
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, JANUARY 20XX 1

Leader-Follower Navigation in Obstacle
Environments While Preserving Connectivity
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Abstract—In this paper, we propose a control method for
leader-follower navigation in obstacle environments while pre-
serving sensing network connectivity without data transmission
between robots. Unlike most connectivity-preserving algorithms,
the control input is determined in such a way as to not only
guarantee connectivity preservation and collision avoidance, but
also to ensure input constraints are not violated at each time
step. We also introduce a simple rule for changing network
topology depending on environments such that some sensing links
are deactivated in order to pass through narrow spaces, while
active links are increased in free spaces to keep the group as
cohesive as possible. The effectiveness of the proposed method is
demonstrated in simulations and experiments.

Index Terms—Leader-follower navigation, connectivity main-
tenance, collision avoidance, obstacle environment, line of sight.

I. INTRODUCTION

The cooperative control of multiple mobile robots has
been intensively studied for potential applications such as
exploration, surveillance, mapping of unknown environments,
and the transport of large objects (see, e.g., [1], [2], and [3] for
an overview). This paper focuses on the fundamental problem
of how to move a group of robots as a whole to a target area.
Specifically, we assume that only one of the robots, called the
leader, knows the path to the target area. Thus, since each robot
in the group has a limited sensing and communication range,
the connectivity of the sensing/communication network must
be preserved in order to avoid leaving some robots behind.
Furthermore, we aim to derive an algorithm without relying
on data transmission between robots, in order to deal with
environments where there is no wireless network available for
such information exchange.

Various methods for controlling multi-agent systems while
preserving network connectivity have been proposed [4]–[24],
as detailed in Section II (see also [25] for an overview).
However, most of the previous methods have had at least one
of the following limitations.

1) An obstacle-free environment is considered [4]-[20].
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2) Data transmission between robots through a wireless
network is required to estimate network connectivity
[4]–[12], [22].

3) It is difficult to explicitly consider input constraints [4]–
[17], [22]–[24].

4) A fixed network topology must be preserved or only
links can be added [13]–[17], [23], [24].

5) Inter robot collision is not considered [18]–[21].
In this paper, we propose a control method for leader-

follower navigation in obstacle environments while preserving
sensing network connectivity without data transmission be-
tween robots. Unlike most connectivity-preserving algorithms,
the control input is determined so as not only to guarantee
connectivity preservation and collision avoidance, but also
to ensure that a given input constraint is not violated at
each time step. Although an input constraint is considered in
the connectivity-preservation algorithm for the leader-follower
navigation proposed in [20], it has limitations in that an
obstacle-free environment is assumed and that collision avoid-
ance is not guaranteed. In obstacle environments, the proposed
method manages control input so as to preserve line-of-sight
(LOS) visibility between neighbors as well as a maximum
distance constraint. We also derive conditions for collision
avoidance not only with robots that are visible at the current
sampling step, but also with those that are not visible, e.g.,
due to an obstacle. Another key issue for leader-follower
navigation in obstacle environments is how to move through
narrow spaces without getting stuck. We introduce a simple
rule to change network topology depending on environments
in such a way that some sensing links are deactivated in order
to pass through narrow spaces while active links are increased
in free spaces to keep the group as cohesive as possible.
Furthermore, unlike many other studies including [20], the
effectiveness of the algorithm is demonstrated not only with
simulations, but also in real robot experiments.

II. RELATED WORKS

In this section, we review previous studies on network
connectivity preservation in multi-agent systems. Although
many control methods have been developed by assuming
network connectivity (see e.g. [26]-[38]), we do not focus on
these in this paper.

Many studies use the Fiedler value [39], which is the
second smallest eigenvalue of the Laplacian matrix of the
graph describing the network, as a metric for overall network



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, JANUARY 20XX 2

connectivity. If the Fiedler value of a graph is positive, the
connectivity of the graph is guaranteed. Some early studies
presented centralized algorithms to increase the Fiedler value
of graphs. Kim and Mesbahi [4] proposed an iterative semidef-
inite programming-based approach to maximizing the Fiedler
value of the graph, while Zavlanos and Papas [5] reported
an artificial potential function-based approach to keeping the
Fiedler value positive.

One way to decentralize such algorithms is to make use of a
decentralized estimation method of the connectivity [6]–[8], in
which each agent estimates the eigenvalues (or eigenvectors)
of the Laplacian matrix using information received from
neighbors. Based on the connectivity estimation, a gradient
controller to maximize the Fiedler value was designed in
[6] and [7], while an artificial potential function to keep the
Fiedler value positive was used in [9], [10], [22].

Although these algorithms based on the Fiedler value are
theoretically sophisticated, it is difficult to apply them to the
control problem described in Section I, since they require
data transmission between robots (or between a central com-
puter and each robot in the centralized algorithms [4], [5]),
through wireless communication to exchange information on
the Laplacian matrix. Another limitation is the difficulty in
explicitly considering an input constraint. Furthermore, poor
estimation of connectivity could lead to violation of network
connectivity. To address this issue, Sabattini et al. [9] proved
the boundedness of estimation errors of the Fiedler value, and
suggested taking an estimation error bound into account in
the design of the artificial potential function. However, it is
not clear how to obtain such an error bound that is not too
conservative to apply to the artificial potential design.

In [11], an auction algorithm was implemented to decide co-
operatively whether or not a link could be deactivated without
violating network connectivity. Zavlanos et al. [12] proposed
a flocking algorithm that achieved velocity synchronization
of agents in a network while preserving connectivity using a
method similar to that in [11]. However, the auction algorithm
required data transmission between robots to share information
on bids from other robots.

On the other hand, network connectivity preservation al-
gorithms without data transmission between robots have also
been studied. In [13]–[17], [23], artificial potential functions
were used to preserve the initial network topology, which
was assumed to be connected. In particular, connectivity
preservation in obstacle environments was considered in [23].
Since these methods do not allow for the deactivation of any
sensing link, it is difficult for robots to pass through narrow
spaces if their initial network topology has many redundant
links to make the group cohesive. Another limitation of these
methods is that it is difficult to explicitly consider an input
constraint. On the other hand, in [18]–[21], a given input
constraint can be explicitly considered in the control design.

In [18], [19], [21], multi-robot rendezvous algorithms while
preserving connectivity are proposed. In particular, obstacle
environments are considered in [21]. With these algorithms,
each robot computes at each time a convex region, called
a constraint set, in which the robot is constrained to move
within this region to preserve sensing links with neighbors.

The robots then move towards the circumcenter of their
constraint set. The amount of movement is determined such
that no given input constraint is violated. However, moving
towards the circumcenter of the constraint set in order to
gather at the same location is not necessarily appropriate
in the leader-follower navigation problem considered here.
Another difference between our proposed control method and
these rendezvous algorithms is that we consider inter-robot
collisions. Thus, we need to consider the problem of how to
deactivate sensing links in order for robots to pass through
narrow spaces without getting stuck; this does not arise if inter-
robot collisions are ignored. Furthermore, our method does not
need to compute a constrained set to determine control inputs,
which results in decreased computation time.

The leader-follower navigation algorithm in [20] decides the
direction of movement using an artificial potential function,
then the amount of movement is determined taking into
account the input constraint and network connectivity. We also
use this basic procedure in our proposed method. However,
[20] did not consider obstacle environments and inter-robot
collisions. To overcome this limitation, we derive additional
constraints on the amount of movement so as to achieve
LOS visibility preservation, obstacle avoidance and inter robot
collision avoidance. Furthermore, as already mentioned, we
introduce a link deactivation rule in order for robots to pass
through narrow spaces without getting stuck.

Panagou and Kumar [24] proposed a leader-follower nav-
igation method in obstacle environments where the network
topology was fixed to a chain formation. As the distance
between robots was controlled to a given constant value, their
multi-robot system can be regarded as a tractor-trailer system.
A limitation of this method is that as the number of robots
grows, the turning radius of the leader must be increased, and
a wider path is required. Furthermore, tracking error from a
target relative position is not guaranteed to converge to zero,
and estimation of the error bound is difficult especially in
the case of multiple followers. If the tracking error is large,
connectivity maintenance and collision avoidance might not
be achieved.

III. PROBLEM SETTING

We consider N robots in a two-dimensional work space with
obstacles. The movement of the ith robot (i = 1, 2, . . . , N ) is
described as the following discrete-time system

xi(k + 1) = xi(k) + ui(k), ‖ui(k)‖ ≤ umax (1)

where xi(k) and ui(k) are the position and control input of
robot i, respectively, at time step k (= 0, 1, . . .). The input
limit umax in (1) is given by taking into account the hardware
limitations and length of the sampling interval. We assume that
a sufficient condition for collision avoidance between robots i
and j is given as follows.

