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Attitude Control of a 2U Cubesat by Magnetic and
Air Drag Torques

Richard Sutherland1, Ilya Kolmanovsky2, and Anouck Girard3

Abstract—This paper describes the development of a
magnetic attitude control subsystem for a 2U cubesat.
Due to the presence of gravity gradient torques, the
satellite dynamics are open-loop unstable near the desired
pointing configuration. Nevertheless the linearized time-
varying system is completely controllable, under easily ver-
ifiable conditions, and the system’s disturbance rejection
capabilities can be enhanced by adding air drag panels
exemplifying a beneficial interplay between hardware de-
sign and control. In the paper, conditions for the complete
controllability for the case of a magnetically controlled
satellite with passive air drag panels are developed, and
simulation case studies with the LQR and MPC control
designs applied in combination with a nonlinear time-
varying input transformation are presented to demonstrate
the ability of the closed-loop system to satisfy mission
objectives despite disturbance torques.

I. NOMENCLATURE

In n-by-n Identity matrix
0m×n m-by-n Zero matrix
JBcb Inertia matrix of body B about center of

mass, resolved in frame b
J Optimal control cost functional
⇀
a Physical vector
af Physical vector resolved in frame f
â Unit vector
b Magnetic field vector
x State vector
τ External torque vector
φ Roll angle
θ Pitch angle
ψ Yaw angle
O Orientation matrix
S[·] Skew-symmetric matrix operator
c(·) cosine operator
s(·) sine operator
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Subscripts
g Inertial frame
L Local-Vertical/Local-Horizontal (LVLH) frame
b Body-fixed principal (BFP) frame

II. INTRODUCTION

This paper considers the development of an attitude
control system, with application to two of the QB50
satellites designed to conduct a survey of the upper
atmosphere at low-Earth orbit altitudes [1], [2]. See
Figure 1. The primary enabler for this survey mission is
a constellation of forty 2U cubesats, each equipped with
an ion-and-neutral mass spectrometer (INMS) sensor
mounted to one of the 1U faces. To function correctly,
this sensor must be kept pointed to within a 20◦ half-
angle cone of the velocity vector. The key challenge
in maintaining this attitude is that it corresponds to
the cubesat being near a gravity gradient unstable equi-
librium. The purpose of this paper is to demonstrate
controllability of the linearized time-varying dynamic
system and to design a controller for the attitude of a 2U
cubesat using first magnetic torque rod actuators alone
and in combination with a hardware modification that
involves an additional set of four air drag panels. The
passive air drag panels are introduced to enhance, in
combination with a magnetic rod actuator controller, the
satellite’s stability and disturbance rejection characteris-
tics.

The cubesat kinematics are expressed through an Euler
angle parametrization. The dynamics are characterized
using Euler’s equation, and incorporate the effects of
gravity gradient torque. Controlling the satellite’s attitude
via magnetic actuators alone is an attractive option;
magnetic rods are compact in size, have no moving parts,
and consume only electricity, which can be supplied
by batteries and solar panels. The drawback to purely
magnetic actuation, however, is that the system is in-
stantaneously underactuated due to the inability to exert
a torque parallel to the direction of the magnetic field
vector. However, unlike underactuated systems involving
reaction wheel or thruster failures [3]–[6], in this system
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Fig. 1. Top face of one of the 2U cubesats, featuring the INMS
sensor array. This face must be kept pointed within a 20◦ half-angle
cone of the satellite’s orbital velocity vector for the array to function
correctly. Two of the air drag panels are visible in their undeployed
configurations.

the unactuated axis is not fixed with respect to the body
but rotates as the satellite traverses its orbit. System
controllability is obtained by taking advantage of the
time-varying unactuated axis in tandem with the gravity
gradient torque.

Much prior work has been done to investigate the
use of magnetic torques in spacecraft attitude control.
However, that work has largely focused on the use of
magnetic torque in spin-stabilized spacecraft [7], [8] or
in gravity gradient stabilized spacecraft [9], [10]. The
satellite considered in this paper is not gravity gradient
stabilized; in fact, the desired attitude corresponds to a
gravity gradient unstable equilibrium, so a control law is
needed that establishes pointing despite being hindered,
rather than aided, by the gravity gradient torque. While
destablizing in our configuration, it is interesting that the
gravity gradient torque, on the other hand, facilitates the
satellite controllability and the overcoming of the effects
of underactuation. Previous efforts were also made to
exploit the quasi-periodicity of the magnetic field in
controller design [11]. These approaches typically pur-
sue time-averaged solutions of the changing magnetic
field to precompute control gains offline; however, these
solutions can grow less accurate over time and may
require that the satellite be sent updated time-averaged
parameters. This work uses magnetic field readings to
calculate control gains online. Previous work on passive
aerodynamic stability treated small-area drag surfaces
[12] with a tendency to twist and deform, whereas our

satellite is equipped with larger drag plates that should
be less prone to performance-degrading deformation. In
the conference paper [13], we have presented simulation
results for the LQR controller with a design based on a
model that did not account for the presence of air drag
panels. In this paper, the LQR controller design is based
on a linearized, discrete-time model that accounts for the
effect of the air drag panels, for which the controllability
analysis results are also established. As in [13], before
applying the LQR controller and linearizing the model,
we use a nonlinear state and control transformation from
[14]. The present paper also contains other develop-
ments, discussions and details not present in [13]. In
particular, we present simulation results for the case of
an MPC controller that is capable of enforcing control
constraints.

