
High-Speed and Low-Cost Implementation of Explicit Model
Predictive Controllers

Andrés Gersnoviez1, Marı́a Brox2 and Iluminada Baturone3

Abstract—This paper presents a new form of Piecewise-Affine
(PWA) solution, referred to as PWAH, to approximate the explicit
Model Predictive Control (MPC) law, achieving a very rapid
control response with the use of very few computational and
memory resources. This is possible because PWAH controllers
consist of Single-Input Single-Output (SISO) PWA modules
connected in cascade so that the parameters needed to define
them increase linearly instead of exponentially with the input
dimension of the control problem. PWAH controllers are not
universal approximators but several explicit MPC controllers can
be efficiently approximated by them. A methodology to design
PWAH controllers is presented and validated with application
examples already solved by MPC approaches. The designed
PWAH controllers implemented in Field Programmable Gate
Arrays (FPGAs) provide the highest control speed using the
fewest resources compared to the other digital implementations
reported in the literature.

Index Terms—Field-programmable gate arrays (FPGAs), hi-
erarchical systems, model predictive control (MPC), piecewise-
affine (PWA) systems, PWA controllers.

I. INTRODUCTION

MODEL Predictive Control (MPC), also called receding
or rolling horizon control, obtains the control action

by solving a finite horizon open-loop optimal control problem
at each sampling instant [1]-[3]. The plant to be controlled is
usually modeled as a linear discrete-time system:{

x(t+ 1) = Ax(t) +Bu(t).
y(t) = Cx(t).

(1)

Where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output
vector, and u(t) ∈ Rm is the control vector (input vector to
the plant), which satisfy the constraints ymin ≤ y(t) ≤ ymax

and umin ≤ u(t) ≤ umax, for t ≥ 0, and the pair (A,B) is
stabilizable.

Assuming for simplicity that the control objective is to regu-
late the plant state to the origin, and that a full measurement of
the state x(t) is available at the current time t, MPC solves the
constrained regulation problem by optimizing a performance
index, which is usually expressed as a linear or quadratic

Manuscript received October 28, 2016; revised March 16, 2017 and October
30, 2017; accepted November 3, 2017. Manuscript received in final form
November 14, 2017. This work was supported by the Ministerio de Economı́a,
Industria y Competitividad of the Spanish Government through the Project
TEC2014-57971-R (cofunded by FEDER).

1A. Gersnoviez is with the Department of Electronic and Computer Engi-
neering, Universidad de Córdoba, Córdoba, Spain (phone: +34 957212224;
e-mail: andresgm@uco.es).

M. Brox is with the Department of Electronic and Computer Engineering,
Universidad de Córdoba, Córdoba, Spain (e-mail: mbrox@uco.es).

I. Baturone is with the Instituto de Microelectrónica de Sevilla (IMSE-
CNM), Universidad de Sevilla, CSIC, Seville, Spain (e-mail: lumi@imse-
cnm.csic.es).

criterion. For example, in the case of a quadratic criterion, the
following optimization problem is solved at each time step t:

min
U

{
J(U, x(t)) = xTt+Ny|tPxt+Ny|t+

+
∑Ny−1

k=0 [xTt+k|tQxt+k|t + uTt+kRut+k]

}
(2)

Where:

U , {ut, . . . , ut+Nu−1}. (3)

is subject to:

ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc.
umin ≤ ut+k ≤ umax, k = 0, . . . , Nc.
xt|t = x(t).
xt+k+1|t = Axt+k|t +But+k, k ≥ 0.
yt+k|t = Cxt+k|t, k ≥ 0.
ut+k = Kxt+k|t, Nu ≤ k < Ny.

(4)

Where xt+k|t is the predictive state vector at time t + k,
obtained by applying the input sequence {ut, . . . , ut+k−1} to
the model (1), starting from the state x(t); Ny , Nu and Nc are
the output, input and constraint horizons, respectively; K is
some feedback gain; and it is assumed in (2) that Q = QT < 0,
R = RT � 0 and P < 0, where QT denotes the transpose of
Q [4].

The MPC control law is based on the idea that, at each time
step t, the optimal solution U∗(t) = {u∗t , . . . , u∗t+Nu−1} for
the problem (2) is calculated, but only the first action u(t) =
u∗t is applied as input to the plant in (1) to obtain the new
state x(t + 1). At the following time step, the optimization
problem (2) is repeated over a shifted time-horizon and based
on the new state vector [1]-[2].

An obstacle to a wider use of MPC controllers is the high
computational cost involved to solve the optimization problem
online. This has limited their use to applications of relatively
slow dynamics (sample time measured in milliseconds or more
even using computational methods for improving the speed of
online optimization [3]). A solution proposed to reduce this
shortcoming is the use of explicit MPC controllers which solve
the optimization problem offline and compute the optimal
control action, u(t), as an “explicit” function of the state
variables, x(t), within a given domain D, which is assumed
to be polytopic. Hence, online optimization is reduced to a
simple function evaluation, u(x) : D ⊂ Rn → Rm [4]-[6]. In
most cases, as explained in [6], such a function is piecewise
affine (PWA) in the state variables, as follows:

(b) (a)

x1
-8

x2

8
-4

4

0

0
x1

-1.5

x2

1.5
-3

3

0

0

Fig. 1. Polyhedral partitions with (a) saturated regions and (b) without them.

u(x) =


F1x+ g1 if x ∈ P1.

...
FIx+ gI if x ∈ PI .

(5)

Where Fi ∈ Rm×n, gi ∈ Rm (i = 1, . . . , I), and Pi ⊂ D
are I non overlapped regions (Pi ∩ Pj = ∅ for i 6= j),
called polytopes, which form a polyhedral partition of the
domain D, fulfilling the relation ∪Ii=1Pi = D. The domain
D is divided by H n− 1 dimensional hyperplanes of the type
hTj x + kj = 0 (j = 1, . . . ,H), with hj ∈ Rn and kj ∈ R.
Each hyperplane divides the domain into two parts and their
intersection generates the edges of the I polytopes.

Several implementations of explicit MPC controllers have
been proposed in the literature [7]-[28]. Some of them imple-
ment the optimal solution, u(x) in Equation (5), without any
approximation [7]-[19]. Others replace the optimal solution by
a sub-optimal one, which is very similar to u(x) but with re-
duced complexity so as to gain in latency as well as in memory
requirements [20]-[28]. The problem is that the complexity of
several sub-optimal explicit MPC implementations increases
exponentially with the number of state variables [22]-[27].

This paper presents a new implementation of explicit MPC
controllers which is referred to as PWAH (PWA Hierarchi-
cal) because it is composed of a hierarchy of very simple
PWA modules. It approximates the optimal MPC control law,
achieving a high speed and requiring very few resources which
increase linearly instead of exponentially with the number of
state variables. A very preliminary work about this subject
can be seen in [28]. Since PWAH controllers are not universal
approximators, a methodology is presented to evaluate if the
optimal explicit MPC law can be well approximated by a
PWAH approach and how to design it.

The paper is organized as follows. Section II summarizes
the advantages and drawbacks of solutions reported in the
literature to implement explicit model predictive controllers.
Section III presents the PWAH solution, describing the shapes
of their polytopes and describing their control response time
and required resources. The capability of PWAH controllers
to approximate optimal controllers is discussed in Section
IV. Section V describes the methodology to design PWAH
controllers. Application examples of applying the methodol-
ogy and the results obtained are given in Section VI. Finally,
Section VII shows conclusions.

II. IMPLEMENTATIONS OF EXPLICIT MPC

Once the state space is divided offline into I polytopes, the
online computation of explicit MPC controllers (as shown in
Equation (5)) is reduced to find the polytope which the current
state variables belong to, and then to evaluate the control
action as the linear function associated to that polytope. Since
the polyhedral partition tends to be irregular, the problem
of determining the polytope is known as the point location
problem [7]-[9].

The so-called exhaustive or direct search explores sequen-
tially all the polytopes to find where the point is located.
Hence, the search time is linear in the number of polytopes.
The implementation reported in [10] (henceforth denoted as
PWA-direct) follows this approach. The search complexity
can be reduced by designing a binary search tree. Using
a balanced search tree, the search time is logarithmic in
the number of polytopes [11]. Several implementations of
explicit MPC controllers using a binary search tree have
been proposed in the literature. They are called Generic PWA
(PWAG) implementations [11]-[13]. The implementations in
[11]-[12] use a VLSI (Very Large Scale Integration) device as
target platform, and [13] uses an FPGA (Field Programmable
Gate Array). The architecture employed in PWA-direct and
PWAG approaches needs to store the parameters Fi and gi
(i = 1, . . . , I) in (5) as well as the parameters associated to
the edges of the polytopes hj and kj (j = 1, . . . ,H). As
advantage, they can describe completely irregular polyhedral
partitions, with any form of the polytopes as shown in Fig. 1.
As drawbacks, the number of required parameters to represent
the PWA function is significantly higher than in the other types
of implementations, as shown in the following.

If the number of polytopes is large, which happens when-
ever many constraints are imposed and a large prediction
horizon is used, the storage requirements as well as the tree
complexity make PWA-direct and PWAG solutions prohibitive
for low-cost implementations [9]. The concept of bounding
boxes and interval trees is used in [14] to cope with a large
number of polytopes. Although there are control problems for
which this method offers a significant improvement, the worst-
case complexity (in terms of memory and latency) is linear in
the number of polytopes. Another solution to replace the pos-
sibly complex binary search tree is the two-stage hash-based
algorithm proposed in [7], which uses a much simpler artificial
hyperrectangular domain partition. The first stage identifies the
subset of polytopes addressed by the hyperrectangle where the
input is located and the second stage performs direct search
on the subset. The implementation reported in [9] (henceforth
denoted as PWA-hash) follows this approach. The cost to pay
is higher latency than using the complex binary search tree.