‖xi − xj‖ ≥ dc, ∀j ∈ V \ {i} (2)

where V := {1, 2, . . . , N} is the set of indices of all robots.
Although a robot is modeled as a point in (1), dc in (2) should
be determined by taking into account the size of the actual
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robots. We also assume that a sufficient condition for obstacle
avoidance is given as

‖xi − xo‖ ≥ do, ∀xo ∈ O (3)

where O is a set of all points on obstacles in the workspace.
In order to describe the sensing model, we first define the

line segment joining p and q as

L(p, q) := {(1− λ)p+ λq, ∀λ ∈ [0, 1]}. (4)

Furthermore, we define

Lij(k) := L(xi(k), xj(k)). (5)

Then, we assume that robot i is able to sense the relative
position of robot j ∈ V \ {i}

xji(k) := xj(k)− xi(k) (6)

if the following conditions are satisfied

‖xj − xi‖ ≤ ds (7)
‖q − xo‖ ≥ dl, ∀q ∈ Lij , ∀xo ∈ O. (8)

The condition in (7) implies that the maximum sensing range
is given by a positive number ds. The condition in (8) implies
that the distance from Lij to each obstacle is not less than a
minimum clearance dl, so that the LOS between robots i and
j is not interrupted by obstacles.

It is also assumed that robot i is able to detect a point on
an obstacle xo ∈ O, if

‖xo − xi‖ ≤ ds (9)
‖xo − xi‖ ≤ ‖q − xi‖, ∀q ∈ L̄(xi, xo) ∩ O (10)

where L̄(xi, xo) := {(1 − λ)xi + λxo, ∀λ ≥ 0}. While the
set L(xi, xo) only includes points between xi and xo, the set
L̄(xi, xo) includes points behind xo along the line from xi to
xo, in addition to the points in L(xi, xo). Thus, the condition
in (10) implies that there is no other obstacle point closer to
xi than xo on L(xi, xo). We denote Oi(k) as the set of points
on obstacles detected by robot i at time k.

In terms of the sensing mentioned above, we represent the
network topology of the multi-robot system using a graph
Gs(x(k)) = (V, Es(x(k))) where x = [x1, x2, . . . , xN ]. We
denote V and Es(x(k)) as the node set and edge set, respec-
tively. The elements of Es(x(k)) are pairs of robot indices that
are able to sense each other’s position at time k. The graph Gs

is said to be connected, if for every pair of nodes there exists
a path from one node to the other.

We assume that a target path is given to only one of the N
robots, called the leader, whose index is set as N without
loss of generality. Other robots i (= 1, 2, . . . , N − 1) are
called followers. It is assumed that each follower is not able
to recognize whether or not another robot is the leader. If
Gs is connected, there is a path between the leader and each
follower. Thus, since the maximum length of each link of Gs

is kept to no more than a given finite value ds, each follower
is forced to follow the leader at a certain distance (at most
(N − 1)ds). Furthermore, if the length of the link is kept to
less than ds, the distance between the leader and a follower

can be decreased. Thus in this paper, we aim to preserve the
connectivity of the following subgraph of Gs(x(k)).

Gn(x(k)) := (V, En(x(k))) (11)
En(x(k)) := {(i, j) ∈ Es(x(k)) | ‖xi(k)− xj(k)‖ ≤ dn}

where dc < dn < ds. Then, the set of neighbors of robot i is
defined as

Ni(x(k)) := {j | (i, j) ∈ En(x(k))}. (12)

From the definition of Gn(x(k)), the connectivity of Gs is
preserved if that of Gn(x(k)) is preserved. As clarified in
Theorem 2 in Section IV-C, it is required that

√
d2o + d2n ≤ ds

holds to guarantee the preservation of Gn. In other words,
if dn = ds, i.e., Gn = Gs, it is difficult to guarantee the
preservation of Gs, which is another reason why we introduce
Gn in addition to Gs.

We assume that Gn is connected at the initial time k = 0.
Thus, the simplest way to preserve connectivity is to control
the robots such that the edges of Gn at k = 0 are not lost.
However, in obstacle environments, it is often necessary to
change the network topology appropriately to navigate through
a narrow space. Thus, it is necessary to select edges to be
maintained at each time step, such that the connectivity of
Gn is preserved at the next time step. To describe the edges
to be preserved, we define the symmetric indicator function
σij(k) = σji(k) ∈ {0, 1}. If σij = 1, there will be an effort
to preserve the edge (i, j). In other words, robot i aims to
preserve the link to robot j in the following set

N σ
i (x(k)) := {j ∈ Ni(k) | σij(k) = 1}. (13)

We also define the following subgraph of Gn(x(k))

Gσ(x(k)) := (V, Eσ(x(k))) (14)
Eσ(x(k)) := {(i, j) ∈ En(x(k)) | σij(k) = 1}. (15)

If σij is determined such that Gσ is connected, the connectivity
of Gn is preserved by moving the robots in such a way that
no edge of Gσ is lost.

In this paper, we propose an algorithm to determine ui so
as to preserve the connectivity of Gn, while satisfying the
collision avoidance conditions in (2) and (3). The proposed
method aims to preserve these properties not only at xi(k)
(k = 0, 1, . . .) but also at each point on the line segments
L(xi(k), xi(k + 1)). It is reasonable to consider a path com-
posed of line segments in the sense that a robot described by a
commonly used continuous time model ẋi(t) = ui(t) follows
such a path when the control input ui(t) is fixed between
discrete time steps. Furthermore, the proposed algorithm aims
to determine σij in order to avoid deadlock in narrow spaces,
while increasing active links to keep the group as cohesive as
possible if there are no obstacles around the robots.

Remark 1: In order to keep the notation as simple as possi-
ble, the problem setting in this section and control algorithm
in the next section are described by the global coordinates.
However, for implementation, each robot determines the con-
trol input vector using local coordinates. Global coordinates
such as xi, xj and xo are replaced by local coordinates ixi,
ixj and ixo in the control algorithm, where ixi = 0 since the
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Fig. 1. Conditions for (i, j,m) ∈ T (left) and (i, j,m) ∈ T (right).

origin of robot i’s local frame is located at xi. The control
input iui with respect to the local frame is obtained by the
control algorithm using the local coordinates. By applying iui

to the robot, the global input vector ui =0Ri
iui is applied

in (1), where 0Ri ∈ SO(2) denotes the orientation of robot
i’s local frame with respect to the global frame. Therefore,
the proposed algorithm can be implemented using only local
information.

IV. CONTROL ALGORITHM

The outline of the control algorithm for robot i at time k is
described as follows.

Step 1: According to the sensing information on the relative
position of robot j ∈ Ni, the indicator function σij(k) is
determined, such that Gσ(x(k)) is connected.

Step 2: The direction of the control input vector ui(k) is
determined based on an artificial potential function.

Step 3: The magnitude of ui(k), which guarantees the edge
preservation of Gσ(x(k)) and collision avoidance at each point
on L(xi(k), xi(k + 1)), is determined by taking into account
the given input constraint in (1).

In the following subsections, we describe the details of each
step.

A. Link Deactivation for Navigation in Narrow Spaces

By link deactivation, we mean deciding the edges of Gn

that will not be preserved. More precisely, we obtain the set
Eσ of preserved edges by removing some edges from En. There
are two cases where an edge in En is not included in Eσ . To
describe the first case, the following region is defined for given
xi, xj and xji in (6).

Dij :=
{
q | (q − xi)

Txji > 0, (q − xj)
Txji < 0

}
(16)

as illustrated in Fig. 1 (left). We also define

ϕ(p, q) :=
pTHq

‖Hq‖2
Hq, H :=

[
0 −1
1 0

]
(17)

which is the projection of a vector p to the line orthogonal to
q. Thus, as shown in Fig. 1 (left), ‖ϕ(xmi, xji)‖ is the distance
from xm to the line including xi and xj . Then, we define T
as the set of triples of robots (i, j,m) that satisfies

‖ϕ(xmi, xji)‖ ≤ ddel, xm ∈ Dij , sinαm > 0 (18)
(i, j) ∈ En, (j,m) ∈ En, (m, i) ∈ En (19)

where ddel is a positive constant satisfying

ddel < dc sin
π

3
. (20)

In (18), αm ∈ (−π, π] denotes the angle from the vector
xim to xjm measured in the counter-clockwise direction. The
condition sinαm > 0 implies that the triple vertices in T are
ordered in a counter-clockwise direction, as shown in Fig. 1
(left). Then, robot i does not include the edge (i, j) ∈ En in
Eσ if

(i, j,m) ∈ T or (j, i,m) ∈ T , ∃m ∈ V \ {i, j}. (21)

If the condition in (20) and the collision avoidance condition in
(2) are satisfied, it is guaranteed that the links (j,m) and (m, i)
of the robots (i, j,m) satisfying (21) will not be deactivated,
as shown in Lemma 3 in Appendix A. Therefore, the network
connectivity is preserved at least if N = 3, i.e., if there are no
robots other than (i, j,m). Furthermore, Theorem 1 discusses
connectivity in the case of N > 3. On the other hand, if (20)
is violated, the preservation of connectivity is not guaranteed
even if N = 3. For example, if ddel = dc sin

π
3 , all the links

among the robot triple (i, j,m) will be deactivated, when their
positions constitute an equilateral triangle with edge length dc.

