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Identifiability of generalised Randles circuit models

S.M.Mahdi Alavi, Adam Mahdi, Stephen J. Payne and David A. Howey

Abstract—The Randles circuit (including a parallel
resistor and capacitor in series with another resistor)
and its generalised topology have widely been employed
in electrochemical energy storage systems such as bat-
teries, fuel cells and supercapacitors, also in biomedical
engineering, for example, to model the electrode-tissue
interface in electroencephalography and baroreceptor
dynamics. This paper studies identifiability of gener-
alised Randles circuit models, that is, whether the
model parameters can be estimated uniquely from the
input-output data. It is shown that generalised Ran-
dles circuit models are structurally locally identifiable.
The condition that makes the model structure globally
identifiable is then discussed. Finally, the estimation
accuracy is evaluated through extensive simulations.

Index Terms—Randles circuit, Identifiability, System
identification, Parameter estimation.

I. Introduction

Randles proposed an equivalent circuit for the kinetics of
rapid electrode reactions in [1]. Since then, the model has
been developed and has become the basis for the study
of many electrochemical energy storage systems such as
batteries, fuel cells and supercapacitors, [2], [3]. Figure 1
shows a generalised Randles model consisting of an ohmic
resistor, R∞, in series with a number of parallel resistors
and capacitors, and a capacitor Cw. In electrochemical
applications, the ohmic resistor R∞ represents usually
the conduction of charge carriers through electrolyte and
metallic conductors. The resistors and capacitors in the
parallel pairs represent the charge transfer resistance and
the double layer capacitance, respectively, or are an ap-
proximation of a diffusion process, [4], [5]. The number
of parallel R’s and C’s depends on how many of these
pairs are required such that the frequency response of the
generalised Randles model fits with the device impedance
spectra within the frequency range of interests [6]–[8].
For instance, in [8], the number of the parallel pairs was
determined by minimising the error between the model
and measured voltages. The capacitor Cw, also known as
the Warburg term, accounts for a diffusion process, [4], [5];
or in a battery or supercapacitor, it may represent state of
charge [9]. It should be noted that the open-circuit voltage
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source is not considered in the generalised Randles model
Figure 1 and it is only focused on the impedance model
in this paper.

The generalised Randles circuit models have also been
employed in biomedical engineering. An electric cir-
cuit model of the electrode-tissue interface in electroen-
cephalography includes two parallel R-C pairs in series
with two resistors and two voltage sources [10], which is a
special case of the circuit given in Figure 1. It is noted that
Cw can be considered as a parallel R and C with R = ∞.
The viscoelastic analog of the generalised Randles model is
employed in cardiovascular and cerebral haemodynamics
modeling, in describing the viscoelastic properties of the
aortic wall and the coupling of the nerve endings of the
baroreceptor neurons in the carotid sinus and aortic arch
[11], [12]; and in relating the fluctuation of the arterial
blood pressure with the cerebral blood flow velocity [13].

The identification or parameter estimation of the gen-
eralised Randles model (with different numbers of parallel
R’s and C’s) is important in condition monitoring, fault
diagnosis and control [3], [9], [14]–[20]. In [14], the authors
showed that the Randles circuit can be used for monitoring
the battery charge transfer overvoltage. In [15], identifica-
tion tests for parameter estimation of lead-acid batteries
are suggested. In [20], identification through fitting the
impedance spectra in the frequency domain is presented.

