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Bayesian inference in non-Markovian state-space models with
applications to battery fractional order systems

Pierre E. Jacob, S.M.Mahdi Alavi, Adam Mahdi, Stephen J. Payne and David A. Howey

Abstract—Battery impedance spectroscopy
models are given by fractional order (FO)
differential equations. In the discrete-time
domain, they give rise to state-space models
where the latent process is not Markovian.
Parameter estimation for these models is therefore
challenging, especially for non-commensurate FO
models. In this paper, we propose a Bayesian
approach to identify the parameters of generic
FO systems. The computational challenge is
tackled with particle Markov Chain Monte Carlo
methods, with an implementation specifically
designed for the non-Markovian setting. Two
examples are provided. In a first example,
the approach is applied to identify a battery
commensurate FO model with a single constant
phase element (CPE) by using real data.
We compare the proposed approach to an
instrumental variable method. Then we consider
a non-commensurate FO model with more than
one CPE and synthetic datasets, investigating
how the proposed method enables the study of
various effects on parameter identification, such
as the data length, the magnitude of the input
signal, the choice of prior, and the measurement
noise.

Index Terms—Parameter estimation, System
identification, Bayesian Inference, Fractional or-
der systems, Batteries.

I. Introduction
Fractional Order (FO) models are important in the

study of electrochemical and biological systems [1].
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Certain features in FO models make their identifica-
tion challenging. Before reviewing specific issues, we
recall that a continuous-time state-space model of a
FO system is given by [2]:

dαx(t)
dtα

= Ā(β)x(t) + B̄(β)u(t),

y(t) = M(β)x(t) +D(β)u(t),
(1)

where x ∈ Rn is the state vector; u ∈ R and y ∈ R
are input and output signals, respectively; Ā(β) ∈
Rn×n, B̄(β) ∈ Rn×1, M(β) ∈ R1×n and D(β) ∈ R
are system matrices which depend on the parameter
vector β ∈ Rq to be identified. Moreover,

dαx(t)
dtα

=
[dα1x1(t)

dtα1
, . . . ,

dαnxn(t)
dtαn

]
(2)

is the vector of FO derivatives, with unknown FOs
denoted by α` ∈ (0, 1), ` = 1, . . . , n.

By defining the parameter vector as

θ =
[
α1 · · · αn β

]
, (3)

the corresponding model in the discrete-time domain
is given by [2]:

xk+1 =
k∑
j=0

Aj(θ)xk−j +B(θ)uk,

yk = M(θ)xk +D(θ)uk,

(4)

with
A0(θ) = diag{α1, · · · , αn}+

diag{Tα1
s , · · · , Tαn

s }Ā(β),

Aj(θ) = (−1)jdiag
{(

α1

j + 1

)
, · · · ,

(
αn
j + 1

)}
,

for 1 ≤ j
B(θ) = diag{Tα1

s , · · · , Tαn
s }B̄(β),

(5)

where Ts is the sample time, k ∈ N is the time index,
diag{·} denotes the diagonal matrix and

(
α`

j

)
is the

binomial coefficient given by(
α`
j

)
= Γ(α` + 1)

Γ(j + 1)Γ(α` + 1− j) , (6)

where, Γ(·) denotes the gamma function
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Γ(α`) =
ˆ ∞

0
zα`−1e−zdz, for α` ∈ C with <(α`) > 0,

where < denotes the real part of a complex number.
Definition 1: an FO system is said to be com-

mensurate if for all ` ∈ {1, . . . n}, there exists ρ ∈
N, such that α` = ρα, where α ∈ R; otherwise it is
said to be non-commensurate [1]. �

Some issues associated with parameter estimation
of FO systems are now more evident: 1) the state
vector xk+1 depends on all the past states x0 up
to xk, therefore the FO system is non-Markovian 1,
and 2) the model is nonlinear, with respect to the
parameters. Therefore, FO systems constitute a non-
standard class of state-space models, for which there
is no generic parameter estimation method.
Several least-squares estimation methods have

been proposed in [3]–[5] for the identification of
continuous-time FO transfer functions of the form