To describe the other case where an edge is removed from
Eσ, we define T as the set of robot triples (i, j,m) that satisfy

‖xij‖ = ‖xjm‖ = dn, ‖xmi‖ = dc, sinαm > 0 (22)

and (19). As illustrated in Fig. 1 (right), a robot triple
(i, j,m) ∈ T forms an isosceles triangle with two edges of
length dn and one edge of length dc. In the edge deletion rule
in this paper, robot i does not include the edge (i, j) ∈ En in
Eσ if

(i, j,m) ∈ T or (j, i,m) ∈ T , ∃m ∈ V \ {i, j}. (23)

In summary, the rule to decide σij is described as follows.

σij(k) =

{
0, if (21) or (23),
1, otherwise.

(24)

This rule is decentralized and does not require data transmis-
sion between robots. We obtain the following result on the
connectivity of Gσ when multiple links are deleted at the same
time by the rule in (24).

Theorem 1: Suppose A1) Gn(x(k)) is connected, A2) all
robots satisfy the collision avoidance conditions in (2)-(3) at
time k, A3) the condition in (20) is satisfied, and A4) π is
not an integer multiple of sin−1(dc/2dn). Then, Gσ(x(k))
obtained by the rule in (24) is connected.

Proof: See Appendix A.
Remark 2: Since the equalities in (22) do not hold exactly

in practice, we instead check if the following inequalities

dn − εn ≤ ‖xij‖ ≤ dn, dn − εn ≤ ‖xjm‖ ≤ dn

dc ≤ ‖xmi‖ ≤ dc + εc

are satisfied for small positive constants εn and εc.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, JANUARY 20XX 5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

z

Φ
co
l (
z
)

Fig. 2. Example of Φcol(z) (dc = 0.3, dr = 0.7, dn = 1.0).

B. Direction of Control Input Vector

For the leader (i = N ), the direction of ui(k), which is
equivalent to the robot’s direction of movement, is given from
the target path in the same way as described in [20]. For the
followers, on the other hand, the direction of the movement is
decided by

vi = −∇xiΨi(x), i ∈ V \ {N} (25)

where Ψi(x) is the artificial potential function defined below.
Note that vi in (25) can be computed using only local infor-
mation, since Ψi(x) depends only on a part of the elements
of x, i.e., xi and xj (j ∈ N σ

i ).
The artificial potential function Ψi(x) is a weighted sum of

Ψcol
i , Ψobs

i , Ψlos
i and Ψcoh

i as follows

Ψi := c1Ψ
col
i + c2Ψ

obs
i + c3Ψ

los
i + c4Ψ

coh
i . (26)

The first component Ψcol
i takes into account the desired value

and constraints on the relative distance to neighbors j ∈ N σ
i .

Artificial potential functions for this purpose are available in
the literature. In this paper, we adopt a similar function to that
in [17], as follows:

Ψcol
i (x) =

∑
j∈Nσ

i

Φcol(‖xi − xj‖) (27)

Φcol(z) :=
(z − dr)

2(dn − z)

(dn − dc)2(z − dc) + (dr − dc)2(dn − z)/κ1

+
(z − dc)(z − dr)

2

(dn − dc)2(dn − z) + (z − dc)(dn − dr)2/κ2

where κ1 and κ2 are design parameters whose values are
equivalent to Φcol(z) at z = dc and z = dn, respectively. Fig. 2
illustrates an example of Φcol(z) for dc = 0.3, dr = 0.7, dn =
1.0, κ1 = κ2 = 10. As shown in this example, Φcol(z) has
the minimum value at the desired relative distance dr, and
monotonically increases as z goes to the maximum allowable
distance dn, or to the minimum allowable distance dc.

The second component Ψobs
i (x) is introduced for obstacle

avoidance. More precisely, Ψobs
i (x) is decided in such a way

that −∇xiΨ
obs
i (x) is in the direction away from the closest

obstacle point detected at time k. Such an obstacle point is
defined as

oobsi = arg min
xo∈Oi(k)

‖xo − xi(k)‖. (28)
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Fig. 3. Example of Φobs(z) (do = 0.1, dor = 0.2).

By using oobsi above, Ψobs
i (x) is described as

Ψobs
i (x) = Φobs(‖xi − oobsi ‖)

Φobs(z) =


1
2

((
z−do

dor−do
+ δ

)−1

− 1
1+δ

)2

, if z < dor

0, otherwise

where dor > do is a design parameter, and δ is a small number
to keep Φobs(z) finite. Fig. 3 presents an example of Φobs(z)
for do = 0.1, dor = 0.2. As shown in this example, Φobs(z)
monotonically increases as z goes from dor to the minimum
allowable distance do to obstacles.

The third component Ψlos
i (x) is decided in such a way that

−∇xiΨ
los
i (x) is in the direction moving away from the closest

point to Lij(k) among the obstacle points in Dij detected at
time k. Such an obstacle point is defined as

olosij = arg min
xo∈Oi∩Dij

‖ϕ(xoi, xji)‖. (29)

We also define

j∗ = arg min
j∈Nσ

i

‖olosij ‖. (30)

By using olosij and j∗ above, Ψlos
i (x) can be described as

Ψlos
i (x) = Φlos(‖ϕ(xi − olosij∗ , xi − xj∗)‖)

Φlos(z) =


1
2

((
z−dl

dlr−dl
+ δ

)−1

− 1
1+δ

)2

, if z < dlr

0 , otherwise.

In the same way as Φobs(z), the value of Φlos(z) monoton-
ically increases as z goes from dlr to the minimum allow-
able distance dl from Lij to obstacles. Thus, the component
−∇Ψlos

i (x) of vi in (25) has the effect of moving Lij away
from its closest obstacle point.

The fourth component Ψcoh
i (x) is introduced to make the

group more cohesive. More precisely, Ψcoh
i (x) is decided such

that −∇xiΨ
coh
i (x) is in the direction of moving closer to
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neighbors whose distance from robot i is more than dn when
there is no obstacle around, i.e.,

Ψcoh
i (x) =

∑
j∈Si

Φcoh(‖xi − xj‖)

Φcoh(z) =

{
1
2 (z − dn)

2 , if ‖z‖ > dn,Oi = ∅
0 , otherwise.

(31)

C. Magnitude of Control Input Vector

In this section, we determine ‖ui(k)‖ (i = 1, . . . , N )
so as to achieve the preservation of Eσ(x(k)) and collision
avoidance. It should be noted that the leader and followers use
the same algorithm to determine ‖ui(k)‖, unlike the direction
of ui(k) in Section IV-B.

As mentioned in Section III, the proposed method aims to
achieve connectivity preservation and collision avoidance not
only at xi(k) for each discrete time k (k = 0, 1, . . .) but also at
each point on the line segment connecting xi(k) and xi(k+1),
i.e., pi ∈ Pi(k) := L(xi(k), xi(k + 1)). To this end, we first
present an upper bound for ‖ui(k)‖ to satisfy the following
conditions.

i) The maximum distance condition for each j ∈ N σ
i (k)

‖pi − pj‖ ≤ dn, ∀pi ∈ Pi(k), ∀pj ∈ Pj(k). (32)

ii) The inter-robot collision avoidance condition for each
j ∈ Si(k)

‖pi − pj‖ ≥ dc, ∀pi ∈ Pi(k), ∀pj ∈ Pj(k). (33)

iii) The obstacle avoidance condition for each xo ∈ Oi(k)

‖pi − xo‖ ≥ do, ∀pi ∈ Pi(k). (34)

iv) The LOS preservation condition for each j ∈ N σ
i (k)

‖q − xo‖ ≥ dl, ∀xo ∈ O, ∀q ∈ L(pi, pj)
∀pi ∈ Pi(k), ∀pj ∈ Pj(k). (35)

Note that the upper bound of ‖ui(k)‖ to satisfy i) is derived
in [20] without taking into account obstacles and collisions,
while our goal here is to guarantee i)-iv) at the same time in
obstacle environments. It also should be noted that conditions
(33)-(34) must be satisfied for any j ∈ V \ {i} and xo ∈ O in
order to avoid collision with any robot or obstacle point. Thus,
we further derive conditions where (33)-(34) are satisfied for
j 6∈ Si and xo 6∈ Oi.

The condition in [20] for ui(k) to satisfy i) is described as
follows.

