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Chapter 1: Introduction

1.1 Use of Vasopressor

Shock, which normally means a lack of blood flow to a specific area of the body,

results in the oxygen and nutrients not being able to be delivered to the tissues and

thus is a life-threatening situation. Shock comes in a variety of forms: septic shock,

which occurs as a consequence of the inflammatory response to infection, can lead

to respiratory or heart failure. Cardiogenic shock, which in contrast is mostly often

triggered by a heart attack, causes a decrease in the cardiac output and thus leads

to hypoperfusion and hypotension. Hypotension is usually defined by a drop in

systolic blood pressure (SBP) to < 90 mmHg or by at least a 40-mmHg decrease

from baseline. The inadequate perfusion to critical organs (heart, liver and kidneys)

will lead to significant mortality reported to be around 40% to 60% [1]. Septic shock

is also reported to be account for 18% to 50% of ICU mortality [2]. Once septic shock

is formed, immediate and aggressive medical attention is needed. Early effective fluid

resuscitation is crucial to stabilize the resulting tissue hypoperfusion. To achieve

adequate fluid resuscitation, the Surviving Sepsis Guidelines advise at least 30 ml/kg

of crystalloids be infused for most patients in septic shock and fluid should be

aggressively infused for as long as the patient continues to improve hemodynamically
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[2]. Despite fluid resuscitation, vasopressors should be promptly begun in patients in

persistent septic shock. There are a variety of available vasopressors for the clinicians

to use (see Table. 1.1), however, making recommendations on the use of a specific

vasopressor is made difficult by the limited number of controlled experiments and

the fact that these agents are usually used in combination [3]. No study to date has

demonstrated a significant benefit on survival rate of one vasopressor on another [4],

therefore the choice of vasopressor is pretty much empiric. Yet the Surviving Sepsis

Campaign recommends norepinephrine (NE) or dopamine as the first-line agent on

patients presenting septic shock followed by epinephrine to those who respond poorly

to norepinephrine or dopamine [5].

Table 1.1: Vasopressor drug name, clinical indication for therapeutic use, standard

dose range and receptor binding [6].

Receptor Binding

Drug Clinical Indication Dose Range (IV) α1 β1 β2

Dopamine Shock (cardiogenic, vasodilatory) 2.0-20 mcg/kg/min +++ ++++ ++

Dobutamine Low CO (myocardial dysfunction) 2.0-20 mcg/kg/min + +++++ +++

Norepinephrine Shock (vasodilatory, cardiogenic) 0.01-3.0 mcg/kg/min +++++ +++ ++

Epinephrine Shock (vasodilatory, cardiogenic) 0.01-0.1 mcg/kg/min +++++ ++++ +++

Isoproterenol Bradyarrhythmias 2-10 mcg/kg/min 0 +++++ +++++

Phenylephrine Hypotension 0.4-9.1 mcg/kg/min +++++ 0 0

α1 indicates α-1 receptor; β1, β-1 receptor; β2, β-2 receptor; 0, zero significant receptor affinity; + through

+++++, minimal to maximal relative receptor affinity; mcg refers to µg.
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1.2 Vasopressor Dose-Response Modeling

Vasopressors take effect on the cardiovascular endpoints (e.g. heart rate, car-

diac output, mean arterial pressure, systemic vascular resistance) through stimulus

of different receptors. Activation of α1-adrenergic receptors on arterial vascular

smooth muscle cells results in smooth muscle contraction and an increase in sys-

temic vascular resistance (SVR), while β1-adrenergic receptor stimulation results in

enhanced myocardial contractility and stimulation on β2-adrenergic receptor results

in vasodilation [6]. The actual underlying mechanism of vasopressors is by all means

much more complicated than this and thus make it extremely difficult to accurately

describe and model this entire process. However, in the real hospital settings, clini-

cians rarely dig this deep into the exact mechanism of a specific drug. Instead, they

tend to use a simplified model to help them determine how much drug should be

infused to a patient’s body. For example, they may determine using their experience

that a certain dose level of the drug is needed to alter the endpoints to achieve a

desired set point. Such a simplified model is called a drug effect model, which de-

scribes the relationship between the infusion dose and the change in the endpoints.

The drug effect model is typically consisted of two parts, the pharmacokinetics (PK)

part and the pharmacodynamics (PD) part. The pharmacokinetics (PK) part of the

model describes how the infused drug is distributed in the patient’s body while the

pharmacodynamics (PD) part relates the effect site dose to the endpoints.

The most popular PK model is the compartmental model [7,8], which can fur-

ther be divided into smaller categories depending on how many compartments are
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used in the model. The compartmental model divide the human body into several

portions (e.g., tissues, organs, blood) and assign different rates to each compart-

ment to model the absorption and eliminations of drugs. The drug concentration

is assumed to be homogeneous in each compartment and the transmission of drug

between one compartment to another is purely driven by the difference in the con-

centration. The output of the PK model is the plasma concentration Cp. The

PD model in general consists of a first order system (which transforms the plasma

concentration Cp to effect site concentration Ce) and a model that describes the

concentration-effect relationship. This model is usually chosen to be the Emax

model, which utilizes a empirical nonlinear Hill curve to relate the effect site con-

centration by either IV infusion or oral absorption to the corresponding change in

the endpoint.

1.3 Closed-Loop Control

In a surgery, it is usually desirable (sometimes necessary) for the clinicians to

control a set of physiologic indexes (e.g., heart rate, mean arterial pressure, cardiac

output) and hold them within a specific range. Take anesthesia as an example,

closed-loop control of medication infusion has been an active field of research for

a few decades in critical care medicine, with a large number of work reported on

closed-loop control of anesthesia, analgesia, and neuromuscular blockade [9–12]. Tra-

ditionally, the clinicians manually control the drug administration which is based

on their experience, established rules and the measured/predicted patient response.
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In this process, the expert opinion and knowledge is very important because human

body is a sophisticated system and thus suffers from a large intervariability and

intravariability. Besides, manual administration is also prone to human error and

the heavy work load restricts the ability of clinicians to perform other high-level

tasks.

A computer program, on the other hand, can be used to assist the drug ad-

ministration using the prior computation of the dose profile. This is implemented

by a Target-Controlled Infusion (TCI) system [13, 14]. However, TCI is only a

open-loop system rather than a closed-loop system. Since TCI uses pharmacoki-

netics/pharmacodynamics (PKPD) models to predict the patient response and in

real clinical settings real-time plasma/blood drug concentration is extremely diffi-

cult, if not impossible, to obtain. TCI actually estimates the drug concentration

rather than obtains it through measurement, and thus the performance hinges heav-

ily on the accurateness of the patient model. Yet, a variety of factors can alter the

patient’s physiological condition, e.g., surgical stimulation and hypnotic-opioid syn-

ergy. Thus, in the end, TCI still requires human interventions to function properly.

Hence, a more advanced automatic infusion system should have the ability to

adapt itself to different patient conditions. This can be achieved by introducing

a closed-loop control scheme to the system. The advantages of using closed-loop

infusion system over manual administration have been confirmed by many literatures

[15–17], which include smaller steady-state error, improved hemodynamic stability,

shorter recovery time and optimized drug use. To achieve accurate feedback, the

process itself should be defined and representative measures of the system state
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should also be available. Again using controlled anesthesia as an example, clinicians

typically choose compartmental models to describe the drug distribution and indexes

like BIS [18] or WAVCNS [19] as a measure of degree of hypnosis (DoH). These

endpoints have definitive bounds with upper bound being the nominal value and

zero being the lowest possible value. The boundedness of the range of response with

its explicit limits facilitated the use of classical dose-response models, e.g., the Emax

model [20], in designing closed-loop controllers for infusion of these medications (see,

e.g., [18, 21–28]).

In contrast to the above, medications such as vasopressors and inotropes ex-

hibit excitatory dose-dependent effects. A unique challenge associated with closed-

loop control of such medications is that the upper limit of medication-induced ex-

citatory response (a parameter that must be specified to characterize the Emax

model) is unknown. In fact, it is extremely difficult, if not impossible, to determine

the upper limit of response in a patient in real clinical settings due to patient safety

and ethical considerations. Despite this prominent challenge, there has not been

rigorous research effort to establish model-based closed-loop control techniques for

infusion of these medications.

1.4 Thesis Goal and Outline

In an attempt to address this challenge, we present in this thesis a semi-

adaptive closed-loop control approach to infusion of medications that exhibit ex-

citatory dose-dependent effects. We will present a new dose-response model by
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extending a classical dose-response model, used for medications with depressive ef-

fects, by a nonlinear transformation, and extend a semi-adaptive control approach

developed based on a prior work, applicable to depressive dose-response relationship,

to the new dose-response model. Two key advantages of the proposed model are

that it can capture dose-response relationship from baseline to a target set point,

and that it enables linear parameterization, thereby facilitating the control design

task. We will examine the efficacy of the proposed approach using an example of

heart rate (HR) response to a vasoactive medication norepinephrine (NE).

The thesis is organized as follows. In Chapter 2, we will present several po-

tential candidates to replace the traditional Emax model and discuss a little about

their respective structures. In Chapter 3, we will apply these candidate models to

a dataset from an animal experiment, perform system identification and sensitivity

analysis and eventually pick out the best candidate model. In Chapter 4, we will

apply a previously developed semi-adaptive control scheme to the new model and

evaluate its performance through in-silico simulation. The thesis concludes with

Chapter 5 summarizing conclusions and outlining future work.
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Chapter 2: Excitatory Dose-Response Modeling

2.1 Overview

In this chapter, we will first briefly introduce existing models that describe

the drug distribution process and dose-response relationship. Then we will point

out the issue with the existing models and present how we develop the new models

based on them. After that, we will briefly compare the new models with existing

ones and identify their pros and cons.

