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Scale-free vision-based aerial control of a ground formation

with hybrid topology

Miguel Aranda, Youcef Mezouar, Gonzalo López-Nicolás and Carlos Sagüés

Abstract—We present a novel vision-based control method to
make a group of ground mobile robots achieve a specified for-
mation shape with unspecified size. Our approach uses multiple
aerial control units equipped with downward-facing cameras,
each observing a partial subset of the multirobot team. The units
compute the control commands from the ground robots’ image
projections, using neither calibration nor scene scale information,
and transmit them to the robots. The control strategy relies
on the calculation of image similarity transformations, and we
show it to be asymptotically stable if the overlaps between
the subsets of controlled robots satisfy certain conditions. The
presence of the supervisory units, which coordinate their motions
to guarantee a correct control performance, gives rise to a hybrid
system topology. All in all, the proposed system provides relevant
practical advantages in simplicity and flexibility. Within the
problem of controlling a team shape, our contribution lies in
addressing several simultaneous challenges: the controller needs
only partial information of the robotic group, does not use
distance measurements or global reference frames, is designed
for unicycle agents, and can accommodate topology changes. We
present illustrative simulation results.

I. INTRODUCTION

Compared to single-robot setups, multirobot systems pro-

vide increased efficiency and reliability, which makes them a

very popular research subject. We address here the particular

problem of formation shape control, where multiple robots

move to collectively form a desired shape with unspecified

location, rotation, and size [1]. As opposed to team formations

defined as rigid, fixed-size patterns of agent positions [2]–[6],

we study here formations specified only by angular constraints,

also known in the literature as bearing formations. Controlling

them is a problem of current interest [7]–[15], crucial in any

application scenario where only angular measurements are
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available. Also, such shape control allows, e.g., to regroup the

agents in an organized manner before addressing a subsequent

task, create desired vicinities (with no specific regard for

distances) between concrete agents, or form a certain favorable

shape as fast as possible, e.g., to react to a threat. Here, we

investigate this relevant problem considering an infrastructure-

free scenario, in the sense that the proposed robotic system

does not depend on any elements external to itself (e.g., GPS

or motion capture data), which is interesting in practice for

flexibility and robustness. To this end, the use of vision sensors

is quite appealing. Cameras naturally lend themselves to angle-

based control, and enable various multirobot behaviors, e.g.,

coordinated motion [16] and orientation alignment [17]. Aerial

vision has been identified as particularly interesting for control

and environment perception tasks in robotics [18]–[25], due to

cameras being low-weight sensors that provide very rich data.

Properties of the aerial vision-based framework: We build

here on a control framework of ground formations with speci-

fied size that we presented in [21], [23]. Our method is based

on a two-layer architecture where a set of downward-facing

cameras onboard Unmanned Aerial Vehicles (UAVs) are used

to observe and control the ground robots. The system setup

proposed is illustrated in Fig. 1. The aerial units detect and

identify the robots, and measure their position and heading,

using image information. They compute a similarity from

their current image and a template image (which encodes

the desired shape) to define the motion goals for the ground

robots. Crucially, each UAV controls only a partial subset

of the robots, and uses solely uncalibrated image informa-

tion. No common reference frame among UAVs is needed,

and they can displace and rotate while hovering throughout

execution without affecting the control convergence. These

prominent practical advantages facilitate simple, robust and

flexible implementation (see Section VIII). We require certain

overlaps between subsets, and establish how a ground robot

receiving multiple commands integrates them to compute its

movement. Via Lyapunov-based analysis, we show that the

proposed controller makes the team asymptotically reach the

prescribed shape. We also provide a method for the UAVs to

control their motions to appropriately cover the ground agents.

In terms of topology (i.e., the interactions between elements of

the multiagent system), our framework is hybrid; this means

that it is neither centralized (there are multiple UAVs, each

handling partial information) nor purely distributed, because

each UAV acts as a central node for a subset of robots.