F (s) = Y (s)
U(s) = bms

βm + · · ·+ b1s
β1 + b0s

β0

ansαn + · · ·+ a1sα1 + 1 , (7)

where U and Y are Laplace transforms of the in-
put and output (observation) signals, respectively.
These methods have been modified in [6], [7], and
developed into the Crone toolbox [8], [9]. The Crone
toolbox is mainly based on the instrumental variable
state variable filter (ivsvf) method and the sim-
plified refined instrumental variable for continuous-
time fractional (srivcf) method, which are both based
on instrumental variable concepts [10]–[12]. In these
methods, the FO model is simplified by approximat-
ing all fractional differentiation operators by higher-
order rational transfer functions [6]. The coefficients
of the transfer function are identified by using the
coefficient map that exists between the original and
approximated models. Manual search [6], gradient
descent [7], or interior-point [13] optimizations are
combined with the ivsvf and srivcf functions for
the estimation of the fractional orders. In the non-
commensurate case, the approximate model is of high
order so that the coefficient map between the original
and approximated model may be intractable. This
issue highlights the need for novel tools to directly
identify general FO models.
In [14], an identification method based on swarm

optimization has been proposed to identify a battery
non-commensurate FO model.

1In Markovian systems, xk+1 can be written as functions of
xk and inputs.
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Fig. 1. The general battery electrochemical impedance spec-
troscopy model.

In this paper, a novel method based on Bayesian
inference is presented. Bayesian inference provides
a comprehensive framework for statistical analysis,
including the investigation of parameter identifiabil-
ity. Its main challenge is computational and often in-
volves Markov chain Monte Carlo methods (MCMC)
to approximate the posterior distribution. Advances
in MCMC methods have made Bayesian inference
possible for generic state space models [15]. We will
develop this approach for non-Markovian models.
Recently, there has been a significant interest in

the design of model-based battery systems to im-
prove the efficiency and reliability of electric vehicles
and renewable energies [16]. Among the employed
models, Electrochemical Impedance Spectroscopy
(EIS) models with FO dynamics have received much
attention. They are more accurate than conventional
lumped models and are computationally less expen-
sive than electrochemical models defined by highly
coupled partial differential equations. A comprehen-
sive survey of battery models has been given in [16].
A general schematic of the battery impedance FO
models is shown in Figure 1, where i and v denote
the battery current and voltage, respectively. R∞
represents the battery ohmic resistance at high fre-
quencies. Each parallel pair is employed to model dif-
fusion processes (e.g. charge transfer resistance and
double layer capacitance) more accurately compared
to the lumped models, [17] and [13]. The number
of parallel pairs depends on the required accuracy.
The terms C`sα` , ` = 1, · · · , n, are called constant
phase elements (CPEs). In low frequency ranges, the
impedance frequency response may show constant
phase behaviour such that the associated parallel
resistor can be considered as an open circuit. This is
referred to as a Warburg term in the literature [17].
Reference [17] provides more information on battery
EIS and associated FO models.
By defining u = i and y = v, and the voltage across

2



the CPEs as the state variables,

x ,
[
v1 · · · vn

]
, (8)

it is easy to show that Aj , B, M and D in the state-
space model (4) are given by:

Aj(θ) = diag {a1,j(θ), · · · , an,j(θ)}
B(θ) =

[
b1(θ) · · · bn(θ)

]
M(θ) =

[
m1 · · · mn

]
D(θ) = d(θ),

(9)

with

a`,0(θ) = α` −
Tα`
s

R`C`
, a`,j(θ) = (−1)j

(
α`
j + 1

)
b`(θ) = Tα`

s

C`
, m` = 1, d(θ) = R∞

for ` = 1, . . . , n and j = 1, 2, . . . , T,

(10)

where T is the data length.

