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Point-to-Point Iterative Learning Control with
Optimal Tracking Time Allocation

Yiyang Chen, Bing Chtiand Christopher T. Freeman

Abstract—Iterative learning control is a high performance
tracking control design method for systems operating in a rpeti-
tive manner. This paper proposes a novel design methodologlat
extends the recently developed point-to-point iterative darning
control framework to allow automatic via-point time allocation
within a given point-to-point tracking task, leading to significant
performance improvements, e.g. energy reduction. The prdiem
is formulated into an optimization framework with via-poin t
temporal constraints and a reference tracking requirement for
which a two stage design approach is developed. This yields al-
gorithmic solution which minimizes input energy based on nan
optimal iterative learning control and gradient minimizat ion. The
algorithm is further expanded to incorporate system constaints
into the design, prior to experimental validation on a gantty robot
test platform to confirm its feasibility in practical applic ations.

Index Terms—point to point iterative learning control, con-
straint handling.

|I. INTRODUCTION

A number of point-to-point ILC algorithms have been
proposed in the literature. Terminal ILC, a special caséhef t
point-to-point ILC problem, where only tracking perforncan
at the end of the trial is required, is studied in [11]-[14].
General point-to-point ILC design by employing a ‘complete
reference that passes through all the desired intermediate
points is studied in [15]-[17]. These methods, however, do
not fully use the extra freedom provided by the point-to-
point tracking requirements. As such, the overall system
performance could be limited. This drawback is addressed
recently in [18]-[21] where the intermediate point tragkin
requirements are directly handled by optimizing a quadrati
performance index characterizing the tracking perforreanc
at these intermediate points. Results containing converge
properties of these algorithms are also available. More re-
cently, system constraints in point-to-point ILC have been
considered [9], [10].

All the aforementioned point-to-point ILC problem formu-

I TERATIVE learning control (ILC) is a high performancelations have assumed that the critical tracking time-moare

control technique applicable to systems which perform re

peated tasks [1]. Unlike modifying the controller as in atlegp

nown a priori, and this information is generally embedded

; . : . within a performance cost function whose optimization is
control, ILC directly updates the input based on informatio.

from previous experimental attempts (named trials) to owapr

implemented in the ILC framework. Hence the performance

.cost function is highly dependent on the tracking time al-

tracking performance [2]. Each trial has the same finitd trig) .ation within the point-to-point ILC tracking problemt |

length, and the system states are reset to the same valu

fhid framework can be expanded to enable the tracking time

the start of each trial. The tracking error over each trial ¢&,;,ation to be embedded as an optimized variable, signific

theoretically be reduced to zero after sufficient trialsisT
appealing property has led to ILC being applied to vario

industrial high performance systems, such as robotic443],

LE‘:;actical benefits can be realized, such as reducing thgener

e in industry, reducing the damage to machine components
and increasing the efficiency of production (i.e. throughpu

chemical batch processing [5], [6] and stroke rehabibtati This hence motivates the expansion of the point-to-poift IL

[7]. See [1] and [8] for a detailed overview of ILC.

: , framework to allow flexibility in the selection of the temp@dr
In the classic ILC setting, the output of the system i

ﬁacking subset, with its input also updated to achieve the

required to track a given reference defined on the whole trigl ., point-to-point control objective. Note that eiist
interval. However, in a large subset of control tasks such Assearch into optimal tracking time allocation of pointgoint

robotic pick-and-place manipulation, the system outpohiy

robotic motion [22], addresses a series of independenom®ti

critical at a finite qumbe_r of time-points along the trial dtion but these are not coupled together and the approach does not
[9]. To address this design problem, the ILC framework can l?gke advantage of ILC to enable precise tracking.

modified to update the input by using only the error informa- g paper develops a comprehensive optimal tracking time

tion recorded at these time-points. Significant designdives

allocation framework in point-to-point ILC to allow autotia

can hence be exploited to incorporate additional perfomar}:hoosing of the tracking time to optimize some performance

objectives by eliminating the unnecessary noncriticatkitag

to-point ILC, and has attracted significant interest.
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. ¢ ; _ of interest, and at the same time, achieving high performanc
constraints [10]. This novel control concept is termed poin

reference tracking at the chosen intermediate points baised
our preliminary idea in [23]. The main contributions of the
paper are as follows:

« Rigorous formulation of point-to-point ILC problem with
optimal tracking time allocation (Section IIY.he design
problem is formulated into an optimization framework
where the flexibility in tracking time allocation is ex-
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ploited to optimize some performance index of interesgeneral models, e.g. time varying systems and differential
e.g. energy consumption, at the same time, to ensutelay systems, etc.
accuracy tracking. The problem formulation is based on
an abstract operator form in some Hilbert space, whidh Point-to-Point ILC
allows the essence of the results to be generalized to othe€onsider the followingn-output, Z-input linear continuous
system models without difficulty. time-invariant system in state space fo8{A, B,C)
« Derivation of a two stage design framework (Sections Il : _ _
and IV). A two stage design framework is proposed to X(t) = Ax(t) +Budt),  x(0) =,
solve the optimal tracking time allocation optimization Yk(t) = Cx(t), te[0,T], 1)
problem. The two stage design involves the alternatingheret is the time indexk € N denotes the trial number;
use of a well known norm optimal point-to-point ILCx(t) € R",u(t) € R’ andyy(t) € R™ are the state, input and
algorithm [18] ensuring accurate tracking, and a gradiestitput respectively on trigk; A,B,C are system matrices of
based minimization to update the tracking time allocatiotompatible dimensions; @ T < « is the trial length. The
to optimize the performance index. It can be showimitial conditions are identical for all trials, i.ex(0) = Xo, Vk.
that under certain conditions, the proposed algorithm The design objective is to find an input such that the system
converges to the ‘best’ solution that can be achievedutput follows a given reference defined on the trial interva
Implementation procedures of the proposed algorithm aj& T| as accurately as possible. Note that the system operates
discussed in detail. in a repetitive manner, i.e. at the end of each tiiat ), the
« Incorporation of system constraints into the design (Sesystem state is reset to the same initial conditignanother
tion V). The two stage design framework is further extrial begins and the system is required to track the same
tended to incorporate system constraints that exist widaekference again. This class of systems have many apphsatio
in practice into the design. In particular, it is showrin robotics [24], manufacturing [25], etc.
that the input constraints can be incorporated into theln the point-to-point ILC framework, only the output values
design using a modified two stage design framework awyt) at a finite number of pre-specified time instants are of
the resulting algorithm guarantees that the constraintiigerest. As an example, the output trajectories for a rigbot
satisfied, as well as improved performance. pick-and-place tasks are shown in Figure 1. In this problem,
« Experimental verification on a gantry robot test platformhe robotic arm is required to start from the resting positio
(Section VI).The proposed design methods are verifiebhown as green dot) at the beginning of a triat 0), move to
experimentally on a gantry robot test platform. The resulthe ‘pick’ position (shown as yellow dot) at the specifiedeim
show that by exploiting the flexibility in choosing thet; and then move to the ‘place’ position (shown as red dot) at a
tracking time allocation in point-to-point ILC, significan specified time,, before finally moving back (resetting) to the
benefit can be obtained in terms of the input energgsting position at the end of the tridl€ T). Note that in this
reduction compared ta priori tracking time allocation, problem, we are only interested in the tracking positionthat
at the same time maintaining high tracking performancgick’ and ‘place’ time instants, i.e; andt, - the movements
The results also show that the proposed algorithm exhibiieyond them are not of interest. Therefore, although the two
a degree of robustness against modelling mismatch/ertartput trajectories in the figure differ significantly, bathtisfy
due to the use of previous data which is clearly desirabflee control design requirement. These two trajectorie$ wil
in practical applications. clearly lead to different system performance in terms ofgye
The notation used in this paper is standd:is the set Use, smoothness of the movements, etc. The problem of finding

of n dimensional vectors containing non-negative integiéfs; @ suitable trajectory with satisfactory performance hasnbe
and R™™ denote the sets af dimensional real vectors andconsidered in the literature - please refer to [26], [27]rfare

nx m real matrices respectivel§’} | is the set of allnxn details. 3
real positive definite matriced;5[0,T] denotes the space of Another look at the problem reveals that the pre-specified
functions defined of0, T] whose function value belongs R ~ tracking time allocation, i.e. the ‘pick'’ and ‘place’ time
and 2 power is Lebesgue integrable; -) is the inner product; instantst; andt,, plays a key role in the system performance.