Related literature on formation shape control: The litera-

ture on non-centralized control of bearing formations requires

each agent to satisfy desired angular constraints with respect

to a subset of the other agents. To guarantee the achieve-
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ment of the prescribed team shape, the interaction graph

that encapsulates the system’s topology must satisfy parallel

(or bearing) rigidity conditions. Within this framework, [8],

[9], [11] present distributed control laws for these formations

relying only on angular measurements, while in [7] distances

are also used. The work [13] uses only bearings and requires

the robots to synchronize their orientations during execution.

All these approaches need the relative angles used by the

agents to be expressed in a common orientation reference,

contrary to our method, where the measurements are expressed

in the different and independent image frames of the multiple

cameras. Importantly, in these related methods the final team

shape has a constrained orientation in the workspace. For

numerous applications (e.g., team navigation in formation),

a pattern with no constraints on its orientation –as allowed

by our method– is more flexible and efficient. The controller

in [14] stems from principles of SE(2) rigidity theory. Each

agent uses locally expressed bearings and the relative ori-

entation of neighboring agents’ frames. The scheme in [12]

employs a topological representation via the complex graph

Laplacian, and also controls the team shape without global

references, albeit using both angles and distances. Similar

information is assumed in [10] and [15], which deal with

formations of adjustable size. The topology of the system may

change over time, and the study of such changes is a prevalent

topic [26], [27]. Unlike in the works cited above, here we

investigate this switching topology scenario, and we assume

the ground robots have nonholonomic (unicycle) kinematics.

Statement of contributions: Relative to the literature on for-

mation shape control, our contribution lies in that we consider

more challenging conditions. Specifically, our non-centralized,

partial information-based method requires no global reference

frames and relies solely on pixel image information and no

range measurements. We consider unicycle agents, and study

the stability under switching topologies. Also, our proposed

hybrid architecture represents a novel perspective on the prob-

lem, with practical advantages in, e.g., ground robot simplicity,

task supervision and flexibility, discussed in Section VIII.

Our previous method proposed in [23] also considers a two-

layer framework and a similar scenario, controlling a fixed-size

ground formation with cameras that can perform team scale

adjustments using supplementary information. In this paper we

present novel contributions relative to that work:

• Here, the size of the obtained formation is flexible, a property

that cannot be achieved with the method in [23], and that is

significant and interesting in its own right. It can, e.g., increase

the motion efficiency and reduce the task execution time.

• The approach has significantly lower information require-

ments. The aerial units use only pixel coordinates of the

images of the ground robots, and no information of absolute

scale. Camera calibration, metric data or image scale estimates

obtained with supplementary information are not needed. In

contrast, [23] requires some of these sources of information to

obtain continuous knowledge of the scale of the imaged scene.

• In contrast with [23], here we provide formal stability

guarantees under switching topologies, which is an important

aspect as topology switches will typically occur in practice.

Fig. 1. Overview of the multirobot control system. Multiple (three, in this
example) moving aerial units are used. Each computes (Section III) and
transmits (a) motion commands for a set of ground robots in its camera’s
field of view (c). The robots that are controlled by multiple cameras combine
the multiple received commands (d) to obtain their motion input, as described
in Section IV. The UAVs can communicate (b) to coordinate their actions.
The control task is for the ground robots’ positions to form a specified shape.

II. SYSTEM DESCRIPTION AND OPERATING ASSUMPTIONS

Let us describe the characteristics of the proposed system

and the conditions of operation that are assumed.

Task: The positions of a set, S, of n mobile robots must attain

a prescribed shape, with unspecified size.

Architecture: The system has a two-layer architecture: the

ground robot layer, and a set of m UAVs that observe the

robots and control their motion.

Vehicle dynamics: Each UAV remains near-hovering (i.e.,

its yaw axis is maintained vertical) and its translation is

commanded via kinematic control (as, e.g., in [28]; see details

in Section VI). The ground robots have unicycle kinematics

and move on a horizontal ground plane.

