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In many nonlinear control problems, the plant can be accurately described by a linear model whose operating point depends on
some measurable variables, called scheduling signals. When such a linear parameter-varying (LPV) model of the open-loop plant
needs to be derived from a set of data, several issues arise in terms of parameterization, estimation, and validation of the model
before designing the controller. Moreover, the way modeling errors affect the closed-loop performance is still largely unknown in the
LPV context. In this paper, a direct data-driven control method is proposed to design LPV controllers directly from data without
deriving a model of the plant. The main idea of the approach is to use a hierarchical control architecture, where the inner controller
is designed to match a simple and a-priori specified closed-loop behavior. Then, an outer model predictive controller is synthesized
to handle input/output constraints and to enhance the performance of the inner loop. The effectiveness of the approach is illustrated
by means of a simulation and an experimental example. Practical implementation issues are also discussed.

Index Terms—Data-driven control, Linear parameter-varying systems, Constrained control, Model predictive control.

I. INTRODUCTION

Linear parameter-varying (LPV) modeling represents an

effective tool to describe many nonlinear time-varying systems

using linear input-output (IO) maps, wherein changes of

an exogenous measurable variable, called scheduling signal,

accounts for nonlinear behavior and time dependency [1].

Using standard robust and gain-scheduling techniques for

linear systems, it has been shown that simple and effective

controllers can be devised for such complex systems [2].

However, most LPV control design techniques rely on the

availability of an accurate physical model of the plant. The

effect on the controller of modeling errors between the LPV

model and the physical plant is often unpredictable, so that

the resulting closed-loop performance might be severely jeop-

ardized. Moreover, even in those applications where gathering

data to identify and validate a model of the plant is not costly

nor time-consuming, finding a mathematical LPV description

of the plant which is good for control design purposes is

not an easy task. In fact, when deriving a model of the

plant, one always trades off between accuracy and complexity,

and, most of the times, is not able to decide a priori how

accurate the model should be to achieved a desired closed-

loop performance.

Furthermore, low complexity models of LPV systems are

more efficiently derived using input-output model structures

[3], [1], [4], which allow to extend Linear Time-Invariant

(LTI) prediction-error methods to the LPV framework avoiding

the curse of dimensionality present in the identification of

state-space LPV models [5], [6]. On the other hand, most

of the control design methods are based on a state-space

representation of the system (except some recent works, e.g.

[7], [8]) and minimal state-space realization of complex IO

models is difficult to accomplish [1]. These problems show

that LPV control of nonlinear time-varying models has a
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great potential, but also suffers from some substantial practical

limitations, mostly related to modeling issues.

Recently, a data-driven method has been proposed for

directly designing LPV controllers from data, thus avoiding

to parametrize, identify and transform an LPV model of the

system [9]. This approach sounds appealing and shows many

interesting features (e.g., the controller parameters are given

by explicit formulas depending on the data points, the mapping

with respect to the scheduling signal does not need to be

defined a-priori, etc.). However, in some applications this

approach cannot be considered as a competitor of other state-

of-the-art LPV design techniques, in that signal constraints

cannot be taken into account. Furthermore, being a model-

reference design method, it requires the desired closed-loop

model to be defined, and the choice of an adequate (i.e.,

practically achievable) reference model without knowing the

process dynamics may not be easy. These are well-known and

open problems in the direct data-driven control literature, both

in the LPV and in the LTI framework [10].

In this paper, we propose an extension of the data-driven

control design method in [9]. The controller is split into

two components, organized in a hierarchical fashion: an in-

ner controller, which accounts for matching a given simple

reference model, and an outer model predictive controller

acting as a reference governor [11], aiming at enhancing the

closed-loop performance and ensure that the constraints are

not violated. The main rationale behind this architecture is

that the reference model for the inner loop is chosen only to

reduce model complexity and uncertainty, but it is decoupled

from the desired closed-loop behavior, which is instead taken

care of by the outer part of the controller. Hence, the problem

of finding a good reference model becomes less critical than

in [9] and low-order controller structures can be selected

for the identification of the lower-level control law from

data. Then, the outer model-based controller manipulates the

reference signal in such a way that the constraints on input
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(rate and magnitude) and output are fulfilled and closed-loop

performance increased, without complicating the data-driven

design procedure. We will show that also the whole control

design procedure does not depend on the plant knowledge,

according to the direct data-driven philosophy of the method.

To the best of the authors’ knowledge, this is the first work

addressing the problem of handling constraints in direct data-

driven control design.