‖ui(k)‖ ≤ 1

2

(
dn − max

j∈Nib(k)
‖xji(k)‖

)
=: ūcon1

i (k) (36)

‖ui(k)‖2 ≤ min
j∈Nif (k)

{
uT
i (k)xji(k)

}
. (37)

In these conditions, Nib(k) denotes the set of robots j ∈ N σ
i

from which robot i will move away at time k + 1, i.e.,

Nib(k) =
{
j ∈ N σ

i (k)|vTi (k)xji(k) ≤ 0
}

(38)

and Nif (k) denotes the rest of the robots j ∈ N σ
i (k), i.e.,

Nif (k) =
{
j ∈ N σ

i |vTi (k)xji(k) > 0
}
. (39)

Fig. 4. Input bound ūobs
i .

In other words, Nib is the set of robots behind robot i with
respect to the direction of the movement of robot i, while Nif

is the set of robots in front of robot i. Since ui is described
as

ui(k) = ‖ui(k)‖
vi(k)

‖vi(k)‖
(40)

using the vector vi(k) given in Section IV-B, the condition in
(37) can be rewritten as

‖ui(k)‖ ≤ 1

‖vi(k)‖
min

j∈Nif (k)

{
vTi (k)xji(k)

}
=: ūcon2

i (k).

In order to describe a condition for ii), we first decompose
the set of robots Si(k) detected by robot i into the following
two sets

Sib(k) =
{
j ∈ Si(k)| vTi (k)xji(k) ≤ 0

}
(41)

Sif (k) =
{
j ∈ Si(k)| vTi (k)xji(k) > 0

}
. (42)

Using Sif (k), an upper bound for ‖ui(k)‖ is given as

ūcol
i (k) =

1

2

(
min

j∈Sif (k)
‖xji(k)‖ − dc

)
. (43)

An upper bound of ‖ui(k)‖ to satisfy iii) is given as

ūobs
i = max

s≥0
{‖svi‖ | ‖xoi − svi‖ ≥ do, ∀xo ∈ Oi} (44)

where xoi := xo − xi. This upper bound allows robot i to
proceed in the direction of vi, unless the distance to the closest
obstacle point is less than do, as indicated in Fig. 4. It should
be noted that exact maximization on the right-hand side of (44)
is difficult for general obstacle environments. An approximate
value of ūobs

i can be obtained by discretizing s and xo in
(44). Another way is to approximate obstacles by a simple
shape such as circles, for which the maximum in (44) can be
analytically obtained (see Appendix D).

In order to describe the input bound ūlos
i for iv), we define

the set of detected obstacle points in Dij , toward which robot
i will move closer at k + 1, as follows.

Olos
ijf (k) :=

{
xo ∈ Oi ∩Dij | vTi ϕ(xoi, xji) > 0

}
. (45)

If Olos
ijf (k) = ∅, no upper bound for ‖ui(k)‖ is given, i.e.,

ūlos
i = ∞. If Olos

ijf (k) 6= ∅, we define the closest obstacle
point in Dij to Lij(k) as

ōlosij = arg min
xo∈Olos

ijf

‖ϕ(xoi, xji)‖ (46)
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Fig. 5. Input bound ūlos
ij .

as illustrated in Fig. 5. Then, an upper bound for ‖ui(k)‖ is
given as

ūlos
i = min

j∈Nσ
i

ūlos
ij (47)

ūlos
ij = max

s≥0

{
‖svi‖ | ‖ϕ(ōlosij − xi − svi, xji)‖ ≥ dl

}
.

As illustrated in Fig. 5, ūlos
ij is the maximum allowable distance

of movement, such that the distance from robot i to the
obstacles in the direction orthogonal to Lij(k) is not less than
dl at time k + 1. Thus, ūlos

ij is obtained as

ūlos
ij =

‖ϕ(ōlosij − xi, xji)‖ − dl

sin θij
(48)

where θij ∈ [0, π] is the angle between Lij and vi. An upper
bound for ‖ui(k)‖ to satisfy i)-iv) is now given as

ūi = min
{
ūcon1
i , ūcon2

i , ūcol
i , ūobs

i , ūlos
i , umax

}
. (49)

Therefore, we determine ui(k) as follows

ui(k) =

{
ūi(k)

vi(k)
‖vi(k)‖ , if ‖vi(k)‖ > ūi(k)

vi(k), otherwise.
(50)

Note that since ui is computed using positions of detected
robots and obstacles and since the sensing range of each robot
is limited, the computation time for each robot does not grow
as the total number of robots and obstacles increases.

Theorem 2: Suppose that collision avoidance constraints in
(2)-(3) are satisfied for all robots at time k. Then, ui(k) in
(50) satisfies i)-iv) for each robot i ∈ V , if

umax ≤ do − dl,
√
d2o + d2n ≤ ds (51)

in addition to (20).
Proof: See Appendix B.

It should be noted that the control algorithm satisfying i)-
iv) does not necessarily guarantee that (33)-(34) are satisfied
for j 6∈ Si and xo 6∈ Oi. Thus, a collision with a robot hiding
behind an obstacle at time k could possibly arise at time k+1.
To guarantee collision avoidance with robots j 6∈ Si(k) and
obstacle points xo 6∈ Oi, additional conditions are required as
shown in the following theorem.

Fig. 6. Obstacle environment in simulations for M = 2.
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Fig. 7. Rate of cases without deadlock for M = 0.

Theorem 3: In addition to the assumptions in Theorem 2,
we assume

umax ≤ min

{
ds
2
,
√
d2o − d2l

}
− dc

2
. (52)

Then, the inter-robot collision avoidance condition in (33) is
guaranteed for each j ∈ V \ Si(k). Furthermore, if

umax ≤ ds − do (53)

the obstacle avoidance condition in (34) is guaranteed for each
xo ∈ O \ Oi(k).

Proof: See Appendix C.
Remark 3: For the leader, umax in (49) might be replaced

by a smaller value ul
max, since it improves the cohesion of the

group, i.e., more edges are generated in En. In other words, if
the leader moves at the maximum speed, i.e., ‖ui‖ = umax,
it is difficult for pairs of robots (i, j) 6∈ En to decrease the
inter-robot distance and to generate an edge in En.

While conditions for connectivity preservation and collision
avoidance are derived in Theorems 1–3, it is difficult to
clarify conditions to ensure that no robots get stuck in narrow
spaces. In the next section, we demonstrate the effectiveness
and limitations of the proposed method by simulations under
various conditions.
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V. SIMULATION

In this section, we run various simulations to demonstrate
the effectiveness of the proposed method. The values of the
parameters defined in Section III are N = 10, ds = 2 m, dn =
1 m, dc = 0.3 m, do = 0.1 m, dl = 0.05 m, and umax = 0.01
m. The coefficients in (26) are set as c1 = 0.5, c2 = c3 = 0.01,
and c4 = 5. The parameters in the artificial potential functions
in Section IV-B are set as κ1 = κ2 = 10, dr = 0.7, dor = 0.2,
dlr = 0.1, and δ = 0.02. We set ddel = 0.25, εn = 0.1dn, and
εc = 0.1dc for link deletion, and ul

max = 2
3umax to improve

the cohesion of the group, as mentioned in Remark 3.
In order to measure the connectivity of the graph Gσ , we

compute the Fiedler value [39], which is the second smallest
eigenvalue of the Laplacian matrix L. The Laplacian matrix
L is defined as

L = ∆−A (54)

by using the adjacency matrix A, whose elements Aij are 1 if
(i, j) ∈ Eσ and 0 otherwise, and a diagonal matrix ∆, whose
diagonal elements are ∆i =

∑N
j=1 Aij (i = 1, . . . , N ).

Obstacle environments for simulations are illustrated in Fig.
6. The target path of the leader is a series of connected line
segments starting at the origin, as shown in the thick solid
lines. Obstacles are placed on both sides of the path. The
relative angle of the ith line segment from i−1th line segment
is defined as φi 6= 0 for i = 1, . . . ,M , if M ≥ 1. Thus,
M represents the number of corners of the target path. The
first and last line segments can be divided into parts inside
and outside the obstacle area. We define `s and `f as the
lengths of the parts outside the obstacle area on the first and
last line segments, respectively. Furthermore, the length of the
ith line segment inside the obstacle area is defined as `i for
i = 0, 1, . . . ,M .

The minimum distance between an obstacle and the leader’s
target path is defined as η, which implies that obstacles should
not be in the area between two dashed lines. Subject to this
minimum distance constraint, we place circular obstacles so
that obstacles are as dense as possible to make the problem
challenging. To this end, each obstacle is placed so that the
distance from an obstacle to the leader’s target path is equal to
the allowable value η. In other words, the centers of circular
obstacles with radius ro are placed on a dash-dotted line in
Fig. 6, which is at a distance of η+ro from the target path. We
also set distance between the centers of neighboring obstacles,
ρ, as a small value so that the density of obstacles is high.
Furthermore, we located additional obstacles with a radius
smaller than ro at the inside corners, making the problem even
more difficult. Specifically, we set ro = 0.5 m and ρ = 0.2 m,
while the radii of small obstacles at the inside corners were
0.1 m and 0.01 m.