Perception: Each UAV carries a fixed perspective camera

facing downwards. Using vision processing, it can detect and

identify those ground robots in its field of view, and compute

their image positions and headings. The ground robots do not

require any sensors for the task addressed.

Prior information: Each aerial unit knows the prescribed for-

mation shape with the identification of each robot, represented

in the form of a template image (Section III).

Communications: Each UAV sends commands via wireless

communication to robots in its camera’s field of view. Two

UAVs that observe robots in common at any time communicate

via wireless to coordinate their motions/actions (see “Coordi-

nation and control” below), and multi-hop exchanges may also

be used. The ground robots do not transmit any data.

Topology: The control topology is hybrid (not centralized,

not purely distributed). For system stability purposes, we

characterize it as follows. Each UAV views a subset of robots

Sj ⊆ S, j = 1, ...,m, and controls a set Sc
j ⊆ Sj , being these

sets time-varying. Formation achievement requires overlaps

between these sets. We define Gc as an undirected graph

where each node is a UAV and there is an edge (j, k) if

card(Sc
j ∩ Sc

k) ≥ 2 (i.e., the two UAVs are controlling at

least two common robots). We define topological conditions:

• TC1: Gc is connected.

• TC2:
⋃

j=1,...,m Sc
j = S (i.e., every robot is controlled).

• TC3: card(Sc
j

⋂
Sc
k) = 2 if j, k are neighbors in Gc,

0 otherwise (i.e., neighboring UAVs share exactly two

robots, and non neighboring UAVs share no robots).

• TC4: Sc
j

⋂
Sc
k

⋂
Sc
l = ∅ if j, k, l are all different. That is,

the intersections between the sets are mutually disjoint.
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Template  

image 

Current image  UAV 1 

UAV 1 

Desired points 

Current points 

Current image  UAV 2 

UAV 2 

Fig. 2. Each UAV (i.e., 1 or 2) sees and controls only a partial subset of robots,
using the corresponding partial set of template and current image points to
compute the desired image points via a least-squares similarity.

• TC5: Gc is a tree.

We define P as the set of all possible topologies that satisfy

TC1, TC2, TC3, TC4 and TC5, and Q as the set of those

topologies that satisfy TC1 and TC2. We denote the system’s

topology at time t by p(t). We assume p(t = 0) ∈ {P ∪ Q}.

Coordination and control. Ground robots: They integrate and

follow the motion commands received from the UAVs (Section

IV). They do not sense/communicate with one another, but

move in coordination thanks to the aerial units. Aerial units:

Each unit j sends a motion objective, and image distance

information –obtained as shown in Section IV– to each robot

in Sc
j . Each UAV coordinates its motion and the definition of

Sj and Sc
j with its neighbors (in terms of the graph Gc) to

maintain p(t) within the set P (Section VI). They also ensure

each topology is active for a lower bounded time span.

III. SIMILARITY-BASED MOTION GOALS COMPUTATION

Consider next a given control unit j. To compute the control

goals for the ground robots, it uses two perspective images:

• The template image, which is a predefined, fixed top view,

with arbitrary scale, of the desired formation shape. Each robot

is represented by a point p′

i, in pixel coordinates. Unit j only

uses those points in the template image that correspond to

robots j controls (i.e., i ∈ Sc
j ).

• The current image, which is a top view of the current

configuration of the subset of robots i ∈ Sc
j , each of which is

represented by a point, p
j
i , in pixels.