This paper is organized as follows. In Section III,
equations of motion are introduced. The control analysis
and LQR-based controller design for the case of the
satellite without air drag panels is introduced in Sec-
tion IV, with closed-loop simulation results reported in
Section V. The control analysis and LQR-based control
design for the satellite with the added drag panels is
presented in Section VI. The development of an MPC-
based controller that extends the LQR design to be able
to handle the control magnitude constraints is given in
Section VII. Conclusions are drawn in Section VIII.

III. EQUATIONS OF MOTION

Our first step in developing a controller is to derive the
equations of motion (EOMs) for the system. We choose
a body-fixed frame such that the ı̂b-axis aligns with the
INMS sensor array, the k̂b-axis aligns with the satellite’s
radio antenna, and the ̂b-axis completes the right-hand
rule; we also assume this frame to be a principal frame
and refer to it as body fixed principal (BFP) frame.

A. Euler Angle Attitude Parametrization

To stabilize the satellite to the desired attitude, the
controller must account for six states: three independent
attitude parameters and three independent angular veloc-
ity rates. The satellite’s inertial measurement unit gives
its angular velocity outputs in terms of Euler angle rates,
thus, given that the controller is designed to primarily
maintain the satellite near the target orientation, we
choose to work with an Euler angle parametrization for
the kinematics.

The goal of ram pointing is equivalent to aligning the
chosen satellite BFP frame with the non-inertial local-
vertical/local-horizontal (LVLH) frame with ı̂L, ̂L, k̂L
being unit vectors, in which ı̂L always points along the
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orbital track and k̂L points opposite the orbital radius.
The direction cosine matrix (DCM) of the satellite’s body
fixed frame relative to the LVLH frame is represented
using a 3-2-1 Euler angle rotation sequence, such that:

ObL = O1(φ)O2(θ)O3(ψ), (1)

where

O1(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 =

1 0 0
0 cφ sφ
0 −sφ cφ

 ,

O2(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 =

cθ 0 −sθ
0 1 0
sθ 0 cθ

 ,

O3(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 =

 cψ sψ 0
−sψ cψ 0

0 0 1

 ,
where we use shorthand c and s to designate cosine and
sine of the argument given in the subscript. When all
three angles are at zero, which is the target equilibrium,
the ı̂b-axis aligns with the velocity vector and the k̂b-axis
points in the nadir direction.

The drawback of 3-2-1 Euler angles is the kinematic
singularity at cos θ = 0, i.e., θ = ±90◦, which presents
known difficulties for the control design [15], thus we re-
quire that the pitch angle be within the −90◦ < θ < 90◦

range before beginning actuation. In the event that the
initial attitude violates this constraint, we can sidestep
the singularity by rotating about each axis by ±180◦,
thereby recasting the attitude to an equivalent set of Euler
angle parameters. While in theory the pitch angle could
still possibly violate the constraint window some time
after actuation begins despite initially satisfying it, in
simulations this did not lead to any further actuation
problems.

B. Kinematics

The angular velocity of the body frame relative to
an inertial frame can be decomposed as the sum of the
intermediate angular velocity physical vectors:

⇀
ωbg =

⇀
ωbL +

⇀
ωLg. (2)

We resolve this expression in the BFP frame to produce
the following expression:

ωbgb = ωbLb + ωLgb = ωbLb + ObLω
Lg
L . (3)

The LVLH frame rotates, relative to an inertial frame,
at a rate given by the orbital motion n. This rate is

constant due to the circular orbit assumption. In the
chosen coordinate system, ωLgL = [0 −n 0]T . Then,ω1

ω2

ω3

 = Cφθ

φ̇θ̇
ψ̇

+ ObL

 0
−n
0

 , (4)

where

Cφθ =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

 ,
and

ObL =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 .
We invert (4) to solve for the Euler angle rates:φ̇θ̇

ψ̇

 = C−1
φθ

ω1

ω2

ω3

+ n

 cθsψ
sφsθsψ + cφcψ
cφsθsψ − sφcψ

 , (5)

where

C−1
φθ =

(
1

cθ

)cθ sφcθ cφsθ
0 cφcθ −sφcθ
0 sφ cφ

 .
C. Dynamics

Having derived the equations for the kinematics, we
turn to the dynamics, which can be modeled with Euler’s
equation,

JBcb ω̇
bg
b + S[ωbgb ]JBcb ω

bg
b = τBcb , (6)

where all quantities have been resolved in BFP frame,
τBcb represents the external torque on body B about its
center of mass, and the matrix S[ωbgb ] denotes the skew-
symmetric matrix formed of the components of ωbgb and
given by

S[ωbgb ] = S

ω1

ω2

ω3

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (7)

Since the BFP frame is a principal frame, JBcb is

JBcb =

J1 0 0
0 J2 0
0 0 J3

 , (8)

where J1, J2, and J3 are the principal moments of
inertia. The torque acting on the body can be further
decomposed into the magnetic control torque, gravity
gradient torque, and disturbance torque,

τBcb = τBc,mtb + τBc,ggb + τBc,distb . (9)
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1) Magnetic Torque: The net magnetic dipole gen-
erated by the torque rods interacts with the Earth’s
magnetic field to produce a torque according to the
following law:

⇀
τBc,mt =

⇀
m×

⇀

b, (10)

where
⇀

b denotes the external magnetic field vector and
⇀
m denotes the magnetic moment. Resolving the torque
in the BFP frame, we obtain

τBc,mtb = −S[bb]mb, (11)

where we have replaced the vector cross-product oper-
ation with the equivalent skew-symmetric matrix repre-
sentation,

S

b1b2
b3

 =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 . (12)

Note that rank(S[bb]) = 2, which affirms that the system
is instantaneously underactuated with magnetic torque
alone.