We first tested the proposed method in the case where the
target path of the leader was a straight line, i.e., M = 0. This
was to examine the effectiveness of the link deactivation rule
in Section IV-A. If the target path has corners, it is possible for
robots to get stuck for a reason not necessarily related to the
proposed link deactivation rule, as will be shown later. Thus,
simulations with a straight path are suitable for investigating
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the performance of the proposed link deactivation rule. We
performed simulations for `0 = 1 m, `s = 1 m, `f = 500
m and various values of η, which is equivalent to various
widths of passages, 2η. Since the allowable minimum distance
between a robot and an obstacle is do = 0.1 m, we could not
choose an η less than 0.1 m. We therefore tested the proposed
method in cases where η ranged from 0.105 m to 0.3 m. For
each value of η, we performed 30 simulations for randomly
selected initial robot positions. The solid line in Fig. 7 shows
the percentage of cases in which all robots passed through the
obstacle area without getting stuck using the proposed link
deactivation rule. As may be seen in the figure, the proposed
link-deactivation rule was effective in most cases, in contrast
to the results without link deactivation shown by the dashed-
dotted line. The minimum Fiedler value of Gσ in all cases was
9.8× 10−2, which implied that connectivity was preserved in
all cases, since the Fiedler value was positive. Furthermore,
the conditions for inter-robot collision avoidance and obstacle
avoidance were satisfied in all simulations, where minimum
inter-robot distance and minimum robot-obstacle distance were
almost same as their allowable minimum value, dc and do,
respectively.

We next performed simulations in the case where the target
path of the leader had a corner, i.e., M = 1. In this case,
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Fig. 10. Snapshots of a simulation.

even if sensing links were properly deactivated to go through
a path, robots could get stuck at the corner. To illustrate this
problem, we show simulation results in the case of `0 = 10
m, where the first straight path in the obstacle area is long.
The dashed lines in Fig. 8 show that the percentage of cases
where all robots passed through the obstacle area for `1 = 1.5,
`s = 1 m, and `f = 500 m. It can be seen from this result that
robots got stuck in many cases of 2η = 0.25 and 2η ≤ 0.4
for φ1 = π/6 rad and φ1 = π/2 rad, respectively. This is
in contrast that all robots passed through the obstacle area
in most cases of 2.1 ≤ 2η ≤ 0.4 for a straight path, as
shown in Fig. 7. Note that since we set N = 10 and dn = 1
m, the distance between the first and last robots is no more
than 9 m. Thus, when the first robot reaches the corner in
the case of `0 = 10, all the robots are in the narrow path
after the link deactivation has been successfully completed at
the entrance of the narrow space. Therefore, this difference of
results for 2η ≤ 0.4 in Fig. 7 compared with Fig. 8 illustrates
that robots got stuck at a corner although the link deactivation
was successfully completed. A reason why this problem arises
is that the distance between two neighboring robots is too long
to make a turn while preserving the LOS. Furthermore, the
solid lines in Fig. 8 show that the possibility of getting stuck
is increased for `0 = 1 m, where the link deactivation has
not been completed when some robots reach the corner. One
reason for this is that the velocity of robots around an entrance
of the narrow space is decreased during link deactivation. This
makes it difficult for the robots in front to move forward. As
a result, the distance between robots at the corner becomes
longer than that in the case of `0 = 10. Similarly, the rate of
getting stuck is increased as the number of corners increases.
Fig. 9 compares the cases of M = 1 and M = 2 where
we set φ1 = π/2, φ2 = −π/2, `1 = `2 = 1.5 m. As
shown in this figure, the rate of getting stuck is higher for

M = 2. The limitation in making turns at narrow corners
might be improved by modifying the direction of movement in
Section IV-B so that the distance between robots is decreased
at corners, although that is beyond the focus of this paper.
Despite this limitation, the simulation results show that the
robots can successfully go through paths in most cases of
2η ≥ 0.5 where it is still difficult to navigate without link
deactivation. It should be also noted that the conditions for
connectivity preservation, inter-robot collision avoidance, and
obstacle avoidance were satisfied in all examples shown in this
section, regardless of whether the paths have corners or not.
Fig. 10 shows snap shots of the case where M = 2, which
illustrate that the robots are able to pass through narrow spaces
by decreasing the number of active links, and then can increase
the active links in free space. However, there is a limitation
that regrouping into a cohesive formation takes quite a long
time since it is difficult to start regrouping before the last
robot clears the obstacle area. One reason for this is that the
leader (the first robot) does not consider group cohesion in
the control law. Thus, in order to improve the cohesion of the
group, followers need to catch up with the leader. However, the
followers other than the last robot cannot easily get closer to
the leader, since they need to keep the maximum allowable
distance dn with the neighbor behind as well as in front.
Therefore, regrouping is not triggered until the last robot gets
closer to the neighbor in front, after it clears the obstacle area.

VI. EXPERIMENT

The proposed method was applied to a group of 7 robots.
For each robot, we used a mobile robot platform (Kobuki,
Yujin Robot). Since the robots were not omni-directional, their
orientation was controlled in the direction of the control input
ui before moving forward. The position and orientation of each
robot were measured by a motion capture system (OptiTrack
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s250e) in a centralized way. Obstacle avoidance was simulated
using virtual obstacles whose positions were known to the
robots. However, only local information that could be obtained
in the sensing model in Section III was used to compute the
control input in order to simulate the decentralized algorithm.
Experimental validation using on-board sensors is planned for
future research.

The control algorithm was implemented every 0.5 sec. The
values of the parameters in Section III were ds = 1.6 m, dn =
0.8 m, dc = 0.4 m, do = 0.3 m, dl = 0.2 m, and umax = 0.04
m. The coefficients in (26) were set to c1 = 0.6, c2 = 0.1, and
c3 = c4 = 1. Parameters in the artificial potential functions
were set to κ1 = κ2 = 100, dr = 0.7, dor = dlr = 0.4, and
δ = 0.02. We set ddel = 0.3 for link deletion in (21) and
ul
max = 2

3umax to improve the cohesion of the group.
As shown in Fig. 11, the virtual obstacles formed an L-

shaped path. The initial positions of the leader and followers
are indicated by blue and red circles, respectively. As shown
in Fig. 12, the Fiedler value of Gσ was always positive, which
implies that connectivity was preserved. Fig. 13 shows that
inter-robot distances (solid line) did not violate the minimum
allowable value dc (dashed line). Furthermore, as shown in
Fig. 14, the distances to obstacles did not violate the minimum
allowable value do. Snap shots of the experiment are shown
in Fig. 15, where the red lines in each photo represent the L-
shaped path formed by the virtual obstacles. This figure shows
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that the robots traversed the L-shaped path by deactivating
links to be preserved.

VII. CONCLUSIONS

This paper has presented a network connectivity preserva-
tion method for leader-follower navigation in obstacle envi-
ronments that explicitly takes an input constraint into account.
We derived conditions for the proposed method to guarantee
connectivity preservation and collision avoidance in the pres-
ence of obstacles. A deactivation rule of sensing links, which
uses only local sensing information to preserve global network
connectivity, was introduced to allow the robots to navigate
narrow spaces without getting stuck. The effectiveness of the
proposed method was demonstrated by simulations and in
experiments. Future research will address the problem that
robots may get stuck in a corner even if sensing links are
properly deactivated depending on the width of the path. The
algorithm should also be improved so as to regroup robots into
a cohesive formation more rapidly in free spaces.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1 by contradiction, suppose that Gσ is
not connected, under Assumptions A1)-A4) in Theorem 1.

From Assumption A1), Gn is connected. Thus, there exists
at least one pair of robots, i and j of Gσ , such that all the
paths connecting them are lost by applying the rule in (24),
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Fig. 15. Snapshots of an experiment.

