Edinburgh Research Explorer

Real-Time Optimizing Control of an Experimental Crosswind
Power Kite

Citation for published version:

Costello, S, Francois, G & Bonvin, D 2018, 'Real-Time Optimizing Control of an Experimental Crosswind
Power Kite', IEEE Transactions on Control Systems Technology, vol. 26, no. 2, pp. 507-522.
https://doi.org/10.1109/TCST.2017.2672404

Digital Object Identifier (DOI):
10.1109/TCST.2017.2672404

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
IEEE Transactions on Control Systems Technology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 14. May. 2024


https://doi.org/10.1109/TCST.2017.2672404
https://doi.org/10.1109/TCST.2017.2672404
https://www.research.ed.ac.uk/en/publications/2495257a-a42c-439c-be75-edb983b56741

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. ?, NO. ?, JULY 2016 1

Real-Time Optimizing Control
of an Experimental Crosswind Power Kite

Sean Costello, Grégory Francgois, and Dominique Bonvin

Abstract—The contribution of this article is to propose and
experimentally validate an optimizing control strategy for power
kites flying crosswind. The algorithm ensures the Kkite follows
a reference path (control) and also periodically optimizes the
reference path (efficiency optimization). The path-following part
of the controller is capable of consistently following a reference
path, despite significant time delays and wind variations, using
position measurements only. The path-optimization part adjusts
the reference path in order to maximize line tension. It uses a
real-time optimization algorithm that combines off-line modeling
knowledge and on-line measurements. The algorithm has been
tested comprehensively on a small-scale prototype, and this article
focuses on experimental results.

Index Terms—Path-following control, real-time optimization,
airborne wind energy.

I. INTRODUCTION

IND is one of the most promising renewable energy
W sources. Kite power is an emerging wind power tech-
nology with both great potential and great technical challenges.
A global study based on experimental data estimated that
the world’s energy demand could be entirely satisfied using
conventional wind turbines installed on only 2 % of the world’s
land area [1]. However, in most locations the cost of wind
energy is still significantly higher than that of energy produced
from fossil sources, and wind power only accounts for about
2% of global electricity production. For wind power to be truly
competitive, it needs to become significantly cheaper, more
consistent and more efficient. “Airborne Wind Energy” using
kites is a wind power concept that is radically different from
conventional wind turbines. Kites are wings, ranging from
flexible para-glider type designs to rigid composite aircraft
wings, attached to the ground by a flexible tether. In addition
to having low material costs, they can exploit the fact that
wind strength and regularity increases with altitude [2], [3],
[4]. Powerful kites already have wide application in sports:
kite-propelled craft regularly break the world speed-sailing
record. Now very large kites are being used to propel cargo
ships [5], and many prototypes for electricity production are
already in existence. An overview of this development can
be found in [6], [7]. Although this initial development is
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encouraging, making the step to commercial power production
requires great technical barriers to be overcome. These include
finding kite and tether designs that can withstand long-term
outdoor exposure and repetitive high forces while remaining
light, seamless autonomous take-off and landing, and perfectly
reliable autonomous operation in all conditions.

The control of kites is one of the most fundamental chal-
lenges to be tackled. A dynamically flying power kite is a
fast, unstable system influenced by unpredictable wind distur-
bances, and usually only noisy and incomplete measurements
are available. It is a testament to the difficulty of stabilizing
a kite during dynamic flight that the first successful account
of experimental kite control was published in 2013 [5], 33
years after research on kite power began [8]. Typically, in
order to extract maximum power from the wind, a power kite
is flown almost perpendicular to the wind, similarly to the
blades of a wind turbine, reaching speeds many times that of
the wind itself (easily in excess of 150 km/h). This is known
as crosswind flight, and is the focus of this paper. Note that
there are other useful modes of flight, such as static flight at
the zenith, which are not treated here. During crosswind flight,
if the kite is not constantly steered, it will crash in a matter of
seconds. Hence, an “autopilot” must keep the kite flying in a
wide variety of wind conditions, providing stability. What is
more, unlike the blades of a wind turbine which must move in
a circle, a kite can follow many different flight paths. The path
the kite flies determines how much power is produced. Hence,
in addition to keeping the kite from crashing, the autopilot
must ensure the kite follows a path that is efficient for power
production.

The field of kite control is young, yet varied. In theory,
state-of-the-art Nonlinear Model Predictive Control (NMPC)
is the perfect solution [9], [10], [11], given the complex
nature of the control problem, the presence of operational
constraints, and the necessity to optimize the kite’s flight
path. Unfortunately, this has yet to become a practical reality,
mainly due to the inaccuracy of existing kite models, as
NMPC relies on the quality of the model at hand. Many
power kites are of the flexible kind, and accurate models [12],
[13] are very complex, generally unsuitable for NMPC. We
note, however, that with recent advances in MPC [14], this
situation will hopefully change. There are, on the other hand,
several accounts of experimentally validated geometric control
laws. For example, [15] observed that a simple control scheme
should aspire to control the kite’s direction of motion, referred
to as the velocity angle, which will also be used extensively
in this paper. They combined an online system-identification
algorithm with a Lyapunov-based control law. The control
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law attempts to choose the kite’s velocity angle such that it
smoothly attains the prescribed target trajectory. An additional
contribution was to elegantly exploit the concept of geodesic
curvature to simplify the problem of tracking on a sphere.
Also, [5] developed a simple, robust cascade controller for
kites, which was tested by years of sea trials on large vessels.
Essentially, a low-level proportional controller regulates the
kite’s orientation (i.e. the direction the kite is pointing), while
a higher-level guidance controller chooses the bang-bang ref-
erence orientation signal, based on the kite’s current position.
This results in a horizontal figure-of-eight pattern, which is
generally considered to be the most efficient type of path for
extracting energy from the wind. The resulting controller has
only a few tuning parameters, however the effect of these
parameters on the kite’s trajectory is difficult to determine a
priori. A similar cascade-control strategy was proposed and
experimentally validated on a small prototype by [16]. The
primary controlled variable was the kite’s velocity angle in
this case, which was again regulated by a simple low-level
linear controller. The guidance strategy alternately directs the
kite towards one of two points, producing the classic figure-of-
eight pattern. The tuning parameters in this case can be used to
choose the height, width and inclination of the figure-of-eight
in an intuitive manner. The same authors extended this control
law to also handle the retraction phase for a pumping-cycle
generator, and successfully implemented the algorithm on a
power-producing prototype [17]. Building on the work by [15],
[18] proposed a more advanced path-following controller using
a nonlinear guidance-law and successfully tested it on a 20-
kW pumping-cycle prototype. Feedback linearization is used
to design a low-level velocity-angle controller. The guidance
law aims to minimize the cross-track error, taking into account
the kite’s current velocity angle, the path’s direction, and the
curvature of the path. Successful implementation of a path-
following controller is also reported in [19], this time via way-
point tracking for rigid wings.

