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Point-to-Point Iterative Learning Control with
Optimal Tracking Time Allocation

Yiyang Chen, Bing Chu∗ and Christopher T. Freeman

Abstract—Iterative learning control is a high performance
tracking control design method for systems operating in a repeti-
tive manner. This paper proposes a novel design methodologythat
extends the recently developed point-to-point iterative learning
control framework to allow automatic via-point time allocation
within a given point-to-point tracking task, leading to significant
performance improvements, e.g. energy reduction. The problem
is formulated into an optimization framework with via-poin t
temporal constraints and a reference tracking requirement, for
which a two stage design approach is developed. This yields an al-
gorithmic solution which minimizes input energy based on norm
optimal iterative learning control and gradient minimizat ion. The
algorithm is further expanded to incorporate system constraints
into the design, prior to experimental validation on a gantry robot
test platform to confirm its feasibility in practical applic ations.

Index Terms—point to point iterative learning control, con-
straint handling.

I. I NTRODUCTION

I TERATIVE learning control (ILC) is a high performance
control technique applicable to systems which perform re-

peated tasks [1]. Unlike modifying the controller as in adaptive
control, ILC directly updates the input based on information
from previous experimental attempts (named trials) to improve
tracking performance [2]. Each trial has the same finite trial
length, and the system states are reset to the same value at
the start of each trial. The tracking error over each trial can
theoretically be reduced to zero after sufficient trials. This
appealing property has led to ILC being applied to various
industrial high performance systems, such as robotics [3],[4],
chemical batch processing [5], [6] and stroke rehabilitation
[7]. See [1] and [8] for a detailed overview of ILC.

In the classic ILC setting, the output of the system is
required to track a given reference defined on the whole trial
interval. However, in a large subset of control tasks such as
robotic pick-and-place manipulation, the system output isonly
critical at a finite number of time-points along the trial duration
[9]. To address this design problem, the ILC framework can be
modified to update the input by using only the error informa-
tion recorded at these time-points. Significant design freedom
can hence be exploited to incorporate additional performance
objectives by eliminating the unnecessary noncritical tracking
constraints [10]. This novel control concept is termed point-
to-point ILC, and has attracted significant interest.
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A number of point-to-point ILC algorithms have been
proposed in the literature. Terminal ILC, a special case of the
point-to-point ILC problem, where only tracking performance
at the end of the trial is required, is studied in [11]–[14].
General point-to-point ILC design by employing a ‘complete’
reference that passes through all the desired intermediate
points is studied in [15]–[17]. These methods, however, do
not fully use the extra freedom provided by the point-to-
point tracking requirements. As such, the overall system
performance could be limited. This drawback is addressed
recently in [18]–[21] where the intermediate point tracking
requirements are directly handled by optimizing a quadratic
performance index characterizing the tracking performance
at these intermediate points. Results containing convergence
properties of these algorithms are also available. More re-
cently, system constraints in point-to-point ILC have been
considered [9], [10].

All the aforementioned point-to-point ILC problem formu-
lations have assumed that the critical tracking time-points are
known a priori, and this information is generally embedded
within a performance cost function whose optimization is
implemented in the ILC framework. Hence the performance
cost function is highly dependent on the tracking time al-
location within the point-to-point ILC tracking problem. If
this framework can be expanded to enable the tracking time
allocation to be embedded as an optimized variable, significant
practical benefits can be realized, such as reducing the energy
use in industry, reducing the damage to machine components
and increasing the efficiency of production (i.e. throughput).
This hence motivates the expansion of the point-to-point ILC
framework to allow flexibility in the selection of the temporal
tracking subset, with its input also updated to achieve the
overall point-to-point control objective. Note that existing
research into optimal tracking time allocation of point-to-point
robotic motion [22], addresses a series of independent motions
but these are not coupled together and the approach does not
take advantage of ILC to enable precise tracking.

This paper develops a comprehensive optimal tracking time
allocation framework in point-to-point ILC to allow automatic
choosing of the tracking time to optimize some performance
of interest, and at the same time, achieving high performance
reference tracking at the chosen intermediate points basedon
our preliminary idea in [23]. The main contributions of the
paper are as follows:

• Rigorous formulation of point-to-point ILC problem with
optimal tracking time allocation (Section II).The design
problem is formulated into an optimization framework
where the flexibility in tracking time allocation is ex-
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ploited to optimize some performance index of interest,
e.g. energy consumption, at the same time, to ensure
accuracy tracking. The problem formulation is based on
an abstract operator form in some Hilbert space, which
allows the essence of the results to be generalized to other
system models without difficulty.

• Derivation of a two stage design framework (Sections III
and IV). A two stage design framework is proposed to
solve the optimal tracking time allocation optimization
problem. The two stage design involves the alternating
use of a well known norm optimal point-to-point ILC
algorithm [18] ensuring accurate tracking, and a gradient
based minimization to update the tracking time allocation
to optimize the performance index. It can be shown
that under certain conditions, the proposed algorithm
converges to the ‘best’ solution that can be achieved.
Implementation procedures of the proposed algorithm are
discussed in detail.

• Incorporation of system constraints into the design (Sec-
tion V). The two stage design framework is further ex-
tended to incorporate system constraints that exist widely
in practice into the design. In particular, it is shown
that the input constraints can be incorporated into the
design using a modified two stage design framework and
the resulting algorithm guarantees that the constraint is
satisfied, as well as improved performance.

• Experimental verification on a gantry robot test platform
(Section VI).The proposed design methods are verified
experimentally on a gantry robot test platform. The results
show that by exploiting the flexibility in choosing the
tracking time allocation in point-to-point ILC, significant
benefit can be obtained in terms of the input energy
reduction compared toa priori tracking time allocation,
at the same time maintaining high tracking performance.
The results also show that the proposed algorithm exhibits
a degree of robustness against modelling mismatch/error
due to the use of previous data which is clearly desirable
in practical applications.

The notation used in this paper is standard:Nn is the set
of n dimensional vectors containing non-negative integers;Rn

andRn×m denote the sets ofn dimensional real vectors and
n×m real matrices respectively;Sn

++ is the set of alln× n
real positive definite matrices;Lℓ

2[0,T] denotes the space of
functions defined on[0,T] whose function value belongs toRℓ

and 2 power is Lebesgue integrable;〈·, ·〉 is the inner product;
R, SandQ are the product spaces;PΘ is the projection operator
to the setΘ. Other notation will be introduced as needed.

II. FORMULATION OF THE PROBLEM

In this section, the design problem of point-to-point ILC
with optimal tracking time allocation is illustrated firstly
using a robotic ‘pick and place’ example and then formulated
rigorously into an optimization problem using an abstract oper-
ator form representation of system dynamics in some Hilbert
space. In this paper, a continuous time linear time-invariant
state space model is considered. The general abstract form
problem formulation allows the results to be extended to more

general models, e.g. time varying systems and differential
delay systems, etc.

A. Point-to-Point ILC

Consider the followingm-output,ℓ-input linear continuous
time-invariant system in state space formS(A,B,C)

ẋk(t) = Axk(t)+Buk(t), xk(0) = x0,

yk(t) =Cxk(t), t ∈ [0,T], (1)

where t is the time index;k ∈ N denotes the trial number;
xk(t) ∈ Rn,uk(t) ∈ Rℓ andyk(t) ∈ Rm are the state, input and
output respectively on trialk; A,B,C are system matrices of
compatible dimensions; 0< T < ∞ is the trial length. The
initial conditions are identical for all trials, i.e.xk(0) = x0, ∀k.

The design objective is to find an input such that the system
output follows a given reference defined on the trial interval
[0,T] as accurately as possible. Note that the system operates
in a repetitive manner, i.e. at the end of each trial (t = T), the
system state is reset to the same initial conditionx0, another
trial begins and the system is required to track the same
reference again. This class of systems have many applications
in robotics [24], manufacturing [25], etc.