to the set®. Other notation will be introduced as needed. chosen close to each other, the robotic arm will have to move

from the desired ‘pick’ location to the ‘place’ position Wwih a
very short time, therefore requiring fast moving and thughhi
Il. FORMULATION OF THE PROBLEM power consumption. In all existing point-to-point ILC dgss,

In this section, the design problem of point-to-point ILGhese critical tracking time instants are assumed to be know
with optimal tracking time allocation is illustrated fingtl as a priori. The extra flexibilities in choosing the tracking
using a robotic ‘pick and place’ example and then formulatdiine instants (which affect the system performance) have no
rigorously into an optimization problem using an abstrgatre  been explored. This paper aims to address this problem by
ator form representation of system dynamics in some Hilbgtoposing a design framework to automatically choose the
space. In this paper, a continuous time linear time-invariatracking time allocation to optimize some performance of
state space model is considered. The general abstract fanterest, and at the same time to ensure high performance
problem formulation allows the results to be extended toanatracking at these chosen time instants.



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTE TECHNOLOGY 3

) In point-to-point tracking tasks, we are only interested in
e Pick Position the system output at a particular tracking time allocatfon
To extract the system output value /at introduce the linear
mappingf € L[0,T] — fP € H defined as

E s Place Position f(ty)
2 f(t )
x 2
T = : (8)
) :
F(tm)

whereH is a Hilbert space

Resting Position
0 9 H=RMx...xRM™ 9)
. ; N————
01 Output Trajectories M times
y-axis(m) 0.02 0.01 0

02 904 0.03 with respective inner product and induced norm

x-axis(m)

M
PN 5T A ~112 ~ o~
X, = i i = ’ 10
Fig. 1. A Robotic ‘Pick-and-Place’ Tracking Example. < y>Q i;X' Rl ”y”Q <y y>Q ( )

B. Point-to-Point ILC with Optimal Tracking Time Allocatio jn which Q € S™. is a positive definite matrix.
To formulate the optimal tracking time allocation problem, Using this notation, the plant output corresponding tokfac

denote theM tracking time instants (of interest);, i = ing time allocation\ is given by
1,...,M in vector form as yP = (Gu)P.

A=, ta,..., tu] ' €O () SinceG is a linear operator, this can be further written as
where© is the admissible set of tracking time allocation Guu
e:{/\eRM:o<t5<t1<t1+<tg<t2<t;<...<t$=T3} yP=GRu= G_Zu (11)
in which [t, t] defines the (allowed) allocation interv(al)for G,;Au

t; representing the requirements on enforcing process timi
and synchronization constraints necessary to complete
task. Also denote the desired tracking reference at these ti

instants as { -
Gu= | ceti-UBu(t)dt. 12
rP = [I’]_, lo,..., rM]TERMm. I /0 ( ) ( )

%ere GR : L5[0,T] — H is a linear operator with each
componen(G; : L5[0, T] — R™ defined by

To facilitate problem formulation, an abstract descripti The tracking error at tracking time allocatiénis therefore

the system dynamics is introduced first. Note that system (1) el =rP_yP

can be represented in equivalent operator form . .
P q P We are now ready to formulate the problem of point-to-point

Yk = Guc+d. (4) ILC with optimal tracking time allocation:
_ / " The Point-to-Point ILC with Optimal Tracking Time Al-
In this operator formux € L5[0,T], yk € L3(0,T], are the |4cation Problem can now be defined as iteratively finding a
system input and output, in whick5[0, T] andL3[0,T] are  4cking time allocatior\y and an inputy, such that the output
the input and output Hilbert spaces equipped with the inngg)es at these intermediate time instants, yie.accurately
products and associated induced norms pass through a set of desired poingsi.e. limy ;. yf = rP, at
T - 2 the same time minimizing a target performance indéx, y)
(u, V>R:/o (ut)) RYt)dt, [[ulr=(u Wr  (5) as a function of the system input and outputy with an
T asymptotic property that i@, yi, Ax) = (Ug, Yi, /\g) where
(X, Y)g= /o (x(t))TSy(t)dt, HyHéz W Vs 6) Y Y and/\; are optimal solutions of the following problem

minimize f(u, y)

respectively in whichR € S, and Se ST, are positive Uy A

definite matrices with appropriate dimensio@s; L5[0,T] — subject to rP=GRu, (13)
L2'[0,T] is the system operator am L5'[0, T] represents the y=Gu,

effect of initial condition, taking the following forms AcoO.

(Gu)(t) = /t Ce“(‘*S>BLk(s)ds, d(t) = Ce''xo. (7) Note that this problem formulation comprises a significant
0 expansion of the current point-to-point ILC framework by

For notational simplicity and without loss of generalitly/jis  exploiting the flexibilities in choosing the tracking timkoga-
assumed thatg = 0 and thusd = 0. tion A to optimize some performance of interest in addition to
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the tracking requirement. This however, as will be seem,late « Stage Two:Substitute the fixed time optimal solution

introduces substantial difficulties in algorithm desigriet Uo(A) into the original optimization problem (14) and
will be addressed in the following sections. compute the optimal tracking time allocation

Remarkl. The indexf(u, y) represents our requirements on min{ f(/\) — (U (A))). 17)
the performance and should be chosen according to the specifi AeO®

application. As an example, if we would like to minimize the T¢ exemplify the approach in this paper, the input energy

control input energyf (u, y) can be chosen as consumption is selected to be the target performance index,
f(u, y) = [lul so_thatf(u, y) = ||_u||_§. This guarantees t.he. ex!stence of a

unigue global minimizer for the inner optimization problem

if we would like the system to minimize a function of thewithin (14), and the resulting optimization problems in g#a

output, e.g. acceleration of a robotic movemeft,y) can One and Two become

be chosen as minimize  |ul2
f(u, y)=llaylls u

where the functiorg(y) computes the output acceleration.

Remark2. It is worth pointing out that the general prob-and . )

lem formulation in Hilbert space makes it possible for the min{f(A) == [lu=(A)lIR} (19)

technigues used in this paper to be further extended to other . .

systems, e.g. linear discrete time systems and switchedrlin©SPECtively. Note that as the outpytdoes not appear in

systems, the details of which however will differ and are né?e performan_ce index, .therefore the §econd cgngtraynt n
described in this paper. problem (16), i.ey = Gu, is not needed in the optimization

problem (18). It is worth pointing out that other performanc

. A TWO STAGE DESIGN FRAMEWORK indices rgther than the input energy can glso be used with no
changes in the form of the two stage design framework - the

In this section, a two stage design framework is developgfplementation of the resulting algorithms however wilffeli

to solve the above point-to-point ILC design with optimajrom those described in subsequent sections of this paper.

tracking time allocation problem. Note that while the tismtk  As dictated by the ILC framework, the two stages must be

time allocatiom\ does not explicitly appear in the performancgchieved using experimental data in order to embed robsstne

index f(u, y), they are connected by the tracking requiremeggainst model uncertainty. Before this is discussed inildata

Py—rPi i o . . ) )
Gpu=rPin a nonlinear manner. Furthermore, the inpuies  next section, the solution of this two stage design fram&wor
in an infinite dimensional spadg [0, T] and the tracking time g given below.

allocationA\ lies in the finite dimensional spae®. All these
make the problem (13) non-trivial.