Continuous PWA functions with completely irregular poly-
hedral partitions can also be represented by using a scheme
based on the lattice theory, where the affine pieces of the
function are properly selected without taking into account the
edges of the polytopes explicitly [15]-[17]. Hence, the so-
called Lattice PWA (PWAL) implementations require lower

memory resources than PWA-direct and PWAG solutions.
Besides, PWAL implementations cluster into super regions
the polytopes which have the same linear control action (for
example, all the polytopes filled with green color in Fig. 1a
form a super region so that only one Fi and gi parameters
are stored for all of them). As drawback, the latency of the
control action can be high if there are many polytopes which
cannot be clustered into super regions.

Typical explicit MPC controllers usually contain super re-
gions where the optimal control action is either constantly on
the upper limit or on the lower limit. For those cases, the
approach proposed in [18] to reduce on-line computation is to
construct, explicitly or implicitly, a separator which indicates
where the control action is saturated or not. Complexity
reduction is proportional to the ratio between the number of
unsaturated regions to the total number of regions.

In the case of continuous PWA functions, the lattice-based
orthogonal truncated binary search tree (LOTBST) methods
proposed in [8] allow combining the low memory resources
of lattice approaches with the low search time of binary
trees. For more general partitions, e.g., with discontinuities
and overlapping, the orthogonal truncated binary search tree
(OTBST) can be combined with a direct search.

Another set of procedures approximate the optimal control
action, u(x), in (5) by a sub-optimal solution in order to
reduce the complexity of the implementation. The idea in
[20] is based on relaxing the first-order optimality conditions.
The method in [21] employs a simpler polyhedral partition by
using a lower value of the prediction horizon and minimizes
the integrated squared error between the sub-optimal and the
optimal controllers.

An improvement in the latency as well as a decrease in
memory requirements are achieved if sub-optimal controllers
consider regular partitions. The so-called Simplicial PWA
(PWAS) implementations were proposed with this objective
[22]. They describe simplicial partitions where the polytopes
have a simplex shape [23]-[25]. The state space is partitioned
into orthogonal hypercubes in [26]. The optimal solution is
computed explicitly only at the vertices of these hypercubes,
and those values are employed to approximate the sub-optimal
solution valid in the whole hypercube. The point location
problem is solved by a quad-tree or oct-tree, such that the
search time is logarithmic with respect to the number of
regions. Implementations of sub-optimal explicit MPC con-
trollers that use these search trees have been proposed in
the literature [27]. They are called Hyperrectangular PWA
(PWAR) implementations.

All the optimal implementations of explicit MPC con-
trollers commented above (PWAG-direct, PWAG, PWAG-hash
and PWAL) increase in complexity (and, hence, in memory
resources and latency) if the number of state variables is
high. Most of the sub-optimal approaches presented in the
literature provide theoretical bounds on the approximation
error and guarantee closed-loop stability. In the case of the
PWAS and PWAR approaches, which provide high-speed
implementations, the price to pay is that the number of vertices

of the polyhedral partition (and, hence, the memory required
to store the related information) increases exponentially with
the number of state variables. Next section describes how the
memory required by the proposed PWAH approach increases
linearly instead of exponentially with the input dimension.
Next section and the following also explain the conditions that
should be met by MPC controllers to be well approximated by
PWAH approaches, since PWAH controllers are not universal
approximators.

III. HIERARCHICAL PWA IMPLEMENTATIONS (PWAH)

Let us consider an explicit MPC controller with x(t) =
{x1, . . . , xn} ∈ Rn as the state vector and u(t) ∈ R as
the control action. The proposed PWAH implementation is
formed exclusively by single-input and single-output (SISO)
PWA modules, connected in cascade as shown in Fig. 2,
with addition operators between them (the figure shows only
subtraction operators for simplicity but only addition operators
or a combination of both may also be used).

A SISO PWAj , with input inj and output outj , divides the
universe of discourse of inj into Ij non overlapped intervals
and provides a linear output according to the interval i which
the input belongs to:

outj = fji · inj + gji. (6)

The number of polytopes in the PWAH implementation
composed of n SISO modules is

∏n
j=1 Ij . The advantage is

that the search complexity of the polytope Pi where the state
vector is located is logarithmic in the number of polytopes,
O(n), because each SISO PWAj explores its intervals Ij to
find the interval i associated to the polytope Pi (referred to as
I
(i)
j). That is, if x ∈ Pi, then (as shown in Fig. 2) x1 ∈ I(i)n ,
subn−1 = (yn−x2) ∈ I(i)n−1, . . . , and sub1 = (y2−xn) ∈ I(i)1 .

Therefore, the module which provides the control action
(PWA1 in Fig. 2), verifies for the polytope Pi that:

u(x) = f1i · sub1 + g1i = f1i(y2 − xn) + g1i

= f1iy2 − f1ixn + g1i with (y2 − xn) ∈ I(i)1 .
(7)

Substituting the output y2 by (f2i · sub2+ g2i) and sub2 by
(y3 − xn−1):

u(x) = f1i(f2i · sub2 + g2i)− f1ixn + g1i

= f2if1i(y3 − xn−1)− f1ixn + f1ig2i + g1i

= f2if1iy3 − f2if1ixn−1 − f1ixn + f1ig2i + g1i,

with (y3 − xn−1) ∈ I(i)2 and (y2 − xn) ∈ I(i)1 .

(8)

Repeating the steps above until the first module in the
hierarchy (PWAn in Fig. 2), it can be seen that the control
action provided for the polytope Pi is PWA in the state
variables as follows:

u(x) =fnif(n−1)i · · · f1ix1 − f(n−1)if(n−2)i · · · f1ix2−
· · · − f2if1ixn−1 − f1ixn + gi if x ∈ Pi.

(9)

x1 +

_
PWA

PWA
∑

x2

n

n-1 +

_
∑

subn-1

x3
+

_
PWA

PWA
∑

2

1
xn

sub2

sub1 u

yn
yn-1

y2

subn-2

Fig. 2. Block diagram of a PWAH implementation.

Where f1i, . . . , fni and gi are constants ∈ R, with:

gi =f(n−1)i · · · f1igni + f(n−2)i · · · f1ig(n−1)i+
· · ·+ f1ig2i + g1i if x ∈ Pi.

(10)

Hence, a PWAH implementation provides a multi-input
single-output (MISO) PWA controller by a simple combination
of SISO PWA modules. A multi-input multi-output (MIMO)
controller can be implemented by using a structure as shown
in Fig. 2 for each output.

A. The shape of the polytopes

As u(x) is a PWA function of the state variables
{x1, . . . , xn}, y2 is a PWA function of the state variables
{x1, . . . , xn−1}, . . . , yn−1 is a PWA function of the state
variables {x1, x2} and yn is a PWA function of the state
variable x1. While the influence of xn on the control action
can be only modified by the module PWA1, the influence of
x1 on the control action can be modified by all the modules.
This produces a relationship between the state variables as
described in the following Lemma.

Lemma 1: Given a PWAH implementation with n inputs,
as shown in Fig. 2, it is verified that the values of the state
variables {x1, . . . , xn} that provide the same value of control
action (thus forming a level curve or, in general, a level
hypersurface) verify that:

xn = FPWA(x1, . . . , xn−1) + b. (11)

Where FPWA : Rn−1 → R is a PWA function which is
equal for all the level hypersurfaces and it is provided by the
output of the module PWA2, and b ∈ R is a constant that
depends on the constant value of the control action and the
interval I(i)1 where (y2 − xn) belongs to.

The proof of Lemma 1 is as follows. If (y2−xn) belongs to
I
(i)
1 , then the control action takes the expression in Equation

(7). If the values of the state variables {x1, . . . , xn} provide
the same value of control action, u(x) = Cqu, then, according
to Equation (7), it follows that:

u(x) = Cqu = f1i · y2 − f1i · xn + g1i. (12)

The output of the module PWA2 y2, is a PWA function
of {x1, . . . , xn−1}. If it is named as FPWA(x1, . . . , xn−1),
Equation 12 can be rewritten as:

xn = FPWA(x1, . . . , xn−1) +
g1i − Cqu

f1i
. (13)

Where (g1i − Cqu)/f1i is a constant that depends on the
constant value of the control action, Cqu, and the parameters,
f1i and g1i, associated to the interval I(i)1 where (y2 − xn)
belongs to.

Likewise, the outputs of SISO modules from PWA2 to
PWAn−1 have similar features to those stated in Lemma 1
for the control action.