In the point-to-point ILC framework, only the output values
y(t) at a finite number of pre-specified time instants are of
interest. As an example, the output trajectories for a robotic
pick-and-place tasks are shown in Figure 1. In this problem,
the robotic arm is required to start from the resting position
(shown as green dot) at the beginning of a trial (t = 0), move to
the ‘pick’ position (shown as yellow dot) at the specified time
t1 and then move to the ‘place’ position (shown as red dot) at a
specified timet2, before finally moving back (resetting) to the
resting position at the end of the trial (t = T). Note that in this
problem, we are only interested in the tracking positions atthe
‘pick’ and ‘place’ time instants, i.e.t1 andt2 - the movements
beyond them are not of interest. Therefore, although the two
output trajectories in the figure differ significantly, bothsatisfy
the control design requirement. These two trajectories will
clearly lead to different system performance in terms of energy
use, smoothness of the movements, etc. The problem of finding
a suitable trajectory with satisfactory performance has been
considered in the literature - please refer to [26], [27] formore
details.

Another look at the problem reveals that the pre-specified
tracking time allocation, i.e. the ‘pick’ and ‘place’ time
instantst1 andt2, plays a key role in the system performance.
As an intuitive example, if the two tracking time instants are
chosen close to each other, the robotic arm will have to move
from the desired ‘pick’ location to the ‘place’ position within a
very short time, therefore requiring fast moving and thus high
power consumption. In all existing point-to-point ILC designs,
these critical tracking time instants are assumed to be known
as a priori. The extra flexibilities in choosing the tracking
time instants (which affect the system performance) have not
been explored. This paper aims to address this problem by
proposing a design framework to automatically choose the
tracking time allocation to optimize some performance of
interest, and at the same time to ensure high performance
tracking at these chosen time instants.
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Fig. 1. A Robotic ‘Pick-and-Place’ Tracking Example.

B. Point-to-Point ILC with Optimal Tracking Time Allocation

To formulate the optimal tracking time allocation problem,
denote theM tracking time instants (of interest),ti , i =
1, . . . ,M in vector form as

Λ = [t1, t2, . . . , tM]⊤ ∈ Θ (2)

whereΘ is the admissible set of tracking time allocation

Θ= {Λ∈R
M : 0< t−1 6 t1 6 t+1 6 t−2 6 t2 6 t+2 6 . . .6 t+M =T}

(3)
in which [t−i , t+i ] defines the (allowed) allocation interval for
ti representing the requirements on enforcing process timing
and synchronization constraints necessary to complete the
task. Also denote the desired tracking reference at these time
instants as

r p = [r1, r2, . . . , rM]⊤ ∈ R
Mm.

To facilitate problem formulation, an abstract description of
the system dynamics is introduced first. Note that system (1)
can be represented in equivalent operator form

yk = Guk+d. (4)

In this operator form,uk ∈ Lℓ
2[0,T], yk ∈ Lm

2 [0,T], are the
system input and output, in whichLℓ

2[0,T] and Lm
2 [0,T] are

the input and output Hilbert spaces equipped with the inner
products and associated induced norms

〈u, v〉R =
∫ T

0
(u(t))⊤Rv(t)dt, ‖u‖2

R = 〈u, u〉R (5)

〈x, y〉S=

∫ T

0
(x(t))⊤Sy(t)dt, ‖y‖2

S= 〈y, y〉S (6)

respectively in whichR ∈ S
ℓ
++ and S∈ S

m
++ are positive

definite matrices with appropriate dimensions;G : Lℓ
2[0,T]→

Lm
2 [0,T] is the system operator andd∈ Lm

2 [0,T] represents the
effect of initial condition, taking the following forms

(Guk)(t) =
∫ t

0
CeA(t−s)Buk(s)ds, d(t) =CeAtx0. (7)

For notational simplicity and without loss of generality, it is
assumed thatx0 = 0 and thusd = 0.

In point-to-point tracking tasks, we are only interested in
the system output at a particular tracking time allocationΛ.
To extract the system output value atΛ, introduce the linear
mapping f ∈ Lm

2 [0,T] 7→ f p ∈ H defined as

f p =








f (t1)
f (t2)

...
f (tM)








(8)

whereH is a Hilbert space

H = R
m×·· ·×R

m
︸ ︷︷ ︸

M times

(9)

with respective inner product and induced norm

〈x̂, ŷ〉Q =
M

∑
i=1

x̂⊤i Qŷi , ‖ŷ‖2
Q = 〈ŷ, ŷ〉Q (10)

in which Q∈ Sm
++ is a positive definite matrix.

Using this notation, the plant output corresponding to track-
ing time allocationΛ is given by

yp = (Gu)p.

SinceG is a linear operator, this can be further written as

yp = Gp
Λu=








G1u
G2u

...
GMu








(11)

where Gp
Λ : Lℓ

2[0,T] → H is a linear operator with each
componentGi : Lℓ

2[0,T]→Rm defined by

Giu=

∫ ti

0
CeA(ti−t)Bu(t)dt. (12)

The tracking error at tracking time allocationΛ is therefore

ep = r p− yp.

We are now ready to formulate the problem of point-to-point
ILC with optimal tracking time allocation:

ThePoint-to-Point ILC with Optimal Tracking Time Al-
location Problem can now be defined as iteratively finding a
tracking time allocationΛk and an inputuk such that the output
values at these intermediate time instants, i.e.yp

k , accurately
pass through a set of desired pointsr p, i.e. limk→∞ yp

k = r p, at
the same time minimizing a target performance indexf (u, y)
as a function of the system inputu and outputy with an
asymptotic property that is(uk, yk, Λk)→ (u∗k, y∗k, Λ∗

k) where
u∗k, y∗k andΛ∗

k are optimal solutions of the following problem

minimize
u, y, Λ

f (u, y)

subject to r p = Gp
Λu,

y= Gu,

Λ ∈ Θ.

(13)

Note that this problem formulation comprises a significant
expansion of the current point-to-point ILC framework by
exploiting the flexibilities in choosing the tracking time alloca-
tion Λ to optimize some performance of interest in addition to
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the tracking requirement. This however, as will be seen later,
introduces substantial difficulties in algorithm design, which
will be addressed in the following sections.

Remark1. The index f (u, y) represents our requirements on
the performance and should be chosen according to the specific
application. As an example, if we would like to minimize the
control input energy,f (u, y) can be chosen as

f (u, y) = ‖u‖2
R;

if we would like the system to minimize a function of the
output, e.g. acceleration of a robotic movement,f (u,y) can
be chosen as

f (u, y) = ‖g(y)‖S

where the functiong(y) computes the output acceleration.

Remark 2. It is worth pointing out that the general prob-
lem formulation in Hilbert space makes it possible for the
techniques used in this paper to be further extended to other
systems, e.g. linear discrete time systems and switched linear
systems, the details of which however will differ and are not
described in this paper.

III. A TWO STAGE DESIGN FRAMEWORK

In this section, a two stage design framework is developed
to solve the above point-to-point ILC design with optimal
tracking time allocation problem. Note that while the tracking
time allocationΛ does not explicitly appear in the performance
index f (u, y), they are connected by the tracking requirement
Gp

Λu= r p in a nonlinear manner. Furthermore, the inputu lies
in an infinite dimensional spaceLℓ

2[0,T] and the tracking time
allocationΛ lies in the finite dimensional spaceΘ. All these
make the problem (13) non-trivial.

A. Framework Description

Optimization problem (13) can be written equivalently as

min
Λ∈Θ

{

min
u

f (u, y), subject toGp
Λu= r p, y= Gu

}

(14)

by optimizing overu first and then optimizing overΛ. Define
the function f̃ of Λ by

f̃ (Λ) = min
u

{
f (u, y), subject toGp

Λu= r p, y= Gu
}
,

and denote a global minimizer foru of the inner optimization
problem asu∞(Λ) : Θ → Lℓ

2[0,T], the optimization prob-
lem (14) is then equivalent to

min
Λ∈Θ

{ f̃ (Λ) := f (u∞(Λ))}. (15)

It follows that the point-to-point ILC with optimal tracking
time allocation problem can be solved using the following two
stage design framework:

• Stage One:Fix the tracking time allocationΛ and solve
the optimal input selection problem

minimize
u, y

f (u, y)

subject to r p = Gp
Λu,

y= Gu.