(18)
subject to rP=GRu,

B. Solution of the Proposed Framework

1) Solution of Stage One Optimization Problerkor a
given tracking time allocatior\, the Stage One optimization
problem is in fact a point-to-point ILC design problem with a
(14) minimum control energy requirement. This can be solved ef-

ficiently using the point-to-point norm optimal ILC algdrin
by optimizing overu first and then optimizing ovet. Define Wwith a special initial input choice, as shown next.
the functionf of A by Theoreml. If the systemS(A, B,C) is controllable andC has
f(A) _ min{f(u y), subject toGPu = rP, y— Gu} full row rank, the Stage One optimization problem (18) for a
u T A ’ ’ given tracking time allocatior\ can be solved by the norm-
and denote a global minimizer forof the inner optimization optimal point-to-point ILC algorithm

A. Framework Description
Optimization problem (13) can be written equivalently as

i i i Pyu=rP v—
/r\ryg{mdnf(u, y), subject toG u=rP, y_Gu}

roblem asu.(A) : © — L5[0,T|, the optimization prob- .
Fem 14) is theEw équivalentzt[o | P P Ucr1 =arg rrL11|n{||ep||é+ lu— Uk”%} (20)
min{ f”(/\) = f (U (A))} (15) proposed in [18] with initial inputpy = 0, such that
Ae® ' ” ' i
It follows that the point-to-point ILC with optimal trackin teo = kﬁ'l He

time allocation problem can be solved using the followingtw e iterative solution is given by
stage design framework:

. Stage Onefix the tracking time allocatiol and solve Uc1 = U+ GR (I +GRGR) el (21)
the optimal input selection problem where GY* : (w1, ...,em) € H — u € LS[0,T] is the Hilbert
minimize f(u, y) adjoint operator OGR defined by
uy
subject to rP=GRu, (16) ut) =R 1B p(t), p(t)=—ATp(t),

y=Gu. p(T) =0, pEi-)=pE+)+C'Qu, 1<i<M (22
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and theMm x Mm matrix GRGR* has a block structure with Theorem3. For M > 2, Stage Two optimization problem (25)
(i, )" block can be solved using the gradient based iterative method
GG = /mm(ti’tj)C&(tifwBF(lBTeAT(tift)CTQ dt. (23) Ajr1=Po(Aj—y;-OF(A)) (26)
0 _ _ _ wherej € N denotes the updating loop numberf (Aj) € RM
Furthermore, an analytic solution can be obtainedsfai\) is the gradient of the functiofi, Po(-) denotes the projection

as follows . operator, i.e.
Us(A) = GR'(GRGR) P, (24) Po(x) = argmin|x— 2,
Proof. See Appendix A for the proof of Theorem 1.  [J andy; > 0 is a step size chosen by the generalized Armijo
rule [28], i.e.
Note that the system controllability condition can be satis yi=B"y (27)

fied without difficulty as a controllable state space model ca ] o

always be constructed for a given system and the requirem&ferem is the smallest non-negative integer such that
Q hgs full row rank is not restrictive either as this simply ‘?(/\Hl)— f(Aj) < U(Df(/\j))T(/\jH_/\j) (28)
implies no output component can be constructed from others, _

i.e. there is no redundant output, and is therefore assumedfd g, 3, y are constant scalars with<0o <1, 0< 3 <1,

hold for the rest of the paper. y > 0. Then then the sequen@éN(/\j)} converges downward
2) Solution of Stage Two Optimization Problem/th the to a limit f*, i.e.

analytical solution of Stage One optimization problem, the FIA1) < E(N d lim{ fAY = F* 29

Stage Two optimization problem (19) can be further reduced (Aj+2) < F(A), an ijn{ (A} = (29)

as shown in the following lemma. and the sequencp\;} satisfies
Lemmal. Based on the analytical solution (24) of Stage One .
optimization problem, the Stage Two optimization problem jlmoHAi_AHlH =0 (30)
(19) can be expressed as . - . . .
with every limit pointz of the sequencé/\y} is a stationary
/r\n€i8||um(/\)||%: min (rP, (GRGR")~1rP) (25) point for problem (25), i.e.

z="Po(z—Of(2)).
Proof. See Appendix B for the proof of Lemma 1. 0 Proof. See Appendix D for the proof of Theorem 3. [

Solving the above Stage Two optimization problem, hovRemark3. It is. worth pointing out that o.ther step size choices
ever, is non-trivial except for the special caseMf= 1, i.e. are also possible, e.g. constant step size [29]
there is only one tracking point, where the solution can be 2(1—p)
: | : i O<p<y < Ry 31
obtained analytically, as shown in the following theorem. SHSVis =/ (31)

Theoren2. When there is only one tracking point, iM.= 1,
the solution of Stage Two optimization problem (25) is

o

whereL > 0 is the Lipschitz constant of(A) on © and u €
(0, 2/(2+L)] is a positive scalar, projected Barzilai-Borwein

A =T. step size [30]
The corresponding minimum energy is = M, = M (32)
min|us (A)[[R = (rP, WrirP), ; F i
AeO where Axj = Aj — Aj_1, Age = OF(Aj) — Of(Aj_1). Using
where these step size choices, the convergence properties will be

T different from those stated in the above theorem.
Wr = / cei-BrY(Ccerti-UB)T dt.
0

C. A Numerical Example

In this subsection, a numerical example is presented to
Theorem 2 shows that wheWl = 1, A* =T is always an illustrate the results in Theorem 2 for one tracking poini a
optimal choice in terms of minimizing the control input egyer design difficulties for more than one tracking point.

- this is not surprising as this allows the system output ®xamplel. Consider the following system model
change gradually to the desired position and thus less @ontr 15.8869s-+ 8503)

energy could be expected. However, whein> 1, the per- G,(s) =

formance index is generally non-linear and non-convex with S(s?+707.65+3.377x 10°)
respect to the tracking time allocati@nleading to significant which is used in [31] with a proportional feedback gain of
difficulties in solving Stage Two optimization problem (25)100 to accurately model the gantry robot system employed
This is addressed in the following theorem using a gradieint Section VI. Firstly, we supposkl = 1, i.e. there is only
based algorithm. one tracking point, the trial length i = 2s, and the tracking

Proof. See Appendix C for the proof of Theorem 2. [

(33)
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reference isrP = 0.01. The admissible set of tracking timeA. Implementation of Stage One Design

allocation® in (3) is defined by the parametet§ =2 and  The general update (21) of Stage One design can be

t; =0.01. The input energy at a particular time allocation gjther computed directly using the analytical solution)(2#

can be computed analytically using equations (69) and (7@}plemented experimentally using the following feedbaltisp

and the result is plotted in Figure 2. It is clear from this f@u feedforward algorithm.

that the minimum input energy is achievedgt T verifying . .

the theoretical prediction in Theorem 2. Pr9p05|t|0n1. The Stage One update (_21) can be |mplemented
using the feedforward plus feedback implementation

18 : : , Ui 1(t) = Ug(t) + RTB T pi(t) (34)
]

=
[=2]

with
. Pr(t) = —K()(Xes1(t) = Xelt)) + &at)  (35)
o
2 whereK(t) denotes the Riccati feedback matrix
L
5° ] 0=K(t)+ATK(t)+K(H)A-K(t)BRIBTK(t),
C 6H 4
! K(T)=0, K(t—)=K(i+)+C'QC, 1<i<M  (36)
2t 1 and &, 1(t) denotes the predictive feedforward term given at
0 ‘ ‘ ‘ » the (k+ 1)™" trial by
0 0.5 1 15 2 i
First Point, t, (s) 0=&qa(t) + (AT —KOBR'BT)&a(t), &:a(T) =0,
&ra(ti—) = Ekra(ti+) +CTQa(t), 1<i <M. (37)

Fig. 2. Input Energyf(/\) at Single Point CaseM = 1) using Example 1.