The effectiveness of the hierarchical control architecture

is illustrated by means of two examples: (i) the simulation

case study of [9], which best allows us to underline the

differences between the proposed method and that of [9]; (ii)

an experimental case study concerning the control of an RC

circuit with switching load, so as to test the performance of

the method when dealing with real-world data.

The paper is organized as follows. In Section II, the control

problem is formally stated and the additional requirements

with respect to [9] are discussed in detail. The hierarchical

architecture of the proposed approach is introduced in Sec-

tion III, while Sections IV and V discuss the design of the

inner and the outer controller, respectively. In the above two

sections, methodological details but also practical implemen-

tation hints are provided. Finally, the two case studies are

illustrated in Section VI.

II. PROBLEM STATEMENT

Let the output signal y(t) ∈ R, t ∈ Z, be generated

by an unknown single-input single-output (SISO) system Gp,

driven by the manipulated input u(t) ∈ R, a measured

exogenous signal p(t) ∈ P ⊆ R
np , and an unmeasured

disturbance w(t) ∈ R
nw . From now on, we assume np = 1

to keep the notation simple. The system Gp is assumed to

be bounded-input bounded-output (BIBO) stable according

to the definition in [9]. Assume that a collection of data

DN = {u(k), y(k), p(k); k ∈ IN
1 }, IN

1 = {1, . . . , N}
generated by the system Gp is available.

We aim at synthesizing a controller such that any user-

defined (admissible) reference signal can be accurately tracked

by the output, without possibly violating the following con-

straints on inputs and outputs:

umin ≤ u(t) ≤ umax, ∆umin ≤ u(t)− u(t− 1) ≤ ∆umax,

(1a)

ymin ≤ y(t) ≤ ymax, (1b)

∀t ∈ Z, t ≥ 0. (1c)

Notice that the (magnitude and rate) constraints on the in-

put are generally imposed by actuator limitations, while the

constraints on the output might reflect, for instance, perfor-

mance specifications or safety conditions. Considering such

constraints is therefore of primary importance for many critical

engineering applications.

Rather than attempting at deriving a model of the open-loop

plant Gp, we aim at designing a tracking controller directly

from the available data set DN .

III. A HIERARCHICAL APPROACH

The proposed control design approach relies on the hier-

archical (two degrees of freedom) architecture illustrated in

Fig. 1, which integrates:

• an inner LPV controller Kp(θ) described by:

AK(p, t, q−1, θ)u(t) = BK(p, t, q−1, θ)(g(t)− y(t)),
(2)

where

AK(p, t, q−1, θ) = 1 +

naK
∑

i=1

aKi (p, t, θ)q−i, (3)

BK(p, t, q−1, θ) =

nbK
∑

i=0

bKi (p, t, θ)q−i. (4)

The dynamical order of the LPV controller Kp(θ), de-

fined by the parameters naK and nbK
, is a-priori specified

by the user, while aKi (p, t, θ) and bKi (p, t, θ) are nonlinear

(possibly dynamic) functions of the scheduling variable

sequence p and depend on the design parameter vector θ.

The inner controller is designed to achieve a desired LPV

(or LTI) closed-loop behavior Mp, a-priori specified by

the user and described by the state-space model

xM (t+ 1) = ĀM (p, t)xM (t) + B̄M (p, t)g(t),
yd(t) = C̄M (p, t)xM (t),

(5)

where yd denotes the desired closed-loop output for a

given reference signal g. The controller parameters θ

achieving the chosen reference model Mp, as well as

the functional dependence on p, are estimated directly

from the training data set DN , without first identifying a

model for the plant Gp. Such a data-driven procedure for

LPV control design was originally introduced in [9], and

it will be reviewed in Section IV.

• an outer LPV model predictive control (MPC) block,

designed based on the desired LPV closed-loop model

Mp. The MPC controller selects, on-line and according

to a receding horizon strategy, the optimal reference

supplied to the inner closed-loop system in order to fulfill

the constraints (1), thus acting as a reference governor.

Besides constraint fulfillment, the outer MPC allows one

to enhance the performance of the inner closed-loop

system modeled by Mp.

We will show that the hierarchical structure is an effective

choice to solve the direct data-driven constrained LPV control

problem. As a matter of fact, on the one hand, the approach

in [9] suffers from the drawback that it is difficult to establish

whether the selected reference model Mp is achievable since

the plant is unknown. Moreover, there is no way to take the

constraints into account. On the other hand, the MPC-based

controller alone would need an accurate model of the plant

to control, thus a system model should be parameterized,

identified and validated.