(16)

• Stage Two:Substitute the fixed time optimal solution
u∞(Λ) into the original optimization problem (14) and
compute the optimal tracking time allocation

min
Λ∈Θ

{ f̃ (Λ) := f (u∞(Λ))}. (17)

To exemplify the approach in this paper, the input energy
consumption is selected to be the target performance index,
so that f (u, y) = ‖u‖2

R. This guarantees the existence of a
unique global minimizer for the inner optimization problem
within (14), and the resulting optimization problems in Stage
One and Two become

minimize
u

‖u‖2
R

subject to r p = Gp
Λu,

(18)

and
min
Λ∈Θ

{ f̃ (Λ) := ‖u∞(Λ)‖2
R} (19)

respectively. Note that as the outputy does not appear in
the performance index, therefore the second constraint in
problem (16), i.e.y = Gu, is not needed in the optimization
problem (18). It is worth pointing out that other performance
indices rather than the input energy can also be used with no
changes in the form of the two stage design framework - the
implementation of the resulting algorithms however will differ
from those described in subsequent sections of this paper.

As dictated by the ILC framework, the two stages must be
achieved using experimental data in order to embed robustness
against model uncertainty. Before this is discussed in detail in
next section, the solution of this two stage design framework
is given below.

B. Solution of the Proposed Framework

1) Solution of Stage One Optimization Problem:For a
given tracking time allocationΛ, the Stage One optimization
problem is in fact a point-to-point ILC design problem with a
minimum control energy requirement. This can be solved ef-
ficiently using the point-to-point norm optimal ILC algorithm
with a special initial input choice, as shown next.

Theorem1. If the systemS(A,B,C) is controllable andC has
full row rank, the Stage One optimization problem (18) for a
given tracking time allocationΛ can be solved by the norm-
optimal point-to-point ILC algorithm

uk+1 = argmin
u
{‖ep‖2

Q+ ‖u−uk‖
2
R} (20)

proposed in [18] with initial inputu0 = 0, such that

u∞ = lim
k→∞

uk.

The iterative solution is given by

uk+1 = uk+Gp∗
Λ (I +Gp

ΛGp∗
Λ )−1ep

k (21)

where Gp∗
Λ : (ω1, ...,ωM) ∈ H → u ∈ Lℓ

2[0,T] is the Hilbert
adjoint operator ofGp

Λ defined by

u(t) = R−1B⊤p(t), ṗ(t) =−A⊤p(t),

p(T) = 0, p(t̂i−) = p(t̂i+)+C⊤Qωi , 16 i 6 M (22)
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and theMm×Mm matrix Gp
ΛGp∗

Λ has a block structure with
(i, j)th block

GiG
∗
j =

∫ min(ti ,t j )

0
CeA(ti−t)BR−1B⊤eA⊤(ti−t)C⊤Q dt. (23)

Furthermore, an analytic solution can be obtained foru∞(Λ)
as follows

u∞(Λ) = Gp∗
Λ (Gp

ΛGp∗
Λ )−1r p. (24)

Proof. See Appendix A for the proof of Theorem 1.

Note that the system controllability condition can be satis-
fied without difficulty as a controllable state space model can
always be constructed for a given system and the requirement
C has full row rank is not restrictive either as this simply
implies no output component can be constructed from others,
i.e. there is no redundant output, and is therefore assumed to
hold for the rest of the paper.

2) Solution of Stage Two Optimization Problem:With the
analytical solution of Stage One optimization problem, the
Stage Two optimization problem (19) can be further reduced
as shown in the following lemma.

Lemma1. Based on the analytical solution (24) of Stage One
optimization problem, the Stage Two optimization problem
(19) can be expressed as

min
Λ∈Θ

‖u∞(Λ)‖2
R = min

Λ∈Θ

〈
r p, (Gp

ΛGp∗
Λ )−1r p〉

Q . (25)

Proof. See Appendix B for the proof of Lemma 1.

Solving the above Stage Two optimization problem, how-
ever, is non-trivial except for the special case ofM = 1, i.e.
there is only one tracking point, where the solution can be
obtained analytically, as shown in the following theorem.

Theorem2. When there is only one tracking point, i.e.M = 1,
the solution of Stage Two optimization problem (25) is

Λ∗ = T.

The corresponding minimum energy is

min
Λ∈Θ

‖u∞(Λ)‖2
R =

〈
r p, Ψ−1

T r p〉

Q

where

ΨT =

∫ T

0
CeA(t1−t)BR−1(CeA(t1−t)B)⊤ dt.

Proof. See Appendix C for the proof of Theorem 2.

Theorem 2 shows that whenM = 1, Λ∗ = T is always an
optimal choice in terms of minimizing the control input energy
- this is not surprising as this allows the system output to
change gradually to the desired position and thus less control
energy could be expected. However, whenM > 1, the per-
formance index is generally non-linear and non-convex with
respect to the tracking time allocationΛ leading to significant
difficulties in solving Stage Two optimization problem (25).
This is addressed in the following theorem using a gradient
based algorithm.

Theorem3. For M > 2, Stage Two optimization problem (25)
can be solved using the gradient based iterative method

Λ j+1 = PΘ(Λ j − γ j ·∇ f̃ (Λ j )) (26)

where j ∈N denotes the updating loop number,∇ f̃ (Λ j)∈RM

is the gradient of the functioñf , PΘ(·) denotes the projection
operator, i.e.

PΘ(x) = argmin
z∈Θ

‖x− z‖2 ,

and γ j > 0 is a step size chosen by the generalized Armijo
rule [28], i.e.

γ j = β mk · γ (27)

wheremk is the smallest non-negative integer such that

f̃ (Λ j+1)− f̃ (Λ j)6 σ(∇ f̃ (Λ j))
⊤(Λ j+1−Λ j) (28)

and σ , β , γ are constant scalars with 0< σ < 1, 0< β < 1,
γ > 0. Then then the sequence{ f̃ (Λ j)} converges downward
to a limit f̃ ∗, i.e.

f̃ (Λ j+1)6 f̃ (Λ j), and lim
j→∞

{ f̃ (Λ j)} = f̃ ∗ (29)

and the sequence{Λ j} satisfies

lim
j→∞

∥
∥Λ j −Λ j+1

∥
∥= 0 (30)

with every limit pointz of the sequence{Λk} is a stationary
point for problem (25), i.e.

z= PΘ(z−∇ f̃ (z)).

Proof. See Appendix D for the proof of Theorem 3.

Remark3. It is worth pointing out that other step size choices
are also possible, e.g. constant step size [29]

0< µ 6 γ j 6
2(1− µ)

L
, ∀ j (31)

whereL > 0 is the Lipschitz constant of̃f (Λ) on Θ and µ ∈
(0, 2/(2+L)] is a positive scalar, projected Barzilai-Borwein
step size [30]

γ j =

〈
∆x j , ∆g j

〉

〈
∆g j , ∆g j

〉 , or γ j =

〈
∆x j , ∆x j

〉

〈
∆x j , ∆g j

〉 (32)

where ∆x j = Λ j −Λ j−1, ∆gk = ∇ f̃ (Λ j)− ∇ f̃ (Λ j−1). Using
these step size choices, the convergence properties will be
different from those stated in the above theorem.

C. A Numerical Example

In this subsection, a numerical example is presented to
illustrate the results in Theorem 2 for one tracking point, and
design difficulties for more than one tracking point.

Example1. Consider the following system model

Gz(s) =
15.8869(s+850.3)

s(s2+707.6s+3.377×105)
(33)

which is used in [31] with a proportional feedback gain of
100 to accurately model the gantry robot system employed
in Section VI. Firstly, we supposeM = 1, i.e. there is only
one tracking point, the trial length isT = 2s, and the tracking
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reference isr p = 0.01. The admissible set of tracking time
allocationΘ in (3) is defined by the parameterst+1 = 2 and
t−1 = 0.01. The input energy at a particular time allocationt1
can be computed analytically using equations (69) and (70),
and the result is plotted in Figure 2. It is clear from this figure
that the minimum input energy is achieved att1 = T verifying
the theoretical prediction in Theorem 2.
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Fig. 2. Input Energyf̃ (Λ) at Single Point Case (M = 1) using Example 1.