While several control solutions for kites now exist, and
the most advanced of these are even capable of tracking
relatively arbitrary paths, the path-planning problem during
crosswind flight is still an open issue. Intelligent path planning
is important because, although the kite is free to follow almost
any flight path, it is the flight path that directly determines
the aerodynamic force the kite experiences, and hence the
power generated. Experimental studies have confirmed that
the path taken by the kite significantly affects the power it
can generate [20]. The path-planning problem results in an
interesting optimal control problem that has been studied by
a number of authors [9], [21], [22], [23], [24], [25]. However,
despite promising recent work [26], there remains a gap be-
tween the theory and the application. Recently, more detailed
models have been employed [27], particularly for rigid wings
for which modeling is easier. Flexible power kites are very
popular, and for these kites modeling is still quite approximate.
In addition, effects such as wind gradients vary from location
to location and cannot be known in advance. Hence, with
the tools that are currently available, it remains questionable
whether a purely model-based approach can calculate optimal
paths for a real flexible kite. This is probably the reason

why the most prominent available experimental study uses an
experimental approach to tune the path the kite follows: [20],
[28] proposed an algorithm that adjusts the height and lateral
position of the kite’s path in real time, using experimental data
only. These two parameters are then optimized online using a
gradient-search algorithm. Since the use of offline modeling
to design the real-time optimization algorithm, and online
experimental data to perform the optimization, has yielded
promising results, this paper will develop a similar approach.

The contribution of this article, which presents a part of
the work in [29], is to propose a combined control and
optimization strategy for power kites flying crosswind, with
a focus on experimental results (in fact, all data presented
here is experimental). The control strategy provides both path
control and path optimization. The entire algorithm is the
result of many years of experimental work, and it has been
incrementally developed with regular experiments to test each
addition to the algorithm. A preliminary simulation study
was presented in [30], and we now extend the presentation
and give experimental results. The path-following part of
the controller is capable of consistently following a wide
variety of paths, despite significant time delays, using position
measurements only. The path-optimization part maximizes line
tension (efficiency) by combining offline modeling knowledge
and online measurements. The online data ensures it can react
to wind or system variations to maximize efficiency in different
conditions. An additional small, but useful, contribution is to
give some experimental data supporting a recently proposed
modeling relationship for power kites, linking the decrease in
the kite’s lift-to-drag ratio to the steering deflection.

The paper is structured as follows. Section II describes the
experimental setup. Section III develops a low-dimensional
dynamic model of the system using existing models from
the literature as a starting point, and validates the model
using experimental data. Section IV presents a path-following
controller for kites and analyzes its experimental performance.
Section V presents the Real-Time Optimization (RTO) algo-
rithm, describes how the effect of noise is mitigated, and
illustrates its experimental performance.

II. EXPERIMENTAL SETUP

The experimental setups used in this work are small (2.5
and 3.5-m?) kites on a short (35 m), fixed-length line, sensed
and actuated from the ground by a mechanized station. This
small-scale setup has the advantage of providing a relatively
controlled environment, while retaining many of the properties
of the much larger kites used in commercial settings, which
typically use line lengths of 50-500 m and kite sizes of 10-
300 m2.! Firstly, short lines experience negligible line drag
during crosswind flight. This allows the kite’s position to be
quite precisely measured (to within several cm) using line
angles, and the attitude and the steering deflection to be
precisely controlled. Secondly, short lines keep the kite close
to the ground, that is, where the wind speed and direction are

'The Reynolds number of both a 3-m? kite and a scaled-up 300-m? kite
in crosswind flight ensures turbulent flow [25], thus there are unlikely to be
significant differences between their aerodynamic properties, and hence their
behavior.
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left steering-line

Fig. 1. The 2.5-m? Flysurfer Viron power kite used in this study.

right steering-line
left steering-line
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Fig. 2. The ground station.

measured. Hence, the small-scale system provides a controlled
environment for validating modeling hypotheses and control
strategies.

A. Physical System

The kites employed, one of which is shown in Figure 1, have
the characteristics of standard power kites. Two commercial
power kites were used: A 2.5-m? Flysurfer Viron and a 3.5-
m? HQ Apex. Both are three-line® kites; one front line takes
about 90% of the force generated by the kite, the two lightly-
tensioned rear lines allow the kite to be maneuvered. There are
two degrees of freedom to operate the kite: (i) adjusting the
difference between the lengths of the rear lines allows the kite
to be steered left or right, and (ii) adjusting the length of both
rear lines relative to the front line allows some control over
the kite’s velocity by changing its angle-of-attack to the on-
rushing air. In this article, only the steering degree of freedom
is adjusted automatically - the rear line lengths vary, but the

2This type of kite is often termed a 4-line kite also, as there are 4 attachment
points on the kite. However, the two front lines join together, and there are
only 3 attachment points on the control bar.

sum of their lengths is constant. The length of the front line
is maintained constant throughout each experiment.

The geometry of the ground station, shown in Figure 2, has
an important impact on the experiments. The lines coming
from the kite are led through three small eyes placed closely
together. This ensures that, as the kite moves around, and
hence the angle of the lines changes, the relative lengths of the
lines will not vary. The front line is attached to a load cell that
measures the line tension. The angle of the front line between
the station and the kite is measured by a 1-m long light carbon-
fiber rod with a small ring at the end, through which the front
line passes. The angle of the rod, from which the line angle can
be inferred, is measured by rotary encoders. The rear (steering)
lines are wound in opposite directions around a reel, which is
turned by a responsive and powerful servomotor. Following a
change in the reference position, the motor has a settling time
of about 30 ms in moderate winds. Rotating the reel shortens
one line, while lengthening the other, achieving a steering
effect. A high-precision ultrasonic anemometer mounted on a
3-m pole measures the wind speed and direction. The control
algorithm runs in real time on a laptop with a sampling
period of 30 ms. Hence, accurate measurements of the the
kite’s position, the front-line tension and the wind speed and
direction are available at the ground station, where the steering
input is manipulated.

B. Testing Conditions

Wind speed is the most obvious testing condition that influ-
ences the kite’s behavior. It affects the speed of the kite, the
line tension it produces, and the kite’s turning characteristics.
Of equal importance, although less obvious, is the short-term
variability of the wind’s speed and direction, i.e. the gustiness
of the wind, which is mostly decided by the ruggedness of the
local terrain.

Tests were performed in locations with very different levels
of gustiness, from (not very gusty) beaches to (very gusty)
mountain ridges and narrow valleys. Very gusty conditions
severely complicate modeling, but on the other hand, con-
trollers should demonstrate robustness to a reasonable level
of gustiness. The majority of the results presented here were
obtained in (medium gusty) flat fields, with no obstructions to
windward for at least 500 meters, using the 3.5 m? HQ Apex
kite. The wind speed was 4-5 m-s—!, which is a gentle breeze.
For any results obtained under different conditions, the wind
speed and kite model are indicated in the figure caption.

III. MODELING

This section focuses on low-state-dimension dynamic mod-
els for flexible power kites. Much progress has been made
in modeling the dynamics of flexible kites during the last
decade [9], [21], [31], [32], [33], [13], [34], [12], [35], [36].
Relatively simple tendency models have between 3 and 10
states, while more complex models aimed at achieving great
precision have up to several hundred states. The complex
models are constructed afresh for each kite geometry, and are
generally used in a simulation environment to validate control
strategies. For the purposes of this article, tendency models are
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Fig. 3. Spherical coordinate system for the kite position. The x axis is aligned
with the horizontal wind component, while the z-axis is vertical and points
upwards. ¢ is the angle between the kite’s position projected onto the z-y
plane and the z axis. ¥ is the angle between the kite’s position and the x axis.
The origin is at the point where the kite tether enters the ground station.

more useful, since they incorporate general characteristics that
are reproduced by most flexible power kites and, through their
simplicity, allow interesting insights into the kite’s dynamic
behavior. The two tendency models that are typically used
for controller design and path optimization are the well-
established point-mass model [9], [16], and that proposed by
[5], henceforth referred to as the Erhard Model. Both models
are general enough to apply to both ram-air kites and tube
kites. If appropriate parameters are used, both models will
predict qualitatively similar behavior. However, the Erhard
Model is simpler and more intuitive, as it has only two
aerodynamic parameters that can be calculated for a real
system using straightforward experiments. It has also been
successfully used to design a control algorithm for very large,
commercial kites. Hence, as one of the simplest and best-
validated flexible kite models, the Erhard Model is the starting
point for understanding the experimental system in this paper.
First, the coordinate system that will be used throughout the
paper is defined. Next, the Erhard Model is described, and
from this a second model based on the kite’s velocity angle
is derived. Finally, an addition to the turning law is derived
from experimental data.