2) Gravity Gradient Torque: The Earth’s gravitational
field exerts a force on the satellite that can be modeled
by an inverse-square distance law. Hence, the force is
slightly greater on the portions of the satellite that are
closer to the Earth than on those portions that are further
away. This differential, though small, produces a torque
on the satellite’s body given by [16]

τBc,ggb = 3n2S[r̂b]J
Bc
b r̂b, (13)

where a circular orbit is assumed for the satellite. The
radial unit vector r̂b points opposite to the k̂L vector;
hence, r̂b can be expressed as

r̂b = ObL(−k̂L) = ObL

 0
0
−1

 .
Thus,

τBc,ggb = 3n2

(J2 − J3) cφsφc
2
θ

(J3 − J1) cφcθsθ
(J1 − J2) sφcθsθ

 . (14)

There exist multiple configurations in which this torque
vanishes, two stable (cθ = 0) and several unstable (sθ =
s2φ = 0). As the desired equilibrium attitude for the
satellite is close to one of the unstable configurations, the
gravity gradient torque tends to destabilize the satellite’s
attitude, and thus becomes a significant factor in our
treatment of the system dynamics.

IV. CONTROL ANALYSIS AND CONTROL LAW

DESIGN FOR THE SATELLITE WITHOUT DRAG

PANELS

The magnetic torque cross-product expression (10)
indicates that the component of the dipole parallel to
the magnetic field generates zero torque. Thus, to obtain
maximum control torque, we seek a dipole moment that
minimizes the magnitude of the projection ⇀

m ·
⇀

b =
mT

b bb. Following Lovera and Astolfi [14], we prescribe
a dipole moment of the form:

mb = −
(
S[bb]

bTb bb

)
u, (15)

where u ∈ R3 is a control input vector. This dipole
law constrains mb to be perpendicular to bb, thus fixing
mT
b bb = 0. The magnetic input torque can then be

expressed as

τBc,mtb =

(
S[bb]S[bb]

bTb bb

)
u. (16)

Lovera and Astolfi [14] use a PD control law to prescribe
the new control input vector u; we choose instead to
apply Linear Quadratic Regulator (LQR) theory to obtain
the controller as it can be applied systematically to
different spacecraft configurations.

A. Linearized Equations of Motion

We first linearize the EOMs about the desired equi-
librium state xeq = [0, 0, 0, 0,−n, 0]T to get linearized
EOMs in the form

ẋ = Acx +Bc(t)u,

with

Ac =


0 0 n 1 0 0
0 0 0 0 1 0
−n 0 0 0 0 1

−3n2J23 0 0 0 0 −nJ23

0 3n2J31 0 0 0 0
0 0 0 −nJ12 0 0

 , (17)

where J12 := (J1 − J2)/J3, J23 := (J2 − J3)/J1, and
J31 := (J3 − J1)/J2, and

Bc(t) =

 03×3(
JBcb
)−1 S[bb(t)]S[bb(t)]

bT
b (t)bb(t)

 . (18)

The complete derivation of the linearized EOMs is
found in Appendix A. Note that bb(t) in (18) is ideally
the nominal magnetic field at the linearization point.
However, in our implementation, we use the measured
magnetic field values in (18), which are determined by
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the onboard magnetomer readings. While this makes
little difference in terms of model accuracy near the
linearization point, this approach allows us to implement
the controller with gains computed online without strong
coupling to the nominal orbital position or the need
to either store nominal values of bb or compute them
offline and store them in ROM. This also improves the
robustness in case of deployment errors or orbit decaying
due to the influence of the air drag. In either case, bb
in (18) depends on time t, as does Bc(t). Note that
the matrices Ac, Bc(t) at any fixed time instant t do
not constitute a controllable pair, e.g., they violate the
controllability rank condition for time-invariant systems.

1) Controllability of the Time-Varying Linearized Sys-
tem: Having derived the linearized EOMs, we now
demonstrate that the linearized system, which is time-
varying, is controllable on any time interval of non-
zero length. Yang [17] reduces the problem of complete
controllability by magnetic torque rods to a small number
of sufficient conditions:
• The satellite is not located on the magnetic Equator.
• Assuming the above holds, then

1) J2 6= J3,
2) 6J3 (J3 − J1) 6= J2 (J1 − J2 + J3).

The considered cubesat has an inertia matrix of JBcb =
diag(3654338, 9060235, 8813148) g·mm2. As it is to
be ejected from the ISS, it will operate with an initial
altitude of 415 km and at an inclination of 51.6◦, with an
orbital period of 5570 s. At this inclination, the satellite
is away from the plane of the magnetic Equator, and also
satisfies the controllability constraints on the Ji’s above,
confirming that the linearized time-varying system is
controllable. This implies that, in the absence of control
constraints, there exists a control input that drives the
state to the origin over any specified time interval.

B. LQR Control Law Design

The control design is based on LQR theory applied
to a discrete-time model that is obtained by converting
(17)-(18) to discrete-time. We apply a Zero-Order Hold
method to carry out the discretization. Let t ∈ R≥0 be the
current time instant and Ac, Bc(t) defined in (17), (18).
For ∆t > 0, the discrete-time model predicts the state
xk at time t+k∆t, k ∈ Z≥0, according to the following
model with the “frozen-in-time” magnetic field:

xk+1 = Adxk +Bd(t)uk,

Ad = eAc∆t,

Bd(t) = −A−1
c (I6 −Ad)Bc(t),

x0 = x(t).

