
27 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Minimum-Time Trajectory Generation for Quadrotors in Constrained Environments / Spedicato Sara;
Notarstefano Giuseppe. - In: IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. - ISSN 1063-
6536. - STAMPA. - 26:4(2018), pp. 1335-1344. [10.1109/TCST.2017.2709268]

Published Version:

Minimum-Time Trajectory Generation for Quadrotors in Constrained Environments

Published:
DOI: http://doi.org/10.1109/TCST.2017.2709268

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/670535 since: 2020-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TCST.2017.2709268
https://hdl.handle.net/11585/670535


This	is	the	post	peer-review	accepted	manuscript	of:		

S.	 Spedicato	 and	 G.	 Notarstefano,	 "Minimum-Time	 Trajectory	 Generation	 for	
Quadrotors	 in	 Constrained	 Environments,"	 in	 IEEE	 Transactions	 on	 Control	 Systems	
Technology,	vol.	26,	no.	4,	pp.	1335-1344,	July	2018.	

The	published	version	is	available	online	at:		

https://doi.org/10.1109/	TCST.2017.2709268	

	

©	2017	 IEEE.	Personal	use	of	 this	material	 is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	other	
uses,	 in	 any	 current	 or	 future	 media,	 including	 reprinting/republishing	 this	 material	 for	 advertising	 or	
promotional	purposes,	creating	new	collective	works,	for	resale	or	redistribution	to	servers	or	lists,	or	reuse	of	
any	copyrighted	component	of	this	work	in	other	works.	

	



1

Minimum-time trajectory generation
for quadrotors in constrained environments

Sara Spedicato, and Giuseppe Notarstefano, Member, IEEE

Abstract—In this paper, we present a novel strategy to com-
pute minimum-time trajectories for quadrotors in constrained
environments. In particular, we consider the motion in a given
flying region with obstacles and take into account the physical
limitations of the vehicle. Instead of approaching the optimization
problem in its standard time-parameterized formulation, the
proposed strategy is based on an appealing re-formulation. Trans-
verse coordinates, expressing the distance from a frame path, are
used to parameterize the vehicle position and a spatial parameter
is used as independent variable. This re-formulation allows us to
(i) obtain a fixed horizon problem and (ii) easily formulate (fairly
complex) position constraints. The effectiveness of the proposed
strategy is proven by numerical computations on two different
illustrative scenarios. Moreover, the optimal trajectory generated
in the second scenario is experimentally executed with a real
nano-quadrotor in order to show its feasibility.

Index Terms—Minimum-time, nonlinear optimal control,
aerial vehicles, trajectory optimization

I. INTRODUCTION

Numerous applications involving Unmanned Aerial Vehi-
cles (UAVs), and in particular quadrotors, require them

to move inside areas characterized by physical boundaries,
obstacles and even tight space constraints (as e.g., urban
environments) in order to accomplish their robotics tasks.
Such applications are, for example, structural inspections,
transportation tasks, surveillance and search and rescue mis-
sions. Trajectory generation, a core step for physical task
realization [1], becomes extremely challenging in this sce-
nario. A physically realizable trajectory must satisfy (i) the
(nonlinear) system dynamics, (ii) the physical limits of the
vehicle, such as the maximum thrust, and (iii) the position
constraints. Although safety (ensured by a feasible trajectory)
is the primary requirement for all applications, trajectory
optimization is becoming necessary in different application
domanis. The cost to minimize can be, for example, the time
to execute a maneuver (in a search and rescue scenario),
the energy consumption (during long endurance missions),
or the “distance” from a desired unfeasible state-input curve
(during inspections). The further requirement of performance

S. Spedicato and G. Notarstefano are with the Department of Engineer-
ing, Università del Salento, Via per Monteroni, 73100 Lecce, Italy, e-mail:
name.lastname@unisalento.it.

This result is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 638992 - OPT4SMART).

A short, preliminary version of this work was presented at the IEEE
Conference on Decision and Control 2016. Differences with that work include:
(i) a more comprehensive treatment of the proposed strategy, (ii) an extended
version of the strategy involving the computation of collision free regions
shaped by obstacles, (iii) numerical computations for more general scenarios
and (iv) an experimental test on a nano-quadrotor.

optimization poses an additional challenge in the trajectory
generation problem.

The problem of computing optimal paths (or trajectories)
for UAVs (e.g., [2] and [3]) has received significant attention
and a number of algorithms for quadrotors have been proposed
to accomplish complex tasks, e.g., landing on a moving target
[4] and blind navigation in unknown populated environments
[5]. Focusing on collision avoidance, two different approaches,
namely reacting or planning, can be applied. The reactive
approach is based on navigation laws preventing from possible
collisions. It can be performed, e.g., modulating the velocity
reference [6], selecting ad-hoc reference way-points [7] and
defining an harmonic potential field [8]. On the contrary, the
planned approach deals with a problem involving dynamics
and state-input constraints with (possibly) a performance cri-
terion to optimize. The majority of the planning algorithms
regarding quadrotors, such as [9], [10], [11], [12], [13], takes
advantage of the differential flatness property and relies on
approximations via motion primitives. When dealing with
obstacle dense environments, trajectory generation is often
performed using a decoupled approach ([14], [15], [16]). In
a first stage, a collision-free path is generated by sampling-
based path planning algorithms, such as the Rapidly-exploring
Random Tree (RRT) in [14], [15] or the Probabilistic Roadmap
(PRM) in [16], and without the dynamics constraint. In a
second stage, an optimal trajectory (satisfying the system dy-
namics) is generated from the collision-free path. Optimization
techniques such as [9], [10], [11] can be used at this stage.
In order to overcome the limitations due to the decoupled
approach, a variant of the RRT algorithm is developed in [17],
an approximated dynamics with an a-posteriori correction is
used in [18] and a space-parameterized problem reformulation,
suitable for modeling complex flight scenarios, is adopted in
[12]. Differently from the previous works, in [19] the structure
of the minimum-time trajectories is found by the Pontryagin’s
minimum principle. Nevertheless, position constraints are not
considered. Finally, in [20] a discretized simple point-mass
dynamics and approximated convex constraints are considered.
The approximation of non-convex constraints into convex ones
is also used in [21], in which a sequential convex programming
approach is used to achieve a collision free motion for dancing
quadrotors.

Our main contribution is the design of an optimization
framework to generate feasible minimum-time quadrotor tra-
jectories in structured environments as, e.g., rooms, corridors,
passages, or urban areas. Our strategy computes optimal
trajectories that satisfy the quadrotor nonlinear dynamics. The
strategy can be applied to general models, which may be



2

more complicated than the differentially flat ones. Instead of
addressing the minimum-time problem in its standard free-
horizon formulation, we derive a fixed-horizon reformulation
in which transverse coordinates, expressing the “transverse”
distance from a frame path, are used to parameterize the
vehicle position. The resulting problem, having a spatial
parameter as independent variable, is easier to solve than
the time-parametrized one. Position constraints can be easily
added into the reformulated problem by defining the constraint
boundaries as a function of the spatial parameter and shaping
them according to the presence of obstacles. Approximate
solutions to the infinite-dimensional optimization problem are
numerically computed by combining the Projection Operator
Newton method for Trajectory Optimization (PRONTO) [22]
with a barrier function approach [23]. This method generates
trajectories in a numerically stable manner and guarantees
recursive feasibility during the algorithm evolution, i.e., at each
algorithm iteration a system trajectory is available. Moreover
the approximated solution always satisfies the constraints since
the barrier function approach is an interior function method.
As an additional contribution, we present numerical compu-
tations to show the effectiveness of the proposed strategy on
two challenging scenarios. In the first one, the moving space
is delimited by rooms with obstacles of different shapes. In
the second scenario, the constrained environment is a tubular
region delimited by hula hoops. The optimal minimum-time
trajectory related to this second scenario is experimentally
performed on our nano-quadrotor testbed.