A. Coordinate System

The right-hand inertial frame used is depicted in Figure 3.
As in [5], the spherical co-ordinates are judiciously chosen
such that the polar angle, ¥, is measured from the axis aligned
with the wind direction - this renders some expressions in
the dynamic equations more concise, as the kite’s behavior is
symmetric about this axis (if, as we shall see is the case, the
effect of gravity is neglected). The kite’s position in Cartesian
coordinates is given by:

cosv
p=r |sindsing|
sin ¥ cos ¢

(IIL1)

where r is the (constant) length of the kite’s tether, and ¥ and
 are spherical coordinates for the kite’s position.

The path-following control algorithm presented in this
article uses the kite’s position represented as a projection
onto the {N,W?} plane shown in Figure 3. The plane is

defined by the two orthogonal vectors ey = [O 1 0] T and

éy = [—sind 0 cos ﬁ]T, which are tangent to the sphere
upon which the kite can move at the point {¢, o} = {J,0}.
The value of ¥J, which decides the region in which the {N, W}
plane is a good approximation of the sphere, is not fixed; it is
chosen to suit the reference path to be followed.

Finally, we will also define the wind model employed in
this work. A number of different wind-shear models exist to
describe the variation of wind speed with altitude. We use the
power law [3], which is one of the most common. The wind
speed at the kite’s current altitude, w, is given by:

w = wref(z/zref)aa (II1.2)

where a is the surface friction coefficient, wy.r is the reference
wind speed at the reference altitude z,ef, and z is the Kkite
altitude.

B. Erhard Model

The Erhard Model [5] is surprisingly compact and yet
encompasses the aspects of basic kite dynamics that are
important for crosswind control. The important simplifying
assumption made by the basic Erhard Model (the authors also
proposed extensions that account for gravity [33]) is that both
gravity and the kite’s inertia are negligible?. For flexible kites,
which are extremely light, this is a reasonable assumption
during crosswind flight, during which the aerodynamic forces
are typically at least one order of magnitude greater than
gravitational and inertial forces. This reduces the number of
states compared with the point-mass model, as the differential
model equations then contain no acceleration terms. The
dynamic equations for the model are:

§ = Lap <cos¢ _ tanﬁ) : (I11.3)
r FE
G =22 _giny) (I11.4)
. rsind
Y = Wapgsd + pcos v, (IIL.5)

where 1 is the kite orientation, g is the turning constant, and
E is the kite’s lift-to-drag ratio. The steering deflection, 6, is
the system’s manipulated variable. w,;, is the magnitude of
the apparent wind projected onto the plane that is normal to
P, and is given by:

Wap = WE cos ¥. (I11.6)

Finally, the line tension is given by*:

3
1 1\?
T= <2pAw2> E? (1 + E2> cos? 9. (IIL7)

Hence, using only three states representing position and orien-
tation, the Erhard Model describes the kite’s velocity, turning
behavior and line tension.

31t could be argued that the empirical steering law accounts for the
kite’s rotational inertia, however inertial forces due to linear acceleration are
certainly neglected.

4This expression assumes the kite operates with a lift coefficient of 1,
which is only approximately true. However, the assumption only introduces
a proportional error that does not affect the algorithms in this article.
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C. Cart Model

The Erhard Model is remarkably straightforward, but it can
be cast into an even simpler form that is more useful when
sensors are not mounted on the kite. We named this the Cart
Model in [29], due to its resemblance to a simple cart-like
mobile robot. A similar model was presented by [37], who call
it a Unicycle Model. The difference between our presentation
and that in [37] is that we derive the Cart Model from the
Erhard Model, which clarifies the simplifying assumptions.
Also, the model obtained in this way is more detailed, as
explicit expressions for the kite’s speed and steering dynamics
are obtained.

The main idea is to use an alternative state variable, the
velocity angle, which was introduced and used for kite control
by [16], [18]. While the kite’s position is generally measured
on all experimental systems, an accurate measurement of
the kite’s orientation, the third state in the Erhard Model,
is not always available. This is certainly the case for our
experimental setup, which has no Inertial Measurement Unit
on the kite. Luckily, while the kite’s orientation is no doubt
a useful measurement in any situation, it is not essential
for control during crosswind flight, during which the kite is
moving rapidly, and the aim is to control the kite’s direction
of motion rather than its orientation. The velocity angle is the
angle the kite’s velocity projected onto the plane that is tangent
to the sphere at the kite’s current position, measured with
respect to the sphere’s meridian at that point (line of equal
azimuthal angle). It has been shown that during crosswind
flight, the kite’s orientation is approximately the same as
its velocity angle, with the advantage of the velocity angle
being that it can be inferred from a sequence of position
measurements.

The key assumption for deriving the following Cart Model
from the Erhard Model is that the kite flies crosswind, which
occurs when the lines of the kite do not make a large angle
with the wind vector, i.e. when 22 ~ 1. Importantly,
during crosswind flight, the speed of the kite is always greater
than the wind speed. We begin by introducing the velocity
angle as defined by [16], adapting it to our co-ordinate system.
Geometrically, it is defined as the angle the kite’s velocity
vector, p, makes with the following (position dependant)
reference vector %. This can be concisely expressed as:

4 (psind
=tan" ! | ——— ).
! < J )

Developing the expression for the velocity angle (using
Equations III.3 and III.4) gives:

(IIL.8)

v = tan~! (%) . (IILY)
cosyp — =
As % << 1 in crosswind flight, it follows that:
v~ —h. (I11.10)

In other words, the equations above show that the kite flies
crosswind in roughly the same direction as it is pointing. This
was already noted by [16], [18], where it is called the low
sideslip, or drift, assumption. Next, we examine the kite’s

speed ||p|| when traveling crosswind (we recall that p is
the kite’s position in x, ¥y, z coordinates, defined by Equation
III.1). The kite’s speed relative to the tether length (i.e. in
rad - s71) is:

Wy 1= @ = \/(gbsinﬁ)z + (19)2

Next, inserting the differential Equations II1.3 and II1.4 gives:

2
wg= \/(_w:p sint/))2 + (w:p <cosw - ta;ﬁ))

(IIL11)

tan ) *
— Yap \/(sinw)2 + (cosw - ) : (IM1.12)
T E
Finally, as % << 1 in crosswind flight:
Wi Yap _ Y B cos . (1I1.13)
r r

Hence, during crosswind flight, the kite’s speed approximately
depends only on the position, and not the orientation, of the
kite. Similarly to the above equation, several authors have
shown or observed that during crosswind flight, the kite’s
velocity is approximately equal to the apparent wind negated
(e.g., in [16], [18]). Using the definition of v from Equation
(II1.8) and the expression for the kite’s angular velocity from
Equation (III.11), the Cart Model for the kite reads:

¥ = wy cos 7, (II1.14)
. Wk .
= ——siny, (IIL.15)
sin ¥
g = — (wkrgsd + ¢ cos V), (111.16)
we = L Ecosd. (1L.17)
T

These dynamics are the same as those of a very simple (non-
holonomic) mobile robot (or a ‘cart’) driving on a sphere,
with affine steering dynamics. The control of such a system
on a flat surface has already been treated in the robotics
literature, see for example [38]. If unlimited steering action is
assumed, any path can be achieved, but in reality the steering
deflection is bounded. Note that, if £ is assumed to be constant
(which, as we shall see, is reasonable if the model is to be
used to design steering controllers, but not for tether-force
optimization), the input required to follow any smooth path can
be easily computed, although it may not satisfy the maximum
steering-deflection constraint. This compact model is simple
enough that the values of the free parameters can easily be
identified experimentally, yet it will nonetheless allow good
control performance during crosswind flight to be achieved.