2.2 Existing Models

2.2.1 Pharmacokinetics/Pharmacodynamics Models

To investigate the effect of NE on different endpoints (heart rate, mean arte-

rial pressure, total peripheral resistance, etc.), a pharmaceutical model is needed to

describe the process of the drug being absorbed by the patient and producing de-

sired effects at the effect site. Traditionally, a pharmacokinetics/pharmacodynamics

(PKPD) model is used to describe such process. The pharmacokinetics (PK) part

of the model provides the concentration-time profile in the patient body fluid (nor-

mally plasma or whole blood) with respect to the administered dose via intravenous
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(IV) infusion or oral absorption. Compartmental pharmacokinetics models are

widely used for this purpose [7]. The most simple compartmental model is the

one-compartment model depicted in Fig. 2.1.

Figure 2.1: One-Compartment model. ka=absorption rate constant, k=elimination

rate constant. [29]

In this model, the drug is assumed to achieve instantaneous distribution through-

out the body and that the drug equilibrates instantaneously between tissues [29].

More complex multi-compartmental models have also been developed to account for

sophisticated dynamics for some drugs. A two-compartmental model, which resolves

the body into a central compartment and a peripheral compartment as shown in

Fig. 2.2.

In the two-compartment model, it is assumed that the drug distributes be-

tween central and peripheral compartment and that the drug does not achieve in-

stantaneous equilibrium between two compartments [29]. A three-compartment

model, which further divides the peripheral compartment into fast-response and

slow-response compartments is also available and frequently used.

On the other hand, the pharmacodynamics (PD) model first transforms the

plasma concentration Cp from the PK model to effect site concentration Ce through

a first-order transfer function and then relates Ce to the observed endpoint effects.

9



Figure 2.2: Two-Compartment model. k12, k21 and k are first-order rate constants:

k12=rate of transfer from central to peripheral compartment; k21=rate of transfer

from peripheral to central compartment; k=rate of elimination from central com-

partment [29].

There exists various kinds of PD model, among which are (sigmoid) Emax model,

(sigmoid) Imax model, logarithmic model quadratic model, etc. The most frequently

used PD model is the sigmoid Emax model, which utilizes nonlinear Hill equation to

describe nonlinear concentration-effect relationships [7]. It has the general form:

E = E0 +
EmaxC

λ

ECλ
50 + Cλ

(2.1)

where the effect E is a function of E0, the baseline value of the endpoint, Emax,

the maximum effect, C, the concentration of the drug, EC50, the concentration of

drug that produces half of the maximal effect and λ, the Hill coefficient, which

determines the shape of the nonlinear curve.
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2.2.2 Direct Dynamic Dose-Response Models

Despite of the traditional PKPDmodel, a direct dynamic dose-response (DDDR)

model is proposed by Hahn et al. [30], whose structure is shown in Fig. 2.3. Com-

pared with PKPD model, the DDDR model directly links the infusion dose to the

endpoint effect, i.e., the true infusion rate Ip is first transformed into hypothetical

dose at the site of action (Ie) and then it is related to the desired endpoints via

Emax model.

Figure 2.3: Traditional PKPD versus direct dynamic dose-response model. [30]

Note that the Emax model used in the PKPD model and in the DDDR model

exhibit a slight difference, i.e., the Emax model in the PKPD model relates the effect

site concentration to the clinical effect, whereas the Emax model in the DDDRmodel

relates the effect site dose rate to the clinical effect. Therefore, EC50 in the PKPD

model, which represents the concentration of drug at the effect site that produces

50% clinical effect is replaced by I50, which represents the effect site dose rate that

11



produces 50% clinical effect. Also note that the transfer function G(s) in the DDDR

model has an unity gain, allowing effect site dose Ie to reach infusion dose Ip in the

steady state.

E = BL+ Emax
Iλe

Iλe + Iλ50
(2.2)

2.2.3 The New Model

The new model proposed by us in this thesis originates from a prior work

by Jin et al. [31], where closed-loop control of anesthesia via propofol infusion is

the subject of study. DDDR model along with the Emax model were utilized in

that work to regulate the respiratory rate (RR) and satisfactory performance was

achieved in the simulation. The endpoint (RR) in that work has definitive bounds,

with its nominal value as an upper bound and zero (0) as a physical lower bound.

However, there is no clear physical upper bound as of heart rate, nor it is easy to

determine a physiological upper bound above which the patient may die from heart

failure due to patient safety concerns and ethical reasons. To migrate the success

in the propofol case to that in the norepinephrine case, we resolve this issue by

assuming that the upper limit is unbounded (i.e., ∞, and this assumption will be

justified later in Chapter 3.4). Specifically speaking, we want to find a map that

transforms the upward-going endpoint response w.r.t effect site dose (Ie) to the

downward-going endpoint response as in the propofol case. Then this is equivalent

to finding a function that transforms the delta change of endpoints (∆HR in this

case) ranging from a finite number to infinity to within a finite range (i.e., from zero

12



to the baseline value) as shown in Fig. 2.4. One possible family of functions is the

so called logistic functions which have a domain ranging from −∞ to ∞ but can

only take a finite range of values.

Figure 2.4: Original norepinephrine response and transformed response.

The two logistic functions considered in this report are inverse tangent function

and the modified exponential function

BL× tan−1

(
∆HR

BL

)
× 2

π
= −∆HR = BL× Iλe

Iλe + Iλ50
(Atan model) (2.3)

BL

(
2

1 + exp(−∆HR/BL)
− 1

)
= −∆HR = BL× Iλe

Iλe + Iλ50
(Exp model) (2.4)

Rewriting the above models we have

E = BL+BL× tan

(
π

2

Iλe
Iλe + Iλ50

)
(Atan model) (2.5)

E = BL−BL× ln

(
Iλ50

2Iλe + Iλ50

)
(Exp model) (2.6)

Here the delta change (∆HR in this case) is normalized by its baseline value

so that its magnitude is consistent when applying the map to different endpoints.
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However, it should be noted that I50 in these two models does not have the same

meaning as in the first two models. In fact, it is no longer the dose level at which

half of the maximum effect is achieved. To compensate for this, we need to multiply

a constant coefficient to the equation. We further see that by multiplying another

coefficient σ to the equation, these models can be adapted to describe endpoint

behavior of different increase amplitudes. Now the equations become

E = BL+BL× σ%× tan

(
π

2

Iλe
Iλe + Iλσ

)
(Atan model) (2.7)

E = BL+
BL× σ%

ln(1/3)
× ln

(
Iλσ

2Iλe + Iλσ

)
(Exp model) (2.8)

The variable I50 in the first two models have become Iσ in these two mod-

els which, depending on the value of σ, represents the dose level at which σ% of

the maximum effect is achieved. The significance of σ will be discussed briefly in

Chapter 2.3 and in detail in Chapter 3.4.

2.3 Model Comparison and Discussion

It should be noted that although traditional PKPD model in theory offers

more accurate description of drug kinematics/dynamics than the DDDR model, it

requires plasma/blood NE concentration to train the PK model. Since real-time

drug concentration is usually not easily obtained, if not impossible, a population

PKPD model for a specific group is used which suffers from large inter-individual

as well as intra-individual variability [32]. If one insists to fit the endpoint data

without plasma/blood NE concentration, it has to be estimated by the population-

based PK model and then passed to the PD model. But then we might well have
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omitted this step and used DDDR model in the first place. That being said, we

are not to criticize the goodness of the PKPD model compared with the DDDR

model, but the fact that the lack of real-time plasma/blood NE concentration in

the experiment data makes the choice of adopting DDDR model instead of PKPD

model inevitable.

Now that the model that relates infusion dose to effect site dose has been

chosen, here comes the time to determine how to connect the effect site dose to the

endpoint response. Among all three nonlinear models we have introduced in the

previous section, Emax model is inarguably the most popular and widely-used dose-

response model [33]. The Emax model [20] utilizes a nonlinear Hill curve to model

the dose-response relationship. The parameter λ is in general larger than 1, resulting

in a ∆E − dose curve with a slight increase at the beginning, a rapidly ascending

stage in the region near I50 and a convergent phase at the end as shown in Fig. 2.5.

In the traditional Emax model, the maximum increase of the endpoint is specified

by the parameter Emax, which is normally taken to be the maximum theoretically

allowed increase. Hence, this number is usually far greater than the actual increase in

the experiments, which will cause problem when performing system identification.

This is due to the fact that the actual dose given to the test subject is usually

small compared with I50 value, and hence the identified I50 will be out of the range

of the dose given, making it hard to verify its accurateness. One possible way

to remedy this is to redefine Emax to be the maximum endpoint change that is

actually achieved (instead of maximum therapeutically allowed increase) w.r.t the

dose profile. However, this requires that Emax be related to specific dose profile
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which is even hard to achieve and nearly impossible if it is to be implemented by a

controller. To resolve this issue, we assume that the upper limit of the endpoint is

unbounded (i.e., ∞). In fact, it is a reasonable simplifying assumption as long as

medication is infused at therapeutic low-dose rates.

Figure 2.5: The ∆E − dose curve for the Emax model.

The remaining two models, i.e., the Atan model and the Exponential model,

inherit the spirit of the traditional Emax model but with some extra modifications

so that they allow the endpoint to become infinity while the dose goes to infinity.