By merging the two controllers together in the above

hierarchical fashion, one can choose a low-demanding (e.g.,

with slow dynamics and low damping factor) inner closed-loop

behavior Mp, which is known to be easily achievable by the
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Gp

p(t)

Kp

g(t)

−

w(t)

y(t)u(t)e(t)

Mp

MPC
r(t)

Fig. 1. The proposed hierarchical control architecture: the inner controller Kp

provides minimal tracking capabilities for the unconstrained LPV system Gp,
whereas the outer MPC controller enhances the performance and guarantees
that the constraints are not violated. Kp is designed from data so that the
dynamics of the inner loop is accurately described by Mp.

inner LPV controller Kp(θ) (for this, only a rough knowledge

of the process dynamics is required). The tasks of optimizing

the closed-loop performance and fulfilling the input/output

constraints are then left to the outer MPC-based controller,

which can be designed based on the (known) closed-loop

dynamics Mp.

IV. INNER CONTROLLER DESIGN

The main ideas behind the direct data-driven approach

introduced in [9] and employed in this work to design the

inner LPV controller Kp(θ) are briefly recalled here for self-

consistency of the paper. The design of the outer MPC-based

controller is instead discussed in Section V.

Based on the available training data set DN , the objective

is to design a LPV controller Kp(θ) achieving a desired

closed-loop behavior Mp a-priori specified by the user and

described by the state-space equations (5). Unlike [9], no

specific requirement on the performance of the (inner) closed-

loop behaviour Mp is needed, as the outer MPC will handle

the performance requirements. The only assumption that needs

to be satisfied by Mp is that such a behavior is practically

achievable. Note that this assumption is barely satisfied when a

closed-loop Mp with high performance (e.g., systems exhibit-

ing a high bandwidth and a low overshoot) is chosen. In other

words, the chosen LPV controller parametrization might not

be flexible enough to directly achieve the desired closed-loop

behavior. It is then advisable to impose a low-performance

closed-loop behaviour Mp.

Remark 1 The above observation can be further clarified

by considering a simple LTI example. Consider a model

matching problem for a non-minimum phase plant, in which

the reference model does not contain the non-minimum phase

zeroes of the plant. If the desired bandwidth is high, it is well

known that the optimal controller will be likely to destabilize

the system in closed-loop [12]. However, a reference model

with a lower bandwidth could still be achieved, as far as the

non-minimum phase zeroes are left beyond the desired cut-off

frequency.

In the following, the operator M(p, t, q−1) will be used

as a shorthand form to indicate the mapping of g to yd via

the reference model Mp. Formally, M is such that yd(t) =

M(p, t, q−1)g(t) for all trajectories of p and g. Further, we

define the left inverse of M(p, t, q−1) as the LPV mapping

M †(p, t, q−1) that gives g as output when fed by yd, for any

trajectory of p, i.e., M †(p, t, q−1)M(p, t, q−1) = 1.1

Let ε = yd − y be the error between the desired and actual

output in response to g. According to Fig. 2, we have

g(t)=M †(p, t, q−1)yd(t)=M †(p, t, q−1)(ε(t)+y(t)), (6a)

and

AK(p, t, θ)u(t) = BK(p, t, θ)(g(t)− y(t)), (6b)

∀t ∈ IN
1 . Thus, the controller parameters θ are computed by

minimizing the 2-norm of the error ε subject to (6b) and (6a),

i.e.,

min
θ,ε

∑N

k=1 ε
2(k)

s.t. AK(p(k), k, θ)u(k)=BK(p(k), k, θ)
(

M †(p(k), k)ε(k)
+M †(p(k), k)y(k) − y(k)

)

(7)

where {u(k), y(k), p(k)} ∈ DN . Notice that problem (7) is a

purely (non-convex) data-based problem, independent of Gp.

By introducing the residual

εu(θ, t) = BK(p(t), t, θ)M †(p(t), t)ε(t) =

= AK(p(t), t, θ)u(t)−BK(p(t), t, θ)(M †(p(t), t)y(t)− y(t)),
(8)

an (approximate) solution of the nonconvex problem (7) can

be computed, by solving the least-squares problem:

min
θ

1

γ
‖θ‖2 +

1

N

N
∑

k=1

|AK(p(k), k, θ)u(k)

−BK(p(k), k, θ)
(

M †(p(k), k)y(k)− y(k)
)∣

∣

2
, (9)