Now supposéM = 2, the trial length stays the same hs-
2s, and the tracking reference is given b= [0.01, 0.008 '. It it worth pointing out that although both implementation
Furthermore, the admissible set of tracking time alloce@ methods can solve the Stage One optimization problem, the
in (3) is defined by parametets =1,t; =2,t; =0.01, and feedback plus feedforward implementation embeds robust pe
t, = 1.01. The required input energy to achieve the desigormance (due to the introduction of state feedback) when
tracking task as a function of tracking time instafitendt, applied to the true plant (more details can be found in [18]),
is plotted in Figure 3. It is clear from this figure th&{A) and therefore is preferable in practice.
is non-linear and non-convex with respectdndicating the
difficulty in solving the Stage Two problem. In this case th%

algorithm in Theorem 3 should be applied to solve the Stage i ) )
Two optimization problem (25), the results of which will be The Stage Two gradient based design method (26) involves
verified experimentally later in section VI. two steps: a gradient update step and a projection step. The

gradient update step is

Ajra= N —y-Of ()

Proof. See Appendix E for the proof of Proposition 1. [

Implementation of Stage Two Design

i
=
S

where the selection of; is dictated by (27). The gradient
can either be computed analytically using (25), or using a
computationally efficient estimation
f f(AF) — f(AL-
of | _ TN - FA) )
ot A 2AT

Input energy
N
o

=
o
w

e

-3 Q

<]

Input Energy

Where/\ij+ =[t],t], ...t +AT, . th] T andA} =[t],t], ...t} —
AT,...,t,{A]T, and AT € R is a sufficiently small number. It
should be noted that both analytic calculation and experime
* 728 second Point, () tal testing can be used to compute the fixed tracking time
First Point, t, (s) allocation’s optimal energy (/\'J-+) and f(A}") in (38).
The projection step is given by

0.6

Fig. 3. Input Energyf(/\) at Multiple Point CaseNl = 2) using Example 1.
Aj+1=Po(Aj+1) = argminA — Aj.q]|.

IV. IMPLEMENTATION OF THE DESIGN Note that this can be formulated into the following quadrati
APPROACH programming (QP) problem
. . . ~ X 2
In the previous section, a two stage design framework was mm;\mlze A=Al
proposed. Its implementation is now discussed in detail. subjectto AA—b=0
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Algorithm 1 Greedy initial tracking time allocation Algorithm 2 Low resolution initial tracking time allocation
Input:  §(A,B,C), rP, Aj and© Input: S(A,B,C), rP, ©® andTs
Output: Greedy initial tracking time aIIocationg Output: Low resolution initial tracking time aIIocatioA'o
1. fori=1toM do 1: Discretize the infinite se® at a sample rate dfis to obtain
20 LetANi =1t t5,..., ti,..., t§] . © which is a finite subset o®.
3:  Solve the optimization problem below using Theorem2: Solve the optimization problem below using blind search
3 ~
o N = argminf (A). 43
t*=arg r{innf (ND). (41) g/\eé (A) (43)
4: end for 3 return A=A~
s return A= [t7, t5,..., " Algorithm 3 Point-to-point ILC with optimal tracking time alloca-
= tion
where A= [I,—I]T, b= [t],...t{;,—t,....—ty]" and the

bol < d h L2 litv. Thi [nput: Ao, S(A,B,C), rP and®
syrrlglo er:)otes It ed cc;fmponent WISE meqdua(ljty 'SIQ utput: Optimal tracking time allocatiom\qpt and corre-
problem can be solved efficiency using standard QP solvers, sponding inputiop;

€.g. using Matlab functioguadprob. 1: Initialization: Loop numberj =0

IIAs an |t/e\rat|ve alg];cforlthrﬁ, thle ch_orllce' of initial tracklngmaf 2. Implement Stage One update (21) with= Ao experimen-
allocation/\o may affect tl.e agorltdms convergence perfor- tally using feedback plus feedforward update (34) until
mance, as in most non-linear and non-convex optimization - convergence is achieved, ifel|| < g[|rP|J; record

problem_s. T_hree metheds are now proposed to provide an converged inputi¥(Ao) and input energyf (Ao).
appropriate initial tracking time allocation for the algbm. 3 repeat

1) C_e_nf[ral |n|t|a_1l traclgng time alloe_atlo_n:ln this metho_d, 4 Implement Stage Two update (26) with= G UEX(A))
all the initial tracking points are specified in the centethuir _ . . O
in (25) or (38) while computing the gradient.

time intervals, and the initial tracking time allocationhience o
Setj— j+1.

ANS=Tt5 tS,..., to] " (39) Implement Stage One update (21) with= A} exper-
wheret¢ — (& +t1),2. imentally using feedback plus feedforward update (34)
. . . . p p .
2) Greedy |n|t|aI tracking time allocationThis method is until the convergence is achieved, i&| < gJ|r?];

X
defined by Algorithm 1 which takdd ‘greedy’ steps to obtain relcofrd conver?\ed lnpluf%(f 3\and input energy( i)
the greedy initial tracking time allocation 72 unt ’ = (A1 ’ < ‘ j-1 ’

8: return /\opt A anduopt_u X(Aj)
AN =1, t5,..., 9" (40) — — ,
chosen initial tracking time allocation, angd > 0, 6 > 0
based on the central initial tracking time allocatidf. Each are small scalars which depend on the tracking precision
‘greedy’ step only computes a single optimal time-p¢fnand requirement and performance requirement, respectively.

o a

the other time-points are known as constants,tj.e.., t* ; It is essential to note that in Algorithm 3, we require
andt®.,,..., ty. Algorithm 1 uses some computation timethat Step 2 and 6 (i.e. the norm-optimal point-to-point ILC
but tries to prowde a better initial tracking time a||O(CﬂTI/\g algorithm) are implemented experimentally and Step 4 uses
rather than the central initial tracking time allocatiaf. experimental datai$(Aj). These requirements are not nec-

3) Low resolution initial tracking time allocation:Low essary when an accurate system model is known. However
resolution initial tracking time allocation can be implemied when there exists model mismatch/uncertainty, the prapose
by using Algorithm 2, which involves performing a grid sdarcalgorithm embeds appealing robustness properties asghe al
in order to approximate the optimal tracking time allocatiorithm ‘learns’ information concerning the real plant dyrias
based on the nominal plant model. The solution is denotedtasough exploitation of experimental data. This will bether

/\lo: [t|1’ t'z,..., tII\/I]T (42) demonstrated in subsequent experimental results.

which minimizes the performance index. The term low resV. CONSTRAINED INPUT CONDITION HANDLING

olution implies that the sampling tim& is suitably large,  The previous sections propose a two stage design approach
and hence the total number of time-point combinations, ifr point-to-point ILC with optimal tracking time allocaii.

number of elements i®, should not be excessive. Thereforghis section further extends the proposed method to ineorpo
this method can balance computation time and accuracyrite system constraints into the design.

approximating the global solution. However, this method/ma
require a significant amount of time to carry out the grid ekar o, Optimal Tracking Time Allocation with System Constrsint

procedure when the number of time-points is large.
In practice, constraints exist widely in control systems
. ] ] due to physical limitations or performance requirements. F
C. An Iterative Implementation Algorithm example, input constraints typically assume the forms:
Combining the implementation of Stage One and Stage Twolnput saturation constraint
designs leads to an iterative implementation of the twoestag
design framework - Algorithm 3. Note thaky a suitably Q= {u(t) e R : ju(t)|| < M(t), te[0,T]}. (44)
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Input amplitude constraint This algorithm converges to the minimum error norm.
The constrained QP problem (52) becomes computation-
ally demanding which might introduce problems in some