We propose a strategy where each camera uses the template

and current image points to compute a similarity transfor-

mation (translation, rotation, and scaling) that aligns them

with least-squares error [29]. The 2D similarity we calculate

relating the two point sets is parameterized as follows:

Hj
s =

[
sj cosφj −sj sinφj

sj sinφj sj cosφj

]
, (1)

and encodes the rotation of the template shape by φj ∈ [−π, π)
and its scaling by sj ∈ R

+. This, together with a translation

such that the current points’ centroid is maintained, is used to

obtain what we call the desired points, p
d,j
i , which define the

robots’ motion goals. Algorithm 1 summarizes the process and

Fig. 2 illustrates it for two different UAVs. A key decoupling

between camera motion and ground control is expressed next.

Property 1: The ground positions associated with the desired

points, defined from the optimal similarity by a given cam-

era, are invariant to the downward-facing camera’s position,

orientation and calibration.

Algorithm 1 Computation by camera j at each time instant

of the desired image positions for the robots i ∈ Sc
j

1) Select the points p′

i for i ∈ Sc
j from the template image

and (if required) translate them to make their centroid

zero, obtaining the set of points p
′j
ic.

2) While control executes do:

a) Acquire a new current image.

b) Detect and identify in the current image the points

p
j
i corresponding with the current robot positions.

c) Subtract the centroid, cjp, of the points p
j
i, to create

a new set of points p
j
ic with zero centroid.

d) Compute the similarity Hj
s that, applied on p

′j
ic,

aligns them with p
j
ic with least-squares error [29].

e) Compute the desired image points, expressed in the

current image, as: p
d,j
i = Hj

s p
′j
ic +cjp.

Proof: Consider two arbitrary configurations for camera

j: ja and jb. These can be linked by a similarity Gba, so p
jb
ic =

Gbap
ja
ic for i ∈ Sc

j . Obviously, p
′jb
ic = p

′ja
ic . The similarity (1)

can be obtained for k = a or b solving via least-squares a

linear system with equations: Hjk
s p

′jk
ic − p

jk
ic = 0 ∀i ∈ Sc

j .

Comparing the two systems, we have Hjb
s = GbaH

ja
s . Then

(see Algorithm 1) p
d,jb
i − cjbp = Hjb

s p
′jb
ic = GbaH

ja
s p

′ja
ic =

Gba(p
d,ja
i − cjap ), where clearly cjap and cjbp are the centroids

of the desired point sets. Hence, the desired points i for a and

b are projections of the same ground position ∀i ∈ Sc
j .

If p
j
i = p

d,j
i ∀i ∈ Sc

j , clearly, the robots in this subset form

the desired sub-shape. Our control goal is thus to move them

so that they meet this condition. Note, however, the important

challenges we face: these sub-shapes must fit together in the

full formation (overlaps between subsets are needed), and a

robot can receive multiple partial and inconsistent motion

goals –see, e.g., the two robots in the intersection in Fig. 2–.

The following section describes how these issues are solved.

IV. COORDINATED GROUND ROBOT CONTROL SCHEME

We explain next how a control unit j computes the infor-

mation to be sent to a controlled robot i. Given a camera with

usual characteristics, we can define a scale rj > 0 (in pixels/m

units) relating j′s image distances with the metric distances

between ground entities. This scale is unknown, freely time-

varying, and different for each camera.

The parameters of the control scheme are depicted in Fig.

3. Using the strategy described in the previous section, we can

define p
d,j
i in the current image and compute the vector:

ρ
j
i = p

d,j
i − p

j
i. (2)

By detecting the robots’ positions and orientations in the

images captured by its onboard camera, the control unit can

obtain ρjmi = ||pd,j
i − p

j
i ||, and it can also define the unit

vector ρ̂
j
i = ρ

j
i/ρ

j
mi and the unit vector in the direction of

the robot’s heading (which j measures in the image) y
j
i . Then,

the control unit can compute the following angular parameter:

αj
mi = atan2

(
−

[(
ρ̂
j
i

0

)
×

(
y
j
i

0

)]

z

,−ρ̂
jT

i y
j
i

)
, (3)
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Fig. 3. Left: geometric variables and control vector computed for robot i by
camera j, defined in its image. Right-top: representation of i′s global motion
vector computed from image information received from two cameras j1 and
j2. Right-bottom: state of the robot on the ground plane.

where [·]z denotes the z-axis coordinate. From ρjmi and αj
mi,

unit j obtains ρ
j
i expressed in i′s frame, and sends it to

i. Combination of multi-camera commands: Robot i may

receive from multiple cameras simultaneous control goals that

are inconsistent: each vector ρ
j
i for different j is computed

from a different subset of robots –so it will point in a different

direction–, and is also associated with a different scale rj .