Our algorithm compares to the literature in the following
way. The majority of works, such as [9], [10], [11], [12], [13],
uses the differential flatness to avoid the integration of nonlin-
ear differential equations, to reduce the order of the problem
and to simplify the definition of constraints [9]. On the
contrary, our strategy does not rely on the differential flatness
hypothesis and thus it can be applied to more complex models.
In the previously cited works, the optimization problem is
posed in the flat output space, where outputs are approximated
using motion primitives, such as polynomial functions [9],
[10], [13], B-splines [11], or “convex combinations of feasible
paths” [12]. The optimization variables are thus the parameters
of the motion primitives. Differently from these works, we do
not rely on motion primitives: the state-input trajectory is the
optimization variable in our problem formulation. Similarly to
the problem formulation in [24], our reformulated minimum-
time problem has a spatial parameter, instead of time, as
independent variable. While in [24] the maximum velocity
profile (for a given path) is computed for a motorcycle model
by using a quasi-static approximation of the dynamics, we
optimize the whole state-input trajectory and we consider
the full nonlinear dynamics of the quadrotor. Finally, other
optimization strategies using the PRONTO method are [25]
and [26], which aim to compute respectively minimum-energy
trajectories for two-wheeled mobile robots and minimum-
distance trajectories (from an unfeasible desired maneuver)
for UAVs. Differently from these works, we consider a more
general three-dimensional space with position constraints and
we reformulate the minimum-time problem by using the
transverse coordinates.

The paper is organized as follows. In Section II we present
the standard formulation of the optimization problem we aim
to solve. In Section III our trajectory generation strategy, based
on an appealing reformulation of the problem, is described.
Finally, in Section IV, we provide numerical computations and
experiments, and discuss interesting features of the computed
minimum-time trajectories.

II. THE QUADROTOR MINIMUM-TIME PROBLEM

We first briefly introduce the quadrotor model used in the
paper and then recall the standard problem formulation.

A. Quadrotor model

The quadrotor dynamics can be described by the so called
vectored-thrust dynamical model in [27], where the gravity
is the only external force and the generated torque does not
influence the translational dynamics, i.e.,

˙

p = v (1)

v̇ = ge3 �
F

m

R(�)e3 (2)

˙� = J(�)! (3)
!̇ = �I

�1
ˆ

!I! + I

�1
�. (4)

with p = [p1 p2 p3]
T , v = [v1 v2 v3]T , � = [' ✓  ]

T , where
', ✓,  are respectively the roll, pitch and yaw angles, and
! = [p q r]

T . The symbols in equations (1-4) are defined in
the following table, where F

i

and F
b

respectively denote the
inertial and the body frame.

TABLE I: Nomenclature

p 2 R3 position vector expressed in Fi

v 2 R3 velocity vector expressed in Fi

� 2 R3 vector of angles (yaw-pitch-roll w.r.t. current frame)
R(�)2SO(3) rotation matrix to map vectors in Fb into vectors in Fi

! 2 R3 angular rate vector expressed in Fb

!̂ 2 so(3) skew-symmetric matrix associated to !

J(�) 2 R3⇥3 matrix mapping ! into �̇

m 2 R vehicle mass
I 2 R3⇥3 inertia matrix
g 2 R gravity constant

e3 2 R3 vector defined as e3 := [0 0 1]T

F 2 R thrust
� 2 R3 torque vector

For the vehicle maneuvering, we adopt a cascade control
scheme with an off-board position/attitude control loop and
an on-board angular rate controller. Assuming that the virtual

control input ! is tracked by the on-board angular rate
controller, we restrict our trajectory generation problem on
the position/attitude subsystem (1-3), which can be written in
state-space form as

˙

x(t) = f(x(t),u(t)), (5)

with state x = [p

T vT �T

]

T

, input u = [!

T

F ]

T and suitably
defined f .



3

B. Quadrotor minimum-time problem: standard formulation

We deal with the following optimal control problem:

min

x(·),u(·),T
T

subj. to ˙

x(t) = f(x(t),u(t)), x(0) = x0 (dynamics)

x(T ) 2 X

T

(final constraint)

|p(t)|  p

max

(roll rate)

|q(t)|  q

max

(pitch rate)

|r(t)|  r

max

(yaw rate)

0 < F

min

 F (t)  F

max

(thrust)

|'(t)|  '

max

(t) (roll angle)

|✓(t)|  ✓

max

(t) (pitch angle)

| (t)|   

max

(t) (yaw angle)

c

obs

(p(t))  0 (position constraints),

(6)

where X

T

⇢ R9 is a desired final region, p

max

, q

max

and
r

max

are bounds on roll, pitch and yaw rate, respectively, F
min

and F

max

are lower and upper bounds on thrust, '
max

(·),
✓

max

(·) and  

max

(·) are bounds on roll-pitch-yaw angles,
and c

obs

: R3 ! R represents position constraints. The t-
dependent constraints in (6) hold for all t 2 [0, T ], with the
exception of c

obs

(p(t))  0, which holds for all t 2 [0, T ).
The bounds on the angular rates avoid fast solutions. The
vehicle thrust is also limited: quadrotor vehicles can only gen-
erate positive thrust and the maximum rotor speed is limited.
Furthermore, constraints on roll and pitch angles are imposed
into the optimization problem in order to avoid acrobatic
vehicle configurations and to satisfy ✓ 6= ±⇡

2 (which makes
the matrix J(�) in (3) always well defined). Time dependent
boundaries can be used for roll and pitch constraints when the
vehicle has to move through small passages. The constraint
on the yaw angle may be useful in applicative scenarios in
which a sensor, e.g., a camera, is provided onboard the vehicle
and needs to be pointed toward a target region. The position
constraints take into account physical boundaries (possibly
shaped by the presence of obstacles) and may also represent
GPS denied areas or spaces with limited communication.

III. MINIMUM-TIME TRAJECTORY GENERATION
STRATEGY

In this section, we describe our strategy to compute
minimum-time trajectories.