D. Experimental Characterization of the Kite’s Turning Be-
havior

At this point, it is important to see how this model compares
to actual experimental data. It will be seen that two additional
characteristics of the kite’s turning behavior must be accounted
for. Let the corrected turning rate be defined as:

Fe = + ¢eos . (IIL.18)
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Fig. 4. The scaled steering input, gs § (dashed), with g5 = 1.1 rad-m~2,

and —:—& (solid), while the kite flies regular figure-of-eights. Kite: 2.5 m?
Flysurfer Viron, wind speed: 10-15 m-s—1.

Injecting Equation (III.18) into Equation (III.16) leads to the
following proportional relationship:

e

wkTr

= gs0. (I11.19)
The constant g5 can be estimated from experimental data, as
shown in Figure 4, by finding the value of g5 that results
in the two signals overlaying each other. Clearly, —J—kr is
only approximately proportional to the steering input §. More
important, there is a significant delay between a change in
the steering deflection and the resulting change in the turning
rate. Note that this delay occurs at the level of the kite and
the lines, as all software and actuation delays inherent in the
ground station have already been accounted for in Figure 4.
Although not well understood from a modeling perspective,
the delay is most likely due to the rotational inertia of the
kite and the flexibility of both the lines and the kite itself.
This significant delay is a very important aspect of the kite’s
behavior, and the manner in which it is dealt with will largely
affect the control performance.

The second experimentally observable phenomenon is the
effect of turning on the line tension. An optimizing control
strategy for a kite will generally aim to maximize some
function of the line tension, for example the component of
the line tension in a particular direction for vehicle traction.
The Erhard Model (and hence the Cart Model) predicts that
the line tension and the kite’s speed simply depend on the
angle between the tether and the wind, ¢, if F is assumed
constant. As we shall see, this assumption is not always true,
it is certainly a reasonable approximation if the model is used
for directional control of the kite, where subtle variations in the
kite’s speed and the line tension are of secondary importance.
However, for optimization, such variations in the line tension
are of primal importance. During experiments, it was observed
that steering deflections cause a significant reduction in tether
tension. This is particularly noticeable for very large steering
deflections, which will almost cause the kite to stall, drastically
reducing the apparent wind speed, and hence the tether tension.
In [30], we proposed to link steering deflections to a reduction
in the lift-to-drag ratio using the following empirical law:

E = Ey — ¢6°, (I11.20)

LB
- [ —~o°_: : :
~

B 26t I

S \\

= v O

5 24 : : N :

60 : : : N © :

S 22 °\

3 : : : : <

s N
6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Fig. 5. The lift-to-drag ratio vs. the magnitude of the steering-deflection set-
point, estimated from experimental data using Equation (III.21) (circles), and
then fitted to these points according to Equation (II1.20) (dashed). Kite: 2.5
m?2 Flysurfer Viron, wind speed: 7-10 m-s—!

where ¢ is a constant that determines how much the kite’s
lift-to-drag ratio is penalized for a steering deflection. The
basic idea is that the two mechanisms by which flexible kites
steer, banking and introducing twist along the wing, tend to
decrease the kite’s effective lift-to-drag ratio, which affects
the tether tension. This effect was observed by [39] as part of
a very comprehensive aerodynamic simulation study. Both of
these effects can be modeled as a decrease in E that depends
on the steering deflection §. A quadratic dependence was
chosen, as it is symmetric with respect to § (which makes
sense, as kites are symmetric, and so should behave identically
whether they are steered to the left or to the right) and it fits
the experimental data reasonably well, as we will now show.
So-called ‘bang-bang’ experiments were carried out, during
which the magnitude of the input was maintained constant,
while an operator commuted the sign (steering direction)
between positive and negative (left and right) to keep the kite
flying crosswind. Based on Equation (III.6), the value of F
corresponding to each value of |6| was then estimated as:

¢
1 /‘ _wap dt.
tr —to Jy, Wcos?

where w is the average measured wind speed between ty and
t¢, multiplied by the wind-shear factor of 1.35. According to
the wind-shear model from Equation III.2 (and using a = 0.15,
which corresponds to grassy terrain [3]), it can be expected
that the wind speed at 20 m height is about 35 % greater than
that measured at 3 m height. w,;, is determined according to
its definition from the apparent wind vector, and the apparent
wind vector is given by (wZ — p). A good estimate of p
could be obtained based on the differences between successive
position measurements. For each value of ||, a time period
te—to of at least 1 minute (corresponding to more than 30 turns
of the kite) was used. The resulting values, along with the fitted
curve for I/, are shown in Figure 5. Figure 6 shows the how
the law compares with time-series test data. The instantaneous
value of E is estimated as:

E(t) =

E(|d]) = (II1.21)

_Wap (I11.22)
w cos V¥

where w is the measured wind speed, multiplied by the wind
shear factor used above. It can be seen that the steering-penalty
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Fig. 6. The instantaneous lift-to-drag ratio for the Apex kite during (au-
tonomous) figure-of-eights. Solid: E estimated from the kite’s speed according
to Equation (II1.22), dashed: E obtained using the steering-penalty law from
Equation (II1.20) and the parameters in Table 1.

TABLE I
AERODYNAMIC MODEL PARAMETERS FOR THE KITES USED.

Parameter | Unit Flysurfer Viron | HQ Apex
A m? 2.5 3.5
Js rad - m—2 1.1 0.9
c m~—2 2.61 12.8
Eo - 2.73 4.7

law in Equation (II.20) matches the data reasonably well.
There is a notable lag, which we believe can be attributed to
the kite’s inertia. It can be seen that for both kites large steering
deflections result in a reduction of over 30% in the lift-to-drag
ratio, which results in a reduction in line tension of over 50%.
Incorporating this steering-penalty law into the model when
performing path optimization was key to obtaining meaningful
results.

Aerodynamic parameters for the experimental system, esti-
mated during experiments with wind speeds of 7-15 m-s~! and
4-5 m-s~! for the Viron and Apex kites respectively, are given
in Table 1. The values of these parameters are only indicative
as they were obtained for specific conditions. Although we
cannot currently model this precisely, the kite behavior was
qualitatively observed to change with wind speed. It is partly
for this reason that the control and optimization schemes used
in this article and presented next neither rely on a precise
model, nor require re-estimation of the model parameters for
different wind conditions.