In order to estimate the parameter vector θ from
v and i, models are typically fitted to frequency
domain impedance spectra that are obtained through
EIS, [18]–[20]. It may be preferable outside of the
laboratory to estimate parameters of FO models
directly from time domain data, rather than convert
such data into the frequency domain for fitting. The
latter would involve a window function, which may
introduce bias [13].

In this paper, we explore the use of Bayesian
inference to identify battery FO models. First, we
compare the proposed approach to an instrumental
variable method, on a battery model with a sin-
gle CPE and real data. Then we consider a model
with more than one CPE and synthetic datasets,
investigating how the proposed method enables the
study of various effects on parameter identification,
such as the data length, the magnitude of the input
signal, the choice of prior, and the measurement
noise. We also note a lack of identifiability for some
parameters of the model using the methods and
data herein. The source code is available online at
https://github.com/pierrejacob/BatteryMCMC.

The main contributions of the paper are:

- introduction of a Bayesian framework to inves-
tigate the identification of general FO systems,

- reduction of the computational cost of particle
filters in non-Markovian settings, using a tree
representation of the particles.

II. Bayesian Inference
A. Inference in state-space models
Given measurements y0:T = y0, . . . , yT , we con-

sider the task of estimating the parameter θ in the
state-space model

x0 ∼ µ(· | θ),
∀k ∈ {1, . . . , T} xk ∼ fk(· | x0:k−1, θ),
∀k ∈ {0, . . . , T} yk ∼ gk(· | xk, θ),

(11)

where T ∈ N denotes the total number of observa-
tions. The transition fk might depends on all the past
states x0:k−1, and thus {x0, · · · , xk} is not necessarily
a Markov chain. Both fk and gk could be nonlinear
functions. Therefore, the FO model (4) is in the state-
space model framework (11), upon specifying a state
noise and an observation noise. For simplicity, we will
consider additive Gaussian noise and the model is
thus given by:

xk+1 =
k∑
j=0

Aj(θ)xk−j +B(θ)uk + σxεk,

yk = M(θ)xk +D(θ)uk + σyηk,

(12)

where (εk) and (ηk) are sequences of independent
standard Gaussian variables, and σx, σy are positive
values.

The likelihood function, defined by θ 7→ p(y0:T | θ),
where p(y0:T | θ) is the density of the observations
evaluated with the dataset y0:T for the parameter θ,
can be written

p(y0:T | θ) =
ˆ
µ (x0 | θ) g0(y0 | x0, θ)×

T∏
k=1

fk (xk | x0:k−1, θ) gk(yk | xk, θ)dx0:T .

(13)

Maximizing the likelihood function θ 7→ p(y0:T | θ),
we obtain the classic maximum likelihood estimator.
Confidence intervals can be constructed via asymp-
totic arguments, relying on regularity conditions.
The bootstrap method to construct confidence inter-
vals is not readily applicable to state-space model set-
tings. We will see in numerical experiments that the
likelihood function associated with FO battery mod-
els shows signs of partial non-identifiability, which
call for alternative approaches.

Bayesian inference starts from a prior distribution
on the parameters θ, and uses the likelihood to obtain
a posterior distribution [21], using Bayes formula. In
the numerical experiments, we will be particularly
interested in the changes between the prior and the
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posterior, which inform us about how much has been
learned from the data, and thus give a practical
notion of identifiability. Indeed, contrarily to point
estimation methods, including maximum likelihood
and least squares estimators, Bayesian inference de-
livers a collection of parameter values that represent
the landscape of the posterior distribution. This
framework enables the investigation of identifiability,
by looking at the potential concentration of the
posterior on some subset of the parameter space, or
the lack thereof.
Bayesian inference for general state-space models,

that is, generic choices of µ, fk and gk, the integral in
(13) can be envisioned with recent advances in Monte
Carlo methods that combine MCMC algorithms and
particle filters [15]. For our purposes, particle filters
[22] are algorithms that provide unbiased estimators
of the likelihood in (13), for any θ ∈ Θ, up to a
multiplicative constant. The user sets a number of
particles N ∈ N. Larger values of N yield lower
variance but the computational cost increases lin-
early with N . The particles are first sampled from
µ(· | θ), and denoted by x1:N