Minimum-time problem (6) is difficult to solve, since it is a
constrained, free-horizon problem (time T is an optimization
variable). For this reason, instead of directly designing an algo-
rithm to solve problem (6), we provide a strategy to obtain an
equivalent, but computationally more appealing, fixed-horizon
formulation. In the following, we give an informal idea of the
strategy steps to derive the new problem formulation. First, we
define a frame path as a (purely geometric) curve in R3 used
to express the quadrotor position in terms of new coordinates.
That is, as depicted in Figure 1, the position is identified by the
arc-length of the point on the path at minimum distance and by
two transverse coordinates expressing how far the quadrotor

position is from the curve. Second, we rewrite the dynamics in
terms of the transverse coordinates and show that it depends
on time only through the arc-length time-evolution. Thus,
by using the arc-length as independent variable, we obtain
a “space-dependent” transverse dynamics. Third, the time T

can be expressed itself as a function of the arc-length over
a fixed “spatial” horizon [0, L], with L being the total length
of the frame path. Thus, minimizing T can be rewritten as
minimizing an integral function over the fixed spatial interval
[0, L]. Similarly, pointwise constraints can be written in terms
of the transverse coordinates and as function of the arc-length.

The resulting fixed-horizon optimal control problem is
solved by using the Projection Operator Newton method
(PRONTO), [22], combined with a barrier function approach
to handle the constraints, [23].

We provide a detailed and formal explanation of the strategy
steps in the following subsections.

A. Frame path

The first step of the strategy is the generation of an arc-
length parameterized frame path ¯

p

f

(s), 8s 2 [0, L], where s

is the arc-length of the path and L is its total length. In the
following, we denote the arc-length parameterized functions
with a bar, and the derivative with respect to the arc-length
with a prime, i.e., ¯

p

0
f

(s) := d

¯

p

f

(s)/ds. The frame path
¯

p

f

(·) has to be locally a non-intersecting C

2 curve with non-
vanishing ¯

p

0
f

(·). Note that the frame path is only a geometric
path and it is not required to satisfy the position constraints.
A possibility is the computation of the frame path as a C

1

geometric curve, e.g., using arctangent functions as in our
numerical computations. More details on the frame path used
for our numerical computations will be given in Section IV.

The frame path is used to parameterize the inertial position
of the vehicle in the new transverse coordinates, as will be
clear later. In order to define the transverse coordinates, we
consider the Serret-Frenet frame, whose origin has ¯

p

f

(s) as
coordinates, and defined 8s 2 [0, L]. In particular, the tangent,
normal and bi-normal vectors, respectively ¯

t(s),

¯

n(s),

¯

b(s),
are defined, with components in the inertial frame, as

¯

t(s) :=

¯

p

0
f

(s), (7)

¯

n(s) :=

¯

p

00
f

(s)

¯

k(s)

, (8)

¯

b(s) :=

¯

t(s)⇥ ¯

n(s), (9)

where ¯

k(s) := k¯p00
f

(s)k2 is the curvature of ¯

p

f

(·) at s.
Moreover, we define the rotation matrix

¯

R

SF

:= [

¯

t

¯

n

¯

b ] (10)

mapping vectors with components in the Serret-Frenet frame
into vectors with components in the inertial frame. According
to the Serret-Frenet formulas [28], the arc-length derivative of
the Serret-Frenet rotation matrix is

¯

R

0
SF

(s) =

¯

R

SF

(s)

2

4
0 �¯

k(s) 0

¯

k(s) 0 �⌧̄(s)
0 ⌧̄(s) 0

3

5
, (11)

where ⌧̄(s) := ¯

n(s)

¯

b

0
(s) is the torsion of ¯

p

f

(·) at s.



4

B. Transverse dynamics

The second step of the strategy is the derivation of the
transverse dynamics by using the transverse coordinates de-
fined with respect to the frame path ¯

p

f

(·). In order to rewrite
the standard dynamics (1-3) into the transverse dynamics, we
proceed as follows.

First, we design a change of coordinates from the inertial
position p 2 R3 to the transverse coordinate vector w 2 R2,
such that w = [w1 w2]

T , where w1 and w2 are the transverse
coordinates. Let us consider the quadrotor center of mass
with position p(t). As depicted in Figure 1, its orthogonal
projection on the frame path identifies a point with position
¯

p

f

(s

f

(t)), where the function s

f

: R+
0 ! R+

0 is

s

f

(t) := arg min

s2R+
0

kp(t)� ¯

p

f

(s)k2. (12)

For simplicity, in the following we use s

t

f

:= s

f

(t) and ṡ

t

f

:=

ṡ

f

(t). Note that, the minimizing arc-length is unique provided
that ¯

p

f

(·) is locally a non-intersecting C

2 curve with non-
vanishing ¯

p

0
f

(·). By mapping p � ¯

p

f

(s

t

f

) into a vector with
components in the Serret-Frenet frame attached to ¯

p

f

(s

t

f

), we
obtain

d :=

¯

R

SF

(s

t

f

)

T

(p� ¯

p

f

(s

t

f

)). (13)

Noticing that the component related to the tangent vector is
always zero by construction, we define the components w1

and w2 of the transverse error vector w as, respectively, the
second and third components of d, i.e.,

w1 :=

¯

n(s

t

f

)

T

(p� ¯

p

f

(s

t

f

)),

w2 :=

¯

b(s

t

f

)

T

(p� ¯

p

f

(s

t

f

)),

(14)

and thus obtaining

d = [0 w1 w2]
T

. (15)

Fig. 1: Selection of the arc-length s identifying the point on the
frame path at minimum distance from the quadrotor position
at the time instant t.

Second, we rewrite equation (1) using w instead of p. We
note that, the invertible function s

f

(·) provides a change of
variables from the time t to the arc-length s. A generic arc-
length function ↵̄(·) can be expressed as the time function
↵̄(s

f

(·)) and its time derivative is d↵̄(sf (t))
dt

= ↵̄

0
(s

t

f

) ṡ

t

f

. Let
us rewrite equation (1). By using equation (13), the position
of the quadrotor center of mass p(t), at time instant t, can be
written as

p(t) =

¯

p

f

(s

t

f

) +

¯

R

SF

(s

t

f

) d(t). (16)

Differentiating (16) with respect to time, since (1) holds, we
get

v(t) = ¯

p

0
f

(s

t

f

) ṡ

t

f

+

¯

R

0
SF

(s

t

f

) ṡ

t

f

d(t) +

¯

R

SF

(s

t

f

) ḋ(t). (17)

Multiplying both sides of equation (17) by ¯

R

T

SF

, using (11),
(15) and ¯

p

0
f

(s

t

f

) =

¯

R

SF

(s

t

f

)[1 0 0]

T , we get
2

4
0

ẇ1(t)

ẇ2(t)

3

5
+ ṡ

t

f

2

4
1� ¯

k(s

t

f

)w1(t)

�⌧̄(st
f

)w2(t)

⌧̄(s

t

f

)w1(t)

3

5� ¯

R

T

SF

(s

t

f

)v(t) = 0,

i.e., using (10),

ṡ

t

f

=

¯

t(s

t

f

)

T v(t)
1� ¯

k(s

t

f

)w1(t)
(18)

ẇ1(t) = ¯

n(s

t

f

)

T v(t) + ⌧̄(s

t

f

)ṡ

t

f

w2(t) (19)
ẇ2(t) =

¯

b(s

t

f

)

T v(t)� ⌧̄(s

t

f

)ṡ

t

f

w1(t). (20)