IV. PATH-FOLLOWING CONTROL

The control strategy was chosen by comparing a number of
different approaches and by building upon the work of other
researchers [5], [16], [18]. The novelty is that a) we use posi-
tion measurements only, b) we use delay compensation, which
in our case dramatically improves closed-loop performance,
and c) we adapt a path-following approach from the robotics
litterature to the case of following variable-curvature paths on
a sphere. Using the Cart Model, the path-following cascade
control loop shown in Figure 7 can be constructed. Firstly, the

missing state, the velocity angle, is estimated from the kite’s
measured position. This is described in Section IV-A. Next,
an “adaptive prediction” block advances the measurements
forward in time to counteract the inevitable time delays
inherent in the system. These include the delay introduced by
the velocity estimation technique, the computational delay, the
delay introduced by filters, the actuator response delay and the
aforementioned steering delay of the kite of Section III-D. The
adaptive prediction block acts in exactly the opposite manner
to a time delay by taking the current position measurement
and the estimated velocity angle and integrating an adaptive
model of the kite forward in time to predict the future values
of these states. The adaptive prediction algorithm has been
published in a separate article [40] and will not be detailed
here. Note that delay is a clear problem for kite control [18],
and other compensation approaches have also recently been
proposed [37], [41].

The guidance strategy block uses a geometric algorithm
to produce a reference velocity angle such that the kite will
follow the reference path {9, (), ¢, (-)}. The guidance strategy
is described in Section IV-B. This reference path is itself
periodically updated by the RTO algorithm to be described
in Section V. A low-level proportional controller tracks the
velocity-angle setpoint. Section IV-C shows the impact of
delay compensation on this control loop during experiments.
Finally, results following different paths are presented in
Section IV-D.

A. Velocity-Angle Estimation

At the sampling instant n, an estimate of the kite’s velocity
vector, Vv, is obtained by simply fitting a velocity vector to
a number of previous position estimates p[n — 2d], ..., p[n].
This is achieved by solving the following least-squares prob-
lem:

2d
{v, a} = arg {{Inin} Z l(a—jTsv) — pln — j]||27 (Iv.1)
; a =0

where a, a byproduct of the computation, is an additional
(and unused as it will tend to be biased) estimate of the kite’s
current position (and so is approximately equal to p). Solving
this problem fits a line in 3-D space to the last 2d + 1 position
estimates, and the velocity vector associated with the fit is V.
This is simpler than using a Kalman Filter, while remaining
quite robust. On the other hand, this approach introduces an
artificial delay of d sampling periods into the control loop, as
it finds the kite’s velocity vector d sampling periods in the
past.

B. Guidance Algorithm

This section develops a geometric ‘“vector-field” path-
following controller for kites. This type of controller is popular
in the unmanned-aerial-vehicle (UAV) community, where it
was primarily developed to follow circular and straight-line
paths (or composites of these) [42]. Here, it is adapted to
follow arbitrary smooth paths (including paths that intersect
themselves). Firstly, the controller aims to control the position
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Fig. 7. The path-following cascade control loop.

Fig. 8. Path-following controller. Illustration of the kite’s position relative
to the reference path (all projected onto the { N, W} plane shown in Figure
3). b is the kite’s position, and by (l1) and by (l2) are the two points on the
path at which the path’s tangent is perpendicular to the line joining the kite
position to that point.

of the kite on the { N, W} plane, as defined in Section III-B.
Recall that this plane is tangent to the sphere upon which the
kite can move, at the point {1J,0}. As the paths of interest
are horizontally lying figures-of-eight, this point is chosen as
the intersection point of the figure-of-eight reference path, i.e.
the reference path’s center. The utility of this plane is that it
is a local approximation to the sphere that allows the path-
following problem to be considered on a flat 2-D surface. The
kite’s position on the { N, W} plane is defined as:

—sind 0 cosd

01 o (IV.2)

b=Tp, with T:[

The kite’s velocity in {z,y, z} coordinates is given by:

K —sind 0
p=rC [ . . 19} , with C = |cos¥sing cosp | .(IV.3)
psi cospcosty —singp

Next, using Equations (III.14) and (III.15), a relationship
between v and the kite’s velocity vector projected onto the
{N, W} plane can be obtained:

- 0 . ] _ cos 7y
b =rTC Lb sin 19} , with Lb sin 19] = wyk {sin ’Y} , IV.4)

where we recall that w is the kite’s speed in rad-s~!. We
define the kite’s velocity angle on the {N, W} plane as:

(= /b = tan~! <bW> .
by

The reference path (on the {N, W} plane) is denoted b,(I),
where [ is the path length. The points on the path at which the

IV.5)

path’s tangent is perpendicular to the kite position are b, (I;).
The angle of the path at each point is denoted as:

Ob,

li )
a1 ()
while the vector pointing from the kite to each point is:

" =b.(l;) = b.

(=2

Iv.6)

IV.7)

A desired velocity angle corresponding to each point is
obtained with the classic vector-field law [42]:

. B
. ) d? ) Ob,
G=cite, (Lj') « sgn (z <d1 > <zi))>

’b

«Q 88121” (Z’i)a

where the entry velocity angle ¢, and the coefficient § > 1
are tuning parameters. The final term is a new (at least in the
context of the vector-field controller) curvature-compensation
term that helps the controller follow a curved path. The
curvature of the path indicates the rate of change of the
path’s angle (direction). Thanks to the curvature compensation
(which can be varied by adjusting «), the controller anticipates
curves in the path. Finally, the reference velocity angle is
selected as the ¢! that is closest to the kite’s current velocity
angle:

n (IV.8)

Cr: (Zirv

The reference velocity angle in {N, W} coordinates can be
translated back into a reference signal for the velocity-angle
control loop by inverting Equation IV.4:

7 = tan* (1‘2) , with x = (TC) ™" {

r

iy = argmin  |¢ — (3. (Iv.9)

cos (;
sin Cr] . (IV.10)

C. Velocity-Angle Control

We will show next that for the velocity angle, a simple
proportional controller yields good performance, provided
delay is compensated for. Firstly, note that the final term in
Equation (III.16) is generally relatively small, meaning that
the velocity-angle dynamics are approximately those of an
integrator. Hence, a proportional controller can be expected to
yield good performance. Moreover, a fixed gain is sufficient
as, according to this equation, the responsiveness to the control
input is proportional to the kite’s speed. The performance
during an experiment with adaptive prediction is shown in
Figure 9. The small assymetry in the tracking is probably due
to a slight misalignment of the reference trajectory with the
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Fig. 9. Performance of the velocity-angle control loop during autonomous
figure-of-eights with adaptive prediction: the reference signal ;- (¢) (dashed),
and the controlled variable 4(t + d) (solid).

wind vector. The considerably worse performance obtained
during an experiment without adaptive prediction is shown
in Fig. 10. The oscillations around the reference signal are
typical of proportional control applied to a first-order system
with significant time delay. In our case, there is a total delay
of about 260 ms, during which the kite can travel up to 10
m, with a horizontal width of the entire reference path being
potentially limited to 15 m. A very important peculiarity of
path-following control can be observed, namely, oscillations
of the controlled variable cause oscillations of the reference
signal. This is because the reference signal depends on the
kite’s position. These variations in the reference signal are
likely to cause further oscillations in the controlled variable,
as the poorly performing controller tries to track them. The
overall effect is poor path following and, for this reason,
it was found that the response of the velocity control loop
must absolutely not overshoot or oscillate. Hence, it was
best to choose a conservative value (i.e. a low one) for the
proportional gain. A corollary is that it is not sufficient to study
the stability properties of the velocity-angle control loop alone.
Even if the velocity-angle control loop is theoretically stable,
time variation of the reference signal, which the velocity-angle
control loop itself may cause, can still result in oscillations
of increasing amplitude around the reference path. In this
work, no attempt was made to analyze the theoretical stability
properties of the entire path-following controller.