Fig. 16. Example of the case where all paths between two robots AI(1) and
BI(1) are lost by deactivation rule in (24).

while i and j have an edge in Gn, i.e., (i, j) ∈ En. This
implies that robots i, j and another one m satisfy (21) or
(23), so that (i, j) is deactivated by the rule in (24). We
denote this robot triple by (Ah1 , Bh1 , Ch1), where h1 = 1
in the case of (Ah1 , Bh1 , Ch1) ∈ T as in (23) while h1 = 2
in the case of (Ah1 , Bh1 , Ch1) ∈ T as in (21). Then, the
edge (Ah1 , Bh1) is deactivated by the rule in (24), regardless
of h1 = 1 or h1 = 2. Therefore, if neither the edge
(Ah1 , Ch1) nor (Bh1 , Ch1) is deactivated, there still exists a
path Ah1Ch1Bh1 between Ah1 and Bh1 , i.e., between robots i
and j. From Lemma 1, there are three cases where (Ah1 , Ch1)
or (Bh1 , Ch1) is deactivated, under Assumptions A2)–A3).
We define (A(h1,h2), B(h1,h2), C(h1,h2)) as the robot triple that
causes such a deactivation, where h2 = 1, 2, or 3 correspond-
ing to 1)–3) in Lemma 1 for (A,B,C) = (Ah1 , Bh1 , Ch1) and
(A′, B′, C ′) = (A(h1,h2), B(h1,h2), C(h1,h2)). We also define
I(k) := (h1, h2, . . . , hk) in order to make the notation simple,
which implies that

(A(h1,h2), B(h1,h2), C(h1,h2)) = (AI(2), BI(2), CI(2)). (55)

Although the edge (AI(2), BI(2)), which is equivalent to
(Ah1 , Ch1) or (Bh1 , Ch1), is deactivated in each case of h2 =
1, 2, 3, there still exists a path AI(2)CI(2)BI(2) between AI(2)
and BI(2), if the edges (AI(2), CI(2)) and (BI(2), CI(2)) re-
main. However, these edges can be deactivated, if there exists a
robot triple (AI(3), BI(3), CI(3)) that satisfies 1)–3) in Lemma
1 for (A,B,C) = (AI(2), BI(2), CI(2)) and (A′, B′, C ′) =

Fig. 17. Example of 1)–3) in Lemma 1. (A,B,C) ∈ T in 1) and 2a), while
(A,B,C) ∈ T in 2b) and 3).

(AI(3), BI(3), CI(3)), where h3 = 1, 2, 3 corresponding to 1)–
3) in Lemma 1. Similarly, (AI(µ), BI(µ), CI(µ)) (hµ = 1, 2, 3)
is defined for µ ≥ 4 as the robot triple that deactivates the
edge (AI(µ−1), BI(µ−1)) or (BI(µ−1), CI(µ−1)). Since the
number of robots is finite, the length of such a sequence of
deactivations is finite. Thus, the path between Ah1 and Ch1

is not lost, unless a sequence of robot triples for deactivation
form a loop; i.e., unless there exist two positive integers µ1 and
µ2 (µ1 < µ2) such that (AI(µ2), CI(µ2)) or (BI(µ2), CI(µ2)) is
equivalent to (AI(µ1), BI(µ1)). As shown in Lemma 2, such
a loop is formed only if (AI(µ), BI(µ)) (µ = 1, 2, . . . , µ2)
are each deactivated due to (AI(µ), BI(µ), CI(µ)) ∈ T , i.e.,
hµ = 1 (µ = 1, 2, . . . , µ2), until a loop is formed, as illustrated
in Fig. 16. To form such a loop without collision, it is therefore
necessary for 2π to be an integer multiple of 2 sin−1(dc/2dn),
which contradicts Assumption A4).

A. Lemmas to Prove Theorem 1

In this section, we denote the distance between robots A
and B by AB, in order to simplify the notation.

Lemma 1: In addition to A2)–A3) in Theorem 1, we assume
that three out of N robots satisfy (A,B,C) ∈ T or T so that
the edge (A,B) is deactivated by the rule in (24). Then, the
edge (B,C) or (A,C) is also deactivated, if and only if at least
one of the following three conditions is satisfied, as illustrated
in Fig. 17.

1) There exists a robot triple (A′, B′, C ′) ∈ T that deacti-
vates the edge (B,C), which is equivalent to (A′, B′).

2) There exists a robot triple (A′, B′, C ′) ∈ T that deacti-
vates the edge (B,C), which is equivalent to (A′, B′).
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3) There exists a robot triple (A′, B′, C ′) ∈ T that deacti-
vates the edge (A,C), which is equivalent to (A′, B′).

Proof: We only prove the necessity, since the sufficiency
is obvious from the deactivation rule in (24).

From Lemma 3, we have (C,A,B) /∈ T and (B,C,A) /∈
T , if (A,B,C) ∈ T . Also, it is obvious from the definition of
T that (C,A,B) /∈ T and (B,C,A) /∈ T if (A,B,C) ∈ T .
Thus, the three robots (A,B,C) do not deactivate the edge
(A,C) or (B,C) by themselves. In other words, (A,C) or
(B,C) is deactivated, only if a robot other than (A,B,C)
constitutes a triple (A′, B′, C ′) ∈ T or T , such that (A′, B′)
is equivalent to (A,C) or (B,C).

We first consider the case of (A,B,C) ∈ T . Then, from
Lemma 4, there is no robot triple (A′, B′, C ′) ∈ T that
deactivates the edge (B,C) or (A,C), which is equivalent
to (A′, B′). In other words, (B,C) or (A,C) is deactivated
only if (A′, B′, C ′) ∈ T , as illustrated in 2b) and 3) of Fig.
17.

In the case of (A,B,C) ∈ T , the edge (A,C) cannot
be deactivated as shown in Lemma 5. In other words, only
(B,C) can be deactivated due to (A′, B′, C ′) ∈ T as in 1) or
(A′, B′, C ′) ∈ T as in 2a) in Fig. 17.

Lemma 2: Under Assumptions A2–A3) in Theorem 1,
there exist two positive integers µ1 and µ2 (µ1 < µ2)
such that (AI(µ2), CI(µ2)) or (BI(µ2), CI(µ2)) is equivalent
to (AI(µ1), BI(µ1)), only if hµ = 1 (µ = 1, 2, . . . , µ2).

Proof: To prove the contrapositive of the lemma, suppose
that hµ 6= 1 for an integer µ (1 ≤ µ ≤ µ2). We define
µ̄ (µ̄ ≤ µ2) as the smallest positive integer µ satisfying
hµ 6= 1. Then, it follows from Lemma 4 that hµ 6= 1, i.e.,
(AI(µ), BI(µ), CI(µ)) ∈ T , for µ̄ < µ ≤ µ2. Thus, from
Lemma 6, we have

AI(µ2)CI(µ2) < AI(µ2)BI(µ2)

BI(µ2)CI(µ2) < AI(µ2)BI(µ2). (56)

Since the edge (AI(µ2−1), CI(µ2−1)) or (BI(µ2−1), CI(µ2−1))
is equivalent to (AI(µ2), BI(µ2)), it follows from (56) and
Lemma 6 that

AI(µ2)CI(µ2) < AI(µ2−1)BI(µ2−1)

BI(µ2)CI(µ2) < AI(µ2−1)BI(µ2−1). (57)

By repeating the same process, we have

AI(µ2)CI(µ2) < AI(µ)BI(µ)

BI(µ2)CI(µ2) < AI(µ)BI(µ) (58)

for µ̄ ≤ µ < µ2. Thus, in the case of µ̄ ≤ µ1, we have

AI(µ2)CI(µ2) < AI(µ1)BI(µ1)

BI(µ2)CI(µ2) < AI(µ1)BI(µ1), ∀µ1 < µ2. (59)

We next consider the case of µ1 < µ̄. Since µ̄ > 1 in this
case, we have hµ = 1, i.e., (AI(µ), BI(µ), CI(µ)) ∈ T , for
1 ≤ µ < µ̄. This implies from the definition of T that

AI(µ)BI(µ) = AI(µ̄)BI(µ̄) = dn (60)

for 1 ≤ µ < µ̄, since the edge (BI(µ), CI(µ)) is equivalent to
(AI(µ+1), BI(µ+1)). Therefore, we have

AI(µ1)BI(µ1) = AI(µ̄)BI(µ̄) (61)

which implies (59) from (58). Thus, neither (AI(µ2), CI(µ2))
nor (BI(µ2), CI(µ2)) is equivalent to (AI(µ1), BI(µ1)) for any
µ1 and µ2 (µ1 < µ2), which completes the proof of the
contrapositive of the lemma.

Lemma 3: In addition to A2)–A3) in Theorem 1, suppose
that three out of N robots satisfy (A,B,C) ∈ T . Then, we
have (C,A,B) /∈ T and (B,C,A) /∈ T .

Proof: Under the the collision avoidance condition in A2),
we have AB ≥ dc, BC ≥ dc, CA ≥ dc. Let αA ∈ (−π, π]
denote the angle from xBA to xCA measured in the counter-
clockwise direction, and we define αB and αC in the same
way. Then, it follows from a property of triangles that

|αA|+ |αB|+ |αC | = π. (62)

In order to prove (C,A,B) /∈ T by contradiction, we
assume (C,A,B) ∈ T . Since (20) is assumed in A3), it holds
from (18) and (20) that

‖ϕ(xBC , xAC)‖ = BC sin |αC | < dc sin
π

3
(63)

which implies from BC ≥ dc that |αC | < π
3 . Similarly,

from (A,B,C) ∈ T , it can be shown that |αA| < π
3 and

|αB | < π
3 , which contradicts (62). This concludes the proof of

(C,A,B) /∈ T . It can be proved similarly that (B,C,A) /∈ T .