For example, let us consider the system with two inputs
shown in Fig. 3a, formed by two SISO PWA modules,
PWA1 and PWA2, which are characterized by the parameters
shown in Fig. 3b and 3c. The control action (u) versus the
state variables is the surface shown in Fig. 4a. Several level
curves obtained when the control action takes the same value
between the minimum and the maximum are shown in Fig.
4b. According to Lemma 1, it can be seen that they follow
Equation (11), in this case:

x2 = FPWA(x1) +
g1i − Cqu

f1i
= y2 +

g1i − Cqu

f1i
. (14)

Let us analyze the polyhedral partitions provided by PWAH
implementations. For example, let us consider again the system
in Fig. 3a whose partition in polytopes is shown in Fig. 4c.
The three polytopes which has the same maximum control
action can be merged into a super region. Similarly, the
three polytopes with the same minimum control action can
be merged. Analyzing the polyhedral partition, it can be seen
how the slopes of some of the polytopes’ edges are the same as
the slopes of the three pieces described by the system PWA2

(Fig. 3b). The rest of the edges are parallel to the axis x2,
which is the variable that is added (subtracted) to the output
of the system PWA2. As a matter of fact, the PWA function
described by PWA2, which is seen in the level curves, can
be seen also repeated four times in the polyhedral partition,
displaced in parallel to the axis x2. The number of repetitions
(four) is defined by the number of breakpoints (four) in the
system PWA1 (Fig. 3c). Their displacement of 0.75, 0.5 and
0.75 along the axis x2 are defined by the distance between
the breakpoints measured in the input variable of the system
PWA1 (a distance of 0.75 in sub1 input between the first
and the second breakpoint, 0.5 between the second and the

sub1
x1

+

_
PWA ∑

x2
1

u

x1

-0.5

0.25

0.5

-0.25 0.25 1.0 1.75 -2.5 -1.0 -0.25 1.0 2.5

-1.0

1.0

y2

sub1

u

PWA 2

(a) (b) (c)

-0.25

0.25

0.5

-0.5

y2

Fig. 3. (a) PWAH system with two inputs; (b) PWA function of the module PWA2; (b) PWA function of the module PWA1.

x1 x2

-0.25

1.75

2.0

-2.0

-1.0

u

1.0

(a)

x1

x2

0.25 1.0 1.75 -0.25

(b)

x1

-2.0

x2

0.25 1.0 1.75 -0.25

-1.0

0.0

2.0

(c)

1.0

-2.0

-1.0

0.0

2.0

1.0

Fig. 4. (a) Output versus inputs of the system described in Fig. 3; (b) Level curves of the output surface; (c) Polyhedral partition.

third breakpoint, and 0.75 between the third and the fourth
breakpoint). In general, the following Lemma is verified.

Lemma 2: Given a PWAH implementation with n inputs, as
shown in Fig. 2, it is verified that: (a) the unsaturated polytopes
are hyperparallelepipeds which always have two of their edges
parallel to the axis xn, which is the variable that is finally
added (subtracted) in the cascade of PWA modules, and (b)
the other edges of the polytopes, which are parallel between
them in pairs, are linear in the state variables {x1, . . . , xn−1}
and their slopes are given by the output of the module PWA2,
like the slopes of the level hypersurfaces.

The proof of Lemma 2 is as follows. The affine functions of
the output of the last module in the hierarchy (PWA1 in Fig.
2) depend on which interval, I(i)1 , the value of sub1 = y2−xn
belongs to, according to Equation (7). The state variable xn
only introduces a displacement (offset) in the value of sub1.
Depending on such displacement (parallel to the axis xn) the
value of sub1 belongs to an interval, I(i)1 , or another, that
is, the state variables {x1, . . . , xn} belong to a polytope or
another. Since the displacement is parallel to the axis xn,
there are always two edges of the polytopes which are parallel
to the axis xn. Since the displacement with regards to y2 is
constant to belong to an interval or another, the other edges
of the polytopes are parallel between them in pairs. Those
pairs of edges are linear in the state variables {x1, . . . , xn−1}
because they are provided by y2, which is a PWA function
of {x1, . . . , xn−1}, and, hence, their slopes depend on the
interval, I(i)2 , which the value of sub2 belongs to.

B. Control response time and required resources

The basic modules in a PWAH implementation are the SISO
PWA modules. The point location problem with only one input
is solved simply by comparing the input with the breakpoints,
Ij − 1, of the univariate PWAj function. The fastest way to
realize comparisons with digital circuitry is to use combinato-
rial logic based on a bank of (Ij − 1) comparators. Since the
logic is not complex, high clock frequency constraints can be
satisfied when synthesizing the combinatorial circuit. Once the
interval the input belongs to has been identified, an adder and
a multiplier are required to implement the Equation (6). If 2
combinatorial adders and 1 multiplier are employed, only one
clock cycle is required to process the input through a SISO
PWA module and to obtain the valid input for the following
SISO module in the cascade. The circuit latency (the number
of clock cycles between the arrival of a new state vector value
and the calculation of the corresponding control action) is,
therefore, n clock cycles if n SISO modules are employed, as
shown in Fig. 2.

If the circuit throughput (the number of clock cycles be-
tween two successive valid control actions and, hence, the
sampling time of state variables) is also n clock cycles,
the same adders and the multiplier can be exploited to im-
plement successively the n affine functions. The throughput
(and sampling time) can be reduced to only one clock cycle
by using pipeline techniques that divide the system into as
many stages as SISO modules. Thus, every SISO module
is computing a SISO PWA function every clock cycle. For
example, the module PWA1 can be providing the control

action corresponding to the state variables sampled n clock
cycles before, while PWA2 can be computing the output y2
corresponding to the state variables sampled (n − 1) clock
cycles before,. . . , while PWAn can be computing the output
yn corresponding to the state variables most recently sampled.
In that case, adders and multipliers cannot be reused so that
2n − 1 adders and n multipliers are required. The latency is
n clock cycles if n SISO modules are employed, but there
is a trade-off between throughput and resources depending on
the number of pipeline stages employed. Hence, the approach
called intra-delay sampling can be implemented [29].

If the number of pieces of a SISO PWAi module is Ii,
then the input value should be compared to Ii−1 breakpoints
to solve the point location problem. If the number of bits to
represent the breakpoints and the parameters fji and gi of the
affine pieces is nbit, the number of bits required by the PWAH
implementation is:

nbit ·
n∑

i=1

[(Ii − 1) + 2Ii] = nbit ·
n∑

i=1

(3Ii − 1). (15)

The proposed PWAH implementation is compared with
other PWA implementations reported in the literature in Table
I. The symbols employed are: the input dimension of the
PWA function (n), the depth of the binary search tree (d),
the number of nodes in the search tree (N), the number of
different local affine functions (W), the number of edges
defining the polytopes (E), the number of regions involved
in the direct search of the PWA-hash (m0), the subset of
polytopes that are directly searched (J), the number of edges
of polytope Pk (Ek), the number of bits representing the
input (nbit), the number of vertices in the simplicial partition
(nbit ·

∏n
i=1 (Ii + 1), where Ii is the number of partitions

for each input), the order of the trees in the Multitree (M),
the internal height of the Multitree (hM), the number of rows
in the simplified structure matrix of the lattice representation
(X), and U , which is related to the number of super regions
in the lattice representation.

The proposed PWAH implementation approximates the op-
timal MPC, like PWAS and PWAR realizations. The latency
provided is similar to serial PWAS and PWAR realizations
(and faster than PWAG and PWAL approaches), using the
same number of multipliers but with the advantage of requiring
a much smaller memory which increases linearly instead of
exponentially with the input dimension. Hence, if the optimal
MPC can be approximated adequately by a PWAH solution,
a high speed is provided with low cost in computational and
memory resources. These advantages are illustrated quanti-
tatively in the examples shown in Section VI. In addition,
that section will show that, for particular applications, further
simplifications can reduce resource requirements as well as
increase the control speed.

IV. PWAH APPROXIMATION OF MPC

PWAS and PWAR implementations employ polyhedral par-
titions based on simplexes and hyperrectangles, respectively.

(a)

-4.0

0.0

4.0

-8.0 0.0 8.0
x1

x2

x1

-1.0

x2

0.0 1.0 -1.0

0.0

1.0

(b)

Fig. 5. (a) Level curves of the control action of the system shown in Fig. 1a;
(b) Example of level curves that are not suitable for PWAH approach.

The affine control actions provided by PWAS and PWAR
implementations are independent of the edges of the polytopes
where the state variables are located. They can approximate
any explicit MPC controller with an arbitrarily small error,
using small simplexes and hyperrectangles, although this can
require a huge number of polytopes. In the other side, PWAH
implementations employ polyhedral partitions based on hyper-
parallelepipeds that fulfill the conditions expressed in Lemma
2. Besides, the affine control actions provided by PWAH
implementations fulfill the conditions expressed in Lemma
1, so that they are related to the edges of the polytopes
where the state variables are located. With such constraints,
PWAH cannot achieve an arbitrarily good approximation of
any controller, but there are many explicit MPC controllers that
can be approximated by PWAH implementations with a small
error (although not arbitrarily small), using a small number of
polytopes.

The approximation errors introduced by PWAH implemen-
tations depend on the shapes of the level hypersurfaces and
polytopes of the optimal MPC to approximate. To illustrate
this point, let us consider the level curves shown in Fig. 5a
corresponding to the optimal MPC controller whose polytopes
are shown in Fig. 1a. Those level curves and polytopes can be
approximated with a small error by level curves and polytopes
that fulfill the conditions expressed in Lemma 1 and Lemma
2, as illustrated in Fig. 6a. On the other hand, level curves
such as those in Fig. 5b or polytopes such as those in Fig. 1b

TABLE I
COMPARISON BETWEEN PWA IMPLEMENTATIONS

Latency (number of clock cycles) Memory (bits to store) Multipliers Exact optimal MPC
PWAG-direct [10] I nbit(n+ 1)(I + E) 1 yes
PWAG (FPGA) [13] n+ 2 · d+ n · d+ 2 nbit(n+ 1)(I + E) 1 yes
PWAG (ASIC) [12] n+ 2 · d nbit(n+ 1)(D + E) +N log2(I + E) n yes
PWAG-hash [9] 12 + I + 6 ·m0 +max

(∑
k∈J Ek

)
nbit(n+ 1)(D + E) + I · (log2 E + 1) n yes

PWAL [17] n+ U + 1 nbit(n+ 1)W + U · (log2X + 1) 2n yes
MultiTree [19] hM + 2 - n ·M yes
PWAS(serial) [25] n+ 4 nbit

∏n
i=1 (Ii + 1) 1 no (approx.)

PWAS(parallel) [25] 3 nbit(n+ 1)
∏n

i=1 (Ii + 1) n+ 1 no (approx.)
PWAR(serial) [27] n+ 2 nbit(n+ 1)

∏n
i=1 (Ii + 1) 1 no (approx.)