Now supposeM = 2, the trial length stays the same asT =
2s, and the tracking reference is given byr p = [0.01, 0.008]⊤.
Furthermore, the admissible set of tracking time allocation Θ
in (3) is defined by parameterst+1 = 1, t+2 = 2, t−1 = 0.01, and
t−2 = 1.01. The required input energy to achieve the design
tracking task as a function of tracking time instantst1 and t2
is plotted in Figure 3. It is clear from this figure thatf̃ (Λ)
is non-linear and non-convex with respect toΛ indicating the
difficulty in solving the Stage Two problem. In this case the
algorithm in Theorem 3 should be applied to solve the Stage
Two optimization problem (25), the results of which will be
verified experimentally later in section VI.
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Fig. 3. Input Energyf̃ (Λ) at Multiple Point Case (M = 2) using Example 1.

IV. IMPLEMENTATION OF THE DESIGN
APPROACH

In the previous section, a two stage design framework was
proposed. Its implementation is now discussed in detail.

A. Implementation of Stage One Design

The general update (21) of Stage One design can be
either computed directly using the analytical solution (24), or
implemented experimentally using the following feedback plus
feedforward algorithm.

Proposition1. The Stage One update (21) can be implemented
using the feedforward plus feedback implementation

uk+1(t) = uk(t)+R−1B⊤pk(t) (34)

with
pk(t) =−K(t)(xk+1(t)− xk(t))+ ξk+1(t) (35)

whereK(t) denotes the Riccati feedback matrix

0= K̇(t)+A⊤K(t)+K(t)A−K(t)BR−1B⊤K(t),

K(T) = 0, K(ti−) = K(ti+)+C⊤QC, 16 i 6 M (36)

and ξk+1(t) denotes the predictive feedforward term given at
the (k+1)th trial by

0= ξ̇k+1(t)+ (A⊤−K(t)BR−1B⊤)ξk+1(t), ξk+1(T) = 0,

ξk+1(ti−) = ξk+1(ti+)+C⊤Qek(ti), 16 i 6 M. (37)

Proof. See Appendix E for the proof of Proposition 1.

It it worth pointing out that although both implementation
methods can solve the Stage One optimization problem, the
feedback plus feedforward implementation embeds robust per-
formance (due to the introduction of state feedback) when
applied to the true plant (more details can be found in [18]),
and therefore is preferable in practice.

B. Implementation of Stage Two Design

The Stage Two gradient based design method (26) involves
two steps: a gradient update step and a projection step. The
gradient update step is

Λ̃ j+1 = Λ j − γ j ·∇ f̃ (Λ j )

where the selection ofγ j is dictated by (27). The gradient
can either be computed analytically using (25), or using a
computationally efficient estimation

∂ f̃
∂ ti

∣
∣
∣
∣
Λ j

=
f̃ (Λi+

j )− f̃ (Λi−
j )

2∆T
(38)

whereΛi+
j = [t j

1, t
j
2, ..., t

j
i +∆T, ..., t j

M]
⊤ andΛi−

j = [t j
1, t

j
2, ..., t

j
i −

∆T, ..., t j
M]⊤, and ∆T ∈ R is a sufficiently small number. It

should be noted that both analytic calculation and experimen-
tal testing can be used to compute the fixed tracking time
allocation’s optimal energỹf (Λi+

j ) and f̃ (Λi−
j ) in (38).

The projection step is given by

Λ j+1 = PΘ(Λ̃ j+1) = argmin
Λ∈Θ

‖Λ− Λ̃ j+1‖.

Note that this can be formulated into the following quadratic
programming (QP) problem

minimize
Λ

‖Λ− Λ̃ j+1‖
2

subject to ÂΛ−b� 0
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Algorithm 1 Greedy initial tracking time allocation

Input: S(A,B,C), r p, Λc
0 andΘ

Output: Greedy initial tracking time allocationΛg
0

1: for i = 1 to M do
2: Let Λi = [t∗1, t∗2, . . . , ti , . . . , tc

M]⊤.
3: Solve the optimization problem below using Theorem

3
t∗i = argmin

ti
f̃ (Λi). (41)

4: end for
5: return Λg

0 = [t∗1, t∗2, . . . , t∗M]⊤

where Â = [I ,−I ]⊤, b = [t+1 , ..., t+M,−t−1 , ...,−t−M]⊤ and the
symbol � denotes the component-wise inequality. This QP
problem can be solved efficiency using standard QP solvers,
e.g. using Matlab functionquadprob.

As an iterative algorithm, the choice of initial tracking time
allocationΛ0 may affect the algorithm’s convergence perfor-
mance, as in most non-linear and non-convex optimization
problems. Three methods are now proposed to provide an
appropriate initial tracking time allocation for the algorithm.

1) Central initial tracking time allocation:In this method,
all the initial tracking points are specified in the center oftheir
time intervals, and the initial tracking time allocation ishence

Λc
0 = [tc

1, tc
2, . . . , tc

M]⊤ (39)

wheretc
i = (t−i + t+i )/2.

2) Greedy initial tracking time allocation:This method is
defined by Algorithm 1 which takesM ‘greedy’ steps to obtain
the greedy initial tracking time allocation

Λg
0 = [tg

1, tg
2, . . . , tg

M]⊤ (40)

based on the central initial tracking time allocationΛc
0. Each

‘greedy’ step only computes a single optimal time-pointt∗i , and
the other time-points are known as constants, i.e.t∗1, . . . , t∗i−1
and tc

i+1, . . . , tc
M. Algorithm 1 uses some computation time,

but tries to provide a better initial tracking time allocation Λg
0

rather than the central initial tracking time allocationΛc
0.

3) Low resolution initial tracking time allocation:Low
resolution initial tracking time allocation can be implemented
by using Algorithm 2, which involves performing a grid search
in order to approximate the optimal tracking time allocation
based on the nominal plant model. The solution is denoted as

Λl
0 = [t l

1, t l
2, . . . , t l

M]⊤ (42)

which minimizes the performance index. The term low res-
olution implies that the sampling timeTs is suitably large,
and hence the total number of time-point combinations, i.e.
number of elements iñΘ, should not be excessive. Therefore
this method can balance computation time and accuracy in
approximating the global solution. However, this method may
require a significant amount of time to carry out the grid search
procedure when the number of time-points is large.

C. An Iterative Implementation Algorithm

Combining the implementation of Stage One and Stage Two
designs leads to an iterative implementation of the two stage
design framework - Algorithm 3. Note thatΛ0 a suitably

Algorithm 2 Low resolution initial tracking time allocation

Input: S(A,B,C), r p, Θ andTs

Output: Low resolution initial tracking time allocationΛl
0

1: Discretize the infinite setΘ at a sample rate ofTs to obtain
Θ̃ which is a finite subset ofΘ.

2: Solve the optimization problem below using blind search

Λ∗ = argmin
Λ∈Θ̃

f̃ (Λ). (43)

3: return Λl
0 = Λ∗

Algorithm 3 Point-to-point ILC with optimal tracking time alloca-
tion
Input: Λ0, S(A,B,C), r p andΘ
Output: Optimal tracking time allocationΛopt and corre-

sponding inputuopt

1: Initialization: Loop numberj = 0
2: Implement Stage One update (21) withΛ=Λ0 experimen-

tally using feedback plus feedforward update (34) until
the convergence is achieved, i.e.‖ep

k‖ < ε‖r p‖; record
converged inputuex

∞ (Λ0) and input energỹf (Λ0).
3: repeat
4: Implement Stage Two update (26) withr p =Gp

Λ j
uex

∞ (Λ j)

in (25) or (38) while computing the gradient.
5: Set j → j +1.
6: Implement Stage One update (21) withΛ = Λ j exper-

imentally using feedback plus feedforward update (34)
until the convergence is achieved, i.e.‖ep

k‖ < ε‖r p‖;
record converged inputuex

∞ (Λ j) and input energỹf (Λ j).
7: until

∣
∣ f̃ (Λ j )− f̃ (Λ j−1)

∣
∣< δ

∣
∣ f̃ (Λ j−1)

∣
∣

8: return Λopt = Λ j anduopt = uex
∞ (Λ j)

chosen initial tracking time allocation, andε > 0, δ > 0
are small scalars which depend on the tracking precision
requirement and performance requirement, respectively.