(19)

The pair (Ad, Bd(t)) can be verified to be controllable
for all t for our orbit and choices of ∆t we have used.
For the difference equation (19), we define the infinite-
horizon cost functional J :

J(t) =

∞∑
k=0

(
xTkQxk + uTkRuk

)
, (20)

where R = RT ∈ R3 is a positive definite matrix,
and Q = QT ∈ R6 is a positive semi-definite matrix
satisfying the usual detectability assumption. Then, the
optimal feedback control sequence uk = −K(t)xk that
minimizes J(t) has the solution:

K(t) =
(
R+Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad,

(21)
P (t) = ATd P (t)Ad +Q−ATd P (t)Bd(t)K(t). (22)

Note that (22) can have multiple solutions; the P (t) of
interest to us is the unique positive definite solution. Also
note that Bd(t) changes throughout the orbit, thus (22)
is solved at different instants t in time and the gain K(t)
in (21) is time-varying. The control u(t+σ) = K(t)x(t)
is applied for 0 ≤ σ < ∆t and then recomputed. A fast
update scheme for the solution of the Algebraic Riccati
Equation in response to changes in the magnetic field
vector can be defined, see Appendix B.

Though we solve for the optimal control without
placing any limits on the solution, in practice there do
exist control constraints in the form of magnetic torque
rod saturation. We indirectly take these constraints into
account in the LQR control formulation; if at least one
component violates the constraint, the control input is
rescaled such that its largest component is equal to the
saturation limit while remaining parallel to the calculated
dipole vector. In this way, the dipole vector remains
perpendicular to the magnetic field vector, for maximum
torque generation. In Section VII, we extend the LQR
controller to a Model Predictive Control (MPC) based
controller that has the additional capability of being able
to explicitly handle these control saturation constraints.

V. SIMULATION RESULTS

After several tuning experiments with the goal of
obtaining good performance, the weighting matrices Q
and R for the LQR cost functional have been chosen as
Q = diag(10−8, 10−8, 10−8, 10−4, 10−4, 10−4) and R =
diag(108, 108, 108). The initial attitude of the satellite
is φ(0) = −35◦, θ(0) = −75◦, and ψ(0) = 75◦. It is
estimated that the magnitudes of the post-ejection tumble
rates would be approximately 10◦ per second in each
axis, thus the satellite is given an initial angular velocity
of ω1(0) = −10◦/s, ω2(0) = 10◦/s, and ω3(0) = −10◦/s.
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Fig. 2. Simulation of the closed-loop system with the LQR control
law for the magnetic torque rods with no sensor noise or unmodeled
disturbance torques.

The Earth’s magnetic field is modeled using the tilted
dipole approximation of Wertz [18], updated with 2015
IGRF-12 [19] coefficients. The controller saturation limit
is umax = 0.1 A·m2. The control goal is to drive
the pointing angle, i.e., the angle between ı̂b and the
satellite’s velocity vector, to within the ±20◦ constraint.
The controller successfully achieves the commanded
equilibrium, without unwinding. As shown in Figure 2,
the cubesat experiences many rotations about its roll and
yaw axes while detumbling, but does reach and remain
within the required pointing angle constraint within two
and a half orbits and with no unwinding. The pointing
error of the INMS sensor approaches zero, indicating
that it is correctly oriented.

VI. SECONDARY ACTUATION

The magnetic torque rod controller works well in the
ideal case, but can struggle to maintain the pointing
constraint in the presence of unmodeled disturbance
torques, as seen in Figure 3 when a constant magnitude
unmodeled disturbance torque is added to the system.
As magnetic rods alone do not appear to provide strong
disturbance rejection capability, a solution that takes
advantage of hardware and control interplay has been
adopted. Specifically, the cubesat was augmented with
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Fig. 3. Simulation of the closed-loop system with the LQR control
law for the magnetic torque rods with an unmodeled disturbance
torque of constant 10−8 N·m magnitude.

v̂

δ
L

r

r r

w

h

n̂L

CM

Fig. 4. Drag panel model following deployment. The satellite has
four such panels but, for clarity, only two panels are depicted here.

a set of four drag panels, to supplement the magnetic
torque with passive aerodynamic stabilizing torque. We
note that in a different application to a flying wind
turbine [20], a solution that exploits passive aerodynamic
stabilization to enhance an underactuated system has also
been proposed.
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A. Linearization of the Augmented Satellite Dynamics

As the panels add additional torque inputs, they
change the satellite’s dynamics. Thus, in order to apply
the LQR controller, the equations of motion must be
relinearized to properly reflect these changes. From the
circular orbit assumption, the orbital velocity vector sat-
isfies v̂L = [1, 0, 0]T , and we can apply the orientation
matrix ObL to resolve it in the BFP frame,

v̂b =

 cθcψ ∼ ∼
sφsθcψ − cφsψ ∼ ∼
cφsθcψ + sφsψ ∼ ∼

1
0
0


=

 cθcψ
sφsθcψ − cφsψ
cφsθcψ + sφsψ

 ≈
 1
φθ − ψ
θ + φψ

 ≈
 1
−ψ
θ

 ,
(23)

where v̂b is simplified by first a small angle approxima-
tion and then the discarding of higher-order terms.

Each panel is assumed to contribute a torque of the
form (

τ adb

)
i

= (rb)i ×
(
Fadb

)
i
, (24)

where
(
Fadb
)
i

is the air drag force on the ith panel, (rb)i
is the distance from the satellite’s center of mass to the
center of the ith panel, and

τ adb =

4∑
i=1

(
τ adb

)
i
. (25)

The force exerted by the air drag acts opposite to the
orbital velocity vector, and is modeled as(

Fadb

)
i

= (0.5ρv2AiCD)(−v̂b)

= (0.5ρn2a2AiCD)(−v̂b),
(26)

where the circular orbit assumption is used to conclude
that v = na, with a being the orbital radius, and the
effective panel area Ai = (n̂i · v̂)A is equal to the actual
panel area scaled by the dot product of the outward
facing unit normal vector and the unit velocity vector.
Thus, the torque has the following components,