PWAR(parallel) [27] 2 nbit(n+ 1)
∏n

i=1 (Ii + 1) n no (approx.)
PWAH n nbit

∑n
i=1 (3Ii − 1) 1 no (approx.)

(b)

(a)

-4.0

0.0

4.0

-8.0 0.0 8.0
x1

x2

-4.0

0.0

4.0

-8.0 0.0 8.0
x1

x2

Fig. 6. PWAH partition of the system shown in Fig. 1a: (a) Using the original
reference system; (b) Using a new rotated reference system.

cannot be well approximated by a PWAH structure.
If an explicit MPC can be well approximated by a PWAH

implementation, several implementations can be considered,
depending on the approximation error desired. Continuing with
the case of Fig. 1a, the PWAH structure shown in Fig. 3a can
be used, setting the module PWA2 in order to reproduce the
PWA function displaced along x2 in the polytopes, and repeat-
ing it the right number of times with the module PWA1. The
polyhedral partition shown in Fig. 6a was obtained by using
6 and 3 pieces in PWA2 and PWA1, respectively (which gives
6 unsaturated polytopes and 2 saturated regions). Although
this approximation can be pretty good, the approximation
error can be reduced if the original reference system, formed

TABLE II
PWAH APPROXIMATION OF THE EXPLICIT MPC IN FIG. 1A WITH

DIFFERENT POLYTOPES

No. of unsaturated polytopes Rotation angle (θr) RMSE
1 0◦ 6.2%
5 0◦ 1.2%
8 0◦ 1.2%
8 30◦ 0.1%

by the state variables {x1, x2}, is rotated to obtain a new
one, {x1r, x2r}, so that the PWA function generated by the
PWA2 module is displaced in parallel to the new axis x2r,
as shown in Fig. 6b. The proposed PWAH implementation
shown in Fig. 2 can operate with the original state variables
{x1, . . . , xn} or with the variables {x1r, . . . , xnr} that result
from rotation. Rotations are linear operations so that they can
be considered as part of the linear conditioning that is always
applied to the inputs of any controller. This will be explained
more in detail in Sections V and VI. Table II illustrates the
approximation accuracy provided by PWAH implementations
when the explicit MPC in Fig. 1a is considered and much
or fewer polytopes (with or without rotation) are used. Small
errors are achieved with few polytopes.

There are many explicit MPC controllers that have many
saturated polytopes and a small number of unsaturated poly-
topes, as shown in [18]. Hence, if they can be well ap-
proximated by a PWAH approach, the complexity of the
implementation is small to approximate the small number
of unsaturated polytopes. In addition, the implementation
complexity becomes smaller as the constraints on the control
action are tighter and the penalty on it is lower, because
fewer polytopes are unsaturated and more become saturated.
Another advantage of PWAH implementations is that their
complexity does not increase significantly with the prediction
horizon, since a high prediction horizon usually increases
the saturated polytopes significantly but only slightly the

TABLE III
PWAH APPROXIMATION OF THE EXPLICIT MPC IN FIG. 1A WITH

DIFFERENT HORIZONS

Hori-
zon

Polytopes
(Optimal)

Unsat. polytopes
(PWAH)

Rot. angle
(θr)

RMSE

4 25 5 0◦ 1.2%
6 57 5 0◦ 1.2%
8 87 5 0◦ 1.2%
10 119 5 0◦ 1.2%
12 149 5 0◦ 1.2%

unsaturated polytopes. Table III illustrates the approximation
accuracy provided by PWAH implementations with the same
number of polytopes when the explicit MPC in Fig. 1a (with
a prediction horizon of 4) is obtained with higher prediction
horizons. Similar and small errors are achieved in all the cases.

An important feature concerning approximation that can be
met by a PWAH implementation is local optimality, that is,
zero approximation error around the origin. This feature makes
the PWAH implementation inherit local stability and local
frequency response properties of the optimal MPC controller
[24]. This is formalized in the following Lemma.

Lemma 3: Let us consider P(opt)
eq is the optimal polytope

that contains the origin, (x1, . . . , xn) = (0, . . . , 0), where the
optimal MPC controller provides an optimal control action
equal to Feq · x = F1eq · x1 − F2eq · x2 − · · · − Fneq · xn.
The PWAH implementation achieves local optimality if the
approximated polytope Peq that contains the origin verifies
that Peq ⊆ P(opt)

eq and, according to equations (9) and (10):

f1eq = Fneq, f2eq = F(n−1)eq/Fneq,
f3eq = F(n−2)eq/F(n−1)eq, . . . , fneq = F1eq/F2eq,
F2eq · gneq + F3eq · g(n−1)eq + · · ·+ Fneq · g2eq + g1eq = 0.

(16)
The proof follows directly from equations (9) and (10) to

equal optimal control action at origin and around.
For simplicity in the design, the offset terms gneq to g1eq

can be set to zero, as employed in the methodology described
in the following section.

V. DESIGN METHODOLOGY OF PWAH CONTROLLERS

Let us consider an explicit MPC controller with x(t) =
{x1, . . . , xn} ∈ Rn as the state vector and u(t) ∈ R as the
control action, fulfilling the Equation (5). If u(t) ∈ Rm then
this methodology is applied to the m components. The starting
point to find a PWAH solution is to select one of the n state
variables, xi, to be separated from the rest, decomposing the
system in the structure of Fig. 7. According to equation (7),
the aim is to express u(x) as:

u(x) = f1j · xlevi − f1j · xi + g1j , with (xlevi − xi) ∈ I
(j)
1

and xlevi = F1(x1, . . . , xi−1, xi+1, . . . , xn).
(17)

x1

+

_
PWA

u
∑

xi

1

1

xi-1
xi+1

xn

xi
lev

sub1

Fig. 7. First hierarchical decomposition of a system with n inputs.

A. Selection of the state variable to be separated

The procedure is summarized in Algorithm 1 and explained
in the following.

Since it is supposed that the optimal control action can be
computed for any state variables, the first step in Algorithm
1 is to consider (zi + 1) points in the universe of discourse
[ximin, ximax] of each state variable, xi, as follows:

xqii = ximin+
ximax − ximin

zi
·qi with, qi = 0, . . . , zi. (18)

Then, a grid partition of the state variables is considered
from the Cartesian product of the points at each variable, thus
resulting Z = (z1+1)× (z2+1)× · · ·× (zn+1) points. The
optimal control action corresponding to each point in the grid
is computed so as to generate a set X with Z points:

X = {(xq11 , . . . , xqnn , uz), with
q1 = 0, . . . , z1; . . . ; qn = 0, . . . , zn; z = 1, . . . , Z}. (19)

The second step in Algorithm 1 is to find (L−1) subsets of
points (level hypersurfaces), Lqu ⊂ X, with qu = 1, . . . , (L−
1). Each level hypersurface contains Nqu points, denoted as
(x1lu, . . . , xnlu, uqu) with lu = 1, . . . , Nqu, verifying that:

Lqu = {(x1lu, . . . , xnlu, uqu), with
|uqu − Cqu| ≤ ε0 and
Cqu = umin + umax−umin

L · qu}.
(20)

As the value of ε0 is smaller, the level hypersurfaces are
more exact. The extreme values of the control action, umin

and umax, are not considered since they are usually saturation
values (Fig. 4b and Fig. 5 show examples of level curves).

The steps (3) and (4) in Algorithm 1 evaluate for each
state variable, xi, and each level hypersurface, Lqu, if it is
possible to meet Lemma 1, that is, to express the Nqu points
as (according to Equation (17)):

xilu = xlevilu +
g1j−Cqu

f1j
= xlevilu + b1ju,

with xlevilu = F1(x1lu, . . . , x(i−1)lu, x(i+1)lu, . . . , xnlu)

and b1ju a constant for the interval I(j)1 .
(21)

The fourth step in Algorithm 1 checks that F1(.) is a well-
defined function, that is, it cannot associate different outputs to
the same input. Hence, it checks that there are no equal points

(x1lu, . . . , x(i−1)lu, x(i+1)lu, . . . , xnlu) in Lqu as a necessary
condition to select xi, because, otherwise, F1(.) would be
multivalued. Formally:

∀luv, luw ∈ {1, . . . , Nqu},
(x1luv, . . . , x(i−1)luv, x(i+1)luv, . . . , xnluv) 6=
(x1luw, . . . , x(i−1)luw, x(i+1)luw, . . . , xnluw).

(22)

For example, the coordinates x1lu of the state variable x1
in the points (x1lu, x2lu, uqu) representing each of the 9 level
curves in Fig. 4b are different because the state variable x2 can
be separated. On the other hand, several coordinates x2lu of the
state variable x2 in the points (x1lu, x2lu, uqu) are repeated,
so that the state variable x1 cannot be separated.

The fourth step also checks if all the level hypersurfaces can
be represented by the same function displaced in parallel to
state variable xi (in the example of Fig. 4b, the 9 level curves
can be seen as the same function in x1 displaced in parallel to
axis x2). For this purpose, the level hypersurface, Lmin, with
the minimum number of points, Nmin, is selected to evaluate if
the coordinates corresponding to the state variables xj (j = 1
to n; j 6= i) in the points of Lmin also appear in the points of
any other level hypersurface, Lu. Formally:

∀lr ∈ {1, . . . , Nmin}∃ls∗ ∈ {1, . . . , Nu}/|xjlr − xjls∗ | ≤ ε1,
with j = 1, . . . , i− 1, i+ 1, . . . , n.

(23)
The fourth step also checks if the differences of the Nmin

values of the coordinates corresponding to the state variables
xi in each pair of level hypersurfaces, Lmin and Lu, are equal
or very similar, that is:

∃c ∈ R/|(xilr − xils∗)| = c+ ε2
∀lr ∈ {1, . . . , Nmin} and ls∗ ∈ {1, . . . , Nu}.