It is essential to note that in Algorithm 3, we require
that Step 2 and 6 (i.e. the norm-optimal point-to-point ILC
algorithm) are implemented experimentally and Step 4 uses
experimental datauex

∞ (Λ j). These requirements are not nec-
essary when an accurate system model is known. However
when there exists model mismatch/uncertainty, the proposed
algorithm embeds appealing robustness properties as the algo-
rithm ‘learns’ information concerning the real plant dynamics
through exploitation of experimental data. This will be further
demonstrated in subsequent experimental results.

V. CONSTRAINED INPUT CONDITION HANDLING

The previous sections propose a two stage design approach
for point-to-point ILC with optimal tracking time allocation.
This section further extends the proposed method to incorpo-
rate system constraints into the design.

A. Optimal Tracking Time Allocation with System Constraints

In practice, constraints exist widely in control systems
due to physical limitations or performance requirements. For
example, input constraints typically assume the forms:

Input saturation constraint

Ω = {u(t) ∈ R
ℓ : ‖u(t)‖6 M(t), t ∈ [0,T]}. (44)
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Input amplitude constraint

Ω = {u(t) ∈R
ℓ : λ (t)� u(t)� µ(t), t ∈ [0,T]}. (45)

Input sign constraint

Ω = {u(t) ∈ R
ℓ : 0� u(t), t ∈ [0,T]}. (46)

Input energy constraint

Ω = {u(t) ∈ R
ℓ :

∫ T

0
(u(t))⊤u(t)dt 6 M, t ∈ [0,T]}. (47)

With constraints, the optimal tracking time allocation prob-
lem becomes

minimize
u, y, Λ

f (u, y)

subject to r p = Gp
Λu,

y= Gu,

Λ ∈ Θ, u∈ Ω.

(48)

As will be seen later, the constraints add significant difficulties
into the algorithm design. In this paper, only input constrains
are considered. Note that in principle, the design developed in
the following section can handle output constraints as well, but
the details will be different and are omitted here for brevity.

B. A Modified Two Stage Design Framework with Input Con-
straints

Following a similar procedure to that within Section III, the
constrained optimization problem (48) becomes

min
Λ∈Θ

{

min
u

f (u,y), subject toGp
Λu= r p, y= Gu, u∈ Ω

}

(49)

suggesting a modified two stage design framework as:

• Stage One:
minimize

u∈Ω
‖u‖2

R

subject to r p = Gp
Λu

(50)

whose the solution is denoted as ˆu∞(Λ).
• Stage Two:

min
Λ∈Θ

{ f̃ (Λ) := ‖û∞(Λ)‖2
R}. (51)

With the presence of the input constraints, the problem be-
comes significantly more difficult as the Stage One inner op-
timization problem needs to solve a constrained optimization
problem, which unfortunately is inherently challenging and
does not admit an analytical solution that is essential to the
Stage Two optimization problem.

Note that now Stage One does not have a direct analytical
solution, but the norm-optimal ILC algorithm with successive
projection proposed in [32] can be applied to solve the modi-
fied Stage One optimization problem (50). The update (21) is
accordingly replaced by two alternative update methods.

• Method 1: Solve the constrained input norm-optimal
point-to-point ILC optimization problem

uk+1 = argmin
u∈Ω

{‖ep‖2
Q+ ‖u−uk‖

2
R}. (52)

This algorithm converges to the minimum error norm.
The constrained QP problem (52) becomes computation-
ally demanding which might introduce problems in some
applications, when the trial length is large. A number of
methods has been proposed to address this problem, see
[32], [33] for more information.

• Method 2: Solve the unconstrained input norm-optimal
point-to-point ILC optimization problem

ũk+1 = argmin
u
{‖ep‖2

Q+ ‖u−uk‖
2
R} (53)

and then perform a simple input projection

uk+1 = argmin
u∈Ω

‖u− ũk+1‖ . (54)

It is clear that the first step has an analytical solution
and the solution of the second step is straightforward as
the input constraintΩ is usually a pointwise constraint
in practice. This method is computationally simpler than
Method 1 and can be carried out for large scale applica-
tions. Its convergence performance property, however, is
different from that of Method 1.

The rationale behind Stage Two is that for each tracking
time allocationΛ on Θ there exists an optimal input energy
f̃ (Λ) and we can obtain an optimalΛ∗ ∈ Θ to minimize the
input energyf̃ (Λ). The Stage Two optimization problem (51)
can be equivalently solved using

Λ j+1 = argmin
Λ∈Θ

f̃ j(Λ) (55)

which can be solved by Theorem 3 where

f̃ j (Λ) = ‖u∞(Λ)‖2
R+ρ

∥
∥u∞(Λ)− û∞(Λ j)

∥
∥2

R, ρ > 0. (56)

Note that in the modified stage two design, the input con-
straint is decoupled from the optimization problem and thus
can be solved analytically. In practical implementation, the
modified Stage One solution ˆu∞(Λ j) in the update (55) should
be considered to be the converged input ˆuex

∞ (Λ j) obtained
experimentally.

These new solution forms combine to generate Algorithm 4
which solves the input constrained optimization problem (49).

Remark4. The modified Stage Two optimization problem can
be also solved by

Λ j+1 = PΘ(Λ j − γ j ·∇ f̃ (Λ j)). (57)

However, we can only use the estimation method (38) to com-
pute the gradient∇ f̃ (Λ) rather than compute it analytically, as
the modified Stage One does not have an analytical solution.

C. Convergence Properties of the Algorithm

Algorithm 4 has the following convergence properties: The
convergence properties of the gradient projection update (55)
are described in the next theorem.

Theorem4. Suppose perfect tracking is achievable andρ 6 1,
the analytical input energy resulting from (55) satisfies

∥
∥u∞(Λ j+1)

∥
∥2

R 6
∥
∥û∞(Λ j)

∥
∥2

R. (58)

Proof. See Appendix F for the proof of Theorem 4.
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Algorithm 4 Constrained input point-to-point ILC with optimal
tracking time allocation

Input: Λ0, S(A,B,C), r p, Θ andΩ
Output: Optimal tracking time allocationΛopt and corre-

sponding inputuopt

1: Initialization: Loop numberj = 0
2: Implement Stage One update (52) or (53)-(54) withΛ =

Λ0 experimentally using feedback plus feedforward update
(34) until the convergence is achieved, i.e.‖ep

k‖< ε‖r p‖;
record converged input ˆuex

∞ (Λ0) and input energỹf (Λ0).
3: repeat
4: Implement Stage Two update (55) withr p =Gp

Λ j
ûex

∞ (Λ j)

in (24) or (38) while computing the gradient.
5: Set j → j +1.
6: Implement Stage One update (52) or (53)-(54) with

Λ=Λ j experimentally using feedback plus feedforward
update (34) until the convergence is achieved, i.e.
‖ep

k‖< ε‖r p‖; record converged input ˆuex
∞ (Λ j) and input

energy f̃ (Λ j).
7: until

∣
∣ f̃ j (Λ j)− f̃ (Λ j−1)

∣
∣< δ

∣
∣ f̃ (Λ j−1)

∣
∣

8: return Λopt = Λ j anduopt = ûex
∞ (Λ j)

Theorem 4 states only that the next loop’s unconstrained
minimum energy is no larger than the constrained minimum
energy of the current loop, but it still provides useful infor-
mation about the convergence performance of the constrained
input condition. We have undertaken a series of simulations
using different models and input constraints to examine the
convergence performance of Stage Two update (55), and a
representative example is now given.