Lemma 4: In addition to A2)–A3) in Theorem 1, we assume
(A,B,C) ∈ T . Then, there is no robot triple (A′, B′, C ′) ∈ T
that deactivates the edge (A,C) or (B,C) which is equivalent
to (A′, B′).

Proof: For (A,B,C) ∈ T , we have

AC < AB, BC < AB (64)

as shown in Lemma 6. Since it follows from the definition of
T that (A,B) ∈ En, we have AB ≤ dn. Therefore, it holds
from (64) that

AC < dn, BC < dn. (65)

Thus, there is no robot triple (A′, B′, C ′) ∈ T whose edge
(A′, B′) corresponds to (A,C) or (B,C), since A′B′ = dn
is required for (A′, B′, C ′) ∈ T from the definition of T .

Lemma 5: In addition to A2)–A3) in Theorem 1, we assume
(A,B,C) ∈ T . Then, it is not possible that the edge (A,C)
is deactivated by the rule in (24).

Proof: The assumption (A,B,C) ∈ T implies AC =
dc. To prove by contradiction, we first assume that (A,C) is
deactivated due to (A′, B′, C ′) ∈ T whose edge (A′, B′) is
equivalent to (A,C). Then, from Lemma 6, we have

A′C ′ < A′B′ = dc, B′C ′ < A′B′ = dc, (66)

which implies that A′ and B′ collide with C ′. This contradicts
Assumption A2) that all robots satisfy the collision avoidance
constraints.

We next assume that (A,C) is deactivated due to
(A′, B′, C ′) ∈ T whose edge (A′, B′) is equivalent to (A,C).
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Then, since A′B′ = dn from the definition of T , we have
AC = dn > dc which contradicts (A,B,C) ∈ T .

Lemma 6: In addition to A2–A3) in Theorem 1, we assume
that (A,B,C) ∈ T . Then, we have

AC < AB, BC < AB. (67)

Proof: To prove by contradiction, suppose that BC ≥ AB
and BC ≥ AC, without loss of generality.

We first show that cosαA ≤ 1
2 in each case of AC ≤ AB

and AC > AB. In the case of AC ≤ AB, it holds from
BC ≥ AB that

cosαA =
AB

2
+AC

2 −BC
2

2AB ·AC
≤ AC

2AB
≤ 1

2
. (68)

In the case of AC > AB, it holds from BC ≥ AC that

cosαA =
AB

2
+AC

2 −BC
2

2AB ·AC
≤ AB

2AC
<

1

2
. (69)

Thus, we have cosαA ≤ 1
2 , which implies |αA| ≥ π

3 . Further,
since (A,B,C) ∈ T , it follows from (18) that xC ∈ DAB ,
which implies |αA| < π

2 . Therefore, since CA ≥ dc due to
the collision avoidance condition A2),

ϕ(xCA, xBA) = CA sin |αA| ≥ dc sin
π

3
(70)

which contradicts (A,B,C) ∈ T , under Assumption A3) that
(20) is satisfied.

APPENDIX B
PROOF OF THEOREM 2

If conditions ii)-iv) are guaranteed, i) can be proved in the
same way as in [20]. Thus, in this section, we prove ii)-iv).

In order to show that ii) is satisfied, it suffices to provide
proof for the worst case scenario in which two robots move
closer to each other. Thus, we show that ii) is satisfied for
any pair of robots (i, j) that satisfies j ∈ Sif , i ∈ Sjf . Since
‖ui‖ ≤ ūcol

i for ūcol
i in (43), the following constraints are

satisfied.

min
m∈Sif

‖xmi(k)‖ − 2‖ui(k)‖ ≥ dc (71)

min
m∈Sjf

‖xmj(k)‖ − 2‖uj(k)‖ ≥ dc. (72)

Therefore, from

min
m∈Sif

‖xmi(k)‖ ≤ ‖xji(k)‖ (73)

min
m∈Sjf

‖xmj(k)‖ ≤ ‖xij(k)‖ (74)

and ‖xji(k)‖ = ‖xij(k)‖, we have

‖xji(k)‖ − 2‖ui(k)‖ ≥ dc (75)
‖xji(k)‖ − 2‖uj(k)‖ ≥ dc. (76)

By summing(75) and (76), we obtain

‖xji(k)‖ − ‖ui(k)‖ − ‖uj(k)‖ ≥ dc (77)

for each (i, j) that satisfies j ∈ Sif , i ∈ Sjf . Thus, it holds
for all λi, λj ∈ [0, 1] that

‖xji(k)‖ − ‖λiui(k)‖ − ‖λjuj(k)‖ ≥ dc (78)

Fig. 18. Relations between Lij , do, and umax.

which implies

‖λiui(k)− xji(k)− λjuj(k)‖ ≥ dc. (79)

Therefore, it holds from (1) that

‖λixi(k + 1) + (1− λi)xi(k)

− λjxj(k + 1)− (1− λj)xj(k)‖ ≥ dc (80)

which implies that ii) is satisfied.
We next prove iii). It holds from the definition of ūobs

i in
(44) that

‖xoi − svi‖ ≥ do, ∀xo ∈ Oi (81)

for each s such that ‖svi‖ ≤ ūobs
i . Since vi and ui have the

same direction, it follows from ‖ui‖ ≤ ūobs
i that

‖xoi − λiui‖ ≥ do, ∀xo ∈ Oi, ∀λi ∈ [0, 1]. (82)

Thus, it holds from (1) that

‖xo − (1− λi)xi(k)− λixi(k + 1)‖ ≥ do, ∀xo ∈ Oi (83)

for all λi ∈ [0, 1], which implies that iii) is satisfied.
To prove iv), we first define B(p, r) to be a closed ball cen-

tered at p of radius r. Since ‖ui(k)‖ = ‖xi(k+1)−xi(k)‖ ≤
umax from (1), the line segments Pi(k) and Pj(k) are included
in B(xi(k), umax) and B(xj(k), umax), respectively, as shown
by the colored circles in Fig. 18. This implies that Lij(k+1) is
included in co(B(xi(k), umax)∪B(xj(k), umax)) where co(X)
denotes the convex hull of a set X . Thus, since do−umax ≥ dl
from the assumption in (51), the obstacle points outside
co(B(xi(k), do)∪B(xj(k), do)) have a distance of more than
dl from any point in co(B(xi(k), umax) ∪ B(xj(k), umax))
including Lij(k + 1). Therefore, it is sufficient to consider
the obstacle points in co(B(xi(k), do) ∪ B(xj(k), do)).

Furthermore, from the assumption that (3) is satisfied at time
k, there is no obstacle point in B(xi(k), do) and B(xj(k), do).
Thus, it is sufficient to consider the obstacle points in

Aij(k) := Dij ∩ co(B(xi(k), do) ∪ B(xj(k), do)). (84)

Therefore, in order to prove iv), it suffices to show

‖ϕ(xo − q, xji(k))‖ ≥ dl, ∀xo ∈ Aij(k)

∀q ∈ L(pi, pj), ∀pi ∈ Pi(k), ∀pj ∈ Pj(k) (85)

for each j ∈ N σ
i (k), since ‖xo − q‖ ≥ ‖ϕ(xo − q, xji(k))‖.
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From the definition of ϕ in (17), we have

‖ϕ(xo − pi, xji(k))‖ =
|(xo − pi)

THxji(k)|
‖Hxji(k)‖

=
|(xoi(k)− pi + xi(k))

THxji(k)|
‖Hxji(k)‖

. (86)

For j ∈ N σ
i (k), we have ‖ϕ(xoi(k), xji(k))‖ ≥ dl > 0 for

any xo ∈ Oi, since the constraint in (8) is satisfied at time k.
Thus, any obstacle point xo ∈ Oi ∩Dij belongs to one of the
following two sets

Bij(k) :=
{
xo ∈ Oi ∩Dij

∣∣ xT
oi(k)Hxji(k) > 0

}
Bij(k) :=

{
xo ∈ Oi ∩Dij

∣∣ xT
oi(k)Hxji(k) < 0

}
.