D. Results

The tracking of different reference paths is shown in Figures
11, 12 and 13. Each of these graphs represents 10 minutes
of experimental data, during which the kite flies roughly 150
loops. It can be seen that the controller is very consistent,
that is, the path followed by the kite is very similar from
one loop to the next. The path followed by the kite is not
exactly the reference path, and there is a small but consistent
offset between the two. This is because the vector-field control
law is heuristic. It is essentially a path-following equivalent of
a proportional-derivative (PD) controller. Hence, while it can
be tuned to provide good and robust performance, it will not
provide exact path-following.

velocity angle (rad)
=

6820 6825 6830

time (s)

6835

Fig. 10. Performance of the velocity-angle control loop during autonomous
figure-of-eights without adaptive prediction: the reference signal ~r(t)
(dashed), and the controlled variable 4(t) (solid). Kite: 2.5 m? Flysurfer
Viron, wind speed: 6-8 m-s~1.

The primary weakness of the controller is very light winds.
In very light winds (less than 2 m-s™!), the kites becomes
prone to stalling during turns. This can be explained by the
reduction in lift-to-drag ratio caused by a steering deflection
(Equation II1.20). Once the kite slows considerably, the as-
sumption of crosswind flight no longer holds. The consequence
is that the proportional relationship linking the change in
velocity angle to the steering deflection no longer holds (the
behavior of the kite becomes very complex during a stall), so
the velocity angle control loop ceases to function correctly,
and control of the kite’s movement is lost. If the kite picks up
enough speed again before coming too close to the ground, the
algorithm may recover control, otherwise the kite will crash.
An experienced human operator using manual controls is far
superior in these winds, as they will adjust the kite’s angle of
attack to avoid such stalls.

Heavy winds, in theory, present no apparent issues for this
type of controller, assuming material failures do not occur due
to the higher line forces and the sampling rate is fast enough
to handle the faster dynamics. This was our observation when
testing the ancestors of this algorithm in strong winds, when
we were able to achieve autonomous flight in winds of up
to 15 m-s~! with algorithms we believe were inferior to the
one presented in this article. However, the exact algorithm
presented in this paper was tested in light to moderate winds.

V. OPTIMIZATION OF THE KITE’S EFFICIENCY

The previous section was about ensuring that the kite’s
autonomous flight is predictable and robust to wind variations.
It is also desirable that the kite should fly as efficiently as
possible, which is the focus of this section. In this work the
average line tension, that is how much the kite “pulls”, is
used as a measure of efficiency. This is closely related to
the efficiency measures for electricity-generating kites or for
ship-towing kites. In theory, once a model of the kite and
the wind is available, numerical optimization can be used
to compute the optimal reference path that yields maximal
efficiency. However, this approach is difficult in practice, as
the models at our disposal are relatively inaccurate. In addition,
due to changing wind conditions, the optimal reference path



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. ?, NO. ?, JULY 2016 10

30

g 20

N 10

-10 0

y (m)

_30 -20

z (m)

Fig. 11. The kite’s position (dots) during 10 minutes of autonomous flight,
tracking the high, narrow reference path shown in red. The kite is restrained
to flying on the gray quarter sphere.

Fig. 12. The kite’s position (dots) during 10 minutes of autonomous flight,
tracking the low, narrow reference path shown in red.
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Fig. 13. The kite’s position (dots) during 10 minutes of autonomous flight,
tracking the low, wide reference path shown in red.

may vary over time. The solution adopted here is to implement
a real-time optimization (RTO) layer that adjusts the reference
path in order to maximize efficiency. The RTO algorithm uses
a combination of numerical optimization and recently obtained
measurements. This feedback component ensures robustness to
modeling errors, control errors and disturbances. The reference
path is parametrized with a finite number of parameters, which
are the decision variables of the RTO layer.

A. RTO using Modifier Adaptation (MA)

A RTO method called Modifier Adaptation (MA) is used.
This method was initially developed to address the negative
effect of modeling inaccuracies on the results of numerical
optimization for multivariable industrial processes [43]. With
MA the decision variables (RTO inputs), u are iteratively
adjusted in order to minimize a cost (or maximize a profit
function), ¢;,, while respecting operational constraints: g, <
0. Although ¢, and g, are quantities that are measurable,
which the user defines as functions of measured outputs of the
system, the functions mapping u to ¢, and g, are generally
not perfectly known (this would require perfect knowledge
of the system). Instead, an imperfect model can be used to
define model-based cost and constraint functions: ¢(u, ) and
g(u, ), which depends on model parameters 6. This gives a
model-based optimization problem, which is essentially used
as a starting point for MA:

u*(0) = argmin  ¢(u, 0)

subject to  g(u,0) <O0. (V.1)

Solving this model-based optimization problem with the best
available estimated (nominal) values of the parameters, 6,
yields u*(6p), which usually will not be optimal for the
real system. Thus, MA proposes to modify the aforemen-
tioned model-based optimization at each iteration by adding
measurement-based modifications to ¢(u, 8) and g(u, ). The
main advantage of MA lies in its ability to converge to
the true plant optimum, despite parametric uncertainty and
disturbances (e.g. wrong values of 6) and structural plant-
model mismatch (i.e. structural differences between ¢ and
¢p and/or g and g,)), provided some fairly relaxed adequacy
conditions are met. This is made possible by the fact that
the modifications of ¢(u,0) and g(u,0) are affine-in-input,
with the corresponding slopes being the differences between
the estimated (from measured data) and modeled cost and
constraint gradients. Full details regarding the theoretical prop-
erties, the initialization and the tuning of the specific algorithm
used for the experimental optimization in this article can be
found in [29], [44]. Estimating the gradients of the plant cost
and constraint functions typically requires a certain amount of
‘exploration’ (zig-zagging around in the RTO input space), and
this effort increases with the number of RTO inputs. For this
reason, it is desirable to chose as few RTO inputs as possible
in order to favor more rapid convergence. This is particularly
relevant when optimizing a continuous path (which is our
case), as arbitrarily many decision variables could be chosen.

B. MA for Kite Path Planning

In this work, the aim is to maximize the average line tension,
and so the measured cost is defined as:

=T, (V.2)

where T is the average line tension measured during Navg
cycles following the (periodic) reference path. The only op-
erational constraint is that the kite must fly above a certain
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minimum altitude, 2y, and so the measured plant constraint
is defined as:

gp ‘= Zmin — 2L, (V3)

where 21, is the lowest altitude attained by the kite during N,y
cycles. The decision variables u must also be defined in terms
of both nature and number. This is a critical choice since too
many degrees of freedom will increase the exploration load,
while the primary objective is to optimize the performance.
In this work, the inputs are chosen as the parameters that
determine the height and the curvature of the reference path.
The reference path is parametrized by u = [u; uso] in the
following manner:

][] - 28] o ). oo

where {97(1), ¥¥(1)} is the nominal optimal reference path
calculated using the model with the parameters from Table
L AYu(l), Apu(l) and Avc(l), Apc(l) are variations that
cause raising and widening of the reference path, respectively.
The influence of these variations is shown in Figures 14 and
15. This particular choice of u is based on a mathematical
sensitivity analysis with respect to the model uncertainty, the
full details of which are given in [29]. Note that allowing the
RTO layer to adjust the reference path in this way allows the
generation of many different “figures-of-eight” and, from the
practical point of view, can be justified as follows:

o The height of the trajectory can be adjusted to suit the
wind shear.
o The curvature (or the width) of the trajectory can be
adapted to suit the kite’s turning behavior.
Finally, the model-based cost function ¢(u) is deduced from
the Cart Model developed in Section III-C. This function
returns the line tension that is theoretically obtained if the
reference path defined by u is exactly followed. The RTO
block diagram is given in Figure 16.
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Fig. 14. Reference path for different values of

{=0.2,-0.1,0,0.1,0.2}, with ug = 0.
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C. Reducing the Effect of Noise

It is important to characterize the noise affecting the mea-
sured cost and constraints. The estimation of experimental
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Fig. 15. Reference path for different values of w9

{=0.2,-0.1,0,0.1,0.2}, with u; = 0.

gradients can be very badly affected by high-frequency noise,
which in turn can lead to unreasonable optimized inputs. The
average line tension and the minimum altitude per path cycle
are shown in Figure 17, while the kite followed the same
reference path for 6 minutes. The minimum height is relatively
consistent, with variations of mostly +1 m, illustrating the
consistency of the path-following controller. However, the
average line tension is extremely variable, ranging from 60
kg to 120 kg, that is, with up to 35 % noise. This would
be considered extreme noise in the RTO literature. This
noise is not induced by variable controller performance, as
the kite follows almost exactly the same path during each
cycle. Rather, the noise is caused by wind variations. The
wind speed measured at the ground station during the same
experiment is shown in Figure 18. The measured wind speed
varies significantly over time, and there is a rough correlation
between the variations in the measured wind speed and the line
tension. High-frequency variations in the wind direction also
affect the line tension. The path is centered with respect to the
average wind direction (the x-axis in Figure 3 is continually
realigned with the average measured wind direction over the
past 15 minutes). However, the measured wind direction can
easily veer by up to 15 degrees for shorter periods. In theory,
the measured wind speed and direction could probably be used
to scale the average measured line tension in order to reduce
the ‘noise’. However, in this work, a simpler approach was
adopted.

The simple solution to dealing with noise is to partially
remove it via averaging. The effect of averaging the line
tension over N,,, = 7 path cycles is apparent in Figure 19.
This reduces the noise to a manageable (if still quite high)
level. The expense of this is that the RTO algorithm only
iterates every 7 path cycles, and thus proceeds more slowly.

D. RTO Results

The RTO algorithm’s performance was tested over several
days of experiments. Depending on the conditions, the attained
optimal reference path was quite different. For example, in
light winds, the path tended to be much wider (large values of
u9) than in stronger winds. This makes practical sense as the
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Fig. 16. RTO block diagram.
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Fig. 19. No averaging (dashed with crosses), averaging over Nayg = 7 path
cycles (solid with circles). During this experiment, the kite followed a constant
reference path.

kite becomes far more sluggish and unresponsive to steering
at low wind speeds; hence, only gently curving paths can
1 be followed efficiently. However, in order to verify that the
1 RTO algorithm performs correctly, it is useful to test it many
times under near-identical conditions, namely, with constant
wind speed and constant controller parameters. Unfortunately,
meeting the first condition is complicated by the ever-changing
200 - o0 0 00 o 00 - 100 Wind conditions, Nonetheless, at one point, several hours of
t (s) continuous experiments were carried out in relatively constant
wind conditions without any adjustments being made to the
experimental setup, and these results are presented next.

Tension (kg)

Fig. 17. The kite’s altitude and the measured line tension during 6 minutes
following a constant reference path (blue). The minimum attained altitude and ] ) ] ] )
the average line tension per path cycle (black). Figure 20 shows the line tension and the kite’s altitude

during 30 minutes of autonomous flight. During the first 7
minutes (13 iterations) and the last 5 minutes (10 iterations),
the kite follows a constant reference path that is rather high
and narrow, resulting in a low average line tension, about 80
kg. The RTO algorithm markedly improved the average line
tension, increasing it to about 135 kg, during the intermediate
22 minutes that are depicted with a grey-shaded area on
Figure 20. The decision variables during this experiment are
shown in Figure 21. The zig-zagging behavior is in part
caused by the MA algorithm exciting the process in order
to estimate experimental gradients (exploration), and in part
due to the effect of wind-induced noise. The RTO algorithm
is constrained to taking small steps, which introduces a certain
robustness to noise. Although it zig-zags, it on average it
50 100 150 200 250 300 350 400 moves towards the plant optimum.
t(s) Next, in order to verify that the RTO algorithm does
Fig. 18. The wind speed measured at the ground station during the experiment mdeeq converge to a nelghl?orhOOd of the plant optimum, .an
shown in Figure 17 (blue), and the average wind speed per reference-path ~ €xperimental study was carried out to see how the average line
cycle (black dots). tension varies with respect to the path followed by the kite.
This consisted of measuring the average line tension over 10
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Fig. 20. Performance of the MA algorithm with Navg = 7. Each circle is the
average/minimum value for the tension/altitude during Navg path cycles. The
dotted line indicates the minimum height constraint. The RTO algorithm was
activated during the shaded iterations. The total experiment lasted 29 minutes,
and the RTO algorithm was active for 17 minutes.
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Fig. 21. The decision variables, uy (dashed), and w2 (solid) during the
experiment shown in Figure 20.

minutes while repetitively following a single reference path.
This was repeated for 9 different paths. Next, the average line
tension that would be obtained for paths between those that
were measured was inferred by interpolating between the mea-
sured average tensions using a piecewise-cubic interpolation
algorithm. The resulting surface is shown in Figure 22. Note
that the average measured wind speed was relatively constant
during the entire experimental study. Also, it was carried out
immediately after the experiment shown in Figure 20, and
the conditions were essentially the same. It can be observed
that the maximum attainable average line tension is about
130-140 kg. It is interesting to note that the nominal optimal
solution that was calculated using the model, corresponding to
u; = ug = 0, results in an average line tension of about 115
kg. Hence, relying only on model-based optimization would
have resulted in an optimality loss of about 15-20% in this
case. Figure 23 superimposes the MA algorithm’s path on
this contour. It is readily seen that, despite the zig-zagging
behavior, the algorithm converges to the neighborhood of the
plant optimum.

A note on the line-tension magnitude: some readers may be
surprised that a 3.5 m? kite can produce such large line tension
in a gentle breeze, however the experimental values displayed
here do actually agree with the theory. Firstly, the HQ Apex
kite is a high-performance Rame-air kite. As is typical of Ram-
air kites, the bridle keeps the wing quite flat, and so for its
area it produces more line tension than a typical kite-surfing
LEI (Leading Edge Inflatible) kite, which are used in some
of the existing experimental studies. From experimental flight
data, we estimate the HQ Apex has a lift-to-drag ratio (Ej
value) of about 4.7. Secondly, the wind speed measurements
in this article are for a height of 3 m above the ground,
not at the kite’s height. According to the wind-shear model
from Equation III.2 (and using a = 0.15, which corresponds
to grassy terrain [3]), it can be expected that the wind speed at
20 m above the ground is about 35 % greater. Finally, given the
air temperature of about 0 °C during the tests for which line-
tension is shown, the air density was relatively high, probably
about 1.3 kg-m3. Inserting these values into Equation IIL.7,
with a measured wind speed of 4.5 m-s~!, when the kite is 20
m above the ground, directly downwind, and with no steering
deflection, we can expect a line tension of 1332 Newtons.