(24)

As the values of ε1 and ε2 are smaller, the approximation
error of the PWAH approach is smaller.

If the above conditions are fulfilled by several state vari-
ables, xi and others xj , the level hypersurface Leq correspond-
ing to the control action in the equilibrium state, u = 0, is
analyzed. This level hypersurface is analyzed in detail since
it will be used to define the module F1, as commented in
the following subsection. If the data of this hypersurface are
(x1leq, . . . , xnleq, uleq) with leq = 1, . . . , Neq , the variable
selected to be separated, xi, is that whose percentage of
universe of discourse is the least covered by that hypersurface.
This is done at step (6) in Algorithm 1. Formally:

|maxleq{xileq}−minleq{xileq}|
|ximax−ximin| ≤

|maxleq{xjleq}−minleq{xjleq}|
|xjmax−xjmin| ∀j 6= i.

(25)

For the example in Fig. 5a, if the above conditions would
be fulfilled by state variables x1 and x2, the variable selected
to be separated would be x2 since its universe of discourse is
the least covered in percentage by the hypersurface Leq .

If the above conditions are not fulfilled by any of the state
variables, the analysis is repeated with M−1 discrete rotations

(θr = 90
M · r with r = 1, . . . ,M − 1) of two by two variables.

This is done at steps (7) and (8) in Algorithm 1. The rotation
matrix applied if xa and xb axis are rotated an angle θr using
as rotation axis the n−2 dimensional hyperplane formed by the
other variables, follows the formula of n-dimensional rotations
proposed in [30]:

Algorithm 1 Selection of the state variable to be separated
Input = u(x); z1, . . . , zn;L; ε0; ε1; ε2;E = [];

(1) Generate a set of points X as described in Equations
(18)-(19);

(2) Find (L−1) level hypersurfaces, Lqu ⊂ X, as described
in Equation (20);

(3) Select an unexplored state variable. If no such variable
exists, go to step (6).

(4) Check if Equation (22), (23) and (24) are verified by all
the Lqu. If not, mark the state variable as explored and go
to step (3).

(5) Add the state variable to the list E, mark it as explored
and go to step (3).

(6) If E is empty go to step (7). If it has one variable, select
it as the variable to be separated and finish. If it has more
than one, select the variable that meets Equation (25) and
finish.

(7) Select an unexplored rotation. If no such rotation exists,
finish.

(8) Replace the state variables by the rotated ones, mark the
rotation as explored and go to step (3).

Output = The variable, if any, to be separated.

Rab(θr) =


rij ;

rii = 1; i 6= a, i 6= b
raa = cos θr
rbb = cos θr
rab = − sin θr
rba = sin θr
rij = 0 otherwise


with i, j = 1, . . . , n.

(26)

If after all the possible combinations of rotations none of the
rotated xir inputs fulfill the conditions in Equations (22)-(24)
(replacing the state variables xi by the rotated ones, xir), then
a decomposition as shown in Fig. 7 is not possible. Otherwise,
the methodology continues with the design of the SISO PWA1

module in Fig. 7 as follows.

-2.5 -1.0 1.0 2.5
-1.0

1.0

sub1

u

0.0

0.0

0

1

(a)

 (x1)

-2.5 -1.0 1.0 2.5
-1.0

1.0

sub1

u

0.0

0.0

0

1

(b)

 (x1)

sub1

sub1

Fig. 8. Design example of a SISO PWA module to approximate the function
of Fig. 3c (the target curve is depicted in black and the output of the module
in grey): (a) with four kernel functions at the first step (two of them fixed by
Lemma 3); (b) with five functions at the second step.

B. Design of the SISO PWA modules

Let us suppose that the state variable xi has been selected
to be separated, decomposing the system in the structure
of Fig. 7. Hence, the points of the level hypersurfaces can
be expressed as in Equation (21). In the case of the level
hypersurface Leq corresponding to the control action in the
equilibrium state, u = 0, let us assume for simplicity that
g1eq = 0. Hence, this level hypersurface is used to define the
module F1, since it provides:

xileq = xlevileq = F1(x1leq, . . . , x(i−1)leq, x(i+1)leq, . . . , xnleq),

with leq = 1, . . . , Neq.
(27)

This is equivalent to assume that if sub1 = xlevileq − xileq =

0 ∈ I
(eq)
1 , then u = fPWA1

(sub1) = fPWA1
(0) = 0. In

addition, this is equivalent to assume that F1(0) = 0, because
the state variables and control action should be zero in the
equilibrium.

Since the level hypersurfaces can be represented by the same
function, F1, displaced in parallel to xi, the points in the level
hypersurfaces Lqu verify that (according to Equations (21),
(23), and (27)):

xils∗ = xlevils∗ + b1ju = xileq∗ + b1ju. (28)

Therefore, if sub1 = (xileq∗ − xils∗) ∈ I
(j)
1 , then u =

fPWA1
(−b1ju) = Cqu. Hence, the module PWA1 in Fig. 7

is adjusted to minimize the sum of squared errors obtained
when considering the points sub1 = (xileq∗− xils∗) as inputs
and Cqu as desired output. For that objective, the univariate
PWA function provided by the module PWA1 is obtained by
the linear combination of triangular kernel functions, ϕ(sub1),
that cover the input universe of discourse as a partition of unity
(that is, the sum of all the kernel functions evaluated at every
input value is always the unity), as shown in Fig. 8:

fPWA1(sub1) =

P∑
i=1

wn · ϕn(sub1). (29)

The algorithm employed to adjust the number, P , and
location of the triangular kernel functions is based on the
proposal in [31]. In the first step, if the conditions stated in

Lemma 3 are not imposed, only two triangles are considered,
with their centers at the extreme points of the input universe
of discourse, each of them weighted by the desired output
at the two extreme points of the input universe of discourse.
However, if the conditions stated in Lemma 3 are imposed, the
piece associated to the origin and around (xi = 0, F1(0) = 0,
and, hence, sub1 = 0) should be approximated without error.
Hence, two kernels with their two weights are fixed to meet
local optimality, as shown in the center of Fig. 8a. Besides,
kernel functions should be located at the extreme points of the
input universe of discourse, weighted by the desired output at
those extreme points, as shown on the left and right of Fig.
8a. In the second step, a new kernel function is located with
its vertex at the input value sub1 at which the absolute error
between the output fPWA1

and the target output provided by
the points in the level hypersurfaces is the highest, as shown
in Fig. 8b. The weight of the new kernel function is the
value of the target output provided by the data. More steps
are done successively until the approximation error is smaller
than a given goal error or the number of kernel functions
is over a given limit. In the end, the weights, wn, of the
kernel functions that are not fixed by Lemma 3 are adjusted
to minimize the sum of squared errors by using Levenberg-
Marquardt algorithm [32][33].

Once the system in Fig. 7 is completely designed, the
methodology applies again the steps described in Algorithm
1 to now explore if the block F1 can also be decomposed
similarly, that is, if one of its inputs can be separated and
another block F2 and SISO module PWA2 can be introduced.
The set of points in step (1) of Algorithm 1, now referred to
as X1, are:

X1 = (x1leq, . . . , x(i−1)leq, x(i+1)leq, . . . , xnleq, xileq),
with leq = 1, . . . , Neq.

(30)
The new level hypersurfaces in step (2) of Algorithm 1 now

correspond to constant values of the state variable xi. The level
hypersurface associated to a zero value of xi will be used to
define the block F2 and to evaluate further decompositions
(assuming g2eq = 0).

This is done iteratively until the PWAH implementation in
Fig. 2 is found, if possible. If it is found, the first SISO PWA
module (PWAn in Fig. 2) is also adjusted to select the adequate
number and location of kernel functions and their weights. In
any case, the final step is to apply again Levenberg-Marquardt
algorithm to readjust the weights of the kernel functions of all
the SISO modules found by the methodology (not fixed by
Lemma 3) so that the final implementation reduces further the
sum of squared errors.

VI. APPLICATION EXAMPLES

In order to demonstrate the effectiveness of the PWAH
approach, this section compares it with other PWA solutions
presented in the literature. The section begins with a bench-
mark problem of control, such as the control of the double
integrator. Then, a case of a highly unstable multi-input system

is studied. Finally, a problem of recent commercial interest is
faced, such as a car adaptive cruise control system.

The optimal explicit MPC controllers used as reference to be
approximated by PWAH systems, as well as their simulation
results, were obtained thanks to MOBY-DIC Toolbox [34],
Hybrid Toolbox [35] and Multi-Parametric Toolbox [36], all
for Matlab-Simulink. The design and adjustment of the SISO
PWA modules at each hierarchical decomposition step as
well as the final re-adjustment of the global solution were
performed with the description and tuning tools of Xfuzzy
environment [37]. Xfuzzy not only has CAD tools to describe
and adjust piecewise-polynomial systems but also synthesis
tools for hardware implementations, in particular, it has a
tool which automates the communication with Xilinx System
Generator, which is based on Matlab-Simulink [38]-[39].

The PWAH solutions obtained were designed using the
Xilinx System Generator tool and implemented in Xilinx
FPGAs. Although lower-cost FPGAs could have been chosen,
Spartan 3 FPGAs were selected in all the examples in order to
compare the implementation results of the PWAH controllers
with other PWA approaches reported in the literature which
were implemented in Spartan 3 FPGAs. The synthesis and
implementation of the controllers were carried out with the
Xflow tool from Xilinx ISE 14.7. The descriptions make use
of registers for the required constants and Convert blocks to
saturate the universe of discourse of the signals. In order to
implement the PWAH controllers with fixed-point arithmetic,
the values of state variables and the control action provided
were transformed to the interval [0,1].