_ ‘.
Q={u®) eR":A(t) 2ut) = pu(t), te[O,T]}. (45) applications, when the trial length is large. A humber of

Input sign constraint methods has been proposed to address this problem, see
[32], [33] for more information.
Q={u(t) eR:0=u(t), t[0,T]}. (46) « Method 2:Solve the unconstrained input norm-optimal

) point-to-point ILC optimization problem
Input energy constraint

(i1 = arg ngin{llepl\éJr lu—ud|Z} (53)
Q={ult) e RY: / (u(t))Tu(t)dt <M, te[0,T]}. (47) and then perform a simple input projection
0 . ~
With constraints, the optimal tracking time allocation Ipro U1 = argJEé{‘”“ ~ O] (54)

lem becomes It is clear that the first step has an analytical solution

mLilnim/i\ze f(u, y) and the solution of the second step is straightforward as
Y the input constrainf is usually a pointwise constraint

; p_ P . : . . . ;

subject to r¥=Gpu, (48) in practice. This method is computationally simpler than
y=Guy, Method 1 and can be carried out for large scale applica-
ANeO, ueq. tions. Its convergence performance property, however, is

different from that of Method 1.

As will be seen later, the constraints add significant diffiea . . . .
g The rationale behind Stage Two is that for each tracking

into the algorithm design. In this paper, only input corissa i locationA on © th ist timal input
are considered. Note that in principle, the design develape ime aflocation/A on ere exists an optimal Input energy

the following section can handle output constraints as, el _f (A) and we can obtain an optimaP € O t(.) minimize the
the details will be different and are omitted here for brgvit input energyf (A). The Stage Two optimization problem (51)
can be equivalently solved using

B. A Modified Two Stage Design Framework with Input Con- Njy1= arg/(rgigﬂ(/\) (55)

straints
. - - ) which can be solved by Theorem 3 where
Following a similar procedure to that within Section Illgth

constrained optimization problem (48) becomes fi(A) = [[Ua(A) |3+ P ||t (A) — Ooo(/\j)Hé, p=>0. (56)

min{minf(u,y)7 subject toGRu=rP, y=Gu, ue Q} (49) Note that in the modified stage two design, the input con-
AeO LU straint is decoupled from the optimization problem and thus
suggesting a modified two stage design framework as: can be solved analytically. In practical implementatiome t
« Stage One: modified Stage One solutiam.(A\j) in the update (55) should
minimize  ||u||& be considered to be the converged inpdt(A;) obtained
ucQ (50) experimentally.

i P_ P i . .
subjectto r®=Gpu These new solution forms combine to generate Algorithm 4

whose the solution is denoted as(A). which solves the input constrained optimization probles)(4
« Stage Two: Remark4. The modified Stage Two optimization problem can
L N be also solved b
min{ f(A) := [|e (A)[3). (51) Y

Ne®

With the presence of the input constraints, the problem be-

comes significantly more difficult as the Stage One inner oplowever, we can only use the estimation method (38) to com-
timization problem needs to solve a constrained optinorati pute the gradientl f (A) rather than compute it analytically, as
problem, which unfortunately is inherently Cha||engingjanthe modified Stage One does not have an analytical solution.
does not admit an analytical solution that is essential & th

Stage Two optimization problem. . .
Note that now Stage One does not have a direct analytic%l Convergence Properties of the Algorithm

solution, but the norm-optimal ILC algorithm with successi Algorithm 4 has the following convergence properties: The
projection proposed in [32] can be applied to solve the modionvergence properties of the gradient projection updatig (
fied Stage One optimization problem (50). The update (21)3€ described in the next theorem.
accordingly replaced by two alternative update methods. Theorem4. Suppose perfect tracking is achievable @nd 1,

« Method 1: Solve the constrained input norm-optimafthe analytical input energy resulting from (55) satisfies

point-to-point ILC optimization problem Hum(/\j+1)||§ < ||0°°(/\J)||§e' (58)

U1 = arg&gé}n{ﬂepllé—k Ju—udZ}- (52)  Proof. See Appendix F for the proof of Theorem 4. O

Aj+1=Po(Aj—y;-Of (). (57)
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Algorithm 4 Constrained input point-to-point ILC with optimal VI. EXPERIMENTAL VERIFICATION ON A
tracking time allocation GANTRY ROBOT

Input:
Output: Optimal tracking time allocatiom\op: and corre-
sponding inputigpt
1: Initialization: Loop numberj =0

p
Ao, S(A,B,C), IP, © andQ The proposed design framework is now validated experi-

mentally on a three-axis gantry robot test facility to demon
strate its effectiveness on a widely used industrial ptatfo

2: Implement Stage One update (52) or (53)-(54) with= o
Ao experimentally using feedback plus feedforward updafe Test Platform Specification

(34) until the convergence is achieved, ijef) <&||rPl; The multi-axis gantry robot shown in Figure 5 comprises
record converged input2{Ag) and input energyf (Ag).  three perpendicular axes placed above a moving conveyer. Th
3: repeat x-axis and the y-axis are designed to move in the horizontal
4:  Implement Stage Two update (55) with= GRJ U&(A;) plane and are both driven by linear brush-less dc motors.
in (24) or (38) while computing the gradient. The ve_rtical z-axis is placed ab_ove the other two axes, and
5 Setj— j+1. has a linear bgll-s_crew stage dnven. by a rotary brqshless_dc
6: Implement Stage One update (52) or (53)-(54) witfOtor: The axis displacement data is measured using optical
A= Aj experimentally using feedback plus feedforwarﬂ‘cr?me”tal encoders. The ggntry robot uses an electraghagn
update (34) until the convergence is achieved, i Pick the payloads from a dispenser and place them onto the
||e|E|| < &||rP|; record converged inpuA;) and input moving conveyor, and uses the reference trajectory shown in
energyf“(/\j)_ Figure 6. Because the three axes are orthogonal and cmdtro!l
7: until [Fj(Aj) = F(Aj-1)| < 3[F(Aj-1)] separately, the gantry robot can be considered to comprise
8 return  Aop = Aj and uop = GE(A;) three separate single-input single-output (SISO) systems
™ ~

Theorem 4 states only that the next loop’s unconstraines
minimum energy is no larger than the constrained minimu
energy of the current loop, but it still provides useful info
mation about the convergence performance of the constrainess

input
using

convergence performance of Stage Two update (55), and
representative example is now given.

Example2. Consider the same design objectives as the mul
tiple case M = 2) example of Section Il and assume input
saturation constraint (44) withl(t) = 1.5. Perform Algorithm

Shiisi]

condition. We have undertaken a series of simulation
different models and input constraints to examine the

4 for_a t(_)tal nqmber of 3_0 loops with the Stage Two updaﬁg. 5. Multi-axis Gantry Robot Test Platform.
(55) in simulation assuming = 0.1, 8 = 0.8 andy = 0.08. ' N
Plot the corresponding constrained and unconstrained- min x10? Pick Position

mum

in Figure 4. The results in Figure 4 not only verify (58), but 8

input energ)ﬂﬁm(Aj)Hé and HUoo(/\j)HZR for each loop °

Unconstrained Input Energy | -

also show monotonic convergence of the constrained minimur
input energy. = °
@ Place Position
3 4
140 2
Constrained Input Energy l

Input Energy

Fig. 4.

N\

/ Resting Position

24 .
2~ Reference Trajectory
0.1
y-axis(m) 0.01 0

0.2 0.04 0.03 0.02
x-axis(m)

. . . : Fig. 6. 3D Reference Trajectory of Gantry Robot
0 s 10 15 2 % 30 The control design objective is to perform a pick-and-
Number of Loops, j . N . . .
place task with two special tracking points! & 2), which
Convergence Performance Comparison between @oredr and correspond to the ‘pick’ position and the ‘place’ position.

