements

The main measurement used by the control algorithm
is the total power consumption signal. This is the driving
signal of the control loop structure. In this work, the
TCL population has been considered in isolation, but in a
realistic scenario aggregate power measurements from the
electrical grid will include other consumption. Therefore,
a method would be needed to separate the contribution
of the TCLs from the total consumption data. However,
the control objective is not the TCL consumption per se,
but rather the total consumption in an area (or portfolio).
As long as the control objective can be measured, it can
be used directly (without separation) to create the control
error signal.

Monitoring the distribution state of a TCL population
over time requires individual unit measurements. The
advantage of the distribution approach is that individual
state measurements can be infrequent, partial and are used

Algorithm 3 Step k

if phase(k+1) == “Storage” then
e = Kie+ za(k)− r(k) . tracking error at k
[ u0b1(k), u1b3(k)] = Optim(r(k + 1)− e)

else if phase(k+1) == “Discharge” then
u0b1(k) = umax, u0b2(k) = umax

else if phase(k+1) == “Recovery” then
use Algorithm 2 . Partial recovery

end if

function Optim(r)
p = 5 . no. of intra-period points
ir = linspace(za(k),r,p+ 1)

. intra-period reference profile
lb = [0,0], ub =[umax, umax] . lower/upper bounds
u = min-multi-objective(@objectives, lb, ub )
return u

end function
function objectives(u)

Adn = e(A+u(1)B0b1+u(2)B1b3)(∆t/p)

Fp = F (k), obj(1) = 0
for j = 1 to p do

Fp = AdnFp
obj(1) = obj(1) +

(
CFp − ir(j)

)2
end for
obj(2) = −u(2) . or equiv. −u(1)
return obj

end function

anonymously. Individual unit measurements consists of the
temperature and mode (and timer) data from a limited
number of units in the population, e.g., 10% or 20%. These
can be processed to create a distribution measurement
F̃ . The error of such a distribution measurement can be
characterized using the variance and covariance properties
of the multivariate hypergeometric distribution. This is
because by extracting a finite number of units nm from

Control

Discharge

Storage

Recover

Fig. 7. The stages of the second control algorithm.
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the TCL population with n > nm units and N possible
outcomes, we are effectively performing a “draws without
replacement” random experiment. Furthermore, the dy-
namical models (31), could be equipped with error models,
see the approach in [13]. We do not, however, address the
complete estimation problem in this work.

IV. Numerical simulations

This section contains numerical results on a case-study
for domestic refrigerators. The equivalent thermal param-
eters used for the TCL model (1a) are listed in Table I.
The actuation parameters are the minimum on/off time
M = 300s, the temperature safe-zones are ∆T1 = ∆T2 =
1◦C, and umax = 2.

TABLE I
Parameters of the TCL

C (J/K) UA (W/K) Ta (◦C ) W (W)
93920 1.432 24 100
η σ (◦C/s) Tmin(◦C) Tmax(◦C)
2.8 0.0065 2 5

In all cases, a population of 10000 units is considered.
In addition to the homogeneous population, two types
of heterogeneities, each with three increasing levels, have
been tested. The parameters have been randomly dis-
tributed around the mean values from Table I according
to a 3σ-truncated Gaussian distribution with standard de-
viations of 5%, 10%, and 15%, and according to a uniform
distribution with standard deviations of 10%, 20%, and
30%. The C, UA, Ta, η, W , and σ parameters have been
affected, while the thermostat range, temperature safe-
zones and the minimum on/off time are the same across
the population. The TCL population has been simulated
using Monte Carlo techniques. Each of the 10000 SHS
models is run individually with a sample rate of 0.1s. For
control, a broadcast rate ∆t = 60s has been used.

A. FVM results

We first give a qualitative and quantitative comparison
for the dynamical system matrix A obtained with differ-
ent FVM implementation. In all cases, the FVM grid is
uniform, with domain boundaries Tminmin = 1.5◦C and
Tmaxmax = 5.5◦C. Four cases are compared: a second order
up-wind scheme with a coarse (a) and dense (b) grid, and
the structure preserving FVM (see end of Sec. II-C2) on a
coarse (c) and on a dense (d) grid.