To verify the behavior of the hardware implementation in
the FPGA, hardware-in-the-loop (HIL) co-simulations with
models of the plants in Matlab-Simulink were carried out.

A. Double Integrator

Let us consider the problem of regulating to the origin the
double integrator system:

ÿ = u(x). (31)

Its equivalent discrete-time state-space representation, with
a sampling time Ts = 1s, is given by the expression:

x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t). (32)

y(t) =
[
1 0

]
x(t). (33)

Fulfilling the restriction:

umin = −1 ≤ u(t) ≤ 1 = umax. (34)

The optimal explicit PWA controller is obtained by the
MOBY-DIC Toolbox as the first element of U from (2) with
the following horizons (Ny, Nu) and weight matrices (Q,R):

Ny = Nu = 4; Q =

[
1 0
0 0

]
; R = 0.1. (35)

and the state domain is given by D = [−8, 8]× [−4, 4]. Fig
1a illustrates the optimal polyhedral partition.

According to the methodology described in the previous
section, the level curves of the control action were found in
the set X = {yq1, ẏq2, uz} generated to be approximated by
the PWAH solution. In this case, 9 level curves were analyzed,
which are shown in Fig. 5a.

Condition of Equation (22) was fulfilled by both state
variables {y, ẏ}, but Equations (23) and (24), using relatively
small values of ε1 and ε2, were only fulfilled by separating the
state variable ẏ. If the values of ε1 and ε2 are chosen smaller
to reduce the approximation error, then the methodology finds
that the best inputs are {yr, ẏr}, obtained by a rotation of the
{y, ẏ} plane an angle θr = 30◦ and selects ẏr as the input to be
separated. The results in Table II show the approximation er-
rors obtained with several solutions. Since the PWAH solution
without applying rotation and using one unsaturated polytope
(first row in Table II) provided a competitive approximation
error, it was selected for simplicity. Therefore, the double
integrator PWAH controller has the structure shown in Fig.
9a, with a module PWA2 that approximates the nonlinear
behavior of ẏ as a function of y in the level curves (Fig. 9b)
and a module PWA1 that approximates how that function is
displaced in parallel to ẏ (Fig. 9c).

As can be seen in Fig. 9b, the module PWA2 applies a linear
transformation to the input y, so that it can be performed by the
signal conditioning (which has to transform the input values
to the range [0,1]). In addition, the module PWA1 applies
also a linear transformation to its input, ẏlev − ẏ, which is
saturated for values that go beyond the interval [0,1]. This
is achieved simply by using the output signal as an unsigned
type signal with N bits and the decimal dot in the N position,
applying saturation outside that range. Hence, no multipliers
are required.

The hardware implementation in a Xilinx Spartan 3
(XC3S200) FPGA, with 12 bit of precision for the inputs
and outputs, consumes 17 slices (approximately 0.9% of
the available slices on the FPGA). The implementation is
completely combinational so that a delay block was added
to provide the output synchronously at each clock cycle.
Therefore, the controller is able to operate at a maximum
frequency of 759.9MHz.

Table IV compares the implementation results with other
PWA controllers reported in the literature. The PWAG(FPGA)
[13], PWAS [25], PWAR [27] and PWAL [17] controllers are
implemented in a Xilinx Spartan 3 (XC3S200) FPGA (like the
PWAH controller described herein), while the PWAG(ASIC)
controller [12] is implemented in a 90-nm technology ASIC.
All controllers use a 12-bit precision and the latency values
correspond to a 20-MHz frequency. The error (MRE) is calcu-
lated as the maximum absolute difference between the optimal
MPC control output and the control output in hardware.

As can be seen in Table IV, the PWAH controller occupies
the least percentage of slices and does not employ any
multiplier or memory resources available in the FPGA. In
addition, it is the controller with the lowest latency and, hence,

.
sub1

y
+

_
PWA ∑

y
1

u
PWA 2

(a) (b) (c)

lev y
.

y

-2.84

2.84

-8.0 0.0 8.0

y lev .

4.0

-4.0
-7.0 -0.72 0.72 7.0

-1.0

1.0

sub1

u

Fig. 9. (a) PWAH structure for the double integrator; (b) Behavior of the module PWA2; (c) Behavior of the module PWA1.

. .
y y u y

k k k y

y
.

y u y
.

(a) (b) (c) (d)

k k k y
(e) (f) (g) (h)

FPGA PWAH Contr.

Optimal Controller

Fig. 10. Comparison of the optimal controller (simulation) with the PWAH controller implemented in a FPGA (HIL) for the double integrator: (a) and (e)
first state variable, (b) and (f) second state variable, (c) and (g) control action, and (d) and (h) state space evolutions.

TABLE IV
COMPARISON OF PWA CONTROLLERS FOR THE DOUBLE INTEGRATOR

Controller Slices (%) Latency (µs) Clock cycles Memory (KB) Multipliers MRE
PWAG(FPGA) 6 1.6 32 0.41 1 0.0013
PWAG(ASIC) - 1.4 28 0.99 2 0.016
PWAL 5 0.6 12 0.03 4 0.00077
PWAS(serial) 7 0.3 6 0.38 1 0.45
PWAS(parallel) 7 0.15 3 1.13 3 0.45
PWAR(serial) 2 0.2 4 1.13 1 0.29
PWAR(parallel) 1 0.1 2 1.13 2 0.29
PWAH 0.9 0.05 1 0 0 0.25

the fastest one. Since PWAG and PWAL approaches do not
approximate the optimal MPC, their MRE values are very
small. Among PWAS, PWAR and PWAH approaches, which
implement sub-optimal MPC controllers, the PWAH controller
achieves the smallest error.

Performance of the PWAH controller in the FPGA was
evaluated by co-simulating it working in a closed loop (HIL)
with a model of the plant described in Matlab-Simulink. Fig.
10 shows two examples with two different initial plant states
(Fig. 10a-d the first one, and Fig. 10e-h the second one). It
can be seen that the PWAH controller is able to stabilize the
plant in a way that approximates the optimal MPC controller.

Since conditions of Lemma 3 were not imposed in the design
of this PWAH controller, the evolution of the state variables
and control action to the origin are slightly different, but
both controllers stabilize the plant practically at the same
time, being the PWAH controller slightly softer. Simulation
results of the PWAH solution that applies rotation and uses 8
unsaturated polytopes (fourth row in Table II) are quite similar
to the results of the optimal MPC controller.

B. Multi-input System

The next application considers the problem of regulating to
the origin a highly unstable multi-input system whose equiv-

alent discrete-time state-space representation, with a sampling
time Ts = 1s, is given by the expression:

x(t+ 1) =

[
1.3 1
0 1.1

]
x(t) +

[
0 1
1 1

]
u(t). (36)

y(t) =
[
1 0

]
x(t). (37)

Fulfilling the restriction:

umin =

[
−1
−1

]
≤ u(t) ≤

[
1
1

]
= umax. (38)

The optimal explicit PWA controller is obtained by the
MOBY-DIC Toolbox as the first element of U from (2) with
the following horizons (Ny, Nu) and weight matrices (Q,R):

Ny = Nu = 4; Q =

[
1 0
0 1

]
; R =

[
0.1 0
0 0.1

]
. (39)

The multi-input system is decomposed into two MISO
systems, MISO1 and MISO2, which are approximated sep-
arately. Hence, two sets of points, X1 = {xq11 , x

q2
2 , u1z} and

X2 = {xq11 , x
q2
2 , u2z}, are generated from a grid partition of

the state domain given by D = [−5, 5]2.
In the case of MISO1, 9 level curves were analyzed. Equa-

tion (22) was not fulfilled without rotation. Using small values
of ε1 and ε2, Equations (23) and (24), were only fulfilled
by separating the variable x2r of the new state variables
{x1r, x2r} obtained by a rotation of the {x1, x2} plane an
angle θr = 44◦. The PWAH structure designed, which is
illustrated in Fig. 11, provides an RMSE of 1.2%.

In the case of MISO2, 9 level curves were also analyzed.
The methodology found that Equations (23) and (24) were
only verified if the variable x2 is separated. The PWAH
structure obtained, which is illustrated in Fig. 12, provides
an RMSE of 1.7%.

The SISO modules PWA11 and PWA12 were implemented
as the PWA1 module of the double integrator. The point
location problem for the SISO modules PWA21 and PWA22

was solved in parallel using combinatorial logic. Although
these modules have very few pieces, they were further reduced
exploiting the symmetry of odd functions (i. e., PWA(−x) =
−PWA(x)), so that only 2 and 3 pieces were required by
PWA21 and PWA22 modules, respectively.

The resulting implementation contains 14 adders, 6 2-to-
1 multiplexers, 2 4-to-1 multiplexers, 5 comparators and 7
multipliers (4 multipliers that carry out the rotation of the state
variables and 3 multipliers for the SISO modules). Using a
Xilinx Spartan 3 (XC3S200) FPGA, with 12 bits of precision
for inputs and outputs, the PWAH controller consumes 215
slices (approximately 11% of the available slices on the FPGA)
and uses 7 of the 12 multipliers available in the FPGA. The
controller is able to operate at a maximum frequency of
47MHz and has a latency of two clock cycles (the MISO1

employs one clock cycle in the rotation and another in the

TABLE V
COMPARISON OF PWA CONTROLLERS FOR THE MULTI-INPUT SYSTEM

Controller Slices
(%)

Latency
(µs)

Clock
cycles

Mem.
(KB)

Mult.

PWAG 12 0.36 38 0.27 1
PWAS(serial) 11 0.27 19 0.37 1
PWAS(parallel) 35 0.04 1 1.13 3
PWAH 11 0.04 2 0 7

nonlinear transformation of the modules PWA21 and PWA11,
and the MISO2 is synchronized with it).