Third and final, we rewrite equations (19), (20), (2), (3), by
using the arc-length s as independent variable. Let us denote
by ¯

t

f

: R+
0 7! R+

0 the inverse function of s

f

: R+
0 7! R+

0 ,
satisfying t =

¯

t

f

(s

t

f

). Due to the invertibility of s

f

(·),
a generic time function ↵(·) can be expressed as the arc-
length function ↵(

¯

t

f

(·)) and, defining ↵̄ := ↵ � ¯

t

f

, we have
↵(t) = ↵̄(s

t

f

). In particular,

w(t) =

¯

w(s

t

f

), v(t) = ¯v(st
f

), �(t) =

¯�(s

t

f

), (21)
!(t) =

¯

!(s

t

f

), F (t) =

¯

F (s

t

f

). (22)

Deriving with respect to time equations (21), we get

˙

w(t) =

¯

w

0
(s

t

f

)ṡ

t

f

,

˙v(t) = ¯v0(st
f

)ṡ

t

f

,

˙�(t) =

¯�
0
(s

t

f

)ṡ

t

f

,

and equations (19),(20),(2),(3) become

w̄

0
1(s

t

f

) =

¯

n(s

t

f

)

T v(t)
1

ṡ

t

f

+ ⌧̄(s

t

f

)w2(t),

w̄

0
2(s

t

f

) =

¯

b(s

t

f

)

T v(t)
1

ṡ

t

f

� ⌧̄(s

t

f

)w1(t),

¯v0(st
f

) = (ge3 �
F (t)

m

R(�(t))e3)
1

ṡ

t

f

,

¯�
0
(s

t

f

) = J(�(t))!(t)

1

ṡ

t

f

.

(23)

Using (18), (21) and (22), equations (23) depend on time only
through the variable s

t

f

. Thus, we can rewrite the dynamics in
the arc-length, s 2 [0, L], domain. Formally, considering s as
the independent variable, we get the transverse dynamics

w̄

0
1 =

¯

n

T

¯v
1� ¯

kw̄1

¯

t

T

¯v
+ ⌧̄ w̄2,

w̄

0
2 =

¯

b

T

¯v
1� ¯

kw̄1

¯

t

T

¯v
� ⌧̄ w̄1,

¯v0
= (ge3 �

¯

F

m

R(

¯�)e3)
1� ¯

kw̄1

¯

t

T

¯v
,

¯�
0
= J(

¯�)

¯

!

1� ¯

kw̄1

¯

t

T

¯v
.

(24)

Note that the dependence by s is omitted for simplicity.
Equations (24) can be written in state-space form as

¯

x

0
w

(s) =

¯

f(

¯

x

w

(s),

¯

u(s)), (25)



5

with state ¯

x

w

= [

¯

w

T

¯vT ¯�
T

]

T , input ¯

u = [

¯

!

T

¯

F ]

T and
suitable ¯

f .
Remark 1: The general theory regarding the transverse

coordinates is introduced in [29] and used to design a ma-
neuver regulation controller for a bi-dimensional case in [30].
Differently from [30], we use the transverse coordinates in a
more general three-dimensional case and in order to develop
a trajectory optimization strategy rather than a controller.

C. Arc-length parameterization of cost and constraints

The third step of the strategy consists into the reformulation
of cost and constraints in problem (6) by using the new (arc-
length dependent) variables ¯

x

w

and ¯

u.
The cost functional in (6), i.e., T =

R
T

0 1 dt, is rewritten
into an arc-length parameterization by considering the change
of variable from t to s, i.e.,

Z
T

0
1 dt =

Z
sf (T )

sf (0)

¯

t

0

f

(s) ds.

Since dt̄f (sf (t))
dt

=

¯

t

0

f

(s

t

f

)ṡ

t

f

and ¯

t

f

(s

t

f

) = t, we get

¯

t

0

f

(s

t

f

) = 1/ṡ

t

f

(26)

with ṡ

t

f

as in (18). Since w1(t) = w̄1(s
t

f

) and v(t) = ¯v(st
f

),
as in (21), equation (26) can be written as

¯

t

0

f

(s

t

f

) =

1� ¯

k(s

t

f

)w̄1(s
t

f

)

¯

t(s

t

f

)

T

¯v(st
f

)

, (27)

where all the variables depend on time only through s

t

f

. Thus,
we can rewrite (27) in the arc-length, s 2 [0, L], domain,
obtaining

¯

t

0

f

(s) =

1� ¯

k(s)w̄1(s)

¯

t(s)

T

¯v(s)
. (28)

Finally, since s

f

(0) = 0, s

f

(T ) = L, and (28) holds, we
rewrite the cost functional in (6) as

Z
L

0

1� ¯

k(s)w̄1(s)

¯

t(s)

T

¯v(s)
ds. (29)

Notice that, according to (29), the hypothesis ¯

t(s)

T

¯v(s) 6= 0,
has to be satisfied 8s 2 [0, L], i.e., the velocity projected on
the tangent vector of the frame path has to be not null.

The constraints in (6) are rewritten into an arc-length pa-
rameterization suitable to apply the barrier function approach
[23]. The constraint x(T ) 2 X

T

is written in the form

c

f

(

¯

x

w

(L))  0, (30)

with scalar components

c

f,i

(x̄

wi(L)) =

⇣
2 x̄

wi(L)� (x̄

wi,max

+ x̄

wi,min

)

(x̄

wi,max

� x̄

wi,min

)

⌘2
� 1,

(31)

8i = 1, ..., 8, where x̄

wi is the i-th component of ¯

x

w

, and
x̄

wi,min

and x̄

wi,max

are the bounds on the final states. The
constraints on the angular rates, thrust and roll-pitch-yaw

angles are rewritten by using equations (21), (22) and repa-
rameterizing the time-dependent bounds '

max

(t), ✓
max

(t) and
 

max

(t), 8t 2 [0, T ], by the arc-length s. Thus, we have
⇣
p̄(s)

p

max

⌘2
� 1  0,

⇣
q̄(s)

q

max

⌘2
� 1  0,

⇣
r̄(s)

r

max

⌘2
� 1  0,

⇣
'̄(s)

'̄

max

(s)

⌘2
�10,

⇣
¯

✓(s)

¯

✓

max

(s)

⌘2
�10,

⇣
¯

 (s)

¯

 

max

(s)

⌘2
�10,

⇣
2

¯

F (s)� (F

max

+ F

min

)

(F

max

� F

min

)

⌘2
� 1  0.

(32)

As regards the position constraints c

obs

(p(t))  0, they are
written in the generic form

c̄

obs

(w̄1(s), w̄2(s))  0, (33)

which can be particularized according to the shape of the flying
region. For environments with circular sections, the inequality
(33) becomes

⇣p
w̄

2
1(s) + w̄

2
2(s))

r̄

obs

(s)

⌘2
� 1  0, (34)

where r̄

obs

(s) identifies the radius of the circular boundary at a
given arc-length s. For environments with rectangular sections,
the inequality (33) becomes

⇣
2w̄

i

(s)� (w̄

i,max

(s) + w̄

i,min

(s))

(w̄

i,max

(s)� w̄

i,min

(s))

⌘2
� 1  0, (35)

8i = 1, 2, where w̄

i,min

(s) and w̄

i,max

(s) are the lower and
upper bounds at a given arc-length s, defining the boundaries
of the region. The constraint boundaries are arc-length func-
tions suitable to model fairly complex regions. They represent
the physical boundary of a region and they can be shaped in
order to take into account the presence of obstacles attached
to the boundary. As an illustrative example, let us consider the
environment with rectangular sections depicted in Figure 2. An
obstacle restricts the collision-free space inside the physical
boundary of the region.