0 = (x1
0, . . . , x

N
0 ). Then,

each particle is weighted: for each ` ∈ {1, . . . , N},
w`0 = g0(y0 | x`0, θ). Next, the resampling consists
in selecting some particles and discarding others,
according to their weights. For instance, one draws
for each ` ∈ {1, . . . , N}, an ancestor variable a`0 ∈
{1, . . . , N} according to a categorical distribution
with parameters (w1

0/
∑N
j=1 w

j
0, . . . , w

N
0 /
∑N
j=1 w

j
0).

Once the ancestors a1:N
0 are drawn, the new particles

are sampled and weighted according to x`1 ∼ q1(· |
x
a`

0
0 , θ) and

w`1 = f1(x`1 | x
a`

0
0 , θ)g1(y1 | x`1, θ)

q1(x`1 | x
a`

0
0 , θ)

.

Introduce the paths x̄`0:1 = (xa
`
0

0 , x`1), for each ` ∈
{1, . . . , N}. Then the weighted paths (w`1, x̄`0:1)N`=1
are approximately distributed according to the path
distribution p(x0, x1 | y0, y1, θ). The algorithm then
proceeds in a similar fashion for the subsequent steps,
until all the data have been assimilated. Importantly,
the quantity

p̂(y0:T | θ) =
T∏
k=0

(
1
N

N∑
`=1

w`k

)
(14)

is an unbiased estimator of the likelihood p(y0:T | θ)
[15]. A rich literature is devoted to the theoretical
study of the algorithm and the properties of this type
of estimator [23], [24]. In the Markovian setting, these

results indicate that, as the number of observations T
goes to infinity, the relative variance of the likelihood
estimator p̂(y0:T | θ) can be bounded independently
of T if one chooses N proportionally to T . The choice
of the proposal distribution qk(· | x0:k−1, θ) impacts
the variance of the likelihood estimator, and we give
details on our choices in Appendix V-A.

B. Particle filters for non-Markovian models
Given the non-Markovianity of the latent process,

sampling each particle x`k at time k requires comput-
ing a function ψk of a trajectory, (x`0, . . . , x`k−1). In
the models considered in the article, such as (12),
this function takes the form of a weighted sum:
ψk(x̄`0:k) =

∑k
t=0 αk,tx̄

`
k−t,where (αk,t)t≥0, for each

k, are coefficients that can be computed given the
parameter θ. Naively computing this weighted sum
for each particle would yield a cost of order k, at
time k; and thus an overall computational cost of
order N ×T 2, where T is the number of observations
to assimilate and N the number of particles. Fur-
thermore, the naive memory cost of storing all the
trajectories would be of order N × T .
We can reduce both the memory cost and the

computational cost, by representing the trajectories
as branches of a tree [25]. At each step of the particle
filter, new leaves are added to the tree, corresponding
to the new generation of particles. The ancestors give
the list of new branches. Some existing branches of
the tree can be cut, if the corresponding particles
have been discarded in the resampling step. It was
shown in [25] that the number of nodes in the tree
is of order k + CN logN at time k, in expectation.
The constant C does not depend on N and T .
This theoretical expected cost applies directly to the
non-Markovian setting (the assumption in [25] only
involves the measurement distribution). Therefore,
the memory cost can be reduced from N × T to
T +CN logN . Furthermore, computing the N sums
at time k only requires browsing the whole tree
once, from the root to the leaves, for a cost of order
k+CN logN at step k. Performing this operation for
each k in {1, . . . , T} yields an overall computational
cost of order T 2 +CTN logN , instead of N×T 2 with
the naive implementation. This is to be compared
with a computational cost of NT and a memory
cost of N for Markovian models. Since N is typically
comparable to T , and logN is a small value, the tree
structure gives an order of magnitude improvement,
both computationally and in terms of memory, over
the standard implementation.
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Therefore, the particle filter machinery is directly
implementable in the non-Markovian setting [26].
The unbiasedness of the likelihood estimator of (14)
holds, as can be easily proven by induction over the
time steps, in a slight extension of the Markovian
setting [23]. An important open question is how the
variance of the likelihood estimator behaves with the
number of observations in non-Markovian settings.
Our numerical experiments indicate that the algo-
rithm is applicable in realistic scenarios.
Unbiased likelihood estimators p̂(y0:T | θ) can be