Example2. Consider the same design objectives as the mul-
tiple case (M = 2) example of Section III and assume input
saturation constraint (44) withM(t) = 1.5. Perform Algorithm
4 for a total number of 30 loops with the Stage Two update
(55) in simulation assumingσ = 0.1, β = 0.8 andγ = 0.08.
Plot the corresponding constrained and unconstrained mini-
mum input energy

∥
∥û∞(Λ j)

∥
∥2

R and
∥
∥u∞(Λ j)

∥
∥2

R for each loop
in Figure 4. The results in Figure 4 not only verify (58), but
also show monotonic convergence of the constrained minimum
input energy.
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Fig. 4. Convergence Performance Comparison between Constrained and
Unconstrained Minimum Input Energy at Each Loop.

VI. EXPERIMENTAL VERIFICATION ON A
GANTRY ROBOT

The proposed design framework is now validated experi-
mentally on a three-axis gantry robot test facility to demon-
strate its effectiveness on a widely used industrial platform.

A. Test Platform Specification

The multi-axis gantry robot shown in Figure 5 comprises
three perpendicular axes placed above a moving conveyor. The
x-axis and the y-axis are designed to move in the horizontal
plane and are both driven by linear brush-less dc motors.
The vertical z-axis is placed above the other two axes, and
has a linear ball-screw stage driven by a rotary brushless dc
motor. The axis displacement data is measured using optical
incremental encoders. The gantry robot uses an electromagnet
to pick the payloads from a dispenser and place them onto the
moving conveyor, and uses the reference trajectory shown in
Figure 6. Because the three axes are orthogonal and controlled
separately, the gantry robot can be considered to comprise
three separate single-input single-output (SISO) systems.

Fig. 5. Multi-axis Gantry Robot Test Platform.
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Fig. 6. 3D Reference Trajectory of Gantry Robot

The control design objective is to perform a pick-and-
place task with two special tracking points (M = 2), which
correspond to the ‘pick’ position and the ‘place’ position.
For simplicity, we only consider the z-axis in this paper
with system modelGz(s) and take the time index to two
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decimal place accuracy. The total trial length isT = 1.99s and
the reference for z-axis,r p, is [0.01,0.008]⊤. The parameter
choicet+1 = 0.99, t+2 = 1.99, t−1 = 0.01, andt−2 = 1.01 ensures
that the robot moves to the pick position first and then to the
place position. To provide baseline tracking and disturbance
rejection, a proportional controller with gainK, is applied
around the system, yielding

G(s) =
Gz(s)

1+KGz(s)
. (59)

The transfer function system modelG(s) can be equivalently
written in state space formS(A,B,C). Note that for this prob-
lem, previous studies used a predefined (apriori ) tracking time
allocationΛr = [0.5,1.35]⊤, with a corresponding control input
energy obtained by implementing the Stage One update only.
The central initial tracking time allocationΛ0 = [0.5,1.5]⊤ is
used in both Algorithm 3 and 4, the weighting matrices are
taken asQ = qI, R= rI where q and r are positive scalars
which satisfyq/r = 500,000, and the gradient is obtained by
the estimation (38) with analytical calculation.

B. Experimental Results using an Inaccurate Model without
Input Constraints

First assume that only an approximate system model of the
z-axis is available as follows:

Ĝz(s) =
0.03

s
(60)

with a feedback gainK = 30, which hence provides the state
space formS(A,B,C)

A=−0.9, B= 0.125, C= 0.24.

A 60 loop updating procedure of Algorithm 3 is performed us-
ing the gantry robot. In Step 4, the generalized Armijo step size
(27) is applied withσ = 0.1, β = 0.8 andγ = 0.03,0.04,0.05.
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Fig. 7. Experimental Input Energy Results using InaccurateModel at
Unconstrained Condition.

The experimental optimal input energỹf (Λk) at each loop
is plotted in Figure 7 for step size chosen under different
values of γ. The optimal energyf̃ (Λr) = 129.06 required
for the gantry robot to track at thea priori tracking time
allocation is also plotted for comparison. It should be noted
that the proposed algorithm provides an experimental fi-
nal converged energy of 88.76, which is a 31% reduction
in input energy compared to the operating energyf̃ (Λr).

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
pu

t S
ig

na
l, 

u 
(V

)

-0.5

0

0.5

1

1.5

2
Original Allocation
Theoretical Allocation
Experimental Allocation

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

O
ut

pu
t S

ig
na

l, 
y 

(m
)

0

0.005

0.01

0.015

Original Allocation
Theoretical Allocation
Experimental Allocation
Original Tracking Points
Theoretical Optimal Tracking Points
Experimental Optimal Tracking Points

Fig. 8. Converged Input and Output Trajectory Comparison using Inaccurate
Model at Unconstrained Condition.
This is further compared with normal practice by computing
the optimal tracking time allocation in simulation using the
nominal model, and then using Stage One update alone to
track them experimentally. This yieldsΛ∗ = [0.99,1.26]⊤,
and f̃ (Λ∗) = 98.62. It is clear that the experimental final
converged energy is approximately 10% less. This means that
experimental implementation of Algorithm 4 is far superior
to optimization using the nominal model in simulation. This
confirms that the algorithm displays satisfactory robustness
against model uncertainty. Furthermore, the converged input
and output trajectories at the original, theoretical optimal and
experimental optimal allocations are plotted in Figure 8 and
illustrate how the experimentally obtained optimal allocation
takes advantage of the other two allocations.
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Fig. 9. Experimental Converged Input and Output Trajectories for Initial and
Final Loops using Inaccurate Model at Unconstrained Condition.

The experimental final converged input trajectory for the
initial and final loops of the algorithm are compared in Figure
9, and it is clear that the input signal immediately becomes
zero after finishing tracking the last point in both figures as
there is no tracking requirement along the remaining finite time
interval. The experimental final converged output trajectory for
the initial and final loops of the algorithm are also compared
in Figure 9, and the reference at the special tracking time is
marked with red and green circles. It is clear that the final
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converged output accurately tracks the special tracking points,
so the algorithm not only optimizes the input energy but also
maintains high tracking performance even with significant high
model uncertainty. For example, while using the experimental
estimation with step size chosen underγ = 0.03, the final mean
square error is 0.00032 at Step 6 of the 60th loop.
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Fig. 10. Experimental Time-Point Position Results at Each Loop using
Inaccurate Model at Unconstrained Condition.

To further illustrate the performance of the proposed al-
gorithm, the convergence of the tracking time allocation is
shown in Figure 10. For each different value ofγ, the tracking
time allocation at each loop are plotted in this figure, and
all converge to identical values. It should be noted that
the identical tracking time allocation is[0.91,1.01]⊤. The
automatic tracking time allocation adjustment has meant that
the speed of the gantry is slower and the distance the gantry
moves is shorter, which contributes to a lower input energy.
Experiments using the other initial tracking time allocations,
e.g. the low resolution initial tracking time allocation, yield
similar levels of performance.

C. Experimental Results using an Accurate Model without
Input Constraints

Next the accurate model (33) is employed within (59) with
feedback gainK = 100 to assess the performance of the
proposed algorithm. Now the state space formS(A,B,C) is

A=





−707.6 −662.824 −41.225
512 0 0
0 64 0



 , B=





0.5
0
0



 ,

C=
[

0 0.062 0.825
]
.

Algorithm 3 is again applied for 25 updating loops. In Step 4,
the generalized Armijo step size (27) is applied with the same
parameters as in the previous subsection.

For step size chosen under different values ofγ, the optimal
input energyf̃ (Λk) at each loop is plotted in Figure 11. The
optimal energyf̃ (Λr) = 125.13 required for the gantry robot
to track thea priori tracking time allocation is also plotted for
comparison. The algorithm provides an optimal energy 78.67,
and reduces the input energy by more than 30% compared with
the operating energỹf (Λr). Blind search has been performed
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Fig. 11. Experimental Input Energy Results using an Accurate Model at
Unconstrained Condition.
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Fig. 12. Converged Input and Output Trajectory Comparison using an
Accurate Model at Unconstrained Condition.

in simulation with the accurate model, and the theoretical
optimal tracking time allocation isΛ∗ = [0.99,1.08]⊤, which
yields the theoretical optimal energỹf (Λ∗) = 79.19. As can
be seen from the figure, the converged input is very close
to the theoretical onẽf (Λ∗). Also, the converged input and
output trajectories at the original, theoretical optimal and
experimental optimal allocations have been plotted in Figure
12 and it can be shown that the converged trajectories of the
theoretical optimal and experimental optimal allocationsare
almost the same.