A

Fig. 2: Representation of w̄1,obs related to a point A on the
obstacle boundary. The frame path is depicted in red (portion
identifying s

obs

) and dot-dashed green.

Let us denote by w̄

PB

i,max

(s) and w̄

PB

i,min

(s) the (respectively)
positive and negative distance of the physical boundary from
the frame path at a given arc-length s. We first set w̄

i,min

(s) =

w̄

PB

i,min

(s) and w̄

i,max

(s) = w̄

PB

i,max

(s), 8s 2 [0, L]. Then, in



6

order to take into account the obstacle, we suitably restrict the
bounds as follows. Let us consider a point A on the boundary
surface of the obstacle. Let p

obs

be the position of point A

with components in the inertial frame. We map p

obs

in the
transverse coordinate vector ¯

w

obs

. First, we select the arc-
length on the frame path, identifying the point at minimum
distance from A, as

s

obs

:= arg min

s2R+
0

kp
obs

� ¯

p

f

(s)k2. (36)

Second, we map p

obs

�¯

p

f

(s

obs

) into a vector with components
in the Serret-Frenet frame attached to the point identified by
s

obs

, obtaining

w̄1,obs = ¯

n

T

(s

obs

)(p

obs

� ¯

p

f

(s

obs

)), (37)

w̄2,obs =
¯

b

T

(s

obs

)(p

obs

� ¯

p

f

(s

obs

)). (38)

Since, according to the particular scenario, the obstacle only
affects the function w̄1,min

(·), we update

w̄1,min

(s

obs

) = max{w̄PB

1,min

(s

obs

), w̄1,obs}.

D. Equivalent minimum-time formulation and optimal control

solver

The minimum-time problem (6) is reformulated in the new
(arc-length dependent) variables ¯

x

w

and ¯

u, by using the cost
(29), the transverse dynamics (25) and the constraints (30),
(32), and (33). Denoting by c(

¯

x

w

(s),

¯

u(s))  0, 8s 2 [0, L],

the constraints (32) and (33) in vectorial form, the reformu-
lated problem is

min

x̄w(·),ū(·)

Z
L

0

1� ¯

k(s)w̄1(s)

¯

t(s)

T

¯v(s)
ds,

subj. to ¯

x

0
w

(s) =

¯

f(

¯

x

w

(s),

¯

u(s)),

¯

x

w

(0) = x

w0,

c

f

(

¯

x

w

(L))  0,

c(

¯

x

w

(s),

¯

u(s))  0, 8s 2 [0, L].

(39)

Note that the fixed horizon problem (39) is equivalent to (6)
since trajectories solving (39) can be mapped into trajectories
solving (6).

In order to solve problem (39), we use a combination of
the PRojection Operator based Newton method for Trajectory
Optimization (PRONTO) [22] with a barrier function approach
[23]. We relax state-input constraints by adding them in the
cost functional, i.e., we consider the problem

min

x̄w(·),ū(·)

Z
L

0

⇣
1� ¯

k(s)w̄1(s)

¯

t(s)

T

¯v(s)
+ ✏

X

j

�

⌫

(�c

j

(

¯

x

w

(s),

¯

u(s)))

⌘
ds

+ ✏

f

X

i

�

⌫f (�c

f,i

(

¯

x

w

(L))),

subj. to ¯

x

0
w

(s) =

¯

f(

¯

x

w

(s),

¯

u(s)), 8s 2 [0, L],

¯

x

w

(0) = x

w0.

(40)

where ✏ and ✏
f

are positive parameters and �
`

(·), ` 2 {⌫, ⌫
f

},
is a function depending on the parameter ` and defined as

�

`

(x) :=

(
� log(x) x > `,

� log(`) +

1
2

⇥
(

x�2`
`

)

2 � 1

⇤
x  `.

Let an initial trajectory for the initialization of the algorithm
be given. The strategy to find an approximated solution to
(39) can be summarized as follows. Problem (40) is iteratively
solved by reducing the parameters ✏, ⌫, ✏

f

and ⌫

f

at each
iteration, and thus pushing the trajectory towards the constraint
boundaries. Each instance of problem (40) is solved by means
of the PRONTO algorithm described in Appendix A.

E. Summary of the strategy

A pseudo code of the whole strategy to compute minimum
time trajectories is reported in the following table (Algorithm
1). We denote with (

¯

x

w

(·), ¯u(·))0 the initial trajectory to
initialize the algorithm and with PRONTO the PRojection
Operator based Newton method for Trajectory Optimization
routine that, given a trajectory (

¯

x

w

(·), ¯u(·))i�1, computes the
solution (

¯

x

w

(·), ¯u(·))i to problem (40), i.e., (¯x
w

(·), ¯u(·))i =
PRONTO((¯x

w

(·), ¯u(·))i�1
).

Algorithm 1 Minimum-time strategy
Given: initial condition x0, final desired region X

T

, bounds
p

max

, q

max

, r

max

, f

min

, f

max

,'

max

(·), ✓
max

(·),  
max

(·), and
the dynamic model (5)
A. Frame path
generate ¯

p

f

(s), 8s 2 [0, L]

compute
• tangent, normal and binormal vectors
¯

t(s)=

¯

p

0
f

(s), ¯

n(s)=

p̄

00
f (s)

kp̄00
f (s)k2

, ¯

b(s)=

¯

t(s)⇥ ¯

n(s)

• curvature ¯

k(s)=k¯p00
f

(s)k2
• torsion ⌧̄(s)= ¯

n(s)

¯

b

0
(s)

B. Transverse dynamics
set-up transverse dynamics (24)
C. Cost and constraints
set-up cost

R
L

0
1�k̄(s)w̄1(s)
t̄(s)T v̄(s) ds

set-up constraints (30) and (32)
define boundary constraints by using (34) and/or (35)
E. Numerical solution to (39)
compute initial trajectory (

¯

x

w

(·), ¯u(·))0
set ✏ = 1, ✏

f

= 1, ⌫ = 1, ⌫
f

= 1

for i = 1, 2 . . . do
compute: (¯x

w

(·), ¯u(·))i=PRONTO((¯x
w

(·), ¯u(·))i�1
)

update: ✏, ✏
f

, ⌫, ⌫
f

end for
Output: (

¯

x

w

(·), ¯u(·))
opt

= (

¯

x

w

(·), ¯u(·))i

IV. NUMERICAL COMPUTATIONS

In this section, we present numerical computations and
experimental tests on a nano-quadrotor with mass m =

0.0325 kg, in order to show the effectiveness of the proposed
strategy. First, we consider a scenario with two obstacles: a
parallelepiped and a cylinder, as depicted in Figure 3a. Second,
we consider an experimental scenario and we show the results
related to the execution of the optimal trajectory using our
maneuver regulation control scheme [31].