The objective of this paper is to study the identifiability
of the generalised Randles model shown in Figure 1,
that is, whether the model parameters can be estimated
uniquely from input-output data. Typically the identifia-
bility problem is divided into two broad areas: parameter
estimation accuracy and structural identifiability. Param-
eter estimation accuracy considers the practical aspects
of the problem that come with real data such as noise
and bias [21]. In studying structural identifiability, on the
other hand, one assumes that noise-free informative data
is available and therefore it is, in fact, a data-independent
concept. Unidentifiable parameters can be assigned an
infinite number of values yet still lead to identical input-
output data. Thus, structural identifiability is a necessary
condition for identifiability and parameter estimation. A
number of analytical approaches to structural identifia-
bility have been proposed, including Laplace transform
(transfer function) [22], [23], Taylor series expansion [24],
[25], similarity transformations [26]–[33], and differential
algebra [34], [35]. In linear systems, it has been shown
that controllability and observability properties are closely
related to the concept of structural identifiability, [30]–
[33]. For example, it was shown that single-input single-
output linear time-invariant systems are structurally iden-
tifiable if and only if their observer canonical form is
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Fig. 1. The generalised Randles equivalent circuit model.

controllable (see Chapter 4 in [33]). However, controllable
and observable systems can still be unidentifiable in the
general case [31].

Recently, there has been a significant interest in the
identifiability analysis of battery models [36]–[43]. In [36],
the structural identifiability of a five-element equivalent
circuit model (ECM) including two capacitors was dis-
cussed by comparing the number of unknown parameters
of the Transfer Function (TF) and the circuit. In [37], the
structural identifiability of a more general nonlinear ECM
is analysed based on the observability conditions. It is
shown that cells with serial connections are not observable,
demonstrating that complete estimation of the state-of-
charge and model parameters from lumped measurements
with series cells is not possible trough independent mea-
surements. However, it is shown that lumped models with
parallel connectivities are observable provided that none
of the parallel cells are identical. The identifiability of
battery electrochemical models was discussed in [38]–[41].
In particular, it was shown that some of the electrochem-
ical model parameters are not identifiable given typical
charge-discharge cycles [38]–[40]. In [41], it was shown that
the shape of the charge-discharge cycles plays a crucial
role in the identifiability of battery parameters. It was
also demonstrated that the system identification method
can be employed in monitoring the battery film growth.
The identifiability problem of Randles ECMs has been
studied in [42], [43], where the authors consider models
that include up to two capacitors, and the analysis is
based on the Fisher information matrix (FIM). The FIM
provides some information about the sensitivity of the
measurement to the model parameters by using likelihood
functions, [44]. In [42], a bound of estimation errors was
developed by using the Cramér-Rao theorem. In [43],
a method was proposed to optimally shape the battery
cycles and improve the identifiability.

This paper shows that the generalised Randles model
in Figure 1 is structurally globally identifiable for n =
1, and structurally locally identifiable for any finite n >
1, and becomes globally identifiable assuming an ordering
through the generalised circuit. Finally, the identifiability
of the model is assessed through extensive simulations.

II. The model parameterisation and problem

statement

The state-space and TF parameterised models of the
generalised Randles circuit given in Figure 1 are derived.

Define the electric current as the system input u(t) =
i(t) ∈ R, the terminal voltage as the system output y(t) =
v(t) ∈ R, the voltages across the internal R-C pairs as the

states x(t) =
[

v1(t) · · · vn(t) vw(t)
]⊤

∈ Rn+1, and
the model parameters as

θθθ =
[

R∞ R1 · · · Rn C1 · · · Cn Cw

]

, (1)

where θθθ belongs to some open subset D ⊂ R2n+2.

A. State-space parametrisation

By using Kirchhoff’s laws, a state-space model structure
of the Randles circuit, parameterised by θθθ, can be written
as:







d

dt
x(t) = A(θθθ) x(t) + B(θθθ) u(t)

y(t) = C(θθθ) x(t) + D(θθθ)u(t)
(2)

where A(θθθ) ∈ R(n+1)×(n+1), B(θθθ) ∈ Rn+1, C(θθθ)⊤ ∈ Rn+1

and D(θθθ) ∈ R are matrices that depend on the parameter
vector θθθ, and are given by

A(θθθ) =















−a1(θθθ) 0 · · · 0 0
0 −a2(θθθ) · · · 0 0
...

...
. . .

...
...