Table V allows the comparison of several PWA imple-
mentations that control this multi-input system. The PWAG,
PWAS(serial) and PWAS (parallel) approaches are imple-
mented in a Xilinx FPGA Spartan 3 (XC3S200) [40], like the
PWAH controller developed in this section. The latency values
are provided for maximum frequency of each implementation.
It can be seen that the PWAH controller is as fast as the fastest,
but occupying a percentage of slices as the least and without
using memory resources.

The PWAH controller implemented in the FPGA was co-
simulated in a closed loop with a model of the multi-input
system described in Matlab-Simulink. Two simulation exam-
ples with two different initial plant states are shown in Fig.
13 (Fig. 13a-d the first one, and Fig. 13e-h the second one).
The degree of similarity between the behavior of the PWAH
controller and the optimal controller is so high that it is hard to
distinguish one from the other (conditions of Lemma 3 were
imposed in the design of this PWAH controller).

C. Adaptive Cruise Control (ACC)

An ACC system is the evolution of the standard cruise
control (CC) system used in most of the cars today. The
CC system is responsible for maintaining the vehicle at the
steady speed set by the driver by controlling only the throttle.
In addition, an ACC is able to adapt the speed of the car
(host vehicle) to the speed of another car located ahead (target
vehicle), controlling both the throttle and the brake.

In this section, the ACC to be implemented is described
in [41]. In this model, the speed of the host vehicle (vh) and
its acceleration (ah) are available, while the relative distance
between the two vehicles (xr) and the relative velocity (vr =
vt−vh) are measured by a radar located at the host vehicle. The
goal is to keep the host vehicle to a desired distance xr from
the target vehicle. To define this distance, it is often used the
desired headway time (thw,d), so that xr,d = xr,0 + vhthw,d,
where xr,0 is a constant that represents the desired distance
at standstill. Therefore, the tracking error will be defined by
e = xr,d − xr.

The model described in [41], along with the considerations
taken in [42], is presented in the form:

sub11

+

_
PWA ∑ 11

u1

PWA 21

(a) (b) (c)

lev x2r

x1

x2

Rot x1

Rot x2

x1r

x2r -0.6

15.0

-8.0 -0.86 8.0

lev

-15.0

0.6

0.86
x1r

x2r

-24.0 -1.3 1.3 24.0
-1.0

1.0

sub11

u1

Fig. 11. (a) PWAH structure for the MISO1; (b) Behavior of the module PWA21; (c) Behavior of the module PWA11.

sub12

x1
+

_
PWA ∑

x2
12

u2
PWA 22

(a) (b) (c)

lev x2

-1.0

5.0

-5.0 -2.1 5.0

lev

-5.0

1.0

0.9
x1

x2

4.2

-4.2

-1.9

1.9

-0.9 2.1 -10.0 -1.0 1.0 10.0
-1.0

1.0

sub12

u2

Fig. 12. (a) PWAH structure for the MISO2; (b) Behavior of the module PWA22; (c) Behavior of the module PWA12.

x2 x1 u1 u2

k k k k

x1 u1 u2

(a) (b) (c) (d)

k k k k
(e) (f) (g) (h)

 FPGA PWAH Contr.

x2

Optimal Controller

Fig. 13. Comparison of the optimal controller (simulation) with the PWAH controller implemented in a FPGA (HIL) for the multi-input system: (a) and (e)
first state variable, (b) and (f) second state variable, (c) and (g) first control action, and (d) and (h) second control action evolutions.

x(t+ 1) =


1 −Ts 0 Zs

0 1 0 Ts
0 0 1 0
0 0 0 1

x(t) +


0
0
0
1

u(t). (40)

Where Zs = Tsthw,d + 1
2T

2
s and the state variable x =

[e vr vt ah]
T . The sampling time is Ts = 0.1s.

The values of the constants mentioned above are xr,0 =
3.5m, thw,d = 1.5s, vt,max = 50m/s, vh,max = 50m/s,
ah,min = −3m/s2, ah,max = 2m/s2. The constraints of
the host jerk (derivative of the acceleration) are jh,min =
−0.3m/s3 and jh,max = 0.3m/s3, and the radar range is
xrr = 200m.

The optimal explicit PWA controller is obtained as the first
element of U from (2) with the following horizons (Ny, Nu)
and weight matrices (Q,R):

Ny = Nu = 4; Q =


2.5 0 0 0
0 5 0 0
0 0 0 0
0 0 0 1

 ; R = 1. (41)

The PWAH controller to design has three inputs because
the variable vt is considered to be constant by the model in
Equation (40). The set of points X = {eq1, vq2r , a

q3
h , uz} to be

approximated are obtained from a grid partition of the state
domain given by D = [−196.5, 78.5]× [−50, 50]× [−3, 2].

u

e _

+

∑
vr

lev e
+

_
∑

lev ah

ah

sub1
sub2

PWA3
PWA2

PWA1

Fig. 14. PWAH structure for the ACC.

TABLE VI
COMPARISON OF PWA CONTROLLERS FOR THE ACC

Controller Slices
(%)

Latency
(µs)

Clock
cycles

Mem.
(KB)

Mult.

PWAG 87 5.4 108 3.3 1
PWAS(serial) 31 0.4 8 11.5 1
PWAS(parallel) 95 0.15 3 57.6 5
PWAL 5 1.65 33 1.06 8
PWAH 0.8 0.05 1 0 1

Since umin = −0.3 ≤ u ≤ 0.3 = umax, 5 level
hypersurfaces were analyzed (from u = −0.2 to u = 0.2).
The methodology first selected the variable ah to be separated,
obtaining a first hierarchical decomposition as in Fig. 7. The
next iteration, which analyzed if the module F1 could be
decomposed, found that Equations (22) to (24) were verified
by separating the state variables e and vr, but e was selected
according to condition (25).

The PWAH structure designed, which is shown in Fig. 14,
provides a good trade-off between high simplicity and small
approximation error (the RMSE is 0.31%). As in the case
of the double integrator, the SISO module PWA3 (Fig. 15a)
provides a linear function that can be implemented by the
signal conditioning circuitry, so that it is eliminated of the
controller. The resulting implementation contains two adders
and one multiplier.

Using a Xilinx Spartan-3AN (XC3S700AN) FPGA, with 16
bits of precision for inputs and outputs, the PWAH controller
consumes 47 slices (approximately 0.8% of the available slices
on the FPGA) and uses only 1 of the 20 multipliers available
in the FPGA. The controller has a latency of one clock cycle
and is able to operate at a maximum frequency of 753MHz.

Table VI compares the implementation results of several
PWA controllers. All the controllers (PWAG and PWAS in
[42], and PWAL in [17]) are implemented in a Xilinx FPGA
Spartan 3AN (XC3S700AN), like the PWAH controller de-
veloped in this section. The latency values are provided for a
frequency of 20MHz. It can be seen that the PWAH controller
is the fastest, occupies the least percentage of slices, and does
not require any memory.

The hardware implementation of the controller in the FPGA
was co-simulated with a software description of the ACC
plant in Matlab-Simulink. Two of these simulations with two
different initial plant states are shown in Fig. 16 (Fig. 16a-
d the first one, and Fig. 16e-h the second one). The control
achieved by the PWAH system is so similar to the optimal

control that it is difficult to differentiate one from the other.

VII. CONCLUSIONS

The PWAH controllers presented in this paper are very
simple to implement since they only use SISO PWA mod-
ules connected in cascade with addition/subtraction operations
between them. A methodology has been described to design
them starting from the optimal explicit PWA controllers. The
methodology results have been tested successfully in many
model predictive control problems. Although not all the opti-
mal explicit PWA controllers are able to be well approximated
by the PWAH form (the methodology finds which are able
and not), there are many controllers that allow this type of
decomposition.

Many examples even allow that the SISO PWA modules
provide linear functions with or without saturation, thus re-
sulting efficient controllers whose hardware implementation
is much simpler than simplifications achieved by other tech-
niques such as the PWAS and PWAR approaches. This has
been proven with results from FPGA implementations and
hardware-in-the-loop simulations. For a benchmark problem of
control, such as the control of the double integrator, a multi-
input system, and a problem of recent commercial interest,
such as a car adaptive cruise control system, the PWAH
controllers designed were the fastest with the lowest cost
in resources, compared to other PWA controllers reported in
literature, achieving a very similar performance to the optimal
explicit MPC controller.

ACKNOWLEDGMENT

The authors would like to thank M.C. Martı́nez-Rodrı́guez
for helpful discussions on the optimal controllers design.

REFERENCES

[1] J.M. Maciejowski, Predictive control with constraints, Prentice Hall,
Englewood Cliffs, NJ, USA, 2002.

[2] D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert (2000), “Con-
strained model predictive control: Stability and optimality”, Automatica
36(6), pp. 789-814.

[3] Y. Wang and S. Boyd (2010), “Fast model predictive control using online
optimization”, IEEE Trans. Control Syst. Technol. 18(2), pp. 267-278.

[4] A. Bemporad, M. Morari, V. Dua and E.N. Pistikopoulos (2002), “The
explicit linear quadratic regulator for constrained systems”, Automatica
38(1), pp. 3-20.

[5] A. Bemporad., F. Borrelli and M. Morari (2002), “Model predictive
control based on linear programming - The explicit solution”, IEEE Trans.
Autom. Control 47(12), pp. 1974-198.

[6] A. Bemporad (2015), “A multiparametric quadratic programming algo-
rithm with polyhedral computations based on nonegative least squares”,
IEEE Trans. Autom. Control 60(11), pp. 2892-2903.

[7] F. Bayat., T.A. Johansen and A.A. Jalali (2011), “Using hash tables
to manage the time-storage complexity in a point location problem:
Application to explicit model predictive control”, Automatica 47(3), pp.
571-577.