{u(k), y(k), p(k)} ∈ DN , where γ > 0 is a regularization

parameter. However, since the residuals εu(θ, t) are not white

the final estimate of the least-squares problem (9) is not con-

sistent (i.e., the final estimate θ is not guaranteed to converge

to the optimal parameters solving the original problem (7)) and

the bias can be not negligible in case of noise w(t) with large

variance. According to [9], in order to overcome this problem,

the following slight modification of problem (9), based on

instrumental-variables, can be solved instead of (9):

min
θ,εu

1

γ
‖θ‖2 +

1

N2

∥

∥

∥

∥

∥

N
∑

k=1

z(k)εu(θ, k)

∥

∥

∥

∥

∥

2

, (10)

{u(t), y(t), p(t)} ∈ DN , where z(t) is the so-called instru-

ment, chosen by the user so that z(t) is not correlated with

the noise w(t). In [9], it is shown that, in the case w(t) is

zero-mean and the output y(t) depends linearly on w(t) (e.g.,

w(t) is a measurement noise), the final estimate provided by

(10) converges to the solution of problem (7).

In the case the controller p-dependent coefficient functions

aKi (p, t, θ) and bKi (p, t, θ) in (3) and (4) are parametrized as a

linear combination of known basis functions of p, problems (9)

and (10) are parametric quadratic programming problems. In

1For reference maps given in the state-space form (5), the left inverse
M†(p, t, q−1) can be computed as indicated in [9].
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the case the dependence of aKi (p, t, θ) and bKi (p, t, θ) on p

is not a-priori specified, the dual version of (10) can be for-

mulated and the kernel-based approaches described in [9] can

be used to compute a nonparametric estimate of the controller

coefficients aKi (p, t, θ) and bKi (p, t, θ). When Gaussian kernels

are used, only the hyper-parameter σ, representing the width

of the kernels κ(t, j) = e
(p(t)−p(j))2

σ is specified by the user.

It is worth mentioning that, it might happen that a part of

the control action is a-priori specified, e.g. one may want to

include an integrator. The easiest way to enforce a certain

control action Kfixed
p is to process the output data with such

a (known) filter, before using the filtered data to identify the

remaining part of the controller.

V. OUTER CONTROLLER DESIGN

The outer MPC controller, acting as a reference governor,

is designed based on the equivalent single-input two-output

model M′
p depicted Fig. 2, where the dynamics of the inner

closed-loop system are now described by the (known) model

Mp. The augmented LPV model M′
p thus describes the rela-

tionship between g(t) and u(t), y(t). Within this framework,

the role of the inner LPV controller Kp(θ) is to transform

the behaviour of the unknown plant Gp into that of a known,

usually simpler, and a-priori specified LPV model Mp.

Consider the following, not-necessarily minimal, state-space

realization of M′
p







ξ(t+ 1) = AM (p(t))ξ(t) +BM (p(t))g(t)
[

y(t)
u(t)

]

= CM (p(t))ξ(t) +

[

0
DM (p(t))

]

g(t),

(11)

where the matrices AM (p(t)), BM (p(t)), CM (p(t)) and

DM (p(t)) can be easily derived from the description of the

reference model Mp (eq. (5)) and the inner controller Kp (eq.

(2)).

Based on the prediction model (11), the outer MPC con-

troller is designed both to impose input/output constraints and

to possibly improve the tracking quality of the reference signal

r. As shown in the equivalent scheme of Fig. 2, only the

reference model Mp and the model of the controller Kp(θ)
are needed to predict the behaviour of u(t) and y(t). Then,

we stress that also in this second step a model of Gp is not

required.

The design method is as follows. By assuming that the state

vector ξ(t) of the inner-loop model Mp is fully accessible or,

alternatively, estimated from measurements of u, y and p, for

example by means of a linear time-varying Kalman filter, at

each time instant t, the reference tracking MPC problem can

be formulated, at each time instant t, as in (12), where Np and

Nu denote the prediction and control horizon, respectively, Qy,

Qu, Q∆u, Qg, Qǫ are nonnegative weights, uref is a desired

input reference (that is typically generated from the output

reference r by means of static optimization), Vy , Vu, V∆u

are positive vectors that are used to soften the constraints, so

that (12) always admits a solution, that can be computed via

Quadratic Programming (QP).

In the MPC formulation (12), the following terms are

penalized: (i) the tracking error between the reference signal

r and the output y; (ii) the tracking error between the input

reference signal uref and the manipulated variable u; (iii) the

increments of the plant input u (the larger the weight Q∆u the

less aggressive the control action); (iv) the error between the

reference signal r and the MPC output g and (v) the violation

of the constraints. From a practical point of view, the goal of

the penalty on g − r is to guarantee that the reference signal

g of the inner closed-loop system does not differ too much

from the reference signal r, so as to avoid to excite unmodeled

(nonlinear) dynamics.