0 0 · · · −an(θθθ) 0
0 0 · · · 0 0















,

B(θθθ) =















b1(θθθ)
b2(θθθ)

...
bn(θθθ)
bw(θθθ)















, C(θθθ)⊤ =















1
1
...
1
1















, D(θθθ) = d, (3)

with time constants τi = RiCi for i = 1, · · · , n and

ai =
1

τi

, bi =
1

Ci

, bw =
1

Cw

, d = R∞. (4)

B. Transfer function parametrisation

Denote the model’s TF by T (s,θθθ), where s represents
the Laplace operator. Using the formula T (s,θθθ) = C(sI −
A)−1B+D, a parameterised TF of the generalised Randles
circuit can be written as:

T (s,θθθ) =

n
∑

i=1

bi(θθθ)

s + ai(θθθ)
+

bw(θθθ)

s
+ D(θθθ). (5)
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C. Problem statement

Determine the conditions for the model structure (5)
(equivalently in the state-space form (2) and (3)), where θθθ
is an unknown parameter vector (1), to be locally and/or
globally structurally identifiable.

III. Main results

Following [33] a definition of structural identifiability is
given as follows.

Definition 1: Let M be a model structure with the TF
T (s,θθθ), parametrized by θθθ, where θθθ belongs to an open
subset DT ⊂ Rm, and consider the equation

T (s,θθθ) = T (s,θθθ∗) for almost all s, (6)

where θθθ,θθθ∗ ∈ DT . Then, the model structure M is said to
be

- globally identifiable if (6) has a unique solution in DT ,
- locally identifiable if (6) has a finite number of solu-

tions in DT ,
- unidentifiabile if (6) has a infinite number of solutions

in DT .

Remark 1: Instead of Definition 1, one can use the
so-called coefficient map defined as follows, [28], [29].
Consider the monic1 TF:

T (s,θθθ) =
c0(θθθ) + c1(θθθ)s + · · · + ck1

(θθθ)sk1

d0(θθθ) + d1(θθθ)s + · · · + dk2−1(θθθ)sk2−1 + sk2

,

(7)
and associate with it the following coefficient map CT :
R

m ⊃ DT → Rk1+k2+1 defined as

CT (θθθ) =
[

c0(θθθ), . . . , ck1
(θθθ), d0(θθθ), . . . , dk2−1(θθθ)

]

. (8)

The model structure M is globally identifiable if the coef-
ficient map CT is one-to-one (injective); locally identifiable
if CT is many-to-one; and unidentifiable if it is infinitely
many-to-one.

The following lemma will be used in the proof of the
identifiability of the generalised Randles circuit model.

Lemma 1: Let CT (m) be a coefficient map associated
with the TF

T (s,θθθ) =

m
∑

i=1

bi

s + ai

+ d,

where θθθ = (a1, . . . , am, b1, . . . , bm, d) and ai ∈ R for
i = 1, . . . , m are pairwise different. Then the following
statements hold:

(a) If m = 1, then CT (m) is one-to-one.
(b) If m > 1, then CT (m) is many-to-one.

Proof. Part(a). For m = 1, the identifiability equation
(6) is given by

b1

s + a1
+ d =

b∗
1

s + a∗
1

+ d∗

and has a unique solution (a1, b1, d) = (a∗
1, b∗

1, d∗), which
proves part (a).

1In a monic TF, all coefficients are normalised such that the
coefficient of the greatest order in the denominator is 1.