used to obtain samples from the posterior distri-
bution, using particle MCMC algorithms [15]. We
will use the Particle Marginal Metropolis–Hastings
(PMMH) variant. Each iteration of PMMH involves
a run of particle filter adapted to the non-Markovian
setting. Algorithmic tuning details are given in Ap-
pendix V-B.

III. Bayesian Inference in Battery Systems
Two examples are provided. In the first, a com-

mensurate FO model of the battery is estimated
using real data, and the results are compared with
parameter estimates obtained using an instrumental
variable (IV) method from the Crone toolbox. In
the second example, we add a Warburg term, thus
the model includes two CPEs and becomes non-
commensurate.

A. Example 1: Identification of a single CPE battery
FO model
Consider an FO model with a single CPE without

the Warburg term (n = 1 in Figure 1). The model is
given by (12), where each xk is univariate and A0 =
(α1 − Tα1

s /(R1C1)), and for j ≥ 1, Aj = (−1)j
(
α1
j+1
)
,

B(θ) = Tα1
s /C1, M(θ) = 1, and D(θ) = R∞. Our

objective is to estimate the the parameter vector,

θ =
[
R∞ R1 C1 α1

]
,

by using the input-output signals u and y through
the PMMH approach.
An A123 Systems lithium-ion iron phosphate

(LFP) cell was tested, having length 65 mm, diam-
eter 26 mm, nominal capacity 2.3 Ah and nominal
voltage 3.3 V. The battery is excited by a multi-
sine current u, comprising 80 logarithmically spaced
frequencies from 1 Hz to 2 kHz. The output signal
y is the battery voltage. The identification data, is
recorded for one second, with sampling time Ts =
1/(20, 000) s. The data length is then T = 20, 000.
Figure 2 shows the identification data. Reference [27]
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(b) Battery voltage y(t).

Fig. 2. The identification data of Example 1.

provides a comprehensive information about the data
collection’s electronics and signal processing.
In [13], with the same data, we identified the

parameter vector by using the IV method (Crone
toolbox). Estimation of the parameter vector is given
in Table I.
For Bayesian inference, we use a uniform prior on

each parameter, with ranges [1, 50] mΩ for R∞, [1, 50]
mΩ for R1, [1, 5] Fcm−2s−α1 for C1 and [0.4, 1] for
α1. The intervals are chosen based on the typical EIS
curves and the results of the IV method (see [13]
and references therein). The initial value of the state
vector is set to zero, x0 = 0. We have used σx = 10−5

and σy = 2 × 10−5 in (12), and we have used the
data from times 5, 000 to 8, 000 instead of the full
data to reduce the computational cost. The PMMH
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Fig. 3. Results of the PMMH algorithm for Example 1, sampling approximately from the posterior distribution for the model
(12). On the diagonal, the posterior density function of each run is overlaid with the prior distribution (red horizontal lines),
which is uniform. On the lower triangle, the five runs are pooled together in a histogram with hexagonal binning. On the upper
triangle, the correlation coefficients between pairs of parameters are displayed.
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TABLE I
Estimation of parameters of the single CPE model
using Instrumental Variable (IV), and 95% credible

intervals obtained with PMMH, with real data.