(rb)1 =

−w0
−h

 , (Fadb )
1

= n2f (sδ + cδθ)

−1
ψ
−θ

 ,

(rb)2 =

−w0
h

 , (Fadb )
2

= n2f (sδ − cδθ)

−1
ψ
−θ

 ,

(rb)3 =

−w−h
0

 , (Fadb )
3

= n2f (sδ − cδψ)

−1
ψ
−θ

 ,

(rb)4 =

−wh
0

 , (Fadb )
4

= n2f (sδ + cδψ)

−1
ψ
−θ

 ,

(27)

where f = 0.5ρa2ACD and δ is constrained to be in
the interval [90◦, 180◦]. Taking the cross products and
summing to get an approximation of the air drag torque
τ adb ,

τ adb = 0.5ρn2a2ACD

 0
(2hcδ − 4wsδ)θ
(2hcδ − 4wsδ)ψ

 . (28)

For the 2U cubesat depicted in Figure 4, w = r − Lcδ
and h = 0.5r + Lsδ, thus,

τ adb = n2f

 0
(2hcδ − 4wsδ)θ
(2hcδ − 4wsδ)ψ


= 4n2rf

(
cδ − 4sδ + 3(

L

r
)s2δ

)0
θ
ψ

 = n2Γ

0
θ
ψ

 ,
(29)

where Γ = 4rf
(
cδ − 4sδ + 3(Lr )s2δ

)
. The linearized

dynamic contribution of
(
JBcb
)−1

τ adb then takes the form

(
JBcb
)−1

dτ adb =

0 0 0 0 0 0

0 n2Γ
J2

0 0 0 0

0 0 n2Γ
J3

0 0 0



dφ
dθ
dψ
dω1

dω2

dω3

 ,
(30)

where d(·) denotes the deviation from the nominal val-
ues. Incorporating this contribution into the previously
linearized equations of motion ẋ = Ax + Bu, A now
takes the form

A =



0 0 n 1 0 0
0 0 0 0 1 0
−n 0 0 0 0 1

3n2J32 0 0 0 0 nJ32

0 3n2J31 + n2Γ
J2

0 0 0 0

0 0 n2Γ
J3

nJ21 0 0

 .
(31)

Notable about this modified A matrix is that, for suf-
ficiently large values of Γ, all eigenvalues of A lie
on the ω-axis, whereas for Γ = 0 there exists an
unstable positive real eigenvalue, as seen in Figure 5.
Further, the panel deployment angle directly influences
the eigenvalues of the system and its “stiffness”, i.e., the
ability to resist to disturbances. See Figure 6.

B. LTV Controllability

The controller uses magnetic rods, thus the B(t) ma-
trix depends on the Earth’s magnetic field and the system
is time-varying. While for implementation, we rely on
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For our particular satellite, the panels have their strongest effect at
δ = 131◦.

measured magnetic field values, for the controllabilty
analysis here, we approximate the magnetic field by
assuming a tilted dipole model, with periodicity equal to
the satellite’s orbital period T ; following Psiaki [11], the
magnetic field approximation takes the following form,b1(t)

b2(t)
b3(t)

 =
µf
a3

 cos(nt) sin(im)
− cos(im)

2 sin(nt) sin(im)

 , (32)

where µf is the strength of the dipole field, a is
the semimajor axis, n is the mean motion, im is the
inclination of the orbit with respect to the magnetic
Equator, and t ∈ [0, T ] is measured from the crossing
of the ascending node of the magnetic Equator. We then
show that the LTV system is controllable on the interval
[0, T ], under a few conditions.

Theorem 1: The linearized system is controllable
on the interval [0, T ] if the following conditions hold:

1) The satellite’s orbital plane is not aligned with the
magnetic Equator,

2) J2 6= J3,
3) J3 (6(J3 − J1) + 2Γ) 6= J2 (J1 − J2 + J3 − 2Γ).

The proof is similar to the method in Yang [17]
and is found in Appendix C. Note that if Γ → 0,
for example, if the panel area or the atmospheric
density were 0, then the last condition specializes to the
controllability result for the spacecraft without panels.

In Figure 7, the air drag panels are added to the
simulation in Figure 3; the convergence is slowed, but the
cubesat detumbles properly as the augmented controller
does reject the unmodeled disturbance, demonstrating
that the additional restorative torques from the panels
help to overcome the unmodeled disturbance that desta-
bilized the system previously.

VII. MODEL PREDICTIVE CONTROL

We compare the results of the simulated LQR con-
troller to those of a simulated MPC controller with the
same weights as the LQR controller. Unlike the LQR
controller, the MPC-based controller has the additional
capability of explicitly handling control constraints, such
as the magnetic torque rod saturation described in Sec-
tion IV-B.

A. Discrete Time Conversion

To develop our predictive controller, a discrete-time
approximation to the continuous-time dynamics is im-
plemented. The discretization is performed under the
assumption that the magnetic field is constant during
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Fig. 7. Simulation results using the control design based on the
relinearized dynamics, to include the panels, with the same constant
disturbance torque as in Figure 3.

each control actuation step; this assumption is reason-
able, especially over the short prediction horizon, on the
order of seconds, that we consider, as the field, while
time-varying, is only slowly-varying, with a period of
24 hours.

A zero-order hold, identical to that used in (19), is
applied to discretize the continuous-time dynamics of the
satellite with drag panels system and predict the future
state xk+1 according to the “frozen-in-time” magnetic
field Bd(t).