TABLE II
Dynamic matrix A

∆x N Positivity Duty Cycle
(a) 0.0385 182 No 0.105
(b) 0.01 700 No 0.105
(c) 0.0385 182 Yes 0.04878
(d) 0.0025 2800 Yes 0.1046

The duty cycle calculation is done using the equilib-
rium distribution computed by (35) and evaluating the

percentage of represented by the total area under the on-
distribution. It is used as an indicator for the absolute
error of the FVM schemes. The duty cycle for a TCL with
parameters from Table I is close to 0.105 value. Fig. 8
shows the equilibrium distributions obtained from the
four methods. It can be seen that the second order up-
wind scheme (a) is not positive, and shows the spurious
oscillation effects (see Godunov’s order barrier theorem,
[33] ch.13), but both these effects are reduced when the
grid size is reduced in scheme (b). The structure preserving
schemes (c) and (d) are positive, but slower to converge,
and as a result the distribution (and duty cycle) of coarse
scheme (c) has significant errors. Although accuracy cri-
teria would suggest using schemes (d) or (b), scheme (a)
has the advantage of a small computational footprint, and
proves to capture the dynamical behavior suitably well for
control algorithms.

2 3 4 5
−0.05

0.15

0.35

(a)

2 3 4 5
0

0.2

(b)

2 3 4 5
0

0.2

(c)

2 3 4 5
0

0.2

(d)

Fig. 8. Equilibrium distributions as obtained using the second
order up-wind coarse and dense schemes (a) and (b) respectively,
and the structure preserving coarse and dense schemes (c) and (d)
respectively. The grid parameters are given in Table II.

Augmented systems have a higher dimensionality. The
spatial discretization and overall matrix size used in the
following control simulations is given in Table III.

TABLE III
Augmented dynamic matrix AX

∆x ∆y N

AX 0.0385 30s 2002

B. Free response simulations

Figure 9 shows the free response from an initial state
where all units are initially off and have the same tempera-
ture, its value close to the hot threshold of the thermostat.

This synchronized initial state showcases the oscillatory
nature of the power response, and the differences between
the homogeneous and heterogeneous populations. A main
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Fig. 9. Free response of TCL populations from a synchronized initial
state. The thick line is the distribution model response, while the
thin lines are the responses of TCL populations with different levels
of heterogeneity.

and well-known characteristic of heterogeneous popula-
tions is that they desynchronize and reach the equilibrium
state faster. On the other hand, the model error is small
for the homogeneous population, and increases with het-
erogeneity.

C. Control simulations

The TCL populations are known to initially be close to
equilibrium. No individual measurements are used for the
duration of the 2 hours control horizon, meaning that the
model is run in open loop to generate the state estimations
required by the algorithms. The measurements of the
aggregate power consumption are assumed to be perfect
(the simulation does not add error terms to this signal),
see the discussion in Section III-C.

Algorithm 2 is tested using two piecewise constant
references. Reference I is a repeated sequence consisting
of a moderate step-up doubling the baseline, followed by
a step-down to zero, placed in between baseline values.
Results are shown in Fig. 10. The control is able to follow
the step-up section, as this reference lies comfortably
within the power consumption flexibility, but cannot reach
the zero-level of the step-down section.

Reference II consists of a single step-down to zero.
Results are shown in Fig. 11. Once again, the control is
not able to reach zero power consumption. The only way
to guarantee a zero consumption is to move units away
from both the “off” and “on” b3 zones. This strategy is
showcased by Alg. 3. Nevertheless, Alg. 2 is arguably a
practical, efficient and fully responsive control scheme.