VI. DISCUSSION AND CONCLUSIONS

The two-layer control and optimization algorithm for kites
described in this paper was designed for, and implemented
on, a particular experimental setup. However, we believe that
a number of useful conclusions can be drawn regarding the
control and optimization of kite-power systems in general.

Firstly, while additional measurements are certainly use-
ful, good path-following control (of a kite flying roughly
crosswind) can be achieved using only measurements of the
kite’s position. However, delay must be either eliminated or
compensated for as, due to the kite’s speed, even a small delay
can cause oscillations around the reference path.

Secondly, the average line tension varies significantly de-
pending on the path followed by the kite, to the extent that
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Fig. 22. Contour plot of the average line tension in kg (shading) per figure-of-
eight vs. u. At each of the data points (circles), the average line tension during
10 minutes of experimental data was recorded. The surface was estimated by
performing a piecewise-cubic interpolation of these data points.
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Fig. 23. Contour plot of the attainable average line tension, as shown in
Figure 22. The path taken by the MA algorithm is in red, with the green dot
being the initial point.

serious attention should be given to the kite’s path if efficiency
is to be maximized. It is questionable whether model-based
optimization alone can calculate an efficient path. Indeed,
in this study, using the model’s optimal path would have
resulted in a 15-20% lower average line tension compared to
the plant optimal path, despite calibrating the model (albeit
at quite different wind speeds) using experimental data. It
is true that online parameter estimation might reduce this
optimality gap somewhat, however designing an estimator
that can effectively cope with unmodeled behavior and the
nonlinear dynamic model is not at all trivial. It is also true
that a relatively simplistic model was used, yet more complex
models, although they would certainly lead to a smaller loss
in average line tension, may not be practical for two main
reasons: (i) they are often too computationally demanding
for path optimization, and (ii) they cannot easily account for
changes in wind conditions. The solution presented here is to
use RTO to constantly update the reference path in order to
continuously react to wind and system variations.

How do the algorithms described here apply to the main
commercial situations? Currently, there exist many different

systems, and the methods described in this paper are more
suited to some than to others.

e Modeling: In terms of dynamic modeling, the approach
in this paper is suitable for flexible power kites. It does
not assume any particular kite geometry or size, and it is
equally applicable to a 3-m? or 300-m? kite. As it is a
very intuitive and simple model, it can easily be modified
to take into account effects such as nonlinear steering
dynamics, a variable angle-of-attack or a varying tether
length. More accurate detailed models of flexible kites
have yet to reach maturity and in the meantime simple
tendency models such as this should be preferred. Rigid
kites, on the other hand, can benefit from the much more
advanced modeling techniques available from classical
flight dynamics.

o Control: The path-following controller is, in theory, ap-
plicable to any power kite flying in crosswind mode, with
some modification. Our approach of estimating the kite’s
position from line angles is only accurate for short lines.
Tethers in excess of 100 m curve in an unpredictable
manner, under the effect of gravity, the tether inertia, and
aerodynamic drag. In this case, the kites position and
velocity must be estimated using other methods (typically
using a strapdown Inertial Measurement Unit and Global
Navigation Satellite System). Dead time (delay in the
feedback loop) may increase for a larger system, due
to tether sag and communication times. This may be a
problem, as the dynamics of the velocity angle remain
the same. Our controller, using the delay compensation
algorithm, could handle a delay of 250 ms in the feedback
loop, but it could probably not tolerate much more.
Luckily with a larger setup, the distances involved are
much larger, and it will usually be acceptable to stray
further from the reference path. Therefore, the controller
can be tuned such that it is less aggressive and will
tolerate more delay. Nonetheless, for very long tether
lengths, it is probable that the kite must be actuated by an
airborne actuation system to avoid a prohibitive delay. In
any case, the low-level velocity-angle controller should
be designed and tuned on a system-to-system basis, as
different kites can have different steering behavior and
mechanisms. The geometric guidance algorithm, on the
other hand, is not influenced by scale and could be
applied to almost any kind of power-kite system.

o Real-time optimization: The RTO algorithm is readily
applicable to ship-towing and fixed-length tether cross-
wind electricity generation, but would need to be sig-
nificantly extended to handle pumping-cycle electricity
generation. The MA framework itself is very general and
has also been applied to a variety of chemical processes.
However, the particular formulation of the optimization
problem (the choice of the cost and constraint functions
and of the decision variables) must be adapted to each
specific problem. For example, in this paper we focused
on line-tension maximization, but for a powerful system
operating in strong winds, it may sometimes be more
important to keep line-tension below a safe limit. Max-
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imization of thrust (the component of line tension in a
desired direction) for ship-towing is very similar to the
maximization of line tension dealt with in this article.
Only a minor change would need to be made to the
definition of the cost function and the same decision
variables (width and height of the reference path) could
be used. The center point of the reference path would
be determined by the direction of travel, and when this
makes a significant angle with the apparent wind, it
might be useful to introduce a further decision variable
to represent the asymmetry of the figure-of-eight path.
In fixed-length-tether crosswind kite power with turbines
on the wing, instantaneous electricity production is al-
most proportional to tether tension, and so the optimiza-
tion algorithm from this paper could be applied with
little modification. The reference path should be centered
directly downwind, either using wind measurements or
using the approach described in [28].

Pumping-cycle electricity generation is unfortunately a
little trickier to deal with, as due to the variation in
the tether length, each figure-of-eight will be subject to
wind at different altitudes. The cost function could be
the average electricity produced over an entire pumping
cycle, and the decision variables could be the height and
width relative to the tether length and either the tether
tension or the tether reel-out speed.

Many additions and improvements to this work could be
envisaged. In terms of modeling, the law linking a decrease
in the lift-to-drag ratio with steering deflections should be
more comprehensively validated on a number of kites in
varying wind conditions, as we cannot currently guarantee
that the relationship is generally valid. In terms of control,
if increased path-following accuracy is required, there is no
doubt that a well-designed feed-forward signal could improve
the velocity control loop. As the reference path is repetitive,
another promising option would be to use run-to-run control,
such as iterative learning control [45]. The guidance algorithm
could be generalized to motion on a sphere using geodesic
distances and angles, following the approach in [15]. At the
expense of some mathematical abstraction, this framework is
advantageous as it does not approximate the quarter-sphere
upon which the kite flies using a plane, which results in a
certain distortion.

Perhaps the most promising avenue is pitch control, using
the kite’s second degree of freedom. Up until now, controller
development has focused on the “steering” input, which is
usually the difference between the lengths of the rear lines.
However, the kite’s pitch angle relative to the lines can also
be adjusted, usually by changing the length of the front line
relative to that of the rear lines. This additional degree of
freedom is typically used for manual kite control; it directly
influences the kite’s angle of attack, which has a strong
effect on the line tension, the kite’s speed, and the kite’s
turning behavior. A first step in exploiting this degree of
freedom would be to establish experimentally validated models
describing the influence of the kite’s angle of attack, which are
currently not available.

In terms of real-time optimization, this study has really only

scratched the surface and there is much room for improvement
Wind measurements could certainly be used beneficially. If the
influence of wind speed and direction on the line tension can
be computed using a model, and subtracted from the observed
variations, then the line-tension variations due to path changes
alone can be more easily detected. At the optimisation level,
noise was dealt with using a very basic averaging approach in
this study - a far more efficient way to reduce noise would be
to use a properly designed low-pass filter.
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