At each sampling step, the controller then minimizes
the now finite-horizon cost functional

J(t) = xTNP (t)xN +

N−1∑
k=0

(
xTkQxk + uTkRuk

)
, (33)

with prediction horizon N and subject to the discrete-
time dynamics in (19), as well as to the constraint

|uk|∞ ≤ umax, (34)

where P (t) is the unique positive definite solution to the
associated Discrete-Time Algebraic Riccati Equation,

P (t) = ATd P (t)Ad +Q−ATd P (t)Bd(t)K(t),

K(t) =
(
R+Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad.

(35)

Fig. 8. Simulation results using the predictive control design based
on the relinearized dynamics, to include the panels, with the same
constant disturbance torque as in Figure 3.

The controller implements the first control action and
then recomputes a new minimizing control sequence at
the next sampling time instant.

B. Simulation Results

The MPC controller uses the same weights as in the
LQR controller. The discrete-time steps are of length
∆t = 4 sec, and the prediction horizon is held at
N = 5. All other parameters are identical to those
used to generate the simulation results in Figure 7. The
predictive controller provides faster convergence than
the LQR controller, at the added cost of additional
computation complexity and power consumption that
may present challenges to a resource-limited cubesat
platform.

VIII. CONCLUSION

The paper described the design of pointing controllers
to enable the QB50 satellite’s scientific mission. The
two LQR controllers exploit the magnetic torque rod
actuators to regulate both attitude and angular velocity
states, and the second such controller complements the
augmented passive drag panels. Both controllers have
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been shown to provide convergence to the desired point-
ing configuration in nonlinear model simulations; the
second controller, however, has demonstrated greater
robustness to unmodeled disturbance torques. A finite-
horizon predictive controller is shown to provide faster
convergence than the LQR controllers while maintaining
the robustness to disturbance torques.
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APPENDIX A

Derivation of Linearized Equations of Motion

We repeat (5) and (6), which express the full combined
kinematics and dynamics in terms of the state variables:φ̇θ̇

ψ̇

 = C−1
φθ

ω1

ω2

ω3

+ n

 cθsψ
sφsθsψ + cφcψ
cφsθsψ − sφcψ

 , (36)

JBcb ω̇
bg
b + S[ωbgb ]JBcb ω

bg
b = τBcb . (37)

where

C−1
φθ =

(
1

cθ

)cθ sφcθ cφsθ
0 cφcθ −sφcθ
0 sφ cφ

 .
Linearized Kinematics: By design, the desired equi-

librium state is such that [φ, θ, ψ] = [0, 0, 0], thus we
can use small angle approximations (cφ ≈ 1, sφ ≈ φ) to
simplify (36),φ̇θ̇

ψ̇

 ≈
1 φθ θ

0 1 −φ
0 φ 1

ω1

ω2

ω3

+ n

 ψ
φθψ + 1
θψ − φ

 .

(38)
Applying the equilibrium values for the Euler angles
and Euler angle rates, we can easily verify that the
equilibrium angular velocity values must satisfy [ω1, ω2,
ω3] = [0, −n, 0]. Expanding (38):

φ̇ = ω1 + φθω2 + θω3 + nψ(1 + φ2θ2 + θ2),

θ̇ = ω2 − φω3 + n(1 + φ2),

ψ̇ = φω2 + ω3 + n(1 + φ2)θψ.

(39)

Then, taking the partial derivative in each state variable,
we get the following sets of equations:

∂φ̇

∂φ
= θω2 + 2nφθ2ψ,

∂φ̇

∂θ
= φω2 + 2n(1 + φ2)θψ + ω3,

∂φ̇

∂ψ
= n(1 + φ2θ2 + θ2),

∂φ̇

∂ω1
= 1,

∂φ̇

∂ω2
= φθ,

∂φ̇

∂ω3
= θ,

(40)

∂θ̇

∂φ
= −ω3 + 2nφ,

∂θ̇

∂θ
=
∂θ̇

∂ψ
=

∂θ̇

∂ω1
= 0,

∂θ̇

∂ω2
= 1,

∂θ̇

∂ω3
= −φ,

(41)

∂ψ̇

∂φ
= ω2 + 2nφθψ,

∂ψ̇

∂θ
= n(1 + φ2)ψ,

∂ψ̇

∂ψ
= n(1 + φ2)θ,

∂ψ̇

∂ω1
= 0,

∂ψ̇

∂ω2
= φ,

∂ψ̇

∂ω3
= 1.

(42)

We complete the linearization of the kinematics by
plugging the equilibrium values into the partial deriva-
tives of the system:

φ̇θ̇
ψ̇

 =

 0 0 n 1 0 0
0 0 0 0 1 0
−n 0 0 0 0 1




φ
θ
ψ
ω1

ω2 + n
ω3

 . (43)

Linearized Dynamics: We are treating the case of the
ideal, uncontrolled dynamics, so the only external torque
effect to consider is the gravity gradient. Thus, we can
replace the τBcb term above with the equivalent τ ggb .
Then, the dynamics can be be expressed as:

Jω̇ + S [ω]Jω = 3n2

−(J2 − J3)cφsφc
2
θ

(J3 − J1)cφcθsθ
(J1 − J2)sφcθsθ

 . (44)

This equation simplifies to:

ω̇1 = J23(ω2ω3 − 3n2cφsφc
2
θ),

ω̇2 = J31(ω3ω1 + 3n2cφcθsθ),

ω̇3 = J12(ω1ω2 + 3n2sφcθsθ),

(45)
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where J12 := (J1 − J2)/J3, J31 := (J3 − J1)/J2, and
J23 := (J2 − J3)/J1.

As with the kinematics, we now apply the small-
angle approximations for the Euler angle terms:

ω̇1 = J23(ω2ω3 − 3n2φ),

ω̇2 = J31(ω3ω1 + 3n2θ),

ω̇3 = J12(ω1ω2 + 3n2φθ).