Algorithm 3 performs the storage control and then
enters the discharge phase, see Fig. 7. When the power
consumption cannot be maintained close to zero anymore,
the reference is returned to a level close to baseline, and
Alg. 2 is used for input following. Results are shown
in Fig. 12. Different populations can take different time
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(a) Control of TCLs without minimum on/off timers
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(b) Control of TCLs with minimum on/off timers

Fig. 10. Switching-Rate actuation, Alg. 2, Reference I. The plots
shows overlapped results from the one homogeneous and the six
heterogeneous populations. The baseline levels of each population
are slightly different. The biggest errors occurs for the largest tested
dispersion of the parameters (the uniform distribution with a stan-
dard parameter deviation of 30%). The input rates, corresponding to
one of the simulations only, are plotted logarithmically. Marker “o”
is used u0 values, and marker “+” is used for u1 values.

finish the storage control phase (the time increasing with
heterogeneity), and the duration of the discharge period
(the zero consumption period) is also different between
populations, and decreasing with heterogeneity.

Both control techniques can handle some amount of
heterogeneity, with the biggest errors occurring for the
largest tested dispersion of the parameters, i.e. the uniform
distribution with a standard parameter deviation of 30%.

Furthermore, the above algorithms have not been using
individual unit measurements and have not updated the
internal model. As such the internal model is running in
open loop, and the errors are increasing in time, especially
for heterogeneous populations. Updating the internal mod-
els periodically using the measurements and estimation
techniques will improve the performance of the control
algorithms.
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Fig. 11. Switching-Rate, Control Alg. 2, Reference II, same format
as Fig. 10.

V. Conclusion and future work

This work has proposed a new, practical actuation
strategy for enabling large scale demand response of ther-
mostatic loads. The Switching-Rate actuation has been
described, modeled and used to activate the power con-
sumption flexibility of a population of thermostatic loads
in a numerical scenario. It complements the range of
flexibility options that can be proposed to a refrigerator
user for participation in a demand response program, and
the range of actions available to a system utility operator.

Additionally, several directions for future work open up
as a result of the promising numerical scenario. First, it
would be of interest to study the actuation in a demon-
stration setup, subject to the real thermal and popu-
lation dynamics, and under realistic disturbances (e.g.,
including door-opening events). Secondly, we note that
more advanced control issues remain open. For example,
neither Alg. 2 nor Alg. 3 return the distribution state
to equilibrium, and thus stopping the control broadcast
returns the system to a free response with oscillatory
output behavior before the equilibrium state is reached.
The problem of a controlled return to the equilibrium
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Fig. 12. Switching Rate, Control Alg. 3. The Storage phase takes
place up until approximately minute 50, the Discharge or step-down
phase takes place between minutes 50 and 90 approximately, and
the Recover phase consisting of the input tracking control Alg. 2
with a baseline reference takes place after minute 90. The input
rates, corresponding to one of the simulations only, are shown in a
logarithmic scale. Marker o is used u0b2 , marker � is used for u0b3 ,
marker × is used for u1b1 , and marker + is used for u1b2 .

state should be addressed by future work. Furthermore,
it is clear that not all power references are tractable.
The problem of describing tractable references for a TCL

population depends not only on the population parame-
ters, but also on the control algorithm, and has not been
addressed. Thirdly, we point to problem of reducing the
system dimensionality. In this work, the PDE dynamics
have been brought to a finite dimensional, continuous-
time form using FVM as numerical techniques. However,
FVM do not generally preserve structural properties such
as positivity of the dynamical system, while the special
technique in [36] has the disadvantage of producing very
large matrices not directly suitable for online algorithms.
Model order reduction techniques for bilinear systems
could be tested in future work. Finally, it would be of
interest to preform quantitative comparisons on power
reference tracking scenarios and analyze the performance
of different fully responsive actuations.
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[32] J. H. Ferziger and M. Perić, Computational methods for fluid

dynamics. Springer Berlin, 2002, vol. 3.
[33] E. F. Toro, Riemann solvers and numerical methods for fluid

dynamics. Springer, 1999, vol. 16.
[34] A. Ghaffari, S. Moura, and M. Krstic, “Analytic modeling and

integral control of heterogeneous thermostatically controlled
load populations,” in Dynamic Systems and Control Conference,
ASME Proceedings, 2014.

[35] L. Farina and S. Rinaldi, Positive linear systems: theory and
applications. John Wiley & Sons, 2011, vol. 50.

[36] J. C. Latorre, P. Metzner, C. Hartmann, and C. Schütte, “A
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