Part(b). For m > 1, the identifiability equation (6) is
given by

m
∑

i=1

bi

s + ai

+ d =
m

∑

i=1

b∗

i

s + a∗
i

+ d∗. (9)

We claim that equation (9) admits only finite (more
precisely, m! = 1 × 2 × · · · × m) number of solutions. To
prove the claim note that (9) is the equality of two rational
functions, which is satisfied provided that

(s + a1) × · · · × (s + am) = (s + a∗

1) × · · · × (s + a∗

m). (10)

Since m distinct roots uniquely characterise a monic
polynomial of degree m, and there are m! permutations
of n roots of (s + a1) × · · · × (s + am), equation (10)
has m! solutions. Now, let us fix the permutation s :
{1, . . . , m} → {1, . . . , m} and consider an assignment
(a1, . . . , am) = (a∗

s1
, . . . , a∗

sm
). Since ai for i = 1, . . . , m are

assumed to be pairwise distinct, the expressions 1/(s+ai),
thought of as functions of the variable s, are linearly
independent. Finally, since each side of equation (9) is a
linear combination of linearly independent functions, we
immediately obtain that bj = b∗

sj
for i = 1, . . . , m. This

concludes the proof of part (b). �

Now, we introduce the concept of reparametrisation (see
e.g. [28]), which we will use the proof of our main theorem.

Definition 2: A reparametrisation of the model structure
M with the coefficient map CT is a map R : Rk ⊃ DT →
R

m such that
Im (CT ◦ R) = Im CT , (11)

where Im denotes the image of the map. Moreover, the
reparameterisation is identifiable if the map CT ◦ R : Rk ⊃
D → Rk1+k2+1 is identifiable.

The main result of this section is the following theo-
rem which describes the identifiability of the generalised
Randles circuit.

Theorem 1: Let MRC(n) denotes the state-space model
structure (2) with the matrices (3) parametrised by (4),
where n is the number of parallel RC elements connected
in series (see Figure 1). Then the following conditions hold:

(a) If n = 1, then the model structure MRC(n) is globally
identifiable.

(b) If n > 1, then the model structure MRC(n) is locally
identifiable.

(c) If n > 1, and there is an ordering through the
generalised circuit as

an < an−1 < · · · < a1, (12)

then the model structure MRC(n) is globally identi-
fiable.

Proof. Consider the model structure MRC(n) and let
T (s,θθθ) denote the corresponding TF given by (5), where
the parameter vector θθθ is given by (1). We write T (s,θθθ)
as a rational function (7) of degree k1 = k2 = n + 1 and
associate with it the coefficient map C′

T : R2n+2 ⊃ D →
R

2n+3.
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Part (a). For n = 1, the coefficient map C′

T : R4 ⊃ D →
R5 can be written explicitly as

C′

T (θθθ) =
[

c0(θθθ), c1(θθθ), c2(θθθ), d0(θθθ), d1(θθθ)
]

,

where

c0(θθθ) =
1

R1C1Cw

, c1(θθθ) =
R∞Cw + R1Cw + R1C1

R1C1Cw

,

c2(θθθ) = R∞, d0(θθθ) = 0, d1(θθθ) =
1

R1C1
.

By direct computation, we can check that equation
C′

T (θθθ) = C′

T (θθθ∗) admits a unique solution θθθ = θθθ∗. Thus
the coefficient map is one-to-one, and the model structure
is globally identifiable.

Part (b). For n > 1, the coefficient map C′

T can be
written as the following composition

C′

T = CT ◦ Rc, (13)

where the map Rc : R2n+2 ⊃ D → R2n+2 is the
reparametrisation Rc(θθθ) =

(

a1, . . . , an, b1, . . . , bn, bw, d
)

defined by (4); and CT is the coefficient map associated
with the TF

T (s,θθθa,b) =

n
∑

i=1

bi

s + ai

+
bw

s
+ d, (14)

where θθθa,b = (a1, . . . , an, b1, . . . , bn, bw, d) ∈ R2n+2 . By
Lemma 1 (for m = n + 1 and an+1 = 0) the map CT is
many-to-one; and Rc is a one-to-one map with an inverse

R∞ = d, Cw =
1

bw

, Ri =
bi

ai

, Ci =
1

bi

, i = 1, . . . , n.

The map C′

T is many-to-one, since it is a composition of
a one-to-one with many-to-one map. Thus for n > 1, the
model structure MRC(n) is locally identifiable.