In real clinical settings, however, the dose is never going to be near infinity. Indeed,

it will rarely exceed the suggested dose level of that specific drug by too much, and

thus we do not need to worry about the behavior at the extremely-high dose region

of these models. Yet for the Atan model, we can observe from its ∆E − dose curve

from Fig. 2.6 that for typical increase magnitude (20%-100% of the baseline) of the

heart rate, it does not exhibit a three-phase behavior as the Emax model either.

Indeed, ∆E for Atan model increases more and more quickly when the dose exceeds
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I50 (since the derivative of the tangent function goes to infinity at π/2), it is also not

an ideal candidate to replace the Emax model either. To be more precise, the Atan

model can only mimic the ∆E − dose behavior of the Emax model up to a certain

point (around I50) after which the ∆E − dose curve for the Emax model becomes

concave while that of the Atan model remains convex.

Figure 2.6: The ∆E − dose curve for the Atan model.

For the Exponential model, since the derivative of the natural log function

approaches zero at the infinity, the ∆E − dose curve as shown in Fig. 2.7 gets

flatter and flatter when dose increases. It can also be observed from the ∆E − dose

curve that Exponential model clearly exhibits a three-phase behavior as the Emax

model. And since by model design the endpoint would go to infinity when dose is

infinitely large instead of converging to a specific value as the Emax model, and

that is where the parameter σ kicks in. By introducing the parameter σ, the model

output is set to reach σ% of the increase from the baseline when effect site dose

Ie reaches corresponding Iσ. In a target-control-infusion (TCI) system, the desired
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endpoint level that is to be reached is always known before hand, and thus σ could

be set properly using this information. Besides by doing so, the Iσ identified by

the controller is guaranteed to be the same as the dose level required to raise the

endpoint by the same σ% from the baseline in the Emax model.

Figure 2.7: The ∆E − dose curve for the Exponential model.

In this chapter, we have introduced two different categories of model that

describes the distribution of the medication inside the subject’s body, namely PKPD

model and DDDR model. We have shown that although the traditional PKPD

model makes more intuitive sense in modeling the kinematics/dynamics of the drug,

the lack of real-time plasma/blood drug concentration somewhat neutralizes this

advantage and make it less attractive than the DDDR model. That is why we

choose to use the DDDR model in the remaining chapters of this thesis. Then we

introduced three models that describes the dose-response relationship of the drug,

namely Emax model, Atan model and Exponential model. Among them, the Emax

model is the most widely used model for the drugs that depress the endpoint [33].
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However, when used to describe excitatory dose-response relationship, we are faced

with the issue that maximum meaningful endpoint increase (Emax) is usually hard

to determine. The remaining two models are proposed to get around this issue.
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Chapter 3: System Identification and Sensitivity Analysis

3.1 Overview

In the previous chapter, we have presented two models (PKPD and DDDR

model) to describe the drug distribution in the subject’s body and three models

(Emax, Atan and Exponential model) to describe the dose-response relationship of

the drug. Due to the lack of real-time plasma/blood NE concentration, the PKPD

model is not going to be considered here. In this chapter, we will validate and analyze

these models by fitting the heart rate (HR) response of 5 piglets whose dataset comes

from an animal experiment under the protocol approved by the Institutional Animal

Care and Use Committee (IACUC) at the University of North Carolina, Chapel Hill.

Each animal received NE at 5-6 distinct infusion rates of approximately 10 min

duration under general anesthesia and mechanical ventilation to elicit a wide range

of HR response. The minimum and maximum infusion rates used ranged between

0.05 mcg/kg/min and 0.5 mcg/kg/min, which resulted in a maximum HR response

of 32-70 bpm, amounting to 22.1-64.8 % change from the baseline HR. All data are

recorded using an 1 kHz sampling rate but is down-sampled to 10 Hz to lower the

computational load. Besides, we also pre-process the HR measurements with an

15-point median filter to remove noise and outliers. The processed HR response of
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these 5 pigs are shown in Fig. 3.1.

Figure 3.1: Heart rate dose-response of 5 pigs.

It should be noted that the HR response of pig 8 is very abnormal compared

with other pigs, i.e., the HR response from 5-35 min decreases even though the dose

level is actually increasing, which does not make sense. For this reason, the HR

response of pig 8 is excluded from further analysis and only the remaining 4 pigs

(namely, pig 6,7,9,10) are used. Besides, the HR response from 59 min to the end

of pig 7 is far slower than the first 59 minutes of the data and is thus also excluded

from the analysis.

3.2 System Identification

In this section we will perform system identification of the three models men-

tioned above by fitting the model to the experimental data associated with each
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animal. More specifically, we will formulate and solve the following optimization

problem using the numerical optimization tools available in MATLAB Optimiza-

tion Toolbox [34]:

θ∗ = argmin
θ

||R̃(t)−R(t, θ)|| (3.1)

where θ∗ is optimum value of θ minimizing the cost function (3.1), R̃(t)

and R(t, θ) the measured versus model-predicted HR responses, where the model-

predicted HR response was computed via pure (i.e., infinite-step-ahead) prediction.

For the Atan and Exponential model we will examine the accuracy and parameters

of the models identified with different values of σ. We will use the root-mean-

squared error (RMSE) between measured versus model-predicted HR responses as

the measure of accuracy.

3.2.1 Discretization

In the DDDR model, the drug distribution is governed by the following first-

order system

İe(t) = −keIe(t) + keu(t) ≜ F (Ie(t)) (3.2)

where u(t) is the infusion dose level and Ie(t) is the hypothetical effect site

dose level. We discretize (3.2) as follows:

Ie(t)− Ie(t− 1)

h
= −keIe(t) + keu(t) ⇒ Ie(t) =

1

1 + keh
Ie(t− 1) + hu(t) (3.3)

where h = 1/600 min is the sampling interval. The dose-response relationship

for the three models are discretized similarly using the backward difference scheme.
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3.2.2 Emax Model

The Emax model has the following dose-response relationship:

R(t) = R0 +Rm
Iλe (t)

Iλe (t) + Iλ50
≜ H(Ie(t)) (3.4)

where R0 is the baseline HR, Rm the maximum therapeutically meaningful increase,

R(t) the medication HR response, Ie(t) the effect site dose, I50 the dose required to

reach half the effect of Rm and λ the Hill coefficient.

To investigate if this system is identifiable, the following matrix needs to have

full column rank according to the identifiability rank condition [35]:

A =



∂L0
FH

∂Ie

∂L0
FH

∂ke

∂L0
FH

∂Rm

∂L0
FH

∂I50

∂L0
FH

∂λ

∂L1
FH

∂Ie

∂L1
FH

∂ke

∂L1
FH

∂Rm

∂L1
FH

∂I50

∂L1
FH

∂λ

∂L2
FH

∂Ie

∂L2
FH

∂ke

∂L2
FH

∂Rm

∂L2
FH

∂I50

∂L2
FH

∂λ

∂L3
FH

∂Ie

∂L3
FH

∂ke

∂L3
FH

∂Rm

∂L3
FH

∂I50

∂L3
FH

∂λ

∂L4
FH

∂Ie

∂L4
FH

∂ke

∂L4
FH

∂Rm

∂L4
FH

∂I50

∂L4
FH

∂λ


(3.5)

where L denotes the Lie derivative

L0
FH = H, L1

FH =
∂H

∂x
· F, Ln

FH = L1
F (L

n−1
F H), x = [Ie, ke, Rm, I50, λ] (3.6)

Since the matrix A is extremely tedious, the column rank of the matrix is

computed and verified using Mathematica:

The parameter constraints for different pigs are listed in Table. 3.1. The upper

bound of Rm is set to roughly two times of the maximum increase observed across

all 4 pigs.
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Figure 3.2: Computation of rank of the identifiability matrix for the Emax model.

Pig 6 Pig 7 Pig 9 Pig 10

RMSE [bpm ] 6.176 2.647 1.287 1.731

Table 3.2: RMSE of the fitted vs measured HR.

ke

[min−1]

R0

[bpm]

Rm

[bpm]

I50

[mcg/kg/min]

λ

[N/A]

Pig 6 0.1-5.0 120.0-140.0 0-160.0 0-5.0 0-10.0

Pig 7 0.1-5.0 90.0-110.0 0-160.0 0-5.0 0-10.0

Pig 9 0.1-5.0 125.0-140.0 0-160.0 0-5.0 0-10.0

Pig 10 0.1-5.0 100.0-110.0 0-160.0 0-5.0 0-10.0

Table 3.1: Parameter bounds on 4 pigs with the Emax model.

The fitting result is shown in Fig. 3.3 and Table. 3.2 and the corresponding

optimal parameters are listed in Table. 3.3.
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Figure 3.3: Predicted vs measured HR of the 4 pigs using the Emax model.

ke

[min−1]

R0

[bpm]

Rm

[bpm]

I50

[mcg/kg/min]

λ

[N/A]

Pig 6 0.1050 131.5 52.90 0.2015 3.597

Pig 7 0.9387 105.7 160.0 0.4340 1.144

Pig 9 0.5400 129.8 57.19 0.2446 2.282

Pig 10 0.4157 104.3 70.66 0.2317 1.369

Table 3.3: Optimal parameters for the Emax model.

It should be noted that pig 7 never seems to actually achieve steady state, i.e.,

at the end of each dose level, the HR response is still increasing slightly, and thus it

causes the parameter Rm to saturate. This will result in a biased estimate of other

parameters for pig 7, however, we can do nothing about it.
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3.2.3 Atan Model

The Atan model has the following dose-response relationship:

R(t) = R0 +R0 × σ%× tan

(
π

2

Iλe
Iλe + Iλσ

)
≜ H(Ie(t)) (3.7)

where R0 is the baseline HR, R(t) the medication HR response, Ie(t) the effect site

dose, Iσ the dose required to increase the HR by σ% of its baseline value and λ the

Hill coefficient.