(46)

We form the Jacobian of the small-angle system by
taking the first-order partial derivatives in each state
variable:

∂ω̇1

∂φ
= −3n2J23,

∂ω̇1

∂θ
=
∂ω̇1

∂ψ
=
∂ω̇1

∂ω1
= 0,

∂ω̇1

∂ω2
= J23ω3,

∂ω̇1

∂ω3
= J23ω2.

(47)

∂ω̇2

∂φ
=
∂ω̇2

∂ψ
=
∂ω̇2

∂ω2
= 0,

∂ω̇2

∂θ
= 3n2J31,

∂ω̇2

∂ω1
= J31ω3,

∂ω̇2

∂ω3
= J31ω1,

(48)

∂ω̇3

∂φ
= 3n2J12θ,

∂ω̇3

∂θ
= 3n2J12φ,

∂ω̇3

∂ψ
=
∂ω̇3

∂ω3
= 0,

∂ω̇3

∂ω1
= J12ω2,

∂ω̇3

∂ω2
= J12ω1,

(49)

We complete the linearization by substituting the equi-
librium values into the partial derivatives:

ω̇1

ω̇2

ω̇3

 =

−3n2J23 0 0 0 0 −nJ23

0 3n2J31 0 0 0 0
0 0 0 −nJ12 0 0




φ
θ
ψ
ω1

ω2 + n
ω3


(50)

The combined linearized kinematics and dynamics equa-
tions can now be expressed by the Ac matrix that appears
in (17).

APPENDIX B

A. Algebraic Riccati Equation Solution Algorithm For-
mulation

For implementation of the LQR controller in the satel-
lite, we chose to follow a zero-order hold discrete-time
formulation identical to (19), with equations repeated

here for convenience. Let t ∈ R≥0 be the current time
instant and Ac, Bc(t) be the continuous-time dynamics
defined in (17), (18). For ∆t > 0, the discrete-time
model predicts the state xk at time t + k∆t, k ∈ Z≥0,
according to the following model with the “frozen-in-
time” magnetic field:

xk+1 = Adxk +Bd(t)uk,

Ad = eAc∆t,

Bd(t) = −A−1
c (I6 −Ad)Bc(t),

x0 = x(t).

(51)

The pair (Ad, Bd(t)) can be verified to be controllable
for all t for our orbit and choices of ∆t. For the
difference equation (19), we define the infinite-horizon
cost functional J :

J =

∞∑
k=0

(
xTkQxk + uTkRuk

)
, (52)

where R = RT ∈ R3 is a positive definite matrix,
and Q = QT ∈ R6 is a positive semi-definite matrix
satisfying the usual detectability assumption. Then, the
optimal feedback control sequence uk = −K(t)xk that
minimizes J has the solution:

K(t) =
(
R+Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad,

(53)
P (t) = ATd P (t)Ad +Q−ATd P (t)Bd(t)K(t). (54)

Note that (22) can have multiple solutions; the P (t) of
interest to us is the unique positive definite solution.
Also note that Bd(t) changes throughout the orbit,
thus (22) is solved at different instants t in time and
the gain K(t) in (21) is time-varying. The control
u(t + σ) = K(t)x(t) is applied for 0 ≤ σ < ∆t and
then recomputed.

1) Gain Computation: Upon generating the discrete-
time model in (51), we define the following two matrices:

N :=

[
Ad 06×6

−Q I6

]
,

L :=

[
I6 BdR

−1BT
d

06×6 ATd

]
,

(55)

where Ad ∈ R6×6 and Bd = Bd(t) ∈ R6×3. From these,
we form the Hamiltonian matrix

H = (N + L)−1 (N − L) . (56)

We require the positive square root of H2, and employ a
Newton-Raphson iteration process to compute it. We be-
gin with an initial guess of S0 = I6, the identity matrix,
and then iterate according to the following scheme:

Sk+1 = 0.5
(
Sk + S−1

k H2
)
. (57)
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Fig. 9. 2-norm of the difference between the exact solution to
the Discrete-Time Algebraic Riccati Equation and the approximate
solution returned by the algorithm.

Upon reaching desired convergence in Sk, we can then
extract the unique positive-definite solution P (t) to (22)
from the first column of the matrix[

X1 ∼
X2 ∼

]
= H − S, (58)

as
P (t) = X2X

−1
1 . (59)

Given P (t), we then compute

K(t) =
(
R+Bd(t)

TP (t)Bd(t)
)−1

Bd(t)
TP (t)Ad.

(60)
This solution algorithm is suitable for use even on
our resource-limited cubesat platform, as the necessary
matrix inverses can be computed very efficiently through
a decomposition scheme; in our case, we applied an LU-
decomposition, as described in Anton & Rorres [21].
Furthermore, since the solution between time steps does
not change significantly in this slowly-varying system,
after the first gains are computed then future solutions
can be “warm started”, i.e., the initialization S0 takes
the value of the solution from the previous time step.
This has the benefit of reducing the number of iterations
required to obtain convergence. Once the solution matrix
P (t) is found, it is then a simple matter to compute the
LQR gain matrix K(t). Note that Ad, Q, and R−1 are
invariant and do not depend on the magnetic field, hence
are precomputed and stored in memory.

We measure the accuracy of the algorithm’s output
by taking the 2-norm of the difference between the
approximate solutions, denoted PD(t), with the exact
solutions P (t) returned by Matlab’s dlqr command over
two simulated orbits. See Figure 9. The norms are

generally close to zero, indicating very strong agreement
between the approximate and exact solutions, validating
the use of the described algorithm.