To solve the scale inconsistency, unit j sends robot i the

identification of the robots that are closest to it in j′s image

(i.e., its physical nearest neighbors, in any direction around

the robot), and the value of the image distances between i and

each of these robots (i.e., ||pj
i−p

j
io
|| for a given neighbor io).

From TC3, robot i can compute the scale ratio between all

cameras it receives data from: assume aerial unit k also sends

data to robot i, and that a robot io is a physical neighbor of i,
Both j and k view i and io. Then, i can compute the relative

scale as follows: rkj = rk/rj = ||pk
i − pk

io
||/||pj

i − p
j
io
||.

We define the global motion vector that robot i computes

as a weighted sum that integrates all its motion goals:

ρ
g
i =

1

card(Ci)

∑

j∈Ci

[
∑

k∈Ci

rkjρ
j
i

]
. (4)

where Ci is the set of indexes of the UAVs that send com-

mands to i. We show next how this achieves scale consistency.

Denote as x
d,j
i and xi the ground positions associated with

p
d,j
i and p

j
i , respectively. Consider, without loss of general-

ity, the robots’ positions and image projections expressed in

unknown equally oriented frames common to all cameras. As

ρ
j
i = p

d,j
i − p

j
i = rj(x

d,j
i − xi), (4) can be expressed as:

ρ
g
i = ri

∑

j∈Ci

(xd,j
i − xi), (5)

where the factor –unknown to all aerial units and robots–

ri =
1

card(Ci)

∑

k∈Ci

rk, (6)

is the average relative scale for the cameras that control robot

i. Thus, the proposed scale adjustment in (4) makes the vectors

ρ
j
i enter the computation of ρ

g
i with a consistent scale.

Control law: Robot i computes (4) in its own frame, and:

ρmi = ||ρg
i ||, αmi = π − atan2 ((ρg

i )y, (ρ
g
i )x) , (7)

considering the robot’s frame defined by its heading. The

control goal for the robot is given by the ground position

associated with the endpoint of its global motion vector. The

variables αi and ρi (see Fig. 3) express this position. As

αi = αmi and ρi is proportional to ρmi, we can control the

robot using the image quantities. The proposed control law for

robot i is:
{

vi = −kv sign(cosαmi) ρmi

ωi = kω (αdi − αmi)
, (8)

where kv > 0 and kω > 0 are control gains, ωi is considered

in counterclockwise direction, and we define:

αdi =

{
0 if |αmi| ≤

π
2

π if |αmi| >
π
2

.

Angles are taken in [−π, π). Observe that 0 ≤ |αmi − αdi| ≤
π/2 and that if cosαmi = 0, vi = 0 and robot i can rotate in

place but not translate. We define αmi as 0 if ρmi = 0.

Remark 1: From (5) and due to Property 1, a given robot’s

direction of motion is independent from the cameras’ locations

and calibrations. Therefore, clearly, these factors do not affect

the stability of the controller, studied in the following section.

The height and calibration of the cameras influence the value

of ri, having an effect equivalent to an unknown positive

multiplicative gain acting on the linear velocity control (8).

V. STABILITY ANALYSIS

We study next the stability of the formation controller. We

will consider common frames, only for analysis –recall that

each UAV computes the control in its local image frame–.