Part (c). Finally, the identifiability equation (9) under
the condition (12) admits a unique solution, which con-
cludes part (c). �

Remark 2: The same procedure is applicable to the
discrete time model. The Euler’s first order approximation
is the simplest approximation. Its identifiability analysis
is easier because the coefficients of the discrete time TF
equals the number of parameters. However, it might lead
to numerical instability. If higher order approximations are
applied, the challenge remains to prove whether there is
a finite-to-one maps between the discrete time model and
parameters.

IV. Simulations

Consider a 6-element Randles circuit with R∞, Cw Ri,
Ci, i = 1, 2. In this section, accuracy of the estimation
in the presence of noise-free and noisy data, subject to
random initial guess of estimations is studied. First the
informative data set used in the simulations and the way
it is generated are described. More details are provided in
references [33], [45]–[47].

A. Generation of informative data set

A data set is informative if the input is persistently
exciting. A persistently exciting input adequately excites
all modes of the system. In linear systems, the order of
the system determines the order of persistent excitation.
The order of a persistent excitation equals the number of
coefficients of the monic TF that need to be identified, (see
Theorem 13.1. in [33]). The monic TF of the 6-element
Randles circuit is

H(s) =
f3s3 + f2s2 + f1s + f0

s3 + g2s2 + g1s + g0
(15)

with unknown coefficients to be identified. Therefore, the
necessary order of the persistently exciting input is 7. In
the frequency domain, this means that the spectrum of
the excitation input should have at least 7 nonzero points.
This simulation focuses on multi-sine excitation signals
which are widely employed in electrochemical impedance
spectroscopy (EIS) techniques, [3], [4], [48]. The same
procedure can be applied to other inputs. The multi-sine
signal is given by

u(t) =
l

∑

j=1

mj cos(ωjt + φj), (16)

where l represents the number of sinusoids, and mj , ωj

and φj ∈ [−π, π) denote the magnitude, frequency in
radians per second and phase in radians, respectively. The
spectrum of the multi-sine signal is given by

Φu(ω) = 2π

l
∑

j=1

m2
j

4
[δ(ω − ωj) + δ(ω + ωj)], (17)

where δ(ω) is the delta function or impulse at frequency
ωj. The spectrum of each sinusoid signal contains two
nonzero points, therefore 4 sinusoid signals are enough
to generate the informative data set for the 6-element
Randles circuit model.

The magnitudes mj , frequencies ωj and phases φj are
arbitrary real values. Specific applications might impose
additional constraints. For instance, in EIS techniques, the
magnitude of the input signal may vary from milliampere
to ampere depending on the size of the energy storage
system. For the sake of simplicity, all magnitudes are
assumed equal to mj = 10−3 for j = 1, · · · , 4. The
frequencies could be equally or logarithmically spread over
the frequency band ωmin ≤ ω ≤ ωmax. The values of ωmin

and ωmax depend on the system dynamics. If mj’s are
equal, the Schroeder phase choice is suggested to reduce
the Crest factor [33], [49].

Remark 3: A multi-sine signal may not exactly be zero
mean. Sometimes a uni-directional current flow is required.
In this case, the multi-sine excitation current needs to be
superimposed on a known constant DC offset current, (see
examples in [3] and [48]). In system identification, the data
are typically pre-filtered to remove these types of offsets.
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Fig. 2. The multi-sine input excitation signal and its associated output for R∞ = 0.05 Ω, R1 = 0.2 Ω, C1 = 0.3 F, R2 = 0.4 Ω, C2 = 0.6 F,
and Cw = 300 F. The voltage response, Figure 2(b), is computed using the model (2) in the noise-free and noisy case with standard deviation
σ = 10−4. The DC offset has been removed to have zero-mean signals.