The experimental final converged input trajectory for the
initial and final loops of the algorithm are shown in Figure
13. For comparison, the experimental final converged output
trajectory of the initial and final loops of the algorithm arealso
shown in Figure 13, and the reference at the special tracking
time is marked with red and green circles. It is obvious that
the output converges to the special tracking points, confirming
that the algorithm not only optimizes the input energy, but also
maintains satisfactory tracking performance.

To further illustrate the performance of the proposed algo-
rithm with accurate model, the corresponding convergence of
the tracking time allocation is shown in Figure 14. For each
different value ofγ, the tracking time allocation at each loop
is plotted in this figure, and it is clear that the final converged
tracking time allocation is[0.99,1.09]⊤, which is close to the
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Fig. 13. Experimental Converged Input and Output Trajectories for Initial
and Final Loops using an Accurate Model at Unconstrained Condition.

Number of Loops, j
0 5 10 15 20 25 30 35 40 45 50

F
irs

t T
im

e 
P

oi
nt

, t
1
 (

s)

0.5

0.6

0.7

0.8

0.9

1

γ = 0.03
γ = 0.04
γ = 0.05

Number of Loops, j
0 5 10 15 20 25 30 35 40 45 50S

ec
on

d 
T

im
e 

P
oi

nt
, t

2
 (

s)

1

1.1

1.2

1.3

1.4

1.5

γ = 0.03
γ = 0.04
γ = 0.05

Fig. 14. Experimental Time-Point Position Results at Each Loop using an
Accurate Model at Unconstrained Condition.

theoretical oneΛ∗. A range of different initial tracking time
allocations have been used to perform the experiments, and
their results are similar to those presented in Figure 11.

D. Experimental Results using an Accurate Model with Input
Constraints

Now assume the gantry robot has an input saturation con-
straint (44) withM(t) = 1.8, and the accurate modelS(A,B,C)
obtained in the previous subsection is used. Algorithm 4
is performed with 25 updating loops. For implementational
simplicity, we use solution (53)-(54) during Step 2 and 6,
and solution (57) with generalized Armijo step size (27) using
σ = 0.1, β = 0.8 andγ = 0.05,0.06,0.07 during Step 4.

Similar data process method has been used to plot the
optimal input energỹf (Λk) under each value ofγ at each loop
in Figure 15 together with the optimal energyf̃ (Λr) = 125.3
at thea priori tracking time allocation. It can be seen from
the figure that the optimal energy obtained by the algorithm
is 78.72, which is 30% less than the operating energyf̃ (Λr).
Blind search is then performed in simulation with the accu-
rate model, which provides the theoretical optimal tracking
time allocationΛ∗ = [0.99,1.08]⊤ and the theoretical optimal
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Fig. 15. Experimental Input Energy Results using an Accurate Model at
Constrained Condition.
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Fig. 16. Converged Input and Output Trajectory Comparison using an
Accurate Model at Constrained Condition.

energy f̃ (Λ∗) = 79.32. In this figure, it is obvious that the
converged input is close to the theoretical onef̃ (Λ∗) as the
model is accurate. For further comparison, the converged
input and output trajectories at the original, theoreticaloptimal
and experimental optimal allocations have been plotted in
Figure 16, which shows that the converged trajectories of the
theoretical optimal and experimental optimal allocationsare
almost the same.
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Fig. 17. Experimental Converged Input and Output Trajectories for Initial
and Final Loops using an Accurate Model at Constrained Condition.
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The experimental final converged input trajectory for the
initial and final loops of the algorithm are shown in Figure
17, and it is clear that the input signal meets the input
saturation constraint. Furthermore, the experimental final con-
verged output trajectory of the initial and final loops of the
algorithm are also shown in Figure 17 with red and green
circles standing for the reference at the special tracking time.
It shows that the converged output trajectories pass through the
special tracking points, which verifies that the algorithm not
only optimizes the input energy, but also maintains satisfactory
tracking performance.
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Fig. 18. Experimental Time-Point Position Results at Each Loop using an
Accurate Model at Constrained Condition.

In terms of the algorithm’s performance, the tracking time
allocation at each value ofγ and each loop is shown in
Figure 18. From the figure, the final converged tracking time
allocation is [0.99,1.08]⊤, which is exactly the same as the
theoretical oneΛ∗ to two decimal place accuracy. Different
initial tracking time allocations have also been used to perform
the experiments under constrained condition, whose results are
similar to those presented in Figure 15.

VII. C ONCLUSION

Tracking time allocation plays an important role in point-to-
point ILC and can significantly affect the system performance.
This paper developed an optimization framework to fully
exploit the flexibility in choosing tracking time allocation to
optimize some performance index of interest, in addition to
high accuracy reference tracking. The problem is formulated
into an optimization problem in some abstract Hilbert space
and a two stage design framework has been developed. Global
solutions to Stage One are derived for efficient implementa-
tion. For Stage Two there are no direct analytical solutions
of the optimization problem, and hence an iterative algorithm
based on the gradient method has been proposed. The im-
plementation procedures have been discussed in detail and
the proposed design framework is further extended to embed
system constraints into the design.

The proposed algorithm is verified experimentally on a
gantry robot test platform. When the system model is inac-
curate, significant improvement of the input energy can be

achieved. When an accurate system model is available, the
input energy converges to the theoretical optimal solution.
In both scenarios, the proposed algorithm guarantees high
performance tracking.

Although the experimental implementation of the algorithm
has demonstrated its certain effectiveness in practice, a rigor-
ous analysis of the algorithm’s robustness properties willbe
undertaken in future research to show the degree of robustness
against model uncertainty. Furthermore, the design framework
will be expanded to minimize total input energy of all three
axes while performing a pick-and-place task. In addition, other
methods, e.g. the projected Newton method [34], will also be
used to solve the Stage Two optimization problem.

APPENDIX

A. Proof of Theorem 1

On the(k+1)th trial, the norm-optimal point-to-point ILC
algorithm solves the optimization problem

min
u
{‖ep‖2

Q+ ‖u−uk‖
2
R : ep = r p− yp, yp = Gp

Λu} (61)

to get the control inputuk+1. The problem (61) has an identical
structure to the norm-optimal ILC problem described in [35],
with the only difference being the definitions of the operators,
signals and underlying Hilbert spaces. Therefore, the iterative
solution can be expressed as

uk+1 = uk+Gp∗
Λ ep

k+1 ⇒ ep
k+1 = (I +Gp

ΛGp∗
Λ )−1ep

k (62)

which gives rise to (21).
It is proved in [18] that if a system is controllable andC

has full row rank, the referencer p can be tracked exactly and
the limit of the sequence{uk} exists, i.e.

lim
k→∞

ep
k = 0, lim

k→∞
uk = u∞.

The algorithm converges to the minimum control energy that
achieves perfect tracking requirement ifu0 = 0. Hence the
Stage One optimization problem (18) can be solved by the
norm-optimal point-to-point ILC algorithm.

The relevant adjoint operatorGp∗
Λ is obtained in [18] from

the definition
〈
(ω1, ...,ωM), Gp

Λu
〉

Q =
〈
Gp∗

Λ (ω1, ...,ωM), u
〉

R (63)

which gives rise to

(G∗
i ωi)(t) =

{

R−1B⊤eA⊤(ti−t)C⊤Qωi , 06 t 6 ti ,
0, t > ti .

(64)

The equation (64) can be further written as

(G∗
i ωi)(t) = R−1B⊤pi(t) (65)

wherepi(t) = 0 on (ti , T], and on[0, ti)

ṗi(t) =−A⊤pi(t), pi(ti−) =C⊤Qωi . (66)

Adjoint operatorGp∗
Λ is the map(ω1, ...,ωM) 7→ u defined by

u(t) =
M

∑
i=1

(G∗
i ωi)(t) = R−1B⊤p(t) (67)
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where p(t) = ∑M
i=1 pi(t). Due to the linearity, these equations

yield the costate equation modified by ‘jump conditions’ at
time ti , which generates the definition (22) of the adjoint
operatorGp∗

Λ . Therefore, the(i, j)th block of the matrixGp
ΛGp∗

Λ
can be computed as the equation (23).