Consider the robots’ ground positions xi = [xi, yi]
T , i =

1, ..., n expressed in an arbitrary global frame. We define the

following cost function for the system under a topology p ∈ P :

V =
∑

j=1,...,m

V j , V j =
1

2

∑

i∈Sc
j

||xd,j
i − xi||

2. (9)

Note that the state of the formation can be represented by the

set of vectors x
d,j
i −xi, j = 1, ...,m, i ∈ Sc

j , and V is radially

unbounded, as ||xd,j
i − xi|| → ∞ for a pair i, j implies V →

∞. For generality, we use an alternative definition, common

across all topologies, of the system’s state, by defining the

following stack state vector: X = [X1
T ,X2

T , ...,Xn
T ]T ∈

R
2n, where Xi = xd

i − xi, and xd
i = [xd

i , y
d
i ]

T is the ground

position associated with the desired image point pd
i obtained

from any global similarity (i.e., one computed from all the n
robots). Next, we establish two preliminary results:

Lemma 1: For any p ∈ P , the robots form the desired shape

if and only if X = 0, which occurs if and only if V = 0.

Proof: (sketch) If V j = 0 ∀j, we have all desired sub-

shapes which, due to TC1, clearly fit together. When in the

desired shape, desired and current points coincide, so V = 0.

Lemma 2: For any topology p ∈ P , it holds ∀j = 1, ..,m,

∀i ∈ Sc
j that ∂V j/∂xi = xi − x

d,j
i .

Proof: Consider a camera j and, without loss of gener-

ality, that the frames for j′s current image points, and the

associated ground positions, are equally oriented and centered
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on their centroids, cjp and cjx. The values p
′j
ic are projections

of equivalent template ground positions x
′j
ic so, for i ∈ Sc

j :

p
′j
ic = rjx

′j
ic, p

j
i = rjxi, p

d,j
i = rjx

d,j
i . (10)

As p
d,j
i = Hj

s p
′j
ic, we have x

d,j
i = Hj

s x
′j
ic, and we can write:

V j =
1

2

∑

i∈Sc
j

||xd,j
i − xi||

2 =
1

2

∑

i∈Sc
j

||Hj
sx

′j
ic − xi||

2. (11)

Clearly, if Hj
s fits, with least-squares error, the template (p

′j
ic)

and current (p
j
i) image points (Section III), it also does so for

the positions (x
′j
ic, xi). As V j expresses precisely this sum

of squared errors, Hj
s is the similarity that minimizes V j .

Considering this transformation is unique and a differentiable

function of the input points [29], ∂V j/∂Hj
s is null. It is then

direct that ∂V j/∂xi = xi − x
d,j
i ∀i ∈ Sj

c , as claimed.

We now present the following main stability result:

Theorem 1: For any fixed topology p ∈ P , by using the

control law (8) the positions of the team of ground robots

converge asymptotically to the desired formation shape.

Proof: We consider, without losing generality, that all

ground positions are expressed in a common frame, with

which all image frames are aligned. We take V as a candidate

Lyapunov function for the system. Its dynamics are:

V̇ =

m∑

j=1



∑

i∈Sc
j

(
∂V j

∂xi

)T

ẋi


 . (12)

From (8), (5), and the unicycle kinematic model, we have:

ẋi = kvQiρ
g
i = kvriQi

∑

j∈Ci

(xd,j
i − xi), (13)

where the misalignment between the robot’s displacement

direction and ρ
g
i is captured by Qi ∈ SO(2), a rotation by the

angle αmi − αdi. Inserting (13) and Lemma 2 in (12) gives:

V̇ =

m∑

j=1

{
∑

i∈Sc
j

[
(xi − x

d,j
i )T

(
kvriQi

∑

j∈Ci

(xd,j
i − xi)

)]}

= −kv

n∑

i=1

ri cos(αmi − αdi)||
∑

j∈Ci

(xd,j
i − xi)||

2 ≤ 0, (14)

where the inequality holds as 0 ≤ |αmi − αdi| ≤ π/2. From

the invariant set theorem, the system is locally stable with

respect to V = 0, i.e., the desired team shape (Lemma 1).