7

A. Rooms with obstacles

The first scenario is as follows. The vehicle has to move
from one room to another through a narrow corridor. There is
a parallelepiped in the first room and a cylinder in the second
room. As an additional requirement, the quadrotor must reach
a neighborhood of x

w0 at the end of its motion. In order
to fulfil this objective, we consider the final constraint (30)
with c

f,i

(x̄

wi(L)) as in (31), where x̄

wi,min

= x

wi,0 � tol
i

,
x̄

wi,max

= x

wi,0 + tol
i

, tol
i

is a given tolerance and x

wi,0 is
the i-th component of x

w0. Results are depicted in Figures
3, 4, 5. The initial trajectory is depicted in dot-dashed green,
intermediate trajectories in dotted black and the minimum-time
trajectory in solid blue. Collision-free boundaries are depicted
in grey and remaining state-input constraints in dashed red.

We choose as frame path a C

1 curve on the p̄1 � p̄2 plane
with constant binormal vector ¯

b = [0 0 1]

T and curvature

¯

k(s) =

1

5

tanh(s� 5)� tanh(s� 5(1 +

⇡

2 ))

max(tanh(s� 5)� tanh(s� 5(1 +

⇡

2 )))
.

The collision free region is defined by constraint (35) where
obstacle boundaries w̄

i,min

(·) and w̄

i,max

(·), i = 1, 2, are cho-
sen as follows. Functions w̄1,max

and w̄2,max

are not affected
by obstacles. As depicted in Figures 3b and 3c, w̄1,max

(·) and
w̄2,max

(·) are obtained using sigmoid functions with values
varying from 2 m to 0.25 m. Functions w̄1,min

and w̄2,min

are affected by obstacles. In order to model the obstacles, we
consider the position of the obstacle boundary as a function
of its arc-length. We choose 10

�3 as discretization step for
the arc-length and for every value of the boundary position
p

obs

, we compute s

obs

and w̄1,obs, w̄2,obs by using equations
(36), (37) and (38), respectively. Thus, in order to define
w̄1,min

and w̄2,min

, we first set w̄1,min

(s) = �w̄1,max

(s)

and w̄2,min

(s) = �w̄2,max

(s), 8s 2 [0, L]. Second, for each
s

R

obs

and w̄

R

1,obs related to a point R on the parallelepiped, we
update

w̄1,min

(s

R

obs

) = max{�w̄1,max

(s

R

obs

), w̄

R

1,obs}.

Third and final, for each s

C

obs

and w̄

C

2,obs related to a point C
on the cylinder, we update

w̄2,min

(s

C

obs

) = max{�w̄2,max

(s

C

obs

), w̄

C

2,obs}.

We choose the initial trajectory as follows. We set the frame
path as the position, a velocity module of 0.5 m/s along the
curve and a zero yaw angle. The remaining initial states and
inputs are computed by using the differential flatness of the
quadrotor dynamics [10]. It is worth noting that the position
part of the initial trajectory does not have to necessarily
match the frame path. Also, the initial trajectory could be
alternatively computed through the projection of a state-input
curve by using the projection operator (41) described in
Appendix A, instead of using the differential flatness.

Having the initial trajectory in hand, we run the algorithm
to numerically compute solutions. Note that the PRONTO
method (described in Appendix A) is designed considering an
s-dependent continuous dynamics. In order to implement it
by using a numerical toolbox (Matlab), we consider a suitable
tolerance. We choose 10

�3 as discretization step on s and

we use the tolerance of the Matlab solver to integrate the
differential equations. Each intermediate optimal trajectory
is computed by solving the optimization problem (40) with
constant values of the parameters ✏, ⌫, ✏

f

and ⌫

f

. We start
with ✏ = 1, ⌫ = 1, ✏

f

= 1, ⌫
f

= 1 and, following a
suitable heuristic, we decrease them at each iteration. Since the
algorithm operates in an interior point fashion, intermediate
trajectories are all feasible and are pushed to the constraint
boundaries when ✏, ⌫, ✏

f

, ⌫

f

are decreased.
As regards the minimum-time trajectory, the maneuver is

performed in 3.57 s and the path touches the constraint
boundaries when the vehicle is inside the corridor and in the
proximity of obstacles (Figures 3b and 3c). The velocity ¯

t

T

¯v
(Figure 4a) reaches a peak of about 8.5 m/s in the middle
of the path and approaches the final desired value at the end.
Velocities ¯

n

T

¯v and ¯

b

T

¯v (Figures 4c and 4e, respectively) are
between �2.0 m/s and 2.0 m/s. Roll and pitch angles (Figures
4b, 4d, respectively) do not touch constraint boundaries and
alternate positive and negative values between �50 deg and
50 deg. The yaw angle has values between �20 deg and
50 deg (Figure 4f). As regards the inputs, while constraints on
roll and pitch rates (Figures 5a, 5b, respectively) are always
active, yaw rate and thrust (Figures 5c and 5d, respectively)
alternate intervals with active and inactive constraints. Further-
more, note that the final state reaches a neighborhood of the
initial state, satisfying ||¯x

w

(L)� x

w0|| < 0.07.

start

end

(a) Path: 3D view

(b) Transverse coordinate w̄1 (c) Transverse coordinate w̄2

Fig. 3: Path and transverse coordinates. Initial (dot-dashed
green), intermediate (dotted black) and minimum-time (solid
blue) trajectory. Constraint boundaries are depicted in grey.

B. Tubular passage

As a second test, we consider a region delimited by
hula hoops as constrained environment. First, we com-
pute a minimum-time trajectory through our optimiza-
tion strategy and second, we experimentally execute the
minimum-time trajectory on the CrazyFlie nano-quadrotor
(https://www.bitcraze.io/crazyflie/), by using a suitable con-
troller. We invite the reader to watch the attached video related
to this experiment.



8

(a) Velocity t̄T v̄ (b) Roll angle '̄

(c) Velocity n̄T v̄ (d) Pitch angle ✓̄

(e) Velocity b̄T v̄ (f) Yaw angle  ̄

Fig. 4: Velocities and angles. Initial (dot-dashed green),
intermediate (dotted black) and minimum-time (solid blue)
trajectory. Constraint boundaries are depicted in red.

We set-up the optimization algorithm as follows. We ap-
proximate the collision free region as a tube with circular
section. We choose as frame path a curve on the p̄2� p̄3 plane
with constant binormal vector ¯

b = [1 0 0]

T and curvature

¯

k(s) =

1
1+e

�8(s�2.27) � 1
1+e

�8(s�3.67)

max(

1
1+e

�8(s�2.27) � 1
1+e

�8(s�3.67) )

.

Moreover, we consider the constraint (34) with constant r̄
obs

=

r

hh

� l � e

p

, where r

hh

= 0.33 m is the hula hoop radius,
l = 0.04 m is the distance between the quadrotor center of
mass and its propellers and e

p

= 0.01 m is the estimated
position error arising during control.