Again, in order for the system to be identifiable, the following matrix needs

to have full column rank according to the identifiability rank condition [35]:

A =



∂L0
FH

∂Ie

∂L0
FH

∂ke

∂L0
FH

∂Iσ

∂L0
FH

∂λ

∂L1
FH

∂Ie

∂L1
FH

∂ke

∂L1
FH

∂Iσ

∂L1
FH

∂λ

∂L2
FH

∂Ie

∂L2
FH

∂ke

∂L2
FH

∂Iσ

∂L2
FH

∂λ

∂L3
FH

∂Ie

∂L3
FH

∂ke

∂L3
FH

∂Iσ

∂L3
FH

∂λ


(3.8)

where L denotes the Lie derivative

L0
FH = H, L1

FH =
∂H

∂x
· F, Ln

FH = L1
F (L

n−1
F H), x = [Ie, ke, Iσ, λ] (3.9)

Since the matrix A is extremely tedious, the column rank of the matrix is

computed and verified using Mathematica:

The parameter constraints for different pigs are listed in Table. 3.4. Note that

here we have used the same parameter constraints regardless of the σ value in the

model.
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Figure 3.4: Computation of rank of the identifiability matrix for the Atan model.

ke

[min−1]

R0

[bpm]

Iσ

[mcg/kg/min]

λ

[N/A]

Pig 6 0.1-5.0 90.0-110.0 0-5.0 0-10.0

Pig 7 0.1-5.0 90.0-110.0 0-5.0 0-10.0

Pig 9 0.1-5.0 125.0-140.0 0-5.0 0-10.0

Pig 10 0.1-5.0 100.0-110.0 0-5.0 0-10.0

Table 3.4: Parameter bounds on 4 pigs with the Atan model.

The fitting result is shown in Fig. 3.5 and Table. 3.5 and the corresponding

optimal parameters are listed in Table. 3.6.
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Figure 3.5: Predicted vs measured HR of the 4 pigs using the Atan model. Predicted

HR using different σ are superimposed and plotted in the same figure.

RMSE [bpm] Pig 6 Pig 7 Pig 9 Pig 10

σ = 20 6.261 2.701 1.366 1.780

σ = 25 6.254 2.700 1.360 1.785

σ = 50 6.246 2.679 1.371 1.771

σ = 75 6.249 2.664 1.385 1.775

σ = 100 6.252 2.657 1.396 1.780

Table 3.5: RMSE of the fitted vs measured HR.

ke

[min−1]

R0

[bpm]

Iσ

[mcg/kg/min]

λ

[N/A]

Pig 6

σ = 20 0.1082 130.7 0.2029 2.361

σ = 25 0.1080 130.7 0.2288 2.347

σ = 50 0.1077 130.7 0.3381 2.215
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σ = 75 0.1077 130.7 0.4318 2.123

σ = 100 0.1077 130.6 0.5158 2.067

Pig 7

σ = 20 0.8829 104.2 0.0697 0.9722

σ = 25 0.8812 104.4 0.0944 0.9941

σ = 50 0.8907 104.8 0.2296 1.023

σ = 75 0.8984 104.9 0.3841 1.001

σ = 100 0.9014 104.9 0.5610 0.9747

Pig 9

σ = 20 0.5307 129.4 0.2236 1.901

σ = 25 0.5314 129.4 0.2600 1.872

σ = 50 0.5307 129.3 0.4275 1.750

σ = 75 0.5303 129.3 0.5803 1.684

σ = 100 0.5300 129.3 0.7221 1.646

Pig 10

σ = 20 0.4156 103.9 0.1232 1.217

σ = 25 0.4156 103.9 0.1556 1.210

σ = 50 0.4157 104.0 0.3317 1.146

σ = 75 0.4158 103.9 0.5316 1.100

σ = 100 0.4158 103.9 0.7488 1.071

Table 3.6: Optimal parameters for the Atan model.

It should be noted that we did not optimize σ during the system identification

process. Instead, we set σ = 20/25/50/75/100 and fit the models to the response
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separately. From Table. 3.5 we see that changing σ in the model merely has an

effect on the fitting. However, changing σ does influence the estimate of Iσ and λ

as expected.

3.2.4 Exponential Model

The Exponential model has the following dose-response relationship:

R(t) = R0 +
R0 × σ%

ln(1/3)
× ln

(
Iλσ

2Iλe + Iλσ

)
≜ H(Ie(t)) (3.10)

where R0 is the baseline HR, R(t) the medication HR response, Ie(t) the effect site

dose, Iσ the dose required to increase the HR by σ% of its baseline value and λ the

Hill coefficient.

Again, in order for the system to be identifiable, the following matrix needs

to have full column rank according to the identifiability rank condition [35]:

A =



∂L0
FH

∂Ie

∂L0
FH

∂ke

∂L0
FH

∂Iσ

∂L0
FH

∂λ

∂L1
FH

∂Ie

∂L1
FH

∂ke

∂L1
FH

∂Iσ

∂L1
FH

∂λ

∂L2
FH

∂Ie

∂L2
FH

∂ke

∂L2
FH

∂Iσ

∂L2
FH

∂λ

∂L3
FH

∂Ie

∂L3
FH

∂ke

∂L3
FH

∂Iσ

∂L3
FH

∂λ


(3.11)

where L denotes the Lie derivative

L0
FH = H, L1

FH =
∂H

∂x
· F, Ln

FH = L1
F (L

n−1
F H), x = [Ie, ke, Iσ, λ] (3.12)

Since the matrix A is extremely tedious, the column rank of the matrix is

computed and verified using Mathematica:

The parameter constraints for different pigs are listed in Table. 3.7. Note that
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Figure 3.6: Computation of rank of the identifiability matrix for the Exponential

model.

here we have used the same parameter constraints regardless of the σ value in the

model.

ke

[min−1]

R0

[bpm]

Iσ

[mcg/kg/min]

λ

[N/A]

Pig 6 0.1-5.0 90.0-110.0 0-5.0 0-10.0

Pig 7 0.1-5.0 90.0-110.0 0-5.0 0-10.0

Pig 9 0.1-5.0 125.0-140.0 0-5.0 0-10.0

Pig 10 0.1-5.0 100.0-110.0 0-5.0 0-10.0

Table 3.7: Parameter bounds on 4 pigs with the Exponential model.

The fitting result is shown in Fig. 3.7 and Table. 3.8 and the corresponding

optimal parameters are listed in Table. 3.9.
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Figure 3.7: Predicted vs measured HR of the 4 pigs using the Exponential model.

Predicted HR using different σ are superimposed and plotted in the same figure.

RMSE [bpm] Pig 6 Pig 7 Pig 9 Pig 10

σ = 20 6.196 2.837 1.286 1.736

σ = 25 6.205 2.777 1.303 1.733

σ = 50 6.231 2.669 1.356 1.750

σ = 75 6.243 2.648 1.381 1.765

σ = 100 6.249 2.643 1.395 1.774

Table 3.8: RMSE of the fitted vs measured HR.

ke

[min−1]

R0

[bpm]

Iσ

[mcg/kg/min]

λ

[N/A]

Pig 6

σ = 20 0.1066 131.1 0.2018 3.019

σ = 25 0.1068 131.0 0.2289 2.768

σ = 50 0.1073 130.7 0.3536 2.291
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σ = 75 0.1075 130.7 0.4610 2.141

σ = 100 0.1077 130.6 0.5559 2.067

Pig 7

σ = 20 1.053 107.1 0.0946 2.072

σ = 25 1.013 106.8 0.1123 1.787

σ = 50 0.9415 105.9 0.2359 1.260

σ = 75 0.9221 105.4 0.4076 1.099

σ = 100 0.9140 105.2 0.6178 1.022

Pig 9

σ = 20 0.5366 129.7 0.2249 2.199

σ = 25 0.5346 129.6 0.2659 2.054

σ = 50 0.5312 129.4 0.4602 1.775

σ = 75 0.5304 129.3 0.6358 1.685

σ = 100 0.5300 129.3 0.7969 1.642

Pig 10

σ = 20 0.4154 104.4 0.1232 1.5663

σ = 25 0.4155 104.3 0.1569 1.437

σ = 50 0.4157 104.0 0.3616 1.189

σ = 75 0.4158 103.9 0.6026 1.110

σ = 100 0.4158 103.9 0.8646 1.072

Table 3.9: Optimal parameters for the Exponential

model.

It should be noted that we did not optimize σ during the system identification
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process. Instead, we set σ = 20/25/50/75/100 and fit the models to the response

separately. From Table. 3.8 we see that changing σ in the model merely has an

effect on the fitting. However, changing σ does influence the estimate of Iσ and λ

as expected.

3.3 Sensitivity Analysis

In this section, we will perform sensitivity analysis using the above-mentioned

three models to determine the relative importance of the parameters in each model.

As we will mention in detail in Chapter 4.2, we specifically want to see that λ has

the least sensitivity so that we can fix λ at its nominal value in the controller set-

tings. The parameter sensitivity function is calculated using the formula in Khalil’s

”Nonlinear Systems” [36].