We can guarantee global asymptotic stability, if the only

equilibrium (i.e., V̇ = 0) of the system occurs at X = 0

(i.e., V = 0). Due to the unicycle kinematics, V̇ may be

zero if no robot is translating, and at least one of them

satisfies cos(αmi − αdi) = 0 and ||ρgi || > 0. However, these

robots will rotate in place at that moment, immediately making

V̇ < 0. Hence, the only relevant scenario to examine is

||ρgi || = 0, i = 1, ..., n. Using the topological conditions TC1-

TC5 and the constraints they impose on the robots’ motion

vectors, and via a similar analysis to the one presented in

the proof of [23, Corollary 1], one can see through simple

geometric conditions that if a sum vector ρgi is null, the

individual vectors ρji must be null, too. Thus, the only possible

stable equilibrium occurs at V = 0, i.e., the team of robots

converges asymptotically to the prescribed shape.

Corollary 1: It is direct to see that the robots remain static

once the desired shape has been achieved.

Corollary 2: The distance between every two robots remains

upper-bounded with control law (8), for any topology p ∈ P .

Proof: For finite initial robot positions, V (9) is clearly

upper-bounded and, as V̇ ≤ 0 (Theorem 1) it remains so for

all time. As V is the sum of squared norms of the vectors

xi − x
d,j
i , all these norms are also always upper-bounded,

and so are the norms of ρji (2) and, therefore, the norms

of the motion vectors ρgi (4). Therefore, the magnitudes of

the linear velocities for all robots (8) are also always upper-

bounded, and the distance between any two robots may only

become unbounded in infinite time. We can now consider, for

all practical purposes, an arbitrarily small positive threshold

bth that stops the robots’ motions (i.e., ∀i, vi = ωi = 0 if

ρmi < bth). Then, since all robots will clearly –due to the

vanishing behavior of V – stop displacing in finite time, the

inter-robot distances will be upper-bounded.

Corollary 3: For p ∈ Q, clearly, Lemma 1 holds and, thanks

to Theorem 1, the formation controller is locally stable.

Corollary 4: For the particular case m = 1, Sc
1 = S (i.e.,

a single UAV controls all the ground robots), it is direct from

Theorem 1 that the formation controller is globally convergent.

Remark 2: The control may have singularities for certain

robot arrangements that are non-attracting and have zero

measure [23], [29]. Thus, for all practical purposes, Hj
s is dif-

ferentiable (Lemma 2) and the system stable. Alternatively, we

could consider the degenerate cases and use an almost-global

stability result. Also, even if control law (8) is discontinuous,

the vanishing behavior of V suffices to prove stability. As the

angular velocity in (8) always drives the system away from

these discontinuities, chattering-like behaviors are not feasible.

A. Stability with changes in topology

Due to the motion of UAVs and ground robots during

execution, the latter may come in and out of the fields of

view of the cameras, so the sets Sj and Sc
j will switch. This

affects Hj
s (1) and in turn, via p

d,j
i (Algorithm 1) and (2), (4),

(7), the control law (8). Thus, due to the topology changes,

ours is a switched system [30], which we analyze as follows.

Proposition 1: Consider that the controller switches within

the possible topologies p ∈ P . Then, there exists a finite

positive value τd such that the team of robots under control

law (8) converges asymptotically to the formation shape if the

average dwell time of every topology is at least τd.

Proof: P is a finite set, and the system’s state (determined

by the agents’ positions) does not jump at switching times.