As regards input constraints, we impose, for safety rea-
sons, more severe bounds than the ones required by the
physical vehicle limitations. In this way, we also ensure that
the “experimental” trajectory remains feasible although the
imperfect tracking of desired inputs by actual values (naturally
arising during control). We choose p

min

= �15 deg/s and
p

max

= 15 deg/s for the roll rate and F

min

= 0.1779 N and
F

max

= 0.3411 N for thrust.
By using our minimum-time strategy, we obtain the fol-

lowing result. The optimal trajectory, performed in 2.38 s, is

(a) Roll rate p̄ (b) Pitch rate q̄

(c) Yaw rate r̄ (d) Thrust f̄

Fig. 5: Inputs. Initial (dot-dashed green), intermediate (dotted
black) and minimum-time (solid blue) trajectory. Constraint
boundaries are depicted in dashed red.

depicted in Figure 6 (solid blue). Constraint boundaries are
depicted in dashed red and the hula hoops are depicted in
solid green. The optimal path (blue line in Figure 6a) first takes
negative values of p2 until changing direction toward positive
p2 values, touching the constraint boundary in the proximity
of the maximum curvature of the tube, and staying in the
middle of the feasibility region at the end. The roll angle (blue
line in Figure 6b) decreases in order to push the vehicle to
negative p2 values and then it monotonically increases during
the remaining time interval. The velocity module (blue line in
Figure 6c) always increases, as we expect for a minimum-time
trajectory. As regards the inputs, in the beginning, the angular
rate p (blue line in Figure 6d) stays on the lower bound and
then it switches to the upper bound. The thrust F (blue line
in Figure 6e) always takes the upper bound.

We execute the computed minimum-time trajectory on the
CrazyFlie nano-quadrotor by using the closed-loop, maneuver
regulation controller developed in [31], in which the minimum-
time trajectory is used for the desired maneuver. The maneuver
regulation controller computes thrust and angular rate virtual
inputs, which are tracked by the standard off-the-shelf angular
rate controller provided on board the CrazyFlie. The actual
(experimental) trajectory performed using our maneuver reg-
ulation controller is depicted in Figure 6 in solid magenta.
Snapshots of the experiment are depicted in Figure 6f. As
expected, the quadrotor passes close to the second hula hoop
maintaining the distance imposed by the restrictive constraints
in the optimization problem. The actual velocity does not
perfectly match (at higher velocities) the desired one, due to
the unmodeled drag effect. Since the vehicle is asked to follow
the desired thrust, the actual velocity becomes lower than the
desired one because of the opposing aerodynamic force. The
experiment shows the actual feasibility of the optimal trajec-



9

tory and also reveals that a more accurate model including
aerodynamic effects would improve the control performance.

1

2

3

(a) Path

(b) Roll angle '

(c) Velocity norm ||v||

(d) Angular rate p (e) Thrust F

(f) Experiment snapshots

Fig. 6: Experimental test. Desired trajectory (blue) and actual
trajectory (magenta). Constraint boundaries are depicted in
dashed red. Hula hoops are depicted in solid green.

V. CONCLUSION

In this paper, we have presented a strategy to address the
minimum-time problem for quadrotors in constrained envi-
ronments. Our approach consists of: (i) generating a frame
path, (ii) expressing the quadrotor dynamics in a new set of
coordinates “transverse” with respect to that path, and (iii)
redefining cost and constraints in the new coordinates. Thus,
we obtain a reformulation of the problem, which we solve
by combining the PRONTO algorithm with a barrier func-
tion approach. Numerical computations on two challenging
scenarios prove the effectiveness of the strategy and allow
us to show interesting dynamic capabilities of the vehicle.
Moreover, the experimental test of the second scenario shows
the feasibility of the computed trajectory. As a future work,
we aim at extending our strategy to a scenario with moving
obstacles. Challenges to be addressed include how to combine
trajectory generation and control, and how to take into account
a fast integration of the dynamics for realtime computation.

APPENDIX A
PROJECTION OPERATOR NEWTON METHOD

Here, we provide a brief description of the PRONTO
algorithm [22]. The PRONTO algorithm is based on a properly

designed projection operator P : ⇠

c

! ⇠, mapping a state-
control curve ⇠

c

= (

¯

x

w,c

(·), ¯u
c

(·)) into a system trajectory
⇠ = (

¯

x

w

(·), ¯u(·)), by the nonlinear feedback system

¯

x

0
w

(s) =

¯

f(

¯

x

w

(s),

¯

u(s)),

¯

x

w

(0) = x

w0,

¯

u(s) =

¯

u

c

(s) +

¯

K(s)(

¯

x

w,c

(s)� ¯

x

w

(s)), (41)

where the feedback gain ¯

K(·) is designed by solving a suitable
linear quadratic optimal control problem on the linearized
dynamics of (25) about the trajectory ⇠. Note that the feedback
gain ¯

K(·) is only used to define the projection operator and
it is not related to the controller used to execute the optimal
trajectory in our experimental test. The projection operator
is used to convert the dynamically constrained optimization
problem (40) into the unconstrained problem

min

⇠

g(⇠;

¯

k), (42)

where g(⇠;

¯

k) = h(P(⇠);

¯

k), and h(⇠;

¯

k) :=

R
L

0 (
1�k̄(s)w̄1(s)

t̄

T (s)v̄(s) +

✏

P
j

�

⌫

(�c

j

(

¯

x

w

(s),

¯

u(s))))ds+ ✏

f

P
i

�

⌫f (�c

f,i

(

¯

x

w

(L))).
Then, using an (infinite dimensional) Newton descent method,
a local minimizer of (42) is computed iteratively. Given the
current trajectory iterate ⇠

i

, the search direction ⇣
i

is obtained
by solving a linear quadratic optimal control problem with
cost Dg(⇠

i

;

¯

k) ·⇣+ 1
2D

2
g(⇠

i

;

¯

k)(⇣, ⇣), where ⇣ 7! Dg(⇠

i

;

¯

k) ·⇣
and ⇣ 7! D

2
g(⇠

i

;

¯

k)(⇣, ⇣) are respectively the first and second
Fréchet differentials of the functional g(⇠, ¯k) at ⇠

i

. Then, the
curve ⇠

i

+ �

i

⇣

i

, where �

i

is a step size obtained through a
standard backtracking line search, is projected, by means of
the projection operator, in order to get a new trajectory ⇠

i+1.
The strength of this approach is that the local minimizer

of (42) is obtained as the limit of a sequence of trajectories,
i.e., curves satisfying the dynamics. Furthermore, the feedback
system (41), defining the projection operator, allows us to
generate trajectories in a numerically stable manner.

Remark 2: An elegant extension of the PRONTO method
to Lie groups is developed in [32] and could be alternatively
used in our strategy.

REFERENCES

[1] N. Dadkhah and B. Mettler, “Survey of motion planning literature in
the presence of uncertainty: considerations for UAV guidance,” Journal

of Intelligent & Robotic Systems, vol. 65, no. 1-4, pp. 233–246, 2012.
[2] C. L. Bottasso, D. Leonello, and B. Savini, “Path Planning for Au-

tonomous Vehicles by Trajectory Smoothing Using Motion Primitives,”
IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp.
1152–1168, 2008.

[3] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, E. D. Lellis, and
A. Pironti, “Path Generation and Tracking in 3-D for UAVs,” IEEE

Transactions on Control Systems Technology, vol. 17, no. 4, pp. 980–
988, 2009.