B. The results discussion

The following operating point is arbitrarily selected [3],
[4]:

R∞ = 0.05 Ω, R1 = 0.2 Ω, C1 = 0.3 F

R2 = 0.4 Ω, C2 = 0.6 F, Cw = 300 F

The multi-sine excitation signal, Figure 2(a), is generated
by using model (16) with l = 4, mj = 10−3, fmin = 0.2
Hz, fmax = 500 Hz and Schroeder phase with φ1 randomly
chosen at 1.9775. The Crest factor of the signal is 1.9999.
The voltage response, Figure 2(b), has been computed
using the model (2). The DC offset has been removed to
ensure zero-mean signals.

Given the true values, the smallest time constant is
τmin = R1C1 = 0.06 s. The sampling time should be
several times larger than 1/τmin. In this simulation, the
sampling frequency is chosen at fs = 500 Hz, which is
16.6 times greater than the inverse of the minimum time
constant. The test duration should typically be several
times larger than the maximum time constant, which is
τmax = R∞Cw = 15 s. In [47], 6 to 8 times τmax is
suggested, however, this might vary in different applica-
tions. In this simulation, a test duration of td = 100 s is
applied. The continuous-time TF (15) is identified using
Matlab’s system identification toolbox [50]. The circuit
parameters are calculated directly from the coefficients of
the TF using the formulas shown in Table II and discussed
later. In order to study the consistency of results, each
test is repeated 100 times, every run with a random initial
guess of parameters. The roots of the denominator must
be positive real numbers. Those estimations, which lead to
complex or negative poles for the TF, or to Cw > 1000 or
to Ci > 10, i = 1, 2, are considered outliers and discarded
from the analysis.

The relative mean error, er is defined as follows:

er = 100 ×

∣

∣

∣

∣

true value − mean of estimations

true value

∣

∣

∣

∣

%. (18)

The estimation accuracies from noise-free and noisy
data with a zero-mean noise and standard deviation σ =
10−4 are compared together. The signal to noise ratio is
10−3

10−4 = 10. Table I shows the mean, standard deviation
and relative errors of the estimations. Figure 3 shows the
histograms of the estimations from the noisy data.

Regardless of the random initial condition, in more than
80% of simulations, the noise-free estimations converge
with er less than 10% for Ri, Ci, i = 1, 2 and for Cw.
The largest er is 10.36% for R∞ (Table I).

Figure 3 shows that estimations from noisy data are
more distributed around the true values. However as it is
seen in Table I, the mean values of estimations in both
noise-free and noisy cases remain the same. The relative
mean errors of estimations are again less than 10% for all
parameters except of R∞, which is again the largest and
10.38%. Also, er’s increase with noisy data compared to
that of in the noise-free case.

The largest standard deviation is for Cw. This could be
because of the pure integrator associated with Cw , which
appears in the TF, which might require some modifications
of the data set, [51]. For instance, a methodology has
been proposed in [36] that removes the integral term by
modifying the input signal as imodified(t) =

´

i(t)dt.

C. Calculating the coefficients of R − R||C − R||C − C
circuit

Here we show how to compute the parameters of the
6-element Randles circuit. Using (5), the circuit’s TF is:

H(s) =
f3s3 + f2s2 + f1s + f0

s3 + g2s2 + g1s + g0
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Fig. 3. Histogram of accepted estimations in 100 runs from noisy
data.

The relationships between the coefficients and the circuit
parameters are given by:

f3 = d, f2 = b1 + b2 + bw + (a1 + a2)d

f1 = a2b1 + a1b2 + (a1 + a2)bw + a1a2d, f0 = a1a2bw

g2 = a1 + a2, g1 = a1a2, g0 = 0

(19)

where the parameters ai, bi, bw and d are as defined in
(4).

Because the circuit has an integrator, the identification
method should be set up such that a pole of the denomina-
tor is fixed at s = 0. The identification software typically
allows to fix a number of poles and zeros at certain values,
[50]. Using the first equation of (19) and (4), R∞ is given
by:

R∞ = f3

The roots of s3 + g2s2 + g1s + g0 = 0 are a1 and a2,
and the one that has been fixed at s = 0. By using the
condition (12), select the smallest root as a2, and the
remaining root as a1. From (4), the circuit’s time constants
are obtained as follows:

τi =
1

ai

for i = 1, 2.