Unconstrained Minimum Input Energy at Each Loop. For simplicity, we only consider the z-axis in this paper

with system modelG,(s) and take the time index to two
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decimal place accuracy. The total trial lengthlis- 1.99s and

Original Allocation

the reference for z-axis,?, is [0.01,0.008". The parameter s’ e o
choicet;” =0.99,t; =1.99,t; =0.01, andt, = 1.01 ensures i ]
that the robot moves to the pick position first and then to the £ |
place position. To provide baseline tracking and distuckean aesr
rejection, a proportional controller with gaild, is applied ;‘10 -
around the system, yleldlng R 02 o4 o0s o8 2 12 14 16 18 2
Time: HO) [ g ot
GZ(S) -~ 0.015 = = = Experi Allocation
G = T7kG,9 G9 2 $ B e
The transfer function system moda{s) can be equivalently %
written in state space for§(A,B,C). Note that for this prob- < ooos - \\\
lem, previous studies used a predefinegriari) tracking time g ) TTeIIss

o

02 04 06 08 1 12 14 16 18 2
Time, t (s)

o

allocation/A; = [0.5,1.35 ", with a corresponding control input

energy obtained by implementing the Stage One update onl

The central initial tracking time allocatiofg = [0.5,1.5]T is , o

used in both Algorithm 3 and 4, the weighting matrices afg gdgi a?%”%’gggﬁa'iﬂ%‘ét ggﬂ(ﬁ%ﬁ”t Trajectory Comparisangisiaccurate

taken asQ = gl, R=rl whereq andr are positive scalars Tjs s further compared with normal practice by computing

which satisfyqg/r = 500,000, and the gradient is obtained byhe optimal tracking time allocation in simulation usingeth

the estimation (38) with analytical calculation. nominal model, and then using Stage One update alone to
track them experimentally. This yieldd* = [0.99,1.26] T,

B. Experimental Results using an Inaccurate Model withoand f(/\*) = 9862. It is clear that the experimental final

Input Constraints converged energy is approximately 10% less. This means that
First assume that only an approximate system model of tguperimental implementation of Algorithm 4 is far superior
z-axis is available as follows: to optimization using the nominal model in simulation. This
R 0.03 confirms that the algorithm displays satisfactory robustne
Gz(s) = < (60) against model uncertainty. Furthermore, the convergedtinp

. . . . and output trajectories at the original, theoretical optiend

with a feedback gaifk = 30, which hence provides the statg,,arimental optimal allocations are plotted in Figure @ an

space formS(A, B,C) illustrate how the experimentally obtained optimal allbma
A=-09, B=0.125 C=0.24. takes advantage of the other two allocations.

A 60 loop updating procedure of Algorithm 3 is performed us- < 2 ; nital Loop
ing the gantry robot. In Step 4, the generalized Armijo stee s = ;ﬁ"a‘ Loop
(27) is applied witha = 0.1, 3 = 0.8 andy = 0.03,0.04,0.05. T ! ]
(=)
? of
135 *5'
[o
130 £ (=R L L L L L L L L L
1251 i ~ o0 02 04 06 08 1 12 14 16 18 2
7=0.03 Time, t (s)
> 120 7=0.04 b = Initial Loop
& ——~=005 £ o015 Final Loop
o M5y Energy at A | | > ©  Initial Tracking Points
LICJ 110 o —_ © Final Tracking Points
* © 0.01f B
= Energy at A c
o 1051 1 k=
< oo} 2 0.005 [
95 \Y\ ‘% o , , , , , . . . :
9 (@) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
85 L L L . . Time, t (s)
0 10 20 30 40 50 60

Number of Loops, |
ps.) Fig. 9. Experimental Converged Input and Output Trajeetofor Initial and

Fig. 7. Experimental Input Energy Results using Inaccurstedel at Final Loops usnTg Inaccura.te Model at Uncons_tramed C“f“j't
Unconstrained Condition. The experimental final converged input trajectory for the

The experimental optimal input energfj/\k) at each loop initial and final loops of the algorithm are compared in Figur
is plotted in Figure 7 for step size chosen under differe@t and it is clear that the input signal immediately becomes
values ofy. The optimal energny(/\r) = 12906 required zero after finishing tracking the last point in both figures as
for the gantry robot to track at tha priori tracking time there is no tracking requirement along the remaining fimite t
allocation is also plotted for comparison. It should be doténterval. The experimental final converged output trajgcfor
that the proposed algorithm provides an experimental fhe initial and final loops of the algorithm are also compared
nal converged energy of 88, which is a 31% reduction in Figure 9, and the reference at the special tracking time is
in input energy compared to the operating enerfE{Y\r). marked with red and green circles. It is clear that the final
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converged output accurately tracks the special trackinigteo

so the algorithm not only optimizes the input energy but alsc
maintains high tracking performance even with significaghh 120 =003
model uncertainty. For example, while using the experimlent 7=0.04
; ; ; ; : 2 110 v =0.05
estimation with step size chosen ungter 0.03, the final mean 2 Energy at A
. ) ]
square error is 00032 at Step 6 of the 80loop. {5 100 Energy at A”| 1
>
Q.
o 1 £ ot
" 0.9
= g0k
‘S 08f
S o7 ——=003| | N
.E ) —=0.04 0 5 10 15 20 25 30 35 40 45 50
% 06[ 7=005] 4 Number of Loops,
'Lt 05 1 1 1 1 1
0 10 ZONumberz? Loops,j40 %0 60 Fig. 11. Experimen'ta_ll Input Energy Results using an Aceurfstbdel at
& Unconstrained Condition.
~ 15
g’ 1.4 F —~=0.03] 4 as Original Allocation
S —_—= 0.04 —~ e -Theorencal Allocation
a 3F _ 4 a L Experlmenlalﬁllocallon
s 2 ——=0.05 = 2
£ 12 — 15t
= g
e} L
g 3 "
o 1 5 05f
(2] 0 10 20 30 40 50 60 % of
Number of Loops, j - I I L L
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2
Time, t(s) Theorecal Alocation
Fig. 10. Experimental Time-Point Position Results at Eadwop using 15 210° ‘ ‘ ‘ ‘ = = = Theoretical Allocation

(-] Original Tracking Points

?

Inaccurate Model at Unconstrained Condition.

To further illustrate the performance of the proposed al-
gorithm, the convergence of the tracking time allocation is
shown in Figure 10. For each different valueypthe tracking
time allocation at each loop are plotted in this figure, and
all converge to identical values. It should be noted that 02 04 06 o8 1 12 14 15 18 2
the identical tracking time allocation i€0.91,1.01]". The Time, t(s)
automatic tracking time allocation adjustment has meaait th _ o
the speed of the gantry is slower and the distance the gari} 12." Converged Input and Output Trajectory Comparissingi an

urate Model at Unconstrained Condition.

moves is shorter, which contributes to a lower input energy. ) i ]
Experiments using the other initial tracking time allooati, N simulation with the accurate model, and the theoretical

e.g. the low resolution initial tracking time allocationield OPtimal tracking time allocation i#\* = [0.99,1.08] ", which
similar levels of performance. yields the theoretical optimal enerdyA") =79.19. As can
be seen from the figure, the converged input is very close
. _ ___to the theoretical ond (A*). Also, the converged input and
C. Experlmeqtal Results using an Accurate Model W'thOBbtput trajectories at the original, theoretical optimaida
Input Constraints experimental optimal allocations have been plotted in Fgu
Next the accurate model (33) is employed within (59) with2 and it can be shown that the converged trajectories of the

feedback gainK = 100 to assess the performance of thgheoretical optimal and experimental optimal allocatieme
proposed algorithm. Now the state space f@{A,B,C) is almost the same.