Parameter IV method PMMH method
R∞ mΩ 7.40 [9.05, 9.55]
R1 mΩ 7.50 [13.0, 48.0]
C1 Fcm−2s−α1 2.04 [1.00, 1.09]
α1 0.64 [0.93, 0.96]

method was run withN = 1, 024 particles and 10, 000
iterations, with 4 chains in parallel. The tuning of the
algorithm is described in details in the appendices.
Figure 3 shows the output in a matrix plot. From
the diagonal, we see that the posteriors of R∞, C1
and α1 have concentrated compared to their priors,
represented by red curves, while the posterior on R1
is similar to the prior.

In Table I, we display 95% credible regions com-
puted with quantiles of the posterior samples. The
credible regions obtained by PMMH do not contain
the IV estimates; this indicates a significant differ-
ence. In order to validate the results, we compare
both approaches in terms of voltage prediction. To
avoid using the data twice, we have run the IV
method on the data from time 5, 000 to 8, 000, and
obtained R∞ = 6.8 mΩ, R1 = 9.2 mΩ, C1 = 3.7
Fcm−2s−α1 and α1 = 0.54, which is also outside the
95% regions. For these values, we have generated y1:T
according to equation (4) (without adding Gaussian
noise), and computed the sum of squared differences
between the actual voltage and the generated volt-
age, from times 8, 001 to T = 20, 000. We have
obtained 1.7×10−5. For reference, the IV parameters
given in Table I yield 1.5×10−5. On the other hand,
lower values are obtained from our posterior sam-
ples, with the minimum attained at 6.40 × 10−6 for
R∞ = 9.3 mΩ, R1 = 35.0 mΩ, C1 = 1.06 Fcm−2s−α1

and α1 = 0.97. Over the posterior samples, we
find a median sum of squares of 7.9 × 10−6, and a
maximum of 9.6 × 10−6. Note that the minimum
value is obtained for an atypical parameter value
with respect to the posterior, lying outside the 95%
credible regions. Therefore, the Bayesian approach
leads to a concentration of the parameters on a set
that delivers slightly better predictions compared to
parameters obtained with the IV method. On the
other hand, the IV method has a computational
advantage for large datasets.
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Fig. 4. Identification data for Example 2. Input sequence (left)
and observations (right), of length T = 930, generated from the
model of (4).

B. Example 2: Identification of a battery FO model
with two CPEs

We add the Warburg term to Example 1. The
model is given by (12) with system matrices (9) and
(10) for n = 2 and R2 =∞ (the resistance associated
with C2 is open-circuit to model the Warburg term).
The initial value of the state vector is set to zero:
x0 = [0 0]. The parameter vector is

θ =
[
R∞ C1 R1 α1 C2 α2

]
.

We generate synthetic data using the parameter set

θ? =
[

0.01 3.0 0.2 0.8 400 0.5
]
. (15)

The data length is set to T = 930 samples.
The standard deviations are set to σx = 0.002
and σy = 0.02. A pseudo-random binary sequence
(PRBS) signal between -1 and +1 was generated for
(uk)k∈N, with sampling time Ts=0.5 ms. The output
voltage (yk)k∈N is then generated using the model of
(4) with the parameter value of (15). Figure 4 shows
the input-output data for the base scenario.
We use a uniform prior on each parameter, with

ranges [5, 100] mΩ for R∞, [50, 500] mΩ for R1, [1, 5]
Fcm−2s−α1 for C1, [300, 500] Fcm−2s−α2 for C2 and
[0.4, 1] for α1 and α2. The PMMH is tuned with
N = 128 particles per iteration, and M = 20, 000
iterations. We first present the results of the base
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scenario (Section III-C), and then consider various
modifications: the number of observations (Section
III-D), the magnitude of the input data (Section
III-E), the prior distribution (Section III-G) and
the state-output noise ratio of the generated data
(Section III-F).