In case p(t+ k) is known at time t for the future Np steps,

we set p(t+k|t) = p(t+k) and call the MPC formulation (12)

Linear Time-Varying MPC (LTV-MPC). In case future values

of p are not known, we set p(t + k|t) ≡ p(t) and call the

formulation Linear Parameter-Varying MPC (LPV-MPC), in

which the prediction model is LTI but depends on p(t), and

therefore the MPC controller itself is LPV. Alternatively, the

LPV MPC scheme in [13] can be used to design a robust LPV

MPC-based controller. In such an approach, the future values

of the scheduling variable are assumed to be uncertain and to

vary within a prescribed polytope.

In case both the nominal closed-loop reference model

Mp and the inner controller Kp are chosen as LTI models,

problem (12) is a more standard (LTI) MPC problem, that has

computational advantages over LTV-MPC and LPV-MPC, in

that the QP problem matrices can be precomputed offline, and

an explicit MPC approach [14], [15] may be viable and reduce

the upper control layer to a piecewise affine function. However,

having M′
p LTI barely happens in practice, in particular when

the behaviour of the true plant Gp is strongly influenced by the

scheduling signal p. In this context, even when the selected

reference model Mp is LTI, a parameter-varying controller

Kp is usually needed to achieve the desired behavior.

VI. CASE STUDIES

The effectiveness of the proposed hierarchical control ap-

proach is shown in this section on two case studies. The

first one is the simulation example (concerning the control

of a servo positioning system) used in [9] to illustrate the

direct data-driven LPV control method. The second case study

is an experimental application addressing the control of the

output voltage in a RC electric circuit with switching load.

These examples show that complex dynamics of quasi-LPV

and switching systems can be dealt with using the approach of

the paper. All computations are carried out on an i7 2.40-GHz

Intel core processor with 4 GB of RAM running MATLAB

R2014b, and the Model Predictive Control Toolbox [16] is

used to design the outer MPC.

A. Simulation case study: the servo positioning system

As a first case study, we consider the control of a voltage-

controlled DC motor with an additional mass mounted on the

rotation disc. In what follows, we show that the hierarchical

control structure in Fig. 1 may significantly improve the

results of [9], besides allowing us to impose constraints on

the input/output signals.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. ??, NO. ?? 5

min
{g(t+k|t)}Nu

k=1

Qy

Np
∑

k=1

(y(t+ k|t)− r(t + k))
2
+Qu

Np
∑

k=1

(u(t+ k|t)− uref(t+ k))
2

+Q∆u

Np
∑

k=1

(u(t+ k|k)− u(t+ k − 1|t))
2
+Qg

Nu
∑

k=1

(r(t + k)− g(t+ k|t))
2
+Qǫǫ

2 (12a)

s.t. ξ(t+ k + 1|t) = AM (p(t+ k|t))ξ(t+ k|t) +BM (p(t+ k|t))g(t+ k|t), k = 0, . . . , Np − 1 (12b)
[

y(t+ k|t)
u(t+ k|t)

]

= CM (p(t+ k|t))ξ(t+ k|t) +

[

0
DM (p(t+ k|t))

]

g(t+ k|t), k = 1, . . . , Np (12c)

− Vyǫ + ymin ≤ y(t+ k|t) ≤ ymax + Vyǫ, k = 1, . . . , Np (12d)

− Vuǫumin ≤ u(t+ k|t) ≤ umax + Vuǫ, k = 1, . . . , Np (12e)

− V∆uǫ +∆umin ≤ u(t+ k|t)− u(t+ k − 1|t) ≤ ∆umax + V∆uǫ, k = 1, . . . , Np (12f)

g(t+Nu + j|t) = g(t+Nu|t), j = 1, . . . , Np −Nu, (12g)

ξ(t|t) = ξ(t), g(t) = g(t|t). (12h)

MpMPC
r(t)

y(t)

−

e(t)

g(t)

Kp u(t)

p(t)

M′
p

Fig. 2. Equivalent single-input two-output LPV model describing the rela-
tionship between the MPC output g(t) and the plant input and output signals.