3.3.1 Emax Model

For the Emax model, the parameter set is θ = [ke, R0, Rm, I50, λ]
T . However,

we are only interested in the sensitivity of ke, I50 and λ. Using eqs. (3.2) and (3.4),

the sensitivity function is given by

ṠIe(t) =
∂F

∂Ie
SIe(t) +

∂F

∂θ
= −keSIe(t) +


u(t)− Ie(t)

0

0

 (3.13a)
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SR(t) =
∂H

∂Ie
SIe(t) +

∂H

∂θ

=
R0λI

λ
50I

λ−1
e (t)

(Iλ50 + Iλe (t))
2
SIe(t) +


0

−R0λI
λ−1
50 Iλe (t)

(Iλ50+Iλe (t))
2

−R0Iλ50(ln I50−ln Ie(t))Iλe (t)

(Iλ50+Iλe (t))
2

 (3.13b)

where SIe(t) =
[
∂Ie(t)
∂ke

, ∂Ie(t)
∂Iσ

, ∂Ie(t)
∂λ

]T
, SR(t) =

[
∂R(t)
∂ke

, ∂R(t)
∂Iσ

, ∂R(t)
∂λ

]T
, and θ =[

ke, I50, λ
]T
. Considering that limt→∞

∂Ie(t)
∂Iσ

= 0 and limt→∞
∂Ie(t)
∂λ

= 0, (3.13b)

reduces to the following:

SR(t) →


R0λIλ50I

λ−1
e (t)

(Iλ50+Iλe (t))
2

∂Ie(t)
∂ke

−R0λI
λ−1
50 Iλe (t)

(Iλ50+Iλe (t))
2

−R0Iλ50(ln I50−ln Ie(t))Iλe (t)

(Iλ50+Iλe (t))
2

 (3.14)

with ∂Ie(t)
∂ke

=
∫ t

0
e−ke(t−τ)[u(τ)− Ie(τ)] dτ . The sensitivity plot is shown in Fig. 3.8.

Figure 3.8: Sensitivity of the parameters using the Emax model.
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3.3.2 Atan Model

For the Atan model, the parameter set is θ = [ke, R0, Iσ, λ]
T . However, we are

only interested in the sensitivity of ke, Iσ and λ. Using eqs. (3.2) and (3.7), the

sensitivity function is given by

ṠIe(t) =
∂F

∂Ie
SIe(t) +

∂F

∂θ
= −keSIe(t) +


u(t)− Ie(t)

0

0

 (3.15a)

SR(t) =
∂H

∂Ie
SIe(t) +

∂H

∂θ

=
R0σλI

λ
σI

λ−1
e (t)π csc2(p)

2(Iλσ + Iλe (t))
2

SIe(t) +


0

−R0σλI
λ−1
σ Iλe (t)π csc2(p)
2(Iλσ+Iλe (t))

2

−R0σIλσ (ln Iσ−ln Ie(t))Iλe (t)π csc2(p)
2(Iλσ+Iλe (t))

2

 (3.15b)

where

p =
Iλσ

2(Iλσ + Iλe (t))
(3.16)

and SIe(t) =
[
∂Ie(t)
∂ke

, ∂Ie(t)
∂Iσ

, ∂Ie(t)
∂λ

]T
, SR(t) =

[
∂R(t)
∂ke

, ∂R(t)
∂Iσ

, ∂R(t)
∂λ

]T
, and θ =[

ke, Iσ, λ
]T
. Considering that limt→∞

∂Ie(t)
∂Iσ

= 0 and limt→∞
∂Ie(t)
∂λ

= 0, (3.15b) re-

duces to the following:

SR(t) →


R0σλIλσ I

λ−1
e (t)π csc2(p)

2(Iλσ+Iλe (t))
2

∂Ie(t)
∂ke

−R0σλI
λ−1
σ Iλe (t)π csc2(p)
2(Iλσ+Iλe (t))

2

−R0σIλσ (ln Iσ−ln Ie(t))Iλe (t)π csc2(p)
2(Iλσ+Iλe (t))

2

 (3.17)

with ∂Ie(t)
∂ke

=
∫ t

0
e−ke(t−τ)[u(τ)− Ie(τ)] dτ . The sensitivity plot is shown in Fig. 3.9.
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Figure 3.9: Sensitivity of the parameters using the Atan model.

3.3.3 Exponential Model

For the Exponential model, the parameter set is θ = [ke, R0, Iσ, λ]
T . However,

we are only interested in the sensitivity of ke, Iσ and λ. Using eqs. (3.2) and (3.10),

the sensitivity function is given by

ṠIe(t) =
∂F

∂Ie
SIe(t) +

∂F

∂θ
= −keSIe(t) +


u(t)− Ie(t)

0

0

 (3.18a)

SR(t) =
∂H

∂Ie
SIe(t) +

∂H

∂θ

=
R0σ

ln(3)

2λIλ−1
e (t)

Iλσ + 2Iλe (t)
SIe(t) +


0

− R0σ
ln(3)Iσ

2λIλe (t)
Iλσ+2Iλe (t)

− R0σ
ln(3)

2(ln Iσ−ln Ie(t))Iλe (t)
Iλσ+2Iλe (t)

 (3.18b)
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where SIe(t) =
[
∂Ie(t)
∂ke

, ∂Ie(t)
∂Iσ

, ∂Ie(t)
∂λ

]T
, SR(t) =

[
∂R(t)
∂ke

, ∂R(t)
∂Iσ

, ∂R(t)
∂λ

]T
, and θ =[

ke, Iσ, λ
]T
. Considering that limt→∞

∂Ie(t)
∂Iσ

= 0 and limt→∞
∂Ie(t)
∂λ

= 0, (3.18b) re-

duces to the following:

SR(t) →


R0σ
ln(3)

2λIλ−1
e (t)

Iλσ+2Iλe (t)
∂Ie(t)
∂ke

− R0σ
ln(3)Iσ

2λIλe (t)
Iλσ+2Iλe (t)

− R0σ
ln(3)

2(ln Iσ−ln Ie(t))Iλe (t)
Iλσ+2Iλe (t)

 (3.19)

with ∂Ie(t)
∂ke

=
∫ t

0
e−ke(t−τ)[u(τ)− Ie(τ)] dτ . The sensitivity plot is shown in Fig. 3.10.

Figure 3.10: Sensitivity of the parameters using the Exponential model.
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3.4 Discussion

3.4.1 More on Exponential Model

As mentioned earlier, we want λ to have the least sensitivity compared with

ke and Iσ/I50 so that we can fix λ at its nominal value in the controller and thus

to enable linear parametrization (see Chapter 4.2). From the results we obtained

above, it can be seen that for the Emax model the magnitude ratio between the

sensitivity of R(t) to ke versus λ and I50 versus λ are given by:∣∣∣∣SR,ke(t)

SR,λ(t)

∣∣∣∣ → λ

Ie(ln I50 − ln Ie(t))

∂Ie(t)

∂ke∣∣∣∣SR,Ie(t)

SR,λ(t)

∣∣∣∣ → λ

I50(ln I50 − ln Ie(t))
(3.20)

while for the Atan and Exponential model∣∣∣∣SR,ke(t)

SR,λ(t)

∣∣∣∣ → λ

Ie(ln Iσ − ln Ie(t))

∂Ie(t)

∂ke∣∣∣∣SR,Ie(t)

SR,λ(t)

∣∣∣∣ → λ

Iσ(ln Iσ − ln Ie(t))
(3.21)

Ideally, these two ratios should be as large as possible, i.e., the models sensi-

tivity to λ must be negligible relative to ke and Iσ/I50 [31]. However for the Emax

model, since we do not know the relative magnitude of Ie(t) and I50 before hand, it

is impossible to reliably guarantee that these ratios are going to be large and thus

making it less legitimate to use population averaged value for λ in the controller

settings. But for Atan and Exponential model, given that both ratios in (3.21)

are infinite if Iσ = Ie(t) (assuming that ∂Ie(t)
∂ke

̸= 0, which is always satisfied during

transients), one way to fulfill the requirements in (3.21) is to set Iσ as the value
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of Ie(t) in the steady state. This can be easily achieved, for example, by setting σ

consistently with the control set point (i.e., if the set point associated with R(t) is

σ∗ % increase from R0, set σ = σ∗).

At this point with the results from the system identification and sensitiv-

ity analysis, we can compare the pros and cons of the Emax model, Atan model

and Exponential model with more confidence. The Emax model is inarguably the

most popular model [33], but it faces the difficulties that either Emax is hard to

determine for individual subject or that if it is fixed at the therapeutically allowed

maximum value, we run the risk of having the experiment doses almost entirely in

the sub-maximal region and thus endangering the estimate of I50. The Atan and

Exponential model however, get around these issues by allowing the endpoints to go

to infinity (although it never will in the real world) and by setting the σ parameter

in accordance with the desired target point. The introduction of σ also brings along

another advantage, i.e., the sensitivity of λ is the least compared with ke and Iσ

at the steady state. Combined with the fact that the steady state is usually much

longer than the transient state in the actual clinical settings, it makes the choice to

use population averaged λ in the controller more legitimate. Within the Atan and

Exponential model, the dose-response curve for the Atan model approaches a ver-

tical line (i.e., the subject responds more and more violently with increasing dose)

which does not make physiological sense. The Exponential model, in contrast, has

a very similar three-phase dose-response curve as the Emax model. In particular,

since the derivative of the natural log function approaches zero at the end, marginal

dose effect is going to decrease when the dose is very large which resembles the
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Emax model. Despite all the aforementioned advantages, the Exponential model

still have one disadvantage, i.e., since the dose-response curve of the Exponential

model assumes no upper bound whereas the Emax model does have one, the Expo-

nential model can only mimic the behavior up to a certain dose level. However, this

is compensated by the fact that (1) the estimated HR from the Exponential model

is the same as that from the Emax model at the steady state and (2) the transient

tracking error can be alleviated by using larger controller gains.