It has also been proved in [18] that the limitu∞ exists with

u∞ −u0 = Gp∗
Λ (Gp

ΛGp∗
Λ )−1ep

0. (68)

As the initial inputu0 = 0 which makesep
0 = r p, the analytical

solution (24) foru∞(Λ) is obtained.

B. Proof of Lemma 1

Substituting the analytical solution (24) into the optimiza-
tion problem (19) and using the property of adjoint operator
gives

min
Λ∈Θ

‖u∞(Λ)‖2
R = min

Λ∈Θ
〈(u∞(Λ), u∞(Λ)〉R

= min
Λ∈Θ

〈
(Gp∗

Λ (Gp
ΛGp∗

Λ )−1r p,Gp∗
Λ (Gp

ΛGp∗
Λ )−1r p〉

R

= min
Λ∈Θ

〈
Gp

ΛGp∗
Λ (Gp

ΛGp∗
Λ )−1r p,(Gp

ΛGp∗
Λ )−1r p〉

Q

= min
Λ∈Θ

〈
r p, (Gp

ΛGp∗
Λ )−1r p〉

Q

which completes the proof.

C. Proof of Theorem 2

For M = 1, there is only one tracking point and thusΛ =
t1 ∈ R. DenoteΨt1 = Gp

t1Gp∗
t1 which can be explicitly written

as

Ψt1 =

∫ t1

0
CeA(t1−t)BR−1(CeA(t1−t)B)⊤ dt. (69)

The Stage Two optimization problem becomes

min
Λ∈Θ

‖u∞(Λ)‖2
R = min

Λ∈Θ

〈
r p, Ψ−1

t1 r p〉

Q
. (70)

Note thatΨt1 is a positive operator, and furthermore,

Ψt1 6 ΨT , ∀ t−1 6 t1 6 t+1 = T,

as for anyx, it can be shown

〈x, (ΨT −Ψt1)x〉Q =

〈x,
∫ T

t1
CeA(t1−t)BR−1(CeA(t1−t)B)⊤ dtx〉Q > 0. (71)

The above properties of positive operators yield

Ψ−1
t1 > Ψ−1

T ,

and therefore
〈
r p, Ψ−1

t1 r p〉

Q
>
〈
r p, Ψ−1

T r p〉

Q .

It follows that t1 = t+1 = T is an optimum of the Stage Two
optimization problem, which completes the proof.

D. Proof of Theorem 3

To prove Theorem 3, the following lemma is needed.

Lemma2. [28] Let {Λk} be a sequence generated byΛ j+1 =
PΘ(Λ j − γ j ·∇ f (Λ j )) where

Θ = {Λ ∈ R
M : λi 6 ti 6 µi , i = 1, . . . ,M}, (72)

and γ j is chosen according to the generalized Armijo step
size (27). Then every limit point of the sequence{Λk} is a
stationary point for problem (25).

In this paper, the admissible setΘ satisfies the constraint set
requirement (72), and the gradient projection method (26) with
generalized Armijo step size (27) is used in Theorem 3. Using
this theorem, all the assumptions in Lemma 2 are satisfied, and
hence the sequence{Λk} converges to a stationary point of the
problem (25).

E. Proof of Proposition 1

The ILC update (21) is equivalent to

uk+1(t) = uk(t)+ (Gp∗
Λ ep

k+1)(t), (73)

and (Gp∗
Λ ep

k+1)(t) can be written as

(Gp∗
Λ ep

k+1)(t) = R−1B⊤pk(t), ṗk(t) =−A⊤pk(t),

pk(T) = 0, pk(ti−) = pk(ti+)+C⊤Qek+1(ti), 16 i 6 M.
(74)

according to the costate equation (22). Hence (73) becomes

uk+1(t) = uk(t)+R−1B⊤pk(t). (75)

Then substitute the equation

pk(t) =−K(t)(xk+1(t)− xk(t))+ ξk+1(t) (76)

into the jump condition atti of costate equation (74) to give

− (K(ti+)−K(ti−))(xk+1(ti+)− xk(ti−))

+ (ξk+1(ti+)− ξk+1(ti−)) =C⊤Qek+1(ti) (77)

and the errorek+1(ti) can be further equivalently written as

ek+1(ti) = r i − yk+1(ti)

= r i −Cxk+1(ti)

= r i −Cxk(ti)−C(xk+1(ti)− xk(ti))

= ek(ti)−C(xk+1(ti)− xk(ti)). (78)

Hence (77) and (78) suggest the jump conditions

K(ti−) = K(ti+)+C⊤QC, 16 i 6 M,

ξk+1(ti−) = ξk+1(ti+)+C⊤Qek(ti), 16 i 6 M (79)

at ti in (36) and (37). Then use the method proposed in [36] to
differentiate (35) at any pointt not in Λ and substitute for ˙xk

and ẋk+1. These provide the following Riccati and predictive
differential equations

0= K̇(t)+A⊤K(t)+K(t)A−K(t)BR−1B⊤K(t), K(T) = 0,

0= ξ̇k+1(t)+ (A⊤−K(t)BR−1B⊤)ξk+1(t),ξk+1(T) = 0 (80)

in (36) and (37).
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F. Proof of Theorem 4

As Λ j+1 is the solution of the gradient projection, it is clear
from Theorem 3 that the inequality

f̃ j (Λ j+1)6 f̃ j (Λ j) (81)

holds and hence it follows that
∥
∥u∞(Λ j+1)

∥
∥2

R 6
∥
∥u∞(Λ j+1)

∥
∥2

R+ρ
∥
∥u∞(Λ j+1)− û∞(Λ j)

∥
∥2

R

6
∥
∥u∞(Λ j)

∥
∥2

R+ρ
∥
∥u∞(Λ j)− û∞(Λ j)

∥
∥2

R

=
∥
∥u∞(Λ j)

∥
∥2

R+ρ
∥
∥u∞(Λ j)

∥
∥2

R+ρ
∥
∥û∞(Λ j)

∥
∥2

R

−2ρ
〈
û∞(Λ j), u∞(Λ j)

〉

R. (82)

Then, recall the analytical solution (24) foru∞(Λ) and the
perfect tracking assumptionGp

Λû∞(Λ) = r p to give

〈û∞(Λ), u∞(Λ)〉R =
〈
û∞(Λ), Gp∗

Λ (Gp
ΛGp∗

Λ )−1r p〉

R

=
〈
Gp

Λû∞(Λ), (Gp
ΛGp∗

Λ )−1r p〉

Q

=
〈
r p, (Gp

ΛGp∗
Λ )−1r p〉

Q

=
〈
(Gp

ΛGp∗
Λ )(Gp

ΛGp∗
Λ )−1r p, (Gp

ΛGp∗
Λ )−1r p〉

Q

=
〈
Gp∗

Λ (Gp
ΛGp∗

Λ )−1r p, Gp∗
Λ (Gp

ΛGp∗
Λ )−1r p〉

R

= 〈u∞(Λ), u∞(Λ)〉R. (83)

Substitute (83) into (82) to give
∥
∥u∞(Λ j+1)

∥
∥2

R 6 (1−ρ)
∥
∥u∞(Λ j)

∥
∥2

R+ρ
∥
∥û∞(Λ j)

∥
∥2

R. (84)

It is clear that the unconstrained converged input energy isno
larger than the constrained converged input energy i.e.

∥
∥u∞(Λ j)

∥
∥2

R 6
∥
∥û∞(Λ j)

∥
∥2

R,

and it follows that

(1−ρ)
∥
∥u∞(Λ j)

∥
∥2

R 6 (1−ρ)
∥
∥û∞(Λ j)

∥
∥2

R (85)

as (1− ρ) is non-negative. Hence combine (85) and (84)
together to generate the inequality (58).
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