[8] F. Bayat., T.A. Johansen and A.A. Jalali (2012), “Flexible piecewise
function evaluation methods based on truncated binary search trees
and lattice representation in explicit MPC”, IEEE Trans. Control Syst.
Technol. 20(3), pp. 632-640.

[9] A. Oliveri, C. Gianoglio, E. Ragusa and M. Storace (2015), “Low-
complexity digital architecture for solving the point location problem in
explicit model predictive control”, J. Franklin Inst. 352(6), pp. 2249-2258.

vr
-50.0 0.0 50.0 -154.0 -7.5 275.0

-3.0

2.0

sub2
 (a)

e lev

77.5

-196.5
-5.0 -0.3 0.3 5.0

-0.3

0.3

sub1

u

(c)

ah lev

-75.1

6.9

(b)

Fig. 15. Behavior of the modules of Fig. 14: (a) PWA3; (b) PWA2; (c) PWA1.

vr e ah u

k k k k

e ah u

(a) (b) (c) (d)

k k k k
(e) (f) (g) (h)

 FPGA PWAH Contr.

vr

Optimal Controller

Fig. 16. Comparison of the optimal controller (simulation) with the PWAH controller implemented in a FPGA (HIL) for the ACC: (a) and (e) first state
variable, (b) and (f) second state variable, (c) and (g) third state variable, and (d) and (h) control action evolutions.

[10] D. Ingole, J. Holaza, B. Takács and M. Kvasnica, “FPGA-based explicit
model predictive control for closed-loop control of intravenous anesthe-
sia”, in Proc. 20th Int. Conf. on Process Control (PC’15), 2015, pp.
42-47.

[11] T.A. Johansen, W. Jackson, R. Schreiber, P. Tøndel (2007), “Hardware
synthesis of explicit model predictive controllers”, IEEE Trans. Control
Syst. Technol. 15(1), pp. 191-197.

[12] P. Brox, J. Castro-Ramı́rez, M.C. Martı́nez-Rodrı́guez, E. Tena, C.J.
Jiménez, I. Baturone and, A.J. Acosta (2013), “A programable and
configurable ASIC to generate Piecewise-Affine functions defined over
general partitions”, IEEE Trans. Circuits Syst. I: Reg. Papers 60(12), pp.
3182-3194.

[13] A. Oliveri, A. Oliveri, T. Poggi and M. Storace, “Circuit implementation
of piecewise-affine functions base on a binary search tree”, in Proc. Eur.
Conf. Circuit Theory and Design (ECCTD’09), 2009, pp. 145-148.

[14] F.J. Christophersen, M. Kvasnica, C.N. Jones and M. Morari, “Efficient
evaluation of piecewise control laws defined over a large number of
polyhedra”, in Proc. 2007 Eur. Control Conf. (ECC’07), 2007, pp. 2360-
2367.

[15] J.M. Tarela and M.V. Martı́nez (1999), “Region configurations for real-
izability of lattice piecewise-linear models”, Mathematical and Computer
Modelling 30(11-12), pp. 17-27.

[16] C. Wen, X. Ma and B.E. Ydstie (2009), “Analytical expression of explicit
MPC solution via lattice piecewise-affine function”, Automatica 45(4), pp.
910-917.

[17] M.C. Martı́nez-Rodrı́guez, P. Brox and I. Baturone (2015), “Digital
VLSI implementation of piecewise-affine controllers based on lattice
approach”, IEEE Trans. Control Syst. Technol. 23(3), pp. 842-854.

[18] M. Kvasnica, J. Hledı́k, I. Rauová and M. Fikar (2013), “Complexity
reduction of explicit model predictive control via separation”, Automatica
49(6), pp. 1776-1781.

[19] M. Mönnigmann and M. Kastsian, “Fast explicit MPC with multiway
trees”, in Proc. 18th IFAC World Congr. (IFAC’11), 2011, pp. 1356-1361.

[20] A. Bemporad and C. Filippi (2003), “Suboptimal explicit receding hori-
zon control via approximate multiparametric quadratic programming”, J.

Opt. Theory Appl. 117(1), pp. 9-38.
[21] J. Holaza, B. Takács, M. Kvasnica and S. Di Cairano (2015), “Nearly

optimal simple explicit MPC controllers with stability and feasibility
guarantees”, Opt. Control Appl. Meth. 36, pp. 667-684.

[22] P. Julian, A. Desages and O. Agamennoni (1999), “High-level canonical
piecewise linear representation using a simplicial partition”, IEEE Trans.
Circuits Syst. I: Fund. Theory Appl. 46(4), pp. 463-480.

[23] R. Rovatti, C. Fantuzzi and S. Simani (2000), “High-speed DSP-
based implementation of piecewise-affine and piecewise-quadratic fuzzy
systems”, Signal Process. 80(6), pp. 951-963.

[24] A. Bemporad, A. Oliveri, T. Poggi and M. Storace (2011), “Ultra-
fast stabilizing model predictive control via canonical piecewise affine
approximations”, IEEE Trans. Autom. Control 56(12), pp. 2883-2897.

[25] M. Storace and T. Poggi (2011), “Digital architectures realizing
piecewise-linear multivariate functions: Two FPGA implementations”,
Int. J. Circuit Theory and Appl. 39(1), pp. 1-15.

[26] T.A. Johansen and A. Grancharova (2003), “Approximate explicit con-
strained linear model predictive control via orthogonal search tree”, IEEE
Trans. Autom. Control 48(5), pp. 810-815.

[27] F. Comaschi, B.A.G. Genuit, A. Oliveri, W.P.M.H. Heemels and M.
Storace (2012), “FPGA implementations of piecewise affine functions
based on multi-resolution hyperrectangular partitions”, IEEE Trans. Cir-
cuits Syst. I: Reg. Papers 59(12), pp. 2920-2933.

[28] I. Baturone, M.C. Martı́nez-Rodrı́guez, P. Brox, A. Gersnoviez and S.
Sánchez-Solano,“Digital implementation of hierarchical piecewise-affine
controllers”, in Proc. 2011 IEEE Int. Symp. on Industrial Electronics
(ISIE’11), 2011, pp. 1497-1502.

[29] D. Buchstaller, E.C. Kerrigan and G.A. Constantinides (2012),“Sampling
and controlling faster than the computational delay”, IET Control Theory
& Applications 6(8), pp. 1071-1079.

[30] K. Duffin and W. Barret, “Spiders: A new user interface for rotation and
visualization of n-dimensional point sets”, in Proc. 1994 IEEE Conf. on
Visualization (Visualization’94), 1994, pp. 205-211.

[31] C.M. Higgins and R.M. Goodman (1994), “Fuzzy rule based networks
for control”, IEEE Trans. Fuzzy Syst. 2(1), pp. 82-88.

[32] R. Battiti (1992), “First- and second-order methods for learning: between
steepest descent and Newton’s method”, Neural Comput. 4(2), 141-166.

[33] R. Fletcher, Practical methods of optimization, John Wiley & Sons, Ltd.,
2013.

[34] A. Oliveri et al., “MOBY-DIC: A Matlab toolbox for circuit-oriented
design of explicit MPC”, IFAC Proc. Volumes, vol. 45, no. 17, pp. 218-
225, 2012.

[35] Hybrid Toolbox. Accessed: Nov. 13, 2017. [Online]. Available at: http:
//cse.lab.imtlucca.it/∼bemporad/hybrid/toolbox

[36] Multi-Parametric Toolbox. Accessed: Nov. 13, 2017. [Online]. Available
at: http://people.ee.ethz.ch/∼mpt/3

[37] F.J. Moreno-Velo, I. Baturone, A. Barriga and S. Sánchez-Solano (2007),
“Automatic tuning of complex fuzzy systems with Xfuzzy”, Fuzzy Sets
Syst. 158(18), pp. 2026-2038.

[38] I. Baturone, S. Sánchez-Solano, A. Gersnoviez and M. Brox, “An
automated design flow from linguistic models to piecewise polynomial
digital circuits”, in Proc. 2010 IEEE Int. Symp. on Circuits and Systems
(ISCAS’10), 2010, pp. 3317-3320.

[39] M. Brox, S. Sánchez-Solano, E. del Toro, P. Brox and F.J. Moreno-Velo
(2013), “CAD Tools for Hardware Implementation of Embedded Fuzzy
Systems on FPGAs”, IEEE Trans. Ind. Informat. 9(3), pp. 1635-1644.

[40] T. Poggi, I. Baturone and M. Storace, “Selection of architectures for
PWA functions implementation”, document MOBY-DIC Project FP7-
INFSOICT-248858, 7th Framework Programme, European Community,
2010.

[41] G.J.L. Naus, J. Ploeg, M.J.G. Van de Molengraft, W.P.M.H. Heemels
and M. Steinbuch (2010), “Design and implementation of parameterized
adaptive cruise control: An explicit model predictive control approach”,
Control Eng. Pract. 18(8), pp. 882-892.

[42] A. Oliveri, G.J.L. Naus, M. Storace and W.P.M.H. Heemels, “Low-
complexity approximations of PWA functions: A case study on adaptive
cruise control”, in Proc. Eur. Conf. Circuit Theory and Design (EC-
CTD’11), 2011, pp. 669-672.

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://people.ee.ethz.ch/~mpt/3

	Introduction
	Implementations of Explicit MPC
	Hierarchical PWA Implementations (PWAH)
	The shape of the polytopes
	Control response time and required resources

	PWAH Approximation of MPC
	Design Methodology of PWAH Controllers
	Selection of the state variable to be separated
	Design of the SISO PWA modules

	Application Examples
	Double Integrator
	Multi-input System
	Adaptive Cruise Control (ACC)

	Conclusions
	References