C. Posterior samples in the base scenario
The results of the base scenario, computed on

five independent runs, are shown in Figure 5. On
the diagonal, we see that the five independent runs
are consistent, indicating that the PMMH method
approximates the posterior distribution in a satisfac-
tory way. Then we see that for some parameters, such
as R∞, the posterior is significantly different from the
prior. This indicates that the data are informative on
these parameters; we can expect that these marginal
posterior distributions would concentrate around the
corresponding values of θ? in (15), when the number
of observations goes to infinity. On the other hand,
nothing seems to be learned on some other param-
eters, such as C2, for which the posterior resembles
the prior.
Since the prior distribution is uniform, the poste-

rior distribution is proportional to the likelihood, and
thus the mode of the posterior would be precisely the
maximum likelihood estimate, under the constraints
of the prescribed intervals. Since the posterior distri-
bution is clearly flat over some parameters (such as
C2), the mode could be anywhere in the correspond-
ing interval. Thus, a numerical procedure giving only
the maximum likelihood estimate would return any
value in that range.
The Bayesian approach is closer in spirit to inte-

grated likelihood approaches, where nuisance param-
eters are averaged over. An advantage of sampling
from the posterior distribution is the possibility to in-
vestigate correlations between parameters, which are
particularly large between R∞ and α1, and between
C1 and α1 according to Figure 5.

D. Effect of the number of observations
We consider three sets of data of sizes T = 635,

T = 930 and T = 1890, generated from three
input sequences of these lengths. Instead of showing
of all the marginal distributions, we focus on two
parameters, R∞ and C2, which are respectively easy
and challenging to identify (according to Figure 5).
The 95% credible regions are displayed in Table II.
We see that adding more data makes the posterior
distribution more concentrated for R∞, and closer to

TABLE II
Effect of the number of observations on 95% credible

intervals, for R∞ and C2.

T = 635 T = 930 T = 1890
R∞ [0.008, 0.013] [0.007, 0.011] [0.009, 0.011]
C2 [305, 496] [305, 496] [306, 496]

TABLE III
Effect of the input magnitude on 95% credible

intervals, for R∞ and C2.

±1 ±5
R∞ [0.0067, 0.0108] [0.0095, 0.0103]
C2 [305, 496] [305, 495]

the true value of 0.01, whereas it does not seem to
have an effect on the credible regions for C2.

E. Effect of the input magnitude
We study the effect of the magnitude of the input.

On top of the base scenario, with input data of mag-
nitude 1, we consider an input sequence of magnitude
5 (thus, oscillating between −5 and +5). The results
are shown in Table III. Increasing the magnitude of
the input helps identifying R∞, but still does not
seem to impact the posterior distribution of C2.

F. Effect of the state-output noise ratio
We study the effect of the state to output noise

ratio. More precisely, we generate data using σy =
0.002, instead of using σy = 0.02 as in the base
scenario. We refer to these state-output noise ratios
(i.e. signal to noise ratios) as 1.0 and 0.1 respectively.
Again, we find that the effect is very apparent on R∞,
but that the credible regions for C2 seem unchanged
(Table IV).

G. Effect of the prior distribution
We study the effect of the prior distribution. We

consider a Gaussian prior, centered in the middle of

TABLE IV
Effect of the state-output noise ratio (SNR) on 95%

credible intervals, for R∞ and C2.

SNR = 0.1 SNR = 1.0
R∞ [0.0067, 0.0108] [0.0095, 0.0103]
C2 [305, 496] [306, 495]
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the range of the previous intervals, and with standard
deviation one fourth of the range, so that roughly
95% of the Gaussian mass lands in the range; we
truncate the Gaussian distribution outside the range.
As expected, we find that the posterior of C2 is nearly
equal to the prior, and thus is very dependent on the
choice of prior. On the other hand, the prior has no
apparent impact on the posterior distribution of R∞,
indicating that the posterior is highly driven by the
observations (figures not shown but available upon
request).