3.4.2 Accuracy of Parameter Estimation

The results of the system identification analysis (see Table. 3.8) using ex-

perimental data showed that the Exponential model could reproduce experimental

dose-response relationship accurately regardless of the choice of σ (Fig. 3.11; also

see the consistency in the RMSE values against different σ values in Table. 3.10).

In addition, the estimated model parameters were plausible. Specifically, we antici-

pated that Iσ value would be estimated to be proportional to σ due to its definition,

while ke and λ values would be independent of σ. Table. 3.10 clearly shows these

anticipated trends: on the average, the variability in ke and λ with respect to σ was

small, while Iσ exhibited a much larger variability with a proportionally increasing

trend with σ, which is consistent with the notion that Iσ designates the infusion

rate corresponding to σ % increase in response from the baseline.

Fig. 3.12 compares Iσ values obtained directly from experimental data versus

estimated from system identification. We extracted the former from the experimen-
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Figure 3.11: Representative example of intravenous versus model-predicted hypo-

thetical effect site norepinephrine (NE) infusion rates (left), and the resulting mea-

sured versus model-predicted heart rate (HR) responses (right) in an animal.

RMSE [bpm] ke [min−1] Iσ [mcg/kg/min] λ [·]

σ = 25 1.3-6.2 0.11-1.0 0.11-0.27 1.4-2.8

σ = 50 1.3-6.2 0.11-0.94 0.24-0.46 1.2-2.3

σ = 75 1.4-6.2 0.11-0.92 0.41-0.64 1.1-2.1

σ = 100 1.4-6.2 0.11-0.91 0.56-0.87 1.0-2.1

Table 3.10: Root-mean-squared prediction errors (RMSEs) and the range of model

parameter values associated with all animals with respect to σ.
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tal data by (i) computing the % increase in HR at the end of each step infusion dose

(e.g., 0.05, 0.1, 0.15, and 0.2 mcg/kg/min in Fig. 3.11; % increase was computed as

the average of the last 1 minute associated with each infusion dose), (ii) denoting

the % increase in HR associated with each infusion dose as σ, and (iii) defining

Iσ as the corresponding step infusion dose (e.g., 0.05 mcg/kg/min in Fig. 3.11 was

defined as I6, because it resulted in 6 % increase in HR). Overall, measured and es-

timated Iσ values were consistent in all animals, which supports quantitatively the

validity of the dose-response model derived from the system identification (except

in pig 6, in which the medication distribution dynamics was slow (ke = 0.11min−1,

corresponding to a 2 % settling time of 35.6 min) and steady state was not reached

within the step infusion duration of 10 min). The other explanation to the defect in

Pig 6 may be that the HR response during 5-15 min is lower than expected for some

unknown reason since the HR during this period is almost lower than HR during

all the other dose levels (as shown in Fig. 3.7) whereas the dose level corresponding

to this period (0.2 mcg/kg/min) is not. If we exclude this portion of the data in

the fitting process, i.e., the fitting error is this portion of the data is not considered

in minimizing the cost function (3.1), the result is shown in Fig. 3.13 and average

fitting error reduces from around 6.2 bpm to around 5.8 bpm. It can be seen that

the Iσ estimates from both sources agree better than before. However, this does not

necessarily means that this explanation is preferred over the previous one. Instead

we simply observe the defect between the measured data and estimated response

and propose reasonable causes that account for the discrepancy, and more rigorous

reasoning should come from further animal experiments.
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Figure 3.12: Comparison of Iσ values obtained directly from experimental data

(circle) versus estimated from system identification (triangle).

Figure 3.13: Comparison of Iσ values obtained directly from experimental data

(circle) versus estimated from system identification (triangle) with a portion of the

data in Pig 6 excluded from system identification process.
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Considering that the traditional Emax model and the Exponential model are

different in terms of the way the steady-state infusion dose parameter is specified,

the ability to estimate Iσ accurately is a meaningful strength of the Exponential

model. The former specifies IEmax
50 with respect to the maximum response, whereas

the latter specifies Iσ with respect to the baseline response. Thus, the accuracy

of IEmax
50 is subject to compromise in case the maximum response is inadequately

estimated (which is highly probable in real clinical settings now that it is extremely

challenging to estimate the maximum response in the absence of response data

associated with very high infusion dose regimes). In contrast, the accuracy of Iσ is

easier to guarantee because the baseline response is almost always available.

Although the accuracy and parametric plausibility of the Exponential model

were shown to be robust against the choice of σ, it is not clear what is the best choice

of σ to maximize its amenity to control design and system identification. Considering

that parametric accuracy is an important requirement for system identification, it is

desired that the model parameters (especially Iσ which dictates the models steady-

state validity) is accurately estimated. Thus, we want to investigate the parametric

accuracy of the Exponential model with respect to the infusion rate amplitude and

the value of σ. Of particular interest was to gain insights as to how to set the

value of σ when an infusion rate input is given in order to maximize the accuracy of

Iσ. To this end, we constructed a ground truth Emax model (3.22), where R̄0, k̄e,

ĪEmax
50 , and λ̄ denote nominal (i.e., average) parameters obtained from the system

identification of the Emax model in all the animals, and R̄m the maximum possible

change in response (specified as twice the maximum change in response across all
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the animals):

İe(t) = −k̄eIe(t) + k̄eu(t), R(t) = R̄0 + R̄m
I λ̄e (t)

I λ̄e (t) +
(
ĪEmax
50

)λ̄ (3.22)

Note that ĪEmax
50 in (3.22) denotes the steady-state infusion rate to elicit 50%

of maximum response R̄m. Then, we simulate the ground truth Emax model with

a set of infusion rate inputs to generate input-output data pairs, and identify the

Exponential model associated with each input-output data pair. We specifically

employed 3 step infusion rate inputs to simulate the ground truth model, with

the maximum rates corresponding to 25%, 50%, and 75% increases in response

relative to the baseline. In identifying the Exponential model for each input-output

data pair, we used σ = 20, 25, 50, 75, 100. Then, we examined the accuracy of the

identified Iσ values.

Figure 3.14: Estimation error associated with Iσ of model Mσ, σ = 20, 25, 50, 75, 100

when subject to 25 %, 50 %, and 75 % step increase in HR. (a) 25 % HR increase.

(b) 50 % HR increase. (c) 75 % HR increase.

Fig. 3.14 shows that the error associated with Iσ estimated from step response

system identification is minimized when σ is set to the actual steady-state % change

in the systems response. These results suggest that semi-adaptive control may bene-
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fit from setting σ consistently to the specified target set point (i.e., the % difference

between the baseline state and target), by minimizing the unwanted influence of

λ on control efficacy as well as estimation error on Iσ. Note that σ may be reset

recursively, e.g., each time the target set point is varied by the caregiver.

3.4.3 Tuning the Sensitivity

In Chapter 3.4.1, we have proven that the sensitivity of the Exponential model

to λ relative to ke and Iσ can be made small by specifying σ in the model as the

percent change in response induced by the infusion rate inputted to the model. To

verify this, we constructed nominal dose-response models, denoted as Mσ, relating

NE infusion rate to HR associated with different values of σ based on the dose-

response models obtained from system identification (Table. 3.3). We specifically

considered σ = 25, 50, 75, 100. Then, we excited eachMσ using 4 step inputs eliciting

25 %, 50 %, 75 %, and 100 % change in HR, and examined the time evolution of

the parametric sensitivity functions (3.18). In particular, we compared the relative

magnitudes of the parametric sensitivity functions across all the 4 nominal models

for each step infusion rate input to examine if the models sensitivity to λ is the

smallest when σ used in the model is consistent with the input applied to the model.

Fig. 3.15 shows that the sensitivity of the response to λ can be made zero (after

initial transient) by setting the value of σ incorporated in the Exponential model

(3.10) to the actual % change in response.
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Figure 3.15: Time evolution of parametric sensitivity functions associated with mod-

els Mσ, σ = 25, 50, 75, 100. (a) 25 % HR increase. (b) 50 % HR increase. (c) 75 %

HR increase. (d) 100 % HR increase.

For all of the reasons above, we are going to use Exponential model (combing

with the DDDR model) to describe the full dose-response relationship of NE and

implement the model into the controller in the following chapter.
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Chapter 4: Semi-Adaptive Closed-Loop Controller Design

4.1 Overview

Closed-loop control of medication infusion has been an active field of research

for a few decades in critical care medicine, with a large number of work reported

on closed-loop control of anesthesia, analgesia, and neuromuscular blockade [9–12].

These medications commonly exhibit depressive dose-dependent effects, often with

minimum possible response of zero. For example, propofol depresses the degree

of consciousness, which is measured by indices such as BIS ranging between 100

(fully awake) and 0 (fully asleep) [37]. Remifentanil depresses respiratory rate,

also ranging between its nominal value (when not infused) and zero (in case over-

dosed) [38, 39]. The boundedness of the range of response with its explicit upper

(baseline) and lower (zero) limits facilitated the use of classical dose-response models,

e.g., the Emax model [20], in designing closed-loop controllers for infusion of these

medications (see, e.g., [18, 21–28]).