Theoretical Optimal Tracking Points
i Optimal Tracking Points

[
1S
T

o

Output Signal, y (m)

&
o

—707.6 —662824 —41.225 05 The experimental final converged input trajectory for the
A— 512 0 0 .B=| 0 |, initial and final loops of the algorithm are shown in Figure
0 64 0 0 13. For comparison, the experimental final converged output

trajectory of the initial and final loops of the algorithm aleo
€= [ 0 0062 0825 ] ' shown in Figure 13, and the reference at the special tracking
Algorithm 3 is again applied for 25 updating loops. In Step 4ime is marked with red and green circles. It is obvious that
the generalized Armijo step size (27) is applied with the santhe output converges to the special tracking points, coirigm
parameters as in the previous subsection. that the algorithm not only optimizes the input energy, sba
For step size chosen under different valueg,d¢he optimal maintains satisfactory tracking performance.
input energyF(Ak) at each loop is plotted in Figure 11. The To further illustrate the performance of the proposed algo-
optimal energyf(/\r) = 12513 required for the gantry robotrithm with accurate model, the corresponding convergefice o
to track thea priori tracking time allocation is also plotted forthe tracking time allocation is shown in Figure 14. For each
comparison. The algorithm provides an optimal energyp78 different value ofy, the tracking time allocation at each loop
and reduces the input energy by more than 30% compared wélplotted in this figure, and it is clear that the final conestg
the operating energf(/\,). Blind search has been performedracking time allocation i$0.99,1.09] ", which is close to the



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTE TECHNOLOGY

&

—
as T T T T T T T T Initial Loop
=2 Final Loop
s ~
(2]

29 R
n
*§.5 -
[oR
g0 S
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 2
Time, t (s) -

—_ 3 Initial Loop

= x 10 Final Loop

=1 " " " " j j © Initial Tracking Points

e 10 ©  Final Tracking Points

©

oy

2 5

n

5 0

o

s

>

(e}

12

130 T T T T
120 —~=0.05 1
—~ =0.06
Z 10t -~ =0.07 4
= A
o Energy at .
< *
Ll 100 Energy at A |
5
%
£ oof 1
80 & 1
70 . . . .
0 5 10 15 20 25

Fig. 15. Experimental

Number of Loops, j

Input Energy Results using an Aceurstiodel at

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time, t (s) Constrained Condition.
2 Original Allocation
Fig. 13. Experimental Converged Input and Output Trajéesofor Initial S T o
and Final Loops using an Accurate Model at Unconstrainedd@ion. S 57
T 1t E
c
(=2}
O T T T D 05F 1
4—1'_' 09t - =0.03] g of
E o ——=004 L
g ——~v=0.05 "o 02 04 06 08 1 12 14 16 18 2
2 o07r 1 Time, t (s) Original Allocation
_E Theoretical Allocation
L 4 — -—— Allocati
D 06 c 0.015 [-] OmginalTrackmgO(I;?:ilstns
= ~ Theoretical Optimal Tracking Points
T os : : : : : : : : : g
o 5 10 15 20 25 30 35 40 45 50 = oof Optimal Tracking Points
Number of Loops, j =
© »
HN 15 T T T T T T " " " = 00051 ]
. —_ =
< 14f v =0.03] =
S ——~=0.04 o ° n L L L L . . . )
o 13r ——~=0.05] | 0 02 0.4 0.6 0.8 1 12 14 1.6 18 2
E 12F ] Time, t (s)
E
2 11t 1
§ 1 ) ) ) ) ) ) ) ) ) Fig. 16. Converged Input and Output Trajectory Compariseingi an
%2 0 5 10 15 20 25 30 35 40 45 50 Accurate Model at Constrained Condition.

Number of Loops, j

energy f(A*) = 79.32. In this figure, it is obvious that the

converged input is close to the theoretical offé\*) as the

Fig. 14. Experimental Time-Point Position Results at Eadog using an
Accurate Model at Unconstrained Condition.

theoretical one\*. A range of different initial tracking time

allocations have been used to perform the experiments, A

their results are similar to those presented in Figure 11.

D. Experimental Results using an Accurate Model with Inpu
Constraints

Now assume the gantry robot has an input saturation cor
straint (44) withM(t) = 1.8, and the accurate mods(A, B,C)
obtained in the previous subsection is used. Algorithm 4
is performed with 25 updating loops. For implementational
simplicity, we use solution (53)-(54) during Step 2 and 6,
and solution (57) with generalized Armijo step size (27ngsi
0=0.1, 3 =0.8 andy = 0.05,0.06,0.07 during Step 4.

Similar data process method has been used to plot th
optimal input energf(Ak) under each value of at each loop
in Figure 15 together with the optimal enerdyA,;) = 1253
at thea priori tracking time allocation. It can be seen from
the figure that the optimal energy obtained by the algorithmr
is 7872, which is 30% less than the operating enefg, ).
Blind search is then performed in simulation with the accu-

= N}

Input Signal, u (V)

N

Output Signal, y (m)

model is accurate. For further comparison, the converged
input and output trajectories at the original, theoretaggimal
experimental optimal allocations have been plotted in
Figure 16, which shows that the converged trajectories ef th
theoretical optimal and experimental optimal allocati@me
most the same.

T T

Initial Loop
== Final Loop

L L L L

0.8 1 1.2
Time, t (s)

T ©
°

Initial Loop
Final Loop
Initial Tracking Points
Final Tracking Points

0.6 0.8 1 1.2

Time, t (s)

rate model, which provides the theoretical optimal tragkinFig, 17. Experimental Converged Input and Output Trajéetofor Initial
time allocation/\* = [0.99, 1,08]T and the theoretical optimal and Final Loops using an Accurate Model at Constrained Giondi
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The experimental final converged input trajectory for thachieved. When an accurate system model is available, the
initial and final loops of the algorithm are shown in Figurénput energy converges to the theoretical optimal solution
17, and it is clear that the input signal meets the inplht both scenarios, the proposed algorithm guarantees high
saturation constraint. Furthermore, the experimental oa- performance tracking.
verged output trajectory of the initial and final loops of the Although the experimental implementation of the algorithm
algorithm are also shown in Figure 17 with red and gredras demonstrated its certain effectiveness in practicigoa-r
circles standing for the reference at the special tracking.t ous analysis of the algorithm’s robustness properties béll
It shows that the converged output trajectories pass thrtug undertaken in future research to show the degree of rokasstne
special tracking points, which verifies that the algorithot n against model uncertainty. Furthermore, the design fraomew
only optimizes the input energy, but also maintains satiefy will be expanded to minimize total input energy of all three
tracking performance. axes while performing a pick-and-place task. In additicghgo
methods, e.g. the projected Newton method [34], will also be
used to solve the Stage Two optimization problem.

[N

— =005
——~=0.06] 1
— =007 APPENDIX

A. Proof of Theorem 1

" - - e On the (k+ 1)™" trial, the norm-optimal point-to-point ILC
Number of Loops, j algorithm solves the optimization problem

o
©

First Time Point, t1 (s)
o
(2]

I

IS
o
o

: 2 2.
R e—— min{ &%)+ lu—udz: & =rP-y". Y= GRu}  (61)

to get the control input ;. The problem (61) has an identical
structure to the norm-optimal ILC problem described in [35]
with the only difference being the definitions of the opersto
1 : ‘ ‘ ‘ signals and underlying Hilbert spaces. Therefore, thatiter

0 5 10 15 20 25 .
Number of Loops, j solution can be expressed as

Second Time Point, t2 (s)

_ PxoP P P P\—1P
. . . . iy _ U1 = Uk+Gp &g = €y = (1 +GAGy) e (62)
Fig. 18. Experimental Time-Point Position Results at Eadog using an
Accurate Model at Constrained Condition. which gives rise to (21).