IV. Conclusions
The ability to identify model parameters depends

on the quantity and quality (uncertainties) of the
available data. Although there is a rich literature
on the experiment design for systems with ordinary
differential equations (ODEs), [28]–[31], it remains
unclear how to generate informative data for param-
eter estimation of FO systems. In [32], we applied
the persistent excitation concept to the battery Ran-
dles circuit model, which is given by ODEs. This
method is adopted here. The authors in [33] propose
a method for the design of periodic excitation signals
to identify the battery models given by ODEs.
In this paper, we have developed a computational

approach to Bayesian inference in non-Markovian
state-space models, and applied it to the identifica-
tion of FO systems. The posterior distribution was
approximated using particle marginal Metropolis-
Hastings, and in particular the use of a tree repre-
sentation of the trajectories has been proposed to
improve the efficiency of numerical computations.
We applied the method to battery commensurate
and non-commensurate FO models. The results were
compared with the instrumental variable identifica-
tion method. Practical identifiability of model pa-
rameters was studied by comparing the prior and
posterior distributions. The sensitivity of parameters
to the choice of prior distributions, the number of
observations, the magnitude of the input signal and
the measurement noise were studied.
In summary, the Bayesian framework is a conve-

nient tool to estimate parameters, assess their iden-
tifiability and quantify uncertainties in FO models.

V. Appendices
A. Locally optimal proposal for the battery model
In the models considered in the article, the fol-

lowing locally optimal proposal can be implemented.
The state xk ∈ R2 follows a Gaussian distribution

centered at a function of the past: xk ∼ N (ϕk,Σx),
where ϕk = (ϕk,1, ϕk,2)T is computed as a deter-
ministic function of the past trajectory x0:k−1 and of
the parameter, and Σx = diag(σ2

x, σ
2
x). Furthermore

we have yk ∼ N (ck + xk,1 + xk,2, σ
2
y), where ck is a

real value that can be computed given the parameter
value. As a result, we can compute yk | x0:k−1 ∼
N (ζk, 2σ2

x + σ2
y), where ζk = ck + ϕk,1 + ϕk,2 and

xk | x0:k−1, yk has a Gaussian distribution with

mean =

ϕk,1 + σ2
x

2σ2
x+σ2

y
(yk − ζk)

ϕk,2 + σ2
x

2σ2
x+σ2

y
(yk − ζk)

 ,

and variance =

σ2
x −

σ4
x

2σ2
x+σ2

y
− σ4

x

2σ2
x+σ2

y

− σ4
x

2σ2
x+σ2

y
σ2
x −

σ4
x

2σ2
x+σ2

y

 .

B. Particle Marginal Metropolis–Hastings

The Particle Marginal Metropolis–Hastings algo-
rithm of [15] requires a few choices of tuning param-
eters from the user. First, it requires a particle filter
yielding likelihood estimates p̂(y0:T | θ) for all θ. We
have described a choice of proposal distribution in
Appendix V-A, but one still needs to choose a num-
ber of particles N . We adopt the following strategy.
For a sample θ from the prior distribution, we run the
particle filter n times, given that same θ. This yields
a sequence of estimates Z1, . . . , Zn of p(y0:T | θ).
We then mimic a Metropolis–Hastings scheme with
these estimates, and compute the corresponding ac-
ceptance rate. It would be 100% if the estimates were
all perfect evaluations of p(y0:T | θ). Thus, starting
from a small number of particles N , we increase the
number N until the average number of acceptances
is considered to be enough, for instance 10%. We
can perform this procedure on a few parameters θ
in parallel, to account for the variability across the
parameter space.
Once the particle filter is tuned, we need to choose

a proposal distribution to draw the candidate pa-
rameters: θ? ∼ qθ(·|θ). A standard choice consists
in using a Gaussian random walk: θ? ∼ N (θ,Σ) , for
which we still need to choose the covariance matrix.
One approach consists in changing Σ along the run
of the algorithm. We take a simpler approach, using
a preliminary run. Upon the completion of it, we
compute the covariance matrix of the chain, which
approximates the posterior covariance, and use it as
a choice of Σ.
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