APPENDIX C

Proof of Theorem 1

LTV controllability holds if the controllability matrix
analogue K = [K0, K1, K2] has full row rank for some
tc ∈ [0, T ] [17], where Kj = ∂j

∂τ j [Φ(t, τ)B(τ)]τ=t and
Φ(t, τ) is the state transition matrix for the A matrix. We
form this matrix and show that non-singularity holds for
tc = T/4 under the above conditions.

Suppose the satellite’s orbit aligns with the magnetic
Equator, so that im = 0. Then, for all t, b1(t) = b3(t) =
0 and b2(t) is constant. Then, B is constant and takes
the form,

B =


03×3

bα 0 0
0 0 0
0 0 bγ

 . (61)

In this case, the lack of controllability can be shown
by forming the standard controllability matrix for LTI
systems, C =

[
B AB A2B

]
∈ R6×9, and showing

that it does not have full row rank. Each of B, AB, and
A2B has all zero entries in its fifth row, thus C has all
zero entries in its fifth row. Thus, the row rank of C is
at most 5 < 6, C does not have full row rank, and the
associated LTI system is not controllable.

Now assume that the satellite’s orbit is inclined rela-
tive to the magnetic Equator. B is time-varying, thus we
must form the time-varying controllability analogue,

K =
[
B(t) Ḃ(t)−AB(t) A2B(t)− 2AḂ(t) + B̈(t)

]
,

(62)
and show that the matrix K has full row rank for some
tc ∈ [0, T ]. For convenience, select tc = T/4, as then
ntc = π/2 and the trigonometric terms in the magnetic
field approximation simplify greatly. Following Yang
[17], we express the A and B matrices as follows,

A =

[
Σ1 I3

Λ Σ2

]
, B =

[
03×3

B2

]
, (63)

so that K can then be expressed as

K =

[
03×3 −B2 (Σ1 + Σ2)B2 − 2Ḃ2

B2 −Σ2B2 + Ḃ2

(
Λ + Σ2

2

)
B2 − 2Σ2Ḃ2 + B̈2

]
.

(64)
We now look for a submatrix of K in R6×6 that is

non-singular. We can simplify K with a row reduction
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by premultiplying the top row by −Σ2 and adding the
result to the second row to get

K2 =

[
03×3 −B2 (Σ1 + Σ2)B2 − 2Ḃ2

B2 Ḃ2 (Λ− Σ2Σ1)B2 + B̈2

]
=

[
03×3 −B2 M1

B2 Ḃ2 M2

]
.

(65)

K2 having a non-singular submatrix is equivalent to
K having one, so we now work with the new matrix
instead. At the chosen time instant, we have

b1(tc) = 0, ḃ1(tc) = −n
µf
a3
sim , b̈1(tc) = −n2µf

a3
sim

b2(tc) = −
µf
a3
cim , ḃ2(tc) = 0, b̈2(tc) = 0

b3(tc) = 2
µf
a3
sim , ḃ3(tc) = 0, b̈3(tc) = −n2µf

a3
sim .

(66)

Define p1 = (µf/a
3)sim , p2 = (µf/a

3)cim , p3 =
2(µf/a

3)sim = 2p1, and pjk = pj/Jk. Then, K2 takes
the form,

K2 =


0 0 0 0 −p31 p21 m11 0 0
0 0 0 p32 0 0 0 0 m12

0 0 0 −p23 0 0 0 m13 m14

0 p31 −p21 0 0 0 0 m21 m22

−p32 0 0 0 0 np12 m23 0 0
p23 0 0 0 −np13 0 m24 0 0

 ,
(67)

and we form a submatrix K3 from columns 1, 2, 4, 5,
7, and 8.

K3 =


0 0 0 −p31 m11 0
0 0 p32 0 0 0
0 0 −p23 0 0 m13

0 p31 0 0 0 m21

−p32 0 0 0 m23 0
p23 0 0 −np13 m24 0

 ,
(68)

which we can row-reduce to,

K4 =


0 0 0 −p31 m11 0
0 0 p32 0 0 0
0 0 0 0 0 m13

0 p31 0 0 0 0
−p32 0 0 0 m23 0
p23 0 0 −np13 m24 0

 , (69)

which has determinant det(K4) =
(−p32)(−m13)(p31)(m24p31p32 − m23(−p31)p23 +
m11p32nb13). The LTV system is then controllable
if this determinant is nonzero. Each p term is
already nonzero, thus we seek m13 6= 0 and

det(K5) = m24p31p32 + m23p31p23 −m11p32np13 6= 0.
We have:

m13 =
−2np1

J3
− n(−J3 + J2 − J1)p3

J1J3

=

(
−2np1

J1J3

)
(J1 − J3 + J2 − J1)

=

(
−2np1

J1J3

)
(J2 − J3)

6= 0

(70)

which, as n 6= 0 and p1 6= 0, implies that J2 6= J3.
Next,

m11p32np13 =
−np1

J3

p3

J2

p2

J3

(
nJ1 + n(J3 − J2)

J1

)
=

(
p2p

2
3n

2

J1J2J3

)(
−J1 + J2 − J3

2J3

)
m23p31p23 =

p3

J2

p3

J1

p2

J3

(
3n2J3 − J1

J2
+ n2 Γ

J2
− n2

)
=

(
p2p

2
3n

2

J1J2J3

)(
3(J3 − J1) + Γ− J2

J2

)
m24p31p32 =

−p2

J3

p3

J1

p3

J2

(
n2 Γ

J3
− n2J2 − J1

J3

)
=

(
p2p

2
3n

2

J1J2J3

)(
J2 − J1 − Γ

J3

)
,

(71)

thus, the condition

det(K5) 6= 0 (72)

implies, after some regrouping, that

J3 (6(J3 − J1) + 2Γ) 6= J2 (J1 − J2 + J3 − 2Γ) . (73)
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