1) System description

The mathematical model of the DC motor, used to simulate

the behaviour of the system, is represented by the continuous-

time state-space equations





θ̇(τ)
ω̇(τ)

İ(τ)



=







0 1 + sin(θ(τ))
θ(τ) 0

mgl

J

sin(θ(τ))
θ(τ) − b

J
K
J

0 −K
L

−R
L











θ(τ)
ω(τ)
I(τ)





+
[

0 0 1
L

]⊤
V (τ),

y(τ) =
[

1 0 0
]





θ(τ)
ω(τ)
I(τ)



 ,

where V (τ) [V] is the control input voltage over the armature,

I(τ) [mA] is the current, θ(τ) [rad] is the shaft angle and ω(τ)
[rad/s] is the angular velocity of the motor. The nomenclature

of the parameters characterizing the DC motor is reported in

Table I, along with their values used to simulate the behaviour

of the motor. The output signal is observed with a sampling

time Ts = 10 ms.

To gather data, the plant is excited with a discrete-time

filtered zero-mean white noise voltage (followed by a zero-

order hold block) with Gaussian distribution and standard

deviation of 16 V. The input filter is a first order digital filter

with a cutoff frequency of 1.6 Hz. The output measurements

are corrupted by an additive white noise w(τ) with normal

distribution and variance such that the Signal-to-Noise Ratio

TABLE I
PHYSICAL PARAMETERS OF THE DC MOTOR [17]

.
Description Value

R Motor resistance 9.5 Ω
L Motor inductance 0.84·10−3 H

K Motor torque constant 53.6·10−3 Nm/A

J Complete disk inertia 2.2·10−4 Nm2

b Friction coefficient 6.6·10−5 Nms/rad
M Additional mass 0.07 kg
l Mass distance from the center 0.042 m

(SNR) is 43 dB. A second experiment with the same input is

also performed to build the instruments z(k) used in (10).

2) Design of the inner LPV controller Kp

A training data set DN with N = 1500 input/output

measurements is used to identify the inner LPV controller Kp

through the procedure discussed in Section IV. The chosen

reference model Mp is described by the state-space equations:

xM (t+ 1) = 0.99xM (t) + 0.01g(t)
θM (t) = xM (t),

(14)

that is, the desired (inner) closed-loop behaviour Mp is

a simple discrete-time first-order LTI model, with a cutoff

frequency of about 6 Hz.

The structure for the inner controller Kp is given by:

u(t) =

4
∑

i=1

aKi (Π(t))u(t − i) +

4
∑

j=0

bKj (Π(t))eint(t− j)

eint(t) = eint(t− 1) + (g(t)− y(t)) ,

where Π(t) = [p(t − 1) p(t − 2) p(t − 3) p(t − 4)]⊤, and

p(t) = θ(t) = y(t) (i.e., the output signal measurement is

chosen as scheduling variable). The chosen structure for Kp is

a fourth-order LPV controller with integral action and dynamic

dependence on the scheduling signal.

An a-priori parametrization of the coefficient functions

aKi (Π(t)) and bKj (Π(t)) is not specified, and Gaussian kernels

with width σ = 2.4 are used. The hyper-parameter γ in (10)

is set to 64163. The values of γ and the kernel width σ are

found through cross-validation based on a additional set of

500 input/output samples.
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TABLE II
CUT-OFF FREQUENCY OF DIFFERENT REFERENCE MODELS Mp VS MEAN

SQUARE (MS) OF THE DIFFERENCE BETWEEN DESIRED AND ACTUAL

CLOSED-LOOP OUTPUT. THE MS IS NOT REPORTED WHEN THE ACHIEVED

CLOSED-LOOP SYSTEM IS UNSTABLE.

Cut-off
frequency [Hz] 1 3 6 10 20

MS 0.0001 0.0002 0.0300 − −

time
0 5 10 15 20 25

θ
 [

ra
d]

2

2.5

3

3.5

4

4.5
y

g
θ

M

θ

Fig. 3. Example 1: inner loop behaviour. Reference signal g(τ) (red), desired
step response of the shaft angle yd(τ) (solid blue) and actual controlled output
y(τ) (dashed black).

The performance achieved by the controller Kp are tested in

closed-loop for a piecewise constant reference signal g(t). The

response of the (inner) closed-loop system is plotted in Fig. 3,

and compared with the output yd = θM of the desired closed-

loop model Mp (computed for the same reference excitation).

The input voltage u(t) = V (t) provided by the controller Kp

and applied to the motor is plotted in Fig. 4.