Without loss of generality, we assume vTi Hxji > 0, which
implies Olos

ijf (k) = Bij(k) in (45) from

vTi ϕ(xoi, xji) =
xT
oiHxji

‖Hxji‖2
vTi Hxji > 0. (87)

Thus, ōlosij in (46) can be described as

ōlosij = arg min
xo∈Bij

xT
oiHxji. (88)

Therefore, it holds from (47) and (88) that

(xoi − svi)
THxji

‖Hxji‖
≥ dl, ∀xo ∈ Bij (89)

(xoi − svi)
THxji

‖Hxji‖
≤ −dl, ∀xo ∈ Bij (90)

for each s ≥ 0 such that ‖svi‖ ≤ ūlos
i . This implies that

(xoi − pi + xi)
THxji

‖Hxji‖
≥ dl, ∀xo ∈ Bij

(xoi − pi + xi)
THxji

‖Hxji‖
≤ −dl, ∀xo ∈ Bij (91)

for each pi ∈ Pi, since pi = xi + λiui and ‖λiui‖ ≤ ūlos
i .

Under the assumption that
√
d2o + d2n ≤ ds in (51), any

obstacle point in Aij(k) is in the maximum sensor range of
robot i at time k, which implies Aij ⊂ Oi ∩ Dij , Thus, it
follows from (91) that

(xoi − pi + xi)
THxji

‖Hxji‖
≥ dl, ∀xo ∈ BA

ij

(xoi − pi + xi)
THxji

‖Hxji‖
≤ −dl, ∀xo ∈ BA

ij (92)

where

BA
ij(k) :=

{
xo ∈ Aij

∣∣ xT
oi(k)Hxji(k) > 0

}
BA
ij(k) :=

{
xo ∈ Aij

∣∣ xT
oi(k)Hxji(k) < 0

}
.

For pj , as in (92), it can be proved that

(xoi − pj + xi)
THxji

‖Hxji‖
≥ dl, ∀xo ∈ BA

ij

(xoi − pj + xi)
THxji

‖Hxji‖
≤ −dl, ∀xo ∈ BA

ij (93)

Fig. 19. Closest points to xi behind an obstacle point xo.

for each pj ∈ Pj , using xT
j Hxij = −xT

i Hxji. Thus, it holds
from (92) and (93) that

(xoi − q + xi)
THxji

‖Hxji‖
≥ dl, ∀xo ∈ BA

ij

(xoi − q + xi)
THxji

‖Hxji‖
≤ −dl, ∀xo ∈ BA

ij (94)

for each q ∈ L(pi, pj). Therefore, we have (85), which
completes the proof of iv).

APPENDIX C
PROOF OF THEOREM 3

We first prove (33) for each robot j ∈ V \ Si. From the
definition of Si, robot i is not able to detect robot j (i.e.,
j ∈ V \Si), when at least one of the conditions in (7) and (8)
is violated. If (7) is not satisfied at time k, we have ‖xji(k)‖ >
ds. Since pi ∈ Pi(k) and pj ∈ Pj(k) are described as

pi = xi(k) + λiui(k), pj = xj(k) + λjuj(k) (95)

for λi ∈ [0, 1] and λj ∈ [0, 1], it holds that

‖pj − pi‖ = ‖xji(k) + λjuj(k)− λiui(k)‖
≥ ‖xji(k)‖ − 2umax > ds − 2umax (96)

from ‖λiui(k)‖ ≤ umax and ‖λjuj(k)‖ ≤ umax. Thus, since
ds − 2umax ≥ dc under the assumption in (52), the condition
in (33) is satisfied.

In the case where (8) is violated, a robot is behind an
obstacle. Since it is assumed that the obstacle avoidance
condition in (3) is satisfied at k, each robot is located on the
boundary or the outside of B(xo, do) for each obstacle point
xo. Thus, as illustrated in Fig. 19, robot i is not able to detect
robot j behind an obstacle point xo, if the angle between xji

and xoi is less than β = atan2(dl,
√
x2
oi − d2l ). In this case,

the distance between robots i and j satisfies

‖xji(k)‖ >
√
‖xoi(k)‖2 − d2l +

√
d2o − d2l (97)

where the lower bound on the right-hand side is equal to the
distance from xi to point P1 or P2 in Fig. 19. Furthermore, it
follows from (97) and ‖xoi(k)‖ ≥ do, that we obtain

‖xji(k)‖ > 2
√
d2o − d2l . (98)
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Fig. 20. Input bound ūCm
i for a circle obstacle.

Since 2umax ≤ 2
√
d2o − d2l −dc under the assumption in (52),

the inputs of robots i and j are constrained as follows

2
√
d2o − d2l − 2‖ui(k)‖ ≥ dc (99)

2
√
d2o − d2l − 2‖uj(k)‖ ≥ dc. (100)

Thus, from (98), we have

‖xji(k)‖ − 2‖ui(k)‖ ≥ dc (101)
‖xji(k)‖ − 2‖uj(k)‖ ≥ dc (102)

which are the same inequalities as (75) and (76). The rest of
the proof is then the same as the proof of ii) in Theorem 2.

We next prove (34) for each obstacle point xo ∈ O\Oi(k).
From the definition of Oi, robot i is not able to detect an
obstacle point xo (i.e., xo ∈ O \Oi) when at least one of the
conditions in (9) and (10) is violated. If (9) is not satisfied at
time k, we have ‖xoi(k)‖ > ds. Then, in the same way as in
(96), we have

‖xo − pi‖ = ‖xoi − λiui‖ > ds − umax (103)

for pi in (95), since ‖λiui‖ ≤ umax for λi ∈ [0, 1]. Thus, since
ds − umax ≥ do under the assumption in (53), the condition
in (34) is satisfied for each xo ∈ O \ Oi(k).

If an obstacle point xo does not satisfy (10), there is a
detected point x′

o ∈ Oi ∩ L̄(xi, xo) which is located on the
line segment connecting xi and xo. Since the obstacle point xo

behind x′
o obviously does not move unlike in the case where

a robot is behind an obstacle point, (34) is satisfied for xo if
it is satisfied for x′

o. Thus, since Theorem 2 guarantees that
(34) is satisfied for any detected obstacle point including x′

o,
(34) is satisfied for any obstacle point xo violating (10).

APPENDIX D
COMPUTATION OF ūobs

i FOR CIRCULAR OBSTACLES

In this section, we describe how to compute ūobs
i in (44)

when obstacles detected by robot i are approximated by cir-
cles. In other words, Oi in (44) is replaced by ∪Nc

m=1Cm, where
NC is the number of circles, and Cm is the circumference of

the circle centered at xCm of radius rCm . In this case, ūobs
i is

described as

ūobs
i = min

1≤m≤Nc

ūCm
i (104)

ūCm
i = max

s≥0
{‖svi‖ | ‖xoi − svi‖ ≥ do, ∀xo ∈ Cm} . (105)

In order to describe how to obtain ūCm
i , we define

lc := ‖ϕ(xCm − xi, vi)‖ (106)

which is the distance from xCm to the line including xi and
xi + vi, as shown in Fig. 20. Then, a necessary and sufficient
condition for ūCm

i in (105) to be finite is that the following
inequalities are satisfied.

(xCm − xi)
T vi > 0, lc − rCm < do. (107)

The first inequality in (107) implies that the robot moves closer
to Cm, while the second one implies that the distance from
Cm to the line including xi and xi+ vi is less than do. Using
the condition in (107), ūCm

i is obtained as

ūCm
i =

{
lv −

√
(do + rCm)2 − l2c , if (107)

∞, otherwise
(108)

where lv :=
√
‖xCm

− xi‖2 − l2c as shown in Fig. 20.
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[20] A. Cezayirli and F. Kerestecioğlu, “Navigation of non-communicating
autonomous mobile robots with guaranteed connectivity,” Robotica, vol.
31, pp. 767–776, 2013.

[21] A. Ganguli, J. Cortés, and F. Bullo, “Multirobot rendezvous with
visibility sensors in nonconvex environments,” IEEE Trans. Robot., vol.
25, no. 2, pp. 340–352, 2009.

[22] P. R. Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff, “A passivity-
based decentralized strategy for generalized connectivity maintenance,”
The International Journal of Robotics Research, vol. 32, no. 3, pp. 299–
323, 2013.

[23] X. Li, D. Sum, and J. Yang, “A bounded controller for multirobot
navigation while maintaining network connectivity in the presence of
obstacles,” Automatica, vol. 49, pp. 285–292, 2013.

[24] D. Panagou and V. Kumar, “Cooperative visibility maintenance for
leader-follower formations in obstacle environments,” IEEE Trans.
Robot., vol. 30, no. 4, pp.831–844, 2014.

[25] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic
connectivity control of mobile robot networks,” Proceedings of IEEE,
vol. 99, pp. 1525–1540, 2011.

[26] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” IEEE Trans. Robot. Autom.,
vol. 17, no. 6, pp. 905–908, 2001.

[27] A. K. Das, R. Fierro, and V. Kumar, “A vision-based formation control
framework,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 813–825,
2002.

[28] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stabil-
ity,” IEEE Trans. Robot. Autom., vol. 20, no. 3, pp. 443–455, 2004.
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