[4] B. Herissé, T. Hamel, R. Mahony, and F.-X. Russotto, “Landing a VTOL
unmanned aerial vehicle on a moving platform using optical flow,” IEEE

Transactions on Robotics, vol. 28, no. 1, pp. 77–89, 2012.
[5] R. Naldi, A. Torre, and L. Marconi, “Robust control of a miniature

ducted-fan aerial robot for blind navigation in unknown populated envi-
ronments,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 1, pp. 64–79, 2015.

[6] X. Hou and R. Mahony, “Dynamic Kinesthetic Boundary for Haptic
Teleoperation of VTOL Aerial Robots in Complex Environments,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 5,
pp. 694–705, 2016.

[7] M. Furci, R. Naldi, S. Karaman, and L. Marconi, “A Combined Plan-
ning and Control Strategy for Mobile Robots Navigation in Populated
Environments,” in IEEE Conference on Decision and Control, 2015.



10

[8] A. Masoud and A. Al-Shaikhi, “Time-sensitive, sensor-based, joint
planning and control of mobile robots in cluttered spaces: A harmonic
potential approach,” in IEEE Conference on Decision and Control, 2015.

[9] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“Direct method based control system for an autonomous quadrotor,”
Journal of Intelligent & Robotic Systems, vol. 60, no. 2, pp. 285–316,
2010.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE International Conference on Robotics

and Automation, 2011.
[11] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a

quadrotor helicopter,” in Mediterranean Conference on Control and

Automation, 2008.
[12] W. Van Loock, G. Pipeleers, and J. Swevers, “Time-optimal quadrotor

flight,” in European Control Conference, 2013.
[13] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free

trajectories for quadrotor flight in unknown cluttered environments,” in
IEEE International Conference on Robotics and Automation, 2016.

[14] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of
fixed-wing and quadrotor aircraft in dense indoor environments,” The

International Journal of Robotics Research, vol. 34, no. 7, pp. 969–
1002, 2015.

[15] E. Koyuncu and G. Inalhan, “A probabilistic b-spline motion planning
algorithm for unmanned helicopters flying in dense 3d environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2008.

[16] P. M. Bouffard and S. L. Waslander, “A hybrid randomized/nonlinear
programming technique for small aerial vehicle trajectory planning
in 3d,” Planning, Perception and Navigation for Intelligent Vehicles,
vol. 63, 2009.

[17] D. Devaurs, T. Siméon, and J. Cortés, “Optimal Path Planning in Com-
plex Cost Spaces With Sampling-Based Algorithms,” IEEE Transactions

on Automation Science and Engineering, vol. 13, no. 2, pp. 415–424,
2016.

[18] R. Allen and M. Pavone, “A Real-Time Framework for Kinodynamic
Planning with Application to Quadrotor Obstacle Avoidance,” in AIAA

Conf. on Guidance, Navigation and Control, San Diego, CA, 2016.
[19] M. Hehn and R. D’Andrea, “Real-Time Trajectory Generation for

Quadrocopters,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 877–
892, 2015.

[20] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential con-
vex programming approach,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2012.
[21] ——, “Dance of the flying machines: Methods for designing and

executing an aerial dance choreography,” IEEE Robotics & Automation

Magazine, vol. 20, no. 4, pp. 96–104, 2013.
[22] J. Hauser, “A projection operator approach to the optimization of

trajectory functionals,” in IFAC world congress, 2002.
[23] J. Hauser and A. Saccon, “A barrier function method for the optimization

of trajectory functionals with constraints,” in IEEE Conference on

Decision and Control, 2006.
[24] ——, “Motorcycle modeling for high-performance maneuvering,” IEEE

Control Systems, vol. 26, no. 5, pp. 89–105, 2006.
[25] A. J. Hausler, A. Saccon, A. P. Aguiar, J. Hauser, and A. M. Pascoal,

“Energy-Optimal Motion Planning for Multiple Robotic Vehicles With
Collision Avoidance,” IEEE Transactions on Control Systems Technol-

ogy, vol. 24, no. 3, pp. 867–883, 2015.
[26] A. Rucco, A. P. Aguiar, and J. Hauser, “A Virtual Target Approach for

Trajectory Optimization of a General Class of Constrained Vehicles,”
in IEEE Conference on Decision and Control, 2015.

[27] M. D. Hua, T. Hamel, P. Morin, and C. Samson, “Introduction to
feedback control of underactuated VTOL vehicles: A review of basic
control design ideas and principles,” IEEE Control Systems, vol. 33,
no. 1, pp. 61–75, 2013.

[28] M. P. Setterlund, “Geometric-based Spatial Path Planning,” PhD disser-
tation, University of Texas at Austin, 2008.

[29] A. Banaszuk and J. Hauser, “Feedback linearization of transverse
dynamics for periodic orbits,” in IEEE Conference on Decision and

Control, 1994.
[30] A. Saccon, J. Hauser, and A. Beghi, “A Virtual Rider for Motorcycles:

Maneuver Regulation of a Multi-Body Vehicle Model,” IEEE Transac-

tions on Control Systems Technology, vol. 21, no. 2, pp. 332–346, March
2013.

[31] S. Spedicato, G. Notarstefano, H. H. Bülthoff, and A. Franchi, “Ag-
gressive Maneuver Regulation of a Quadrotor UAV,” in The 16th

International Symposium on Robotics Research, 2013.

[32] A. Saccon, J. Hauser, and A. P. Aguiar, “Optimal control on Lie groups:
The projection operator approach,” IEEE Transactions on Automatic

Control, vol. 58, no. 9, pp. 2230–2245, 2013.

Sara Spedicato is a Post-Doctoral Researcher at
the Università del Salento (Lecce, Italy), where she
received the Laurea degree “summa cum laude” in
Mechanical Engineering (curriculum “Servomecha-
nisms and industrial automation”) in 2012 and the
Ph.D. degree in Information Engineering in 2016.
She carried out an internship activity at the ETH
Zürich (Zürich, Switzerland) from June to Septem-
ber 2012. She was a visiting graduate student at
the Max Planck Institute for Biological Cybernetics
(Tübingen, Germany) from January to August 2013.

Her research activity involves nonlinear optimal control, distributed optimiza-
tion, trajectory optimization and maneuvering for autonomous aerial vehicles.

Giuseppe Notarstefano (M’11) is Associate Pro-
fessor at the Università del Salento (Lecce, Italy),
where he was Assistant Professor (Ricercatore) from
February 2007 to May 2016. He received the Laurea
degree “summa cum laude” in Electronics Engineer-
ing from the Università di Pisa in 2003 and the
Ph.D. degree in Automation and Operation Research
from the Università di Padova in 2007. He has been
visiting scholar at the University of Stuttgart, Uni-
versity of California Santa Barbara and University
of Colorado Boulder. His research interests include

distributed optimization, cooperative control in complex networks, applied
nonlinear optimal control, and trajectory optimization and maneuvering of
aerial and car vehicles. He serves as an Associate Editor for IEEE Transactions
on Control Systems Technology, for IEEE Control Systems Letters, for the
Conference Editorial Board of the IEEE Control Systems Society and for other
IEEE and IFAC conferences. He coordinated the VI-RTUS team winning the
International Student Competition Virtual Formula 2012. He is recipient of
an ERC Starting Grant 2014.