Results in Fig. 3 show a good matching between the actual

output y of the closed-loop system and the output yd of the

desired reference model Mp. However, the closed-loop system

exhibits slow dynamics, with a 10-90% rise time of about

3.8 s and a 2%-settling time (defined as the time elapsed by

the output to enter and remain within a 2% error band) of

about 4.9 s. Unfortunately, due to the limited degrees of the

freedom in the controller structure, it has not been possible to

achieve desired reference models Mp with faster dynamics. A

sensitivity analysis with respect to different reference models

Mp is reported in Table II, which shows the cut-off frequen-

cies of different desired reference models Mp vs the mean

squares (MS) of the differences between the desired closed-

loop output yd and the actual closed-loop output y, for the

same reference signal plotted in Fig. 3. Note that, on the one

hand, as the cut-off frequency of the reference model Mp

decreases, the mismatch between desired and actual closed-

loop output decreases, at the price of achieving slower closed-

loop dynamics. On the other hand, for reference models with

a cut-off frequency larger than 10 Hz, the actual closed-loop

output y diverges.

3) Design of the outer MPC

Based on the chosen reference model Mp (which is used

to describe the behaviour of the inner closed-loop system) and

the designed LPV controller Kp, an outer MPC is designed

in order to achieve the following objectives: (i) improve the

performance of the inner loop, in terms of rise time and settling

time; (ii) enforce the following constraint on the input voltage

0 5 10 15 20 25

V
 [

V
]

-5

0

5
u

time [s]
0 5 10 15 20 25

∆
 V

 [
V

]

-2

0

2
∆ u

Fig. 4. Example 1: inner loop behaviour. Plant input V (τ) and input
increments ∆V (tTs) = V (tTs)− V ((t − 1)Ts).

rate: V (tTs)− V ((t− 1)Ts) ≤ 0.2V, t = 1, 2, . . ..
The MPC horizons and the weights defining the MPC cost

function (12) are tuned through closed-loop simulation, by

using the reference model Mp to simulate the behaviour of the

inner closed-loop system. We stress that this design step is very

application-dependent, nevertheless no additional knowledge

about the process Gp is required, being totally based on the

chosen reference closed-loop model Mp. The chosen values

are equal to Np = 10, Nu = 10, Qy = 6.5, Qu = 0,

Q∆u = 0.1 and Qg = 1.

The response of the closed-loop system for the same refer-

ence signal used in Section VI-A2 is plotted in Fig. 5, while

the input voltage applied to the motor is plotted in Fig. 6. For

the sake of comparison, the output of the inner loop achieved

without the proposed hierarchical structure is plotted in Fig.

5. The obtained results show that, although constraints on the

variation of the input voltage are enforced, the hierarchical

MPC structure allows us to achieve a faster reference tracking

than the inner-loop system, with a 10-90% rise time of about

0.7 s (about 5 times smaller than the inner-loop rise time) and

a 2%-settling time of about 1.1 s (about 4 times smaller than

the inner-loop settling time).

The computation time of the MPC layer is 18 ms (including

various MATLAB overheads) on the used i7 Intel processor,

based on the code generated by the Model Predictive Control

Toolbox, which is already in the order of magnitude of the

sampling time Ts = 10 ms. Although computational feasibility

is not the main aim of this case study, it is realistic to assume

that the controller could be implemented in real-time to control

the motor by adopting a fast C implementation of the QP

constructor of problem (12) and QP solver, see the results

in [18].

B. Experimental case study: switching RC circuit

We address the problem of controlling the output voltage

of an RC circuit with switching load. An Arduino UNO board

is used for: (i) measuring the output voltage Vout (namely,

the output y(t)); (ii) generating the input voltage Vin (namely,

the input u(t)) applied to the circuit; (iii) turning on and off

the switch (whose driving signal is the exogenous scheduling

signal p(t)).
All the computations (including those related to inner and

outer control laws) are carried out in MATLAB. The data
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Fig. 5. Example 1: closed-loop behaviour. Reference signal r(τ) (red),
controlled output y(τ) (solid blue), and inner-loop output achieved without
outer MPC (dashed black).
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Fig. 6. Example 1: closed-loop behaviour. Input voltage V (τ) and input
increments ∆V (tTs) = V (tTs)−V ((t−1)Ts), constrained between ±0.2
V (dashed lines).

are transmitted from the Arduino board to MATLAB, and

viceversa, via a serial communication at a rate of 9600 baud.

In order to gather the training data set DN used to identify

the inner control Kp, the following (open-loop) experiment is

performed:

• a piecewise-constant signal is applied as an input voltage

Vin(t) to the electronic circuit;

• an exogenous piecewise-constant Boolean signal s(t)
drives the switch as follows: s(t) = 1 for Switch ON,

and s(t) = 0 for Switch OFF.