In terms of the algorithm’s performance, the tracking time |t is proved in [18] that if a system is controllable afd
allocation at each value of and each loop is shown inhas full row rank, the referena@ can be tracked exactly and
Figure 18. From the figure, the final converged tracking timge limit of the sequencéuy} exists, i.e.
allocation is[0.99,1.08] ", which is exactly the same as the _ ]
theoretical oneA* to two decimal place accuracy. Different M}oek =0, Ml)uk: Uoo.
initial tracking time allocations have also been used tdquer
the experiments under constrained condition, whose seatst
similar to those presented in Figure 15.

The algorithm converges to the minimum control energy that
achieves perfect tracking requirementug = 0. Hence the
Stage One optimization problem (18) can be solved by the
norm-optimal point-to-point ILC algorithm.
The relevant adjoint operat@,‘i* is obtained in [18] from
Tracking time allocation plays an important role in poiot-t the definition
point ILC and can significantly affect the system performanc "
This paper developed an optimization framework to fully <(w1,...,wM), G/p\u>Q:<G/p\ (o, ..., awm), u>R (63)
exploit the flexibility in choosing tracking time allocatido \yhich gives rise to
optimize some performance index of interest, in addition to . .
high accuracy reference tracking. The problem is formdlate Grw)(t) = { R1B'e" -UCTQw, 0<t <tj, (64)
into an optimization problem in some abstract Hilbert space 0, t>t.
and a two stage design framework has been developed. Glopal equation (64) can be further written as
solutions to Stage One are derived for efficient implementa-
tion. For Stage Two there are no direct analytical solutions (Gfw)(t) =R B pi(t) (65)
of the optimization problem, and hence an iterative alganit
based on the gradient method has been proposed. The Yrherepi(t) =0 on (ti, T}, and on|0, t)

VII. CONCLUSION

plementation progedures have peen discussed in detail and pi(t) = —ATpi(t), pitti—) =C'Qu. (66)

the proposed design framework is further extended to embed

system constraints into the design. Adjoint operatorGR" is the map(cy, ..., v ) — u defined by
The proposed algorithm is verified experimentally on a M

gantry robot test platform. When the system model is inac- ut) = Zl(Gi*oq)(t) =R !BTp(t) (67)

curate, significant improvement of the input energy can be i=
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wherep(t) = z{\il pi(t). Due to the linearity, these equation®. Proof of Theorem 3

i{ield tthe ﬁ?sr:ate equ?tionthmogifift_aqt_by J(Lz”zn)p ‘;Otnhditiogs’_att To prove Theorem 3, the following lemma is needed.
ime t;, which generates the definition of the adjoi -
operatorG)". Therefore, théi, )" block of the matrixGRGR’ "Lemmaz. [28] Let {/A} be a sequence generated by =
. Po(Aj—y;-Of(Aj)) where
can be computed as the equation (23).
It has also been proved in [18] that the limit exists with O={AeRM: A <ti<py, i=1,...,M}, (72)

um—uo:GR*(GRG,p\*)*leg. (68) andy; is chosen according to the generalized Armijo step
size (27). Then every limit point of the sequenfly} is a
As the initial inputup = 0 which makes) =rP, the analytical stationary point for problem (25).

solution (24) forux(A) is obtained. In this paper, the admissible $Btsatisfies the constraint set

requirement (72), and the gradient projection method (26) w

generalized Armijo step size (27) is used in Theorem 3. Using

this theorem, all the assumptions in Lemma 2 are satisfietl, an
Substituting the analytical solution (24) into the optimiz hence the sequendéy} converges to a stationary point of the

tion problem (19) and using the property of adjoint operatq@roblem (25).

gives

B. Proof of Lemma 1

E. Proof of Proposition 1

mMin||us(A)|[& =min ((Us(A), Uo(A))g , ,
AeO AeO The ILC update (21) is equivalent to

— min <(GR*(GRGR*)71rp’ GR*(GRGR*)flrw

Aco " Uk 1(t) = U(t) + (GR e, 1) (1) (73)
N IS PALE
= min (GRGR'(GRGR) P, (GRR) P)q : . '
NeO© and (G}"ef, ;)(t) can be written as
=min (r?. (GRGR")'rP), p* P -1gT : T
NeO (Gr &, 1)) =R B p(t), pe(t) =—A" p(t),
which completes the proof. P(T) =0, pr(ti—) = pk(ti+) +C Qaca(ti), 1<i <M.
(74)
C. Proof of Theorem 2 according to the costate equation (22). Hence (73) becomes
For M = 1, there is only one tracking point and this= U1 (t) = Ue(t) +RBT py(t). (75)
t1 € R. DenoteW,, = G{G{}" which can be explicitly written 1.1 substitute the equation
as
t Pr(t) = —K(t) (Xer2(t) =X (1)) + &ira(t) (76)
W, = / CAtiUBRUCAUIB)T dt.  (69) | _ - _ .
0 into the jump condition at; of costate equation (74) to give
The Stage Two optimization problem becomes — (K(ti+) — K(ti—)) (X1 (ti4) — X (ti—))

(70) +(&ie1(tih) = &ea(ti—) = CTQaga(t)  (77)

and the erroeg1(tj) can be further equivalently written as

; 2 __ i p -1.p
min|ues(A)[fg = min (r?, W 7rP),.

Note thatW¥, is a positive operator, and furthermore,
&+1(ti) =i — Yira (i)

Wo <Wr, Vi <<t =T, =1 = CXqa(ti)
as for anyx, it can be shown =1 — CxX(ti) — C(Xr 2 (ti) — (i)
= &(ti) — C(Xiera (t) — X(ti))- (78)
(x. (r - LPTtl)X>Q - Hence (77) and (78) suggest the jump conditions
(x, [ ceUBRYC&MUB)T dixo>0. (71) K(ti—) =K(ti+)+C'QC, 1<i <M,

ty

&pa(ti—) = &a(tiH) +CQa(t), 1<i<M (79)
att; in (36) and (37). Then use the method proposed in [36] to

The above properties of positive operators yield

WYl > Wit differentiate (35) at any poirttnot in A and substitute fox,’
and Xy 1. These provide the following Riccati and predictive
and therefore differential equations
(rP, WlrP) = (P, WrlrP) . 0=K(t)+ATK(t)+KHA-K(t)BRBTK(t), K(T)=0,

0=&ua(t)+ (AT —K(t)BR BT t T)=0 (80
It follows thatt; =t;” = T is an optimum of the Stage Two Sira () +( ®) Jéki1(t), G (T) (80)

optimization problem, which completes the proof. in (36) and (37).
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F. Proof of Theorem 4

As Aj1 is the solution of the gradient projection, it is clear
from Theorem 3 that the inequality

(7]

(8]

finj) < fiAp) (81)
holds and hence it follows that El
u(Aj2) [ < U (A ) [+ o /\J+1)—Uw (M)|r [10]
< (A [+ [ (A) = G (M) [
2 2 R 2
= lun A [+ p u(AD 2+ P JGulA) [ 1
=20 (0o (), Uno(Af)) - (82) -
Then, recall the analytical solution (24) fak(A) and the
perfect tracking assumptioBhde(A) = rP to give [13]
(Geo (M), Uoo(A))g = (Ueo(A), GR'(GRGRT) P
= (GRlw(N), (GpGp*)*er>Q [14]
P P*
= (% (GRex) >Q [15]
= ((GRGR')(GRGR) IrP, (GRGR) UrP),,
= (GR'(GRGR) P, GY'(GRGR) Py, 116]
= (U (A), Uoo(A))g- (83)
Substitute (83) into (82) to give [17]
lues (A1) [ < (1= ) [[usA) [+ |G (A [ (89) s

It is clear that the unconstrained converged input energyis
larger than the constrained converged input energy i.e.

[19]

o (A) [ < [18(A)

e <

and it follows that

[20]

(1-p)lus(Allp < (1=p) 0s(A)]l; — (85)
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