In contrast to the above, medications such as vasopressors and inotropes ex-

hibit excitatory dose-dependent effects. A unique challenge associated with closed-

loop control of such medications is that the upper limit of medication-induced ex-

citatory response (a parameter that must be specified to characterize the Emax
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model) is unknown. In fact, it is extremely difficult, if not impossible, to determine

the upper limit of response in a patient in real clinical settings due to patient safety

and ethical considerations. A conceivable alternative may be to estimate the upper

limit via advanced control techniques, e.g., adaptive control. However, given that

the infusion rate may mostly reside in sub-maximal dose regime (where desired effect

is maximized while dangerous side effects are prevented), the credibility of estimated

upper response limit (and accordingly, other parameters in the model influenced by

the upper response limit) is expected to be low due to the rare incidence of appro-

priate dose-response data in the neighborhood of maximal dose regime. Despite this

prominent challenge, there has not been rigorous research effort to establish model-

based closed-loop control techniques for infusion of these medications. In fact, most

existing work employ empiric model-free techniques such as PID, fuzzy logic, and

rule-based techniques [40–42].

In an attempt to address this challenge, we present a semi-adaptive closed-loop

control approach to infusion of medications that exhibit excitatory dose-dependent

effects. We developed a new dose-response model (the Exponential model, as men-

tioned in the previous chapters) by extending a classical dose-response model (the

Emax model) used for medications with depressive effects by a nonlinear trans-

formation, and extended a semi-adaptive control approach developed in our prior

work [31], applicable to depressive dose-response relationship, to the new dose-

response model. Two key advantages of the proposed model are that it can capture

dose-response relationship from baseline up to target set point, and that it enables

linear parameterization, thereby facilitating the control design task. We will ex-
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amine the efficacy of the proposed approach using an example of heart rate (HR)

response to a vasoactive medication norepinephrine (NE).

4.2 Semi-Adaptive Control Design

Here in this chapter we will use the aforementioned Exponential model in

the controller design. For the sake of convenience, we reformulate the Exponential

model as follows (Fig 4.1)

İe(t) = −keIe(t) + keu(t) ≜ F
(
Ie(t)

)
(4.1a)

x(t) = 1− Iλe (t)

Iλσ + 2Iλe (t)
(4.1b)

R(t) = R0

[
1 + kσ ln

x(t)

2− x(t)

]
≜ H

(
Ie(t)

)
(4.1c)

Figure 4.1: Structure of the Exponential model used to describe excitatory dose-

response relationships.

where u(t) is the intravenous medication infusion rate, Ie(t) the infusion rate

at the (hypothetical) effect site, ke the time constant associated with the distribution

of medication between blood and effect site, x(t) the output of the Emax model with
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cooperativity constant λ, R(t) the medication response, R0 the baseline response

(i.e., in the absence of medication infusion), and kσ a constant specifying the degree

of medication effect. This model consists of a classical Emax model eqs. (4.1a)

and (4.1b) (in which the minimum response is assumed to be zero, i.e., the maximum

dose-dependent effect is equal to R0; see (4.1b)) and a nonlinear transformation

(4.1c) in the form of inverse logistic function. In fact, noting that (4.1c) can be

rewritten as follows:

x(t) =
2e(R(t)−R0)/(R0kσ)

1 + e(R(t)−R0)/(R0kσ)
(4.2)

Equation (4.1c) transforms 0 < x(t) ≤ 1 to R0 ≤ R(t) < ∞ in case k < 0 (Fig. 1).

In addition, noting that x(t) = 1/2 and R(t) = R0[1− k ln 3] when Ie(t) = Iσ, Iσ is

defined as the effect site infusion rate associated with σ % increase in response R(t)

from the baseline R0 by specifying kσ = −σ/ ln 3 :

Ie(t) = Iσ → x(t) =
1

2
→ R(t) = R0[1− kσ ln 3] = R0[1 + σ] (4.3)

In our prior work, we developed a semi-adaptive control approach to the infu-

sion of medications with depressive dose-response relationship [31]. The key idea of

the approach was to enable linear parameterization of the Emax model (eqs. (4.1a)

and (4.1b)) by fixing its low-sensitivity parameter λ at a nominal value. To extend

the semi-adaptive control paradigm to the Exponential model (4.1), it is of interest

to examine the parametric sensitivity associated with this model. As we have shown

in Chapter 3.4, λ can be made to be the least sensitivie by setting σ in accordance

with the desired target point. Hence, λ can be safely replaced by its population

averaged value.
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Under the assumption that λ is fixed at a nominal value in (4.1), the Exponen-

tial model (4.1) can be cast into a linearly parameterized model. From eqs. (4.1b)

and (4.2), Ie(t) can be expressed in terms of R(t) as follows:

Ie(t) = Iσ
λ̄

√
1− e(R(t)−R0)/(kσR0)

2e(R(t)−R0)/(kσR0)
≜ Iσy(t) (4.4)

where λ̄ is the nominal value of λ. Then, the dynamics associated with Ie(t) in

(4.1a) can be expressed in terms of the transformed output variable y(t) as follows:

ẏ(t) = −key(t) +
ke
Iσ

u(t) (4.5)

which can be linearly parameterized with respect to ke and ke/Iσ . Hence, standard

adaptive control techniques, such as model reference adaptive control (MRAC) [43],

can be employed to regulate y(t), and accordingly, R(t). To this end, consider the

following reference model dictating the desired behavior of the closed-loop controlled

medication response:

ẏm(t) = −amym(t) + amr(t) (4.6)

where ym(t) is the desired response, r(t) the bounded reference, and am a positive

constant. The goal of control design is to formulate an adaptive control law to

asymptotically drive y(t) towards ym(t): limt→∞ y(t) = ym(t). Building upon the

MRAC technique, consider the control law given by:

u(t) = âr(t)r(t) + ây(t)y(t)− pe(t) (4.7)

where e(t) = y(t)−ym(t) is the tracking error, âr(t) and ây(t) the adaptive feedback

gains, p the non-adaptive feedback gain. It can be shown that the plant dynamics
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(4.5) is perfectly matched to that of the reference model if âr(t) = ar = am
Iσ
ke

and

ây(t) = ay = (ke − am)
Iσ
ke
. Yet, in practice, ar and ay are unknown and must be

estimated from dose-response data. If we define the discrepancy between ar and ay

versus âr(t) and ây(t) as follows:

ãaa(t) ≜

ãr(t)
ãy(t)

 =

 âr(t)− am
Iσ
ke

ây(t)− (ke − am)
Iσ
ke

 (4.8)

The dynamics of the tracking error associated with the control law (4.7) is given by:

ė(t) = ẏ(t)− ẏm(t)

= −key +
ke
Iσ

[
âr(t)r(t) + ây(t)y(t)− pe(t)

]
+ amym(t)− amr(t)

= −
(
am +

ke
Iσ

p

)
e(t) +

ke
Iσ

(
ãr(t)r(t) + ãy(t)y(t)

)
= −

(
am +

ke
Iσ

p

)
e(t) +

ke
Iσ
ãaaT (t)ϕϕϕ(t) (4.9)

where ϕϕϕ(t) = [r(t), y(t)]T . If we emply the following Lyapunov function can-

didate to design the adaptative law for âr(t) and ây(t):

V
(
e(t), ãaa(t)

)
=

1

2
e2(t) +

1

2

ke
Iσ
ãaaT (t)ΓΓΓ−1ãaa(t) (4.10)

where Γ =
[
γ1 0
0 γ2

]
and γ1, γ2 > 0 are the adaptive gains, the time derivative of the

Lyapunov function candidate becomes:

V̇
(
e(t), ãaa(t)

)
= e(t)ė(t) +

ke
Iσ
ãaaT (t)ΓΓΓ−1 ˙̃aaa(t)

= e(t)

[
−

(
am +

ke
Iσ

p

)
e(t) +

ke
Iσ
ãaaT (t)ϕϕϕ(t)

]
+

ke
Iσ
ãaaT (t)ΓΓΓ−1 ˙̃aaa(t) (4.11)

Hence, V̇
(
e(t), ãaa(t)

)
can be made negative semi-definite with the following
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adaptive law:

˙̃aaa(t) =

 ˙̂ar(t)

˙̂ay(t)

 = −ΓΓΓϕϕϕ(t)e(t) (4.12)

Indeed,

V̇
(
e(t), ãaa(t)

)
= −

(
am +

ke
Iσ

p

)
e2(t) ≤ 0 (4.13)

Now that V
(
e(t), ãaa(t)

)
is positive definite and V̇

(
e(t), ãaa(t)

)
is negative semi-

definite, it can be concluded that V
(
e(t), ãaa(t)

)
is bounded. Hence, the plant (4.5)

subject to the control law (4.7) with the adaptive law (4.12) is globally stable, and

the signals e(t), ãr(t), and ãy(t) are bounded. Then, it can be claimed that e(t) is also

bounded from (4.9). This means that V
(
e(t), ãaa(t)

)
is bounded, and as a consequence,

V
(
e(t), ãaa(t)

)
is uniformly continuous. Therefore, Barbalats Lemma [43] dictates that

limt→∞ V
(
e(t), ãaa(t)

)
= 0, which, together with (4.13), leads to limt→∞ e(t) = 0.