• the voltage across the capacitor Vout(t) is measured, at

a sampling time of Ts = 150 ms, with an analog-to-

digital (A/D) converter available on the Arduino board2.

A total of 2000 samples are acquired, corresponding to a

window of 300 s. A second measurement of the voltage

Vout(t) is taken from another A/D converter to build the

instruments.

The signals Vin(t), s(t) and Vout(t) are plotted in Fig. 7.

A new data set with 500 samples is also built for tuning the

hyper-parameters γ and σ via cross-validation.

2The A/D converters available on the Arduino board used in this experiment
have an input rage of 0− 5 V and a resolution of 10 bits.
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Fig. 7. Example 2: open-loop experiment. Input voltage Vin(τ) (top panel);
switch driver signal s(τ) (middle panel); output voltage Vout(τ) (bottom
panel).

1) Inner LPV controller design

The following first-order LTI model is chosen as a reference

model Mp for the inner loop:

xM (t+ 1) = 0.95xM (t) + 0.05g(t)
θM (t) = xM (t).

(15)

A first-order LPV controller Kp with an integral action and

static dependence on the scheduling variable p(t) is used, i.e.,

u(t) = aK1 (p(t− 1))u(t− 1) +

1
∑

j=0

bKj (p(t− 1))eint(t− j)

eint(t) = eint(t− 1) + (g(t)− y(t)) ,

The parameters aK1 , bK1 , bK2 defining the LPV controller Kp

are identified through the procedure discussed in Section IV.

The values of the hyper-parameter γ is 1000, while kernels

width is σ = 1.

2) Design of the outer MPC

As the Arduino micro-controller can only provide voltage

signals within the range 0−5 V, such a constraint on the signal

u(t) = Vin(t) is taken into account while computing the MPC

law for generating g(t). Furthermore, the controlled output

y(t) = Vout(t) is also constrained to belong to the interval

[0, 5] V, representing the input range of the A/D converters

used in Arduino to measure the voltage Vout(t).
The following values of the MPC parameters Np = 3, Nu =

3, Qy = 0.45, Qu = 0Q∆u = 0 and Qg = 0.1 are used. These

parameters are tuned by means of closed-loop simulations,

using the reference model Mp as the model of the inner loop.

The performance of the designed controllers is then tested

by running a closed-loop experiment, with the trajectory of

the switching driver signal s(τ) plotted in Fig. 8 (bottom plot).

The obtained controlled output voltage Vout is shown in Fig. 8

(top plot), along with the desired reference signal r(τ). For

the sake of comparison, Fig. 8 also shows the output voltage

Vout achieved by the inner closed-loop system, for the same

reference, in the absence of the outer MPC. Notice that such
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Fig. 8. Example 2: closed-loop experiment. Top panel: reference signal (red);
controlled output Vout(τ) (solid blue) and inner-loop output achieved without
the outer MPC (dashed black). Bottom panel: switching driver signal s(τ)
during closed-loop experiment.
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Fig. 9. Example 2: closed-loop experiment. Input voltage Vin(τ).

a comparison highlights an evident improvement in terms of

raising time for the system with MPC. The trajectories of the

input signal Vin is plotted in Fig. 9. The obtained results show

that the proposed hierarchical control architecture allows us to

efficiently track piecewise constant desired reference voltages

in an RC circuit also in the presence of disturbance loads, with

faster closed-loop dynamics than the ones achieved by using

only the inner LPV controller. Notice that the sudden change

of the output load causes only a negligible oscillation on the

controlled output voltage Vout (see Fig. 8 at around τ = 90 s

and τ = 320 s).

The CPU time required to compute the MPC law g(t)
at each time instant t ranges between 9 ms and 19 ms,

significantly smaller than the sampling time Ts = 150 ms.

VII. CONCLUSIONS

In this paper, a data-driven method to design feedback

controllers for LPV systems with constraints is discussed. With

respect to the existing works on direct control design available

in the literature, constraints on the input and output signals can

be accounted for and the choice of the reference model is no

longer a critical issue. To show the effectiveness of the method,

we discussed two case studies: the quasi-LPV example in

simulation of [9] and an experimental application with a

switching RC network. In both the cases, the proposed method

shows to be effective and easy to use, and it outperforms

the direct approach of [9]. Future research will deal with: (i)

extension of the proposed approach to multivariable systems;

(ii) efficient on-line implementation of the outer MPC-based

controller; (iii) design of robust controllers to take into account

a possible mismatch between the desired and the actual inner

closed-loop behaviour.
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