From (19) and (12), b1, b2 and bw are obtained by solving

the following set of equations for X :




1 1 1
a2 a1 a1 + a2

0 0 a1a2



 X =





f2 − (a1 + a2)f3

f1 − a1a2f3

f0





where,

X =
[

b1 b2 bw

]⊤

Other parameters of the circuit are subsequently ob-
tained as:

Cw =
1

bw

, Ci =
1

bi

, Ri =
τi

Ci

, i = 1, 2.

The parameters of different topologies can simply be
calculated using the same approach. Table II provides
formulas for four widely used Randles models.

V. Conclusions

We showed that the generalised Randles circuit model
is locally identifiable and the model structure becomes
globally identifiable if an ordering through the circuit is
assumed. The results were confirmed through extensive
simulations. Finally, explicit formulas for the coefficients
of widely used Randles circuits were presented.
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TABLE I
Estimation results.

Parameter R∞ R1 C1 R2 C2 Cw

True Value 0.05 0.2 0.3 0.4 0.6 300

Noise free (9 outlier estimates)
mean 0.0552 0.1883 0.2919 0.4061 0.5866 289.3709
st.d. 0.0010 0.0393 0.0617 0.0360 0.0734 48.3550
er 10.36 5.87 2.68 1.52 2.22 3.54

Noise σ = 10−4 (11 outlier estimates)
mean 0.0552 0.1847 0.2886 0.4094 0.5803 300.9287
st.d. 0.0012 0.0451 0.0706 0.0415 0.0867 87.8931
er 10.38 7.63 3.79 2.34 3.28 0.31

TABLE II
The coefficients of four widely used Randles circuit models.

-

+

v(t)

R∞

R1

C1

i(t)

-

+

v(t)

R∞

R1

C1

i(t)

Cw

-

+

v(t)

R∞

R1

C1 C2

R2

i(t)

-

+

v(t)

R∞

R1

C1 C2

R2

i(t)

Cw

Estimated TF: Estimated TF: Estimated TF: Estimated TF:

H(s) = f1s+f0

s+g0

H(s) = f2s2+f1s+f0

s2+g1s+g0

H(s) = f2s2+f1s+f0

s2+g1s+g0

H(s) = f3s3+f2s2+f1s+f0

s3+g2s2+g1s+g0

Set up to identify a pole at s = 0 Set up to identify a pole at s = 0

R∞ = f1 R∞ = f2 R∞ = f2 R∞ = f3

a1 = g0 roots([1 g1 g0]) ⇒ a1, 0 roots([1 g1 g0]) ⇒ a1, a2 roots([1 g2 g1 g0]) ⇒ a2, a1, 0
choose a2 < a1 choose a2 < a1

τ1 = 1
a1

τ1 = 1
a1

τi = 1
ai

τi = 1
ai

AX = B AX = B AX = B

A =

[

1 1
0 a1

]

A =

[

1 1
a2 a1

]

A =

[

1 1 1
a2 a1 a1 + a2

0 0 a1a2

]

B =

[

f1 − a1f2

f0

]

B =

[

f1 − (a1 + a2)f2

f0 − a1a2f2

]

B =

[

f2 − (a1 + a2)f3

f1 − a1a2f3

f0

]

b1 = f0 − a1f1 X =
[

b1 bw

]⊤
X =

[

b1 b2

]⊤
X =

[

b1 b2 bw

]⊤

C1 = 1
b1

C1 = 1
b1

Ci = 1
bi

Ci = 1
bi

Cw = 1
bw

Cw = 1
bw

R1 = τ1

C1
R1 = τ1

C1
Ri = τi

Ci
, i = 1, 2 Ri = τi

Ci
, i = 1, 2
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