4.3 Semi-Adaptive Control Evaluation

To validate and analyze the efficacy of the semi-adaptive control based on

the proposed new dose-response model, we conducted a set of in-silico testing as

follows. First, we constructed 100 in-silico subjects as plant models in the form of the

Emax model (3.22), by randomizing its parameters within the respective parametric

range obtained from the Emax models identified for all the animals while setting

R̄0 = 118. Second, we simulated the proposed semi-adaptive control law (4.7) and

(4.12) in these plant models. Especially, we simulated the control law with r(t)

corresponding to the set points of 25 %, 50 %, and 75 % increase in HR response

with respect to the baseline (hence a total of 300 in-silico tests) to examine the
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efficacy of the controller across diverse target set points. For each given set point,

we incorporated the corresponding value of σ in control design, i.e., in transforming

R(t) to y(t) via (4.4). We likewise simulated a non-adaptive controller (in which

˙̂ar(t) = ˙̂ay(t) = 0 in (4.12) with âr(t) = am
Īσ
k̄e

and ây(t) = (k̄e − am)
Īσ
k̄e
∀t, where k̄e

and Īσ are nominal values) under the same scenarios to compare semi-adaptive and

non-adaptive controls. Third, we quantified the performance of the controllers in

terms of the speed of response (5 % settling time), root-mean-squared error (RMSE)

during the transient (defined as the first 9.5 min of HR response), and steady-state

error. Fourth, we examined the quality of the parameters estimated by the adaptive

law (4.12) by computing the discrepancy between true versus estimated Iσ in the

steady state in all the subjects associated with all the set points.

To perform realistic in-silico testing, we incorporate the following details.

First, we simulate measurement noise: we use a zero-mean white noise with a stan-

dard deviation (SD) of 1.4 bpm based on the noise characteristics observed from

our experimental data. Second, we simulate zero-order-hold and quantization to

account for finite temporal and spatial resolutions in controller computation: we

use 1 Hz sensing and control update rates as well as 1 bpm HR resolution. Third,

we robustify the control law: we augment the control law with (i) a 15-th order

causal moving average filter to mitigate the adverse influence of measurement noise;

and (ii) a dead zone scheme to prevent the drift of parameter estimates when the

patients HR response is regulated at a target set point.

To produce 100 randomized Emax models, we use the following paramet-

ric envelopes obtained from system identification: 0.11min−1 ≤ ke ≤ 0.94min−1,
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0.20mcg/kg/min ≤ I50 ≤ 0.43mcg/kg/min, and 1.1 ≤ λ ≤ 3.6. To implement

the semi-adaptive control law, we use the following parameters: am = 0.3min−1,

Γ =
[ −3 0

0 −5

]
, and p = 2.5. In addition, we set a dead zone width of 2.0 bpm

considering the measurement noise characteristics.

4.3.1 Results and Discussion

Table. 4.1 summarizes the performance of semi-adaptive control relative to

non-adaptive control in terms of transient and steady-state characteristics, while

Fig. 4.3 illustrates representative in-silico testing cases associated with semi-adaptive

versus non-adaptive control. Here, we selected the best and worst cases as follows:

(i) we normalized the transient RMSE and steady-state error in each individual

by their respective mean values; (ii) we computed the aggregated error associated

with each individual as the sum of the normalized transient RMSE and steady-state

error; and (iii) we selected the best and worst cases as the individuals associated

with minimum and maximum aggregated error, respectively. Overall, semi-adaptive

control achieved superior consistency in transient response to its non-adaptive coun-

terpart: (i) its 5% settling time was persistently close to the target value of 10.0

min while non-adaptive control suffered from large variability (up to 76% from the

target in terms of mean value); and (ii) RMSE in reference model tracking during

the transient was > 30% smaller in semi-adaptive than in non-adaptive control.

In addition, semi-adaptive control outperformed non-adaptive control in terms of

steady-state performance as well: the mean and standard deviation of absolute HR
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error in the steady state were > 41.3% and > 17% smaller in semi-adaptive than in

non-adaptive control, despite the dead zone scheme incorporated in the former that

negatively impacted its steady-state tracking performance. The standard deviation

of transient RMSE (both SA and NA cases) and steady-state error (NA) is rougly

proportional to the amount of increase of HR (see Fig. 4.2), which is as expected

due to the random distribution of the parameters of the random subjects. The stan-

dard deviation of steady-state error in SA case is almost constant despite of the σ

value because it is only affected by dead-zone and white noise (since Iσ estimate will

converge to its true value in the end) and thus it is much smaller than that of NA

case. In sum, the results strongly indicate that semi-adaptive control is superior to

its non-adaptive counterpart in achieving uniform response characteristics against

large inter-individual variability in dose-response relationship.

Set Point

(% HR Change)

Control
Settling Time [min]

(Target: 10.0 min)

Transient RMSE

[bpm]

Steady-state Error

[bpm]

25
SA 9.35± 1.33 1.05± 0.128 0.810± 0.528

NA 8.51± 1.64 1.50± 0.220 1.38± 0.636

50
SA 10.5± 0.766 1.12± 0.213 0.601± 0.403

NA 13.0± 1.79 2.14± 0.582 2.20± 0.690

75
SA 10.7± 0.566 1.40± 0.281 0.745± 0.533

NA 17.6± 2.24 4.96± 1.59 5.82± 1.79

Table 4.1: Performance of semi-adaptive and non-adaptive controllers associated

with 25%, 50%, and 75% change in set point response with respect to the baseline.

SA: semi-adaptive control. NA: non-adaptive control.
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Figure 4.2: Errorbar plot of the controller performance comparison in Table. 4.1.

Figure 4.3: Representative in-silico testing cases. (a) Semi-adaptive control. (b)

Non-adaptive control.
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Note that, although the influence of λ on the steady-state performance of semi-

adaptive control can be removed by setting σ according to the target set point, its

influence on transient response may still persist. In particular, λ smaller (greater)

than its nominal value tends to elicit fast (slow) transient response through an

increase in the dose-response sensitivity, and Iσ smaller (greater) than its nominal

value, as well as ke greater (smaller) than its nominal value, exert an synergistic

influence on this tendency through a further increase in the dose-response sensitivity

and the speed of medication distribution dynamics.

Fig. 4.4 presents the distribution of Iσ errors associated with the semi-adaptive

control in response to 25%, 50%, and 75% target set points (N=100 each). The

estimates of Iσ were highly accurate regardless of target set point (< 8.6%), which

may not be surprising considering the large sensitivity of the systems response to

Iσ (Fig. 3.15). But more obviously, it is expected to be estimated without any

error in theory, because Iσ is nothing but the infusion rate in the steady state when

σ is set to the % change in response from the baseline. In fact, the small errors

shown in Fig. 4.4 were incurred mostly due to the dead zone scheme, which stopped

adaptation under small set point tracking errors, as well as the measurement noise.

The ability to accurately estimate Iσ is an advantage in that the knowledge of Iσ may

be useful in securing the safety of semi-adaptive control by preventing the infusion

of unacceptably high dose beyond the therapeutic limit of each patient.
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Figure 4.4: Distribution of Iσ errors associated with semi-adaptive control in re-

sponse to 25%, 50%, and 75% target set points.
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Chapter 5: Conclusions and Future Works

In this thesis we have proposed a new dose-response model to describe ex-

citatory dose-dependent effects and presented the application of a semi-adaptive

control approach to this model using norepinephrine (NE) as the drug and heart

rate (HR) as the desired endpoint. An immediate extension to this work would be to

consider a multi-input-multi-output version of the system, i.e., infusion of multiple

vasopressors and simultaneous control of multiple endpoints. Besides, the proposed

semi-adaptive controller along with the new model has not been used and tested in

any in-vivo animal experiments, and thus it remains a question as to how good the

controller would perform in the real experiments despite of the good results obtained

from in-silico computer simulations. Since in the simulation we used Emax model to

generate the hypothetical HR response and the response from a real animal would

undoubtedly be different from that, therefore an in-vivo experiment is needed to

evaluate the efficacy of the proposed controller.

Besides, the DDDR model used in this new model assumes no time-delay,

i.e., the drug arrives at the effect site immediately after the infusion. Although

there is no obvious evidence from the experimental data supporting the existence

of the time-delay in the system, it is still counter-intuitive to believe that the drug
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achieves instantaneous distribution at the effect site. Hence, it might be interesting

to introduce time-delay into the system. By doing so, the stability of the controller

also needs to be reconsidered since time-delay in the feedback process can seriously

deteriorate the performance of the controller.

Additionally, it might also be of interest to investigate the accurateness of

Emax model as the base model. It is shown in the area of anesthesia control that the

parameters of Emax model (EC50 and shape factor λ) are different for induction and

recovery [44], i.e., loss of consciousness and recovery of consciousness might be two

asymmetrical processes. Although there has not been reports with similar evidence

on the vasopressor, it is definitely worth the time and effort to better understand

the underlying mechanism of vasopressors, ideally all the way down to the molecular

level so that models that better describe the process could be invented.

In the controller simulation, the artificial pump delivers whatever infusion rate

that is obtained by the adaptive law. In many of the cases, spikes, i.e., the abrupt

change in the infusion rate, appears during the infusion. In reality, however, the

actual infusion profile would be much smoother than its theoretical counterpart

because the pump itself is subject to its own dynamics. It takes time for the pump

to start or stop the infusion or to transit to a new infusion rate, but the pump

dynamics is not considered in the simulation. Therefore, future work may consider

incorporating the pump dynamics (perhaps as a first-order system) to the entire

model so that the calculated infusion rate can be more realistic.

Besides, it is assumed that baseline value of HR can be accurately obtained

in this work, which is normally the case because it can be obtained by making
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the patient lie down on the bed doing nothing and then average the measured HR

during the period. However, for those who suffer from severe injuries and are sent

to the hospital for emergent treatment, it is neither ethical to waste precious time

to try to measure the baseline value of various endpoints, nor it is possible to do

this because the endpoints of these patients are already far away from normal values

and are changing rapidly due to the injuries. Thus, the effect of not being able to

have accurate baseline value should also be studied.

Ultimately, since closed-loop control of infusion control is only a part of the

bigger picture, which is to develop a fully automated critical care monitoring system,

it is of great importance to understand how to put different subsystems together

and have them work seamlessly without any conflicts.
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