Also, the dwell time of every topology is lower-bounded by

a positive value (Section II). From Theorem 1, the formation

is asymptotically stable for every individual p. All topologies

drive the system to the same common equilibrium (X = 0),

but each has a different Lyapunov function –i.e., Vp for

topology p–. Thus, from [30], [31], there is a finite average

dwell time that guarantees asymptotic stability if:

Vp(X) ≤ µVq(X) ∀X ∈ R
2n, ∀p, q ∈ P , (15)
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for a given constant µ. The Lyapunov function for a given

topology consists of the sum of squared metric distances. Let

us call these distances dji = ||xd,j
i −xi||. If X = 0, all dji = 0

for all topologies. Otherwise, there is at least one dji > 0 for

every topology. Denote as dj∗i those dji that are strictly posi-

tive. From Corollary 2, for all topologies, inter-robot distances

remain upper-bounded; therefore, the desired positions x
d,j
i are

such that all dj∗i are always upper-bounded, too. Therefore,

the ratio of any two dj∗i is bounded –i.e., we can define a

finite value B = maxi,j,p,X(dj∗i )/mini,j,p,X(dj∗i )–. Now, as

each Lyapunov function is the sum of a finite number of dji
distances squared, it follows that a finite µ in (15) must exist.

Hence, the statement of the Proposition holds true.

This result means that if every topology is active, on average,

for a sufficiently long time, the desired ground team shape will

be attained. Other interesting properties are that the switching

is controllable –the aerial units can, through their coordinated

motions and decisions, determine the switches– and typically

will stop in finite time –clearly, when the ground team is close

to the prescribed shape, no topology switches are needed–.

VI. MOTION AND COORDINATION OF THE AERIAL UNITS

We give next guidelines to implement the aspects of UAV

control and coordination, whose detailed study is not the focus

of this paper. A key observation is that high-speed and precise

aerial unit motions are not required: the UAVs do not need to

react fast or reach specific positions, the control is inherently

robust to imperfect UAV motions (Remark 1), and we can

define safety margins to aid their maneuverability. Thus, it

is reasonable to model the UAV translational motion at a

kinematic –and not dynamic– control level (see, e.g., [28]).

For simplicity, in our tests we use single-integrator kinematics.

In terms of their coordination, we propose to make the UAVs

follow the algorithm in [23], which exploits communications

(Section II) of image data and ensures TC1-TC2 by preserving

the links of the initial graph Gc(t = 0). To initially deploy

the UAVs without full knowledge of the ground robot loca-

tions, distributed coverage/search algorithms with connectivity

maintenance features can be used. A simple approach can

be, e.g., to deploy the UAVs one-by-one sequentially while

enforcing TC1-TC2, and create an initial path graph Gc. Note

that each UAV controls its displacement to preserve in the

field of view the two closest robots seen in common with

each one of its neighbors in Gc; thus, additional common

robots can leave the UAV’s control scope as the system evolves

(i.e., transfers of robots between UAVs are possible). TC1-

TC5 can be met by suitably defining Sc
j (which are subsets

of Sj , ∀j) via distributed protocols, implemented for a duo of

neighboring UAVs using, e.g., image distance-based criteria.

The duo can thus decide which two of their common viewed

ground robots they will share the control over, and which of

the two UAVs will assume (if needed) control of the other

common viewed robots. The activation time of each topology

can also be ensured to be lower bounded. The exchanged data

(Sj and image points) between neighboring UAVs could be

used in more efficient and flexible coordination schemes to,

e.g., balance the load (i.e., cardinality of sets Sc
j ), and recover

the affected ground robots if a UAV fails.
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Fig. 4. One-camera simulation results. Top: robot paths (final positions joined
by dashed lines) and projection of camera path on ground plane (initial point
marked as square, final as circle). Row 2: linear (left), angular (right) robot
velocities. Row 3: image traces of robots –initial and final point sets joined by
dashed lines– (left) and cost function (right). Row 4: scale (left) and rotation
(right) of desired formation. Row 5: camera height (left) and rotation (right).

VII. SIMULATION RESULTS

In this section, we illustrate the performance of the control

method with simulations. We first describe an example where

one downward-facing camera was used to drive a group of six

unicycle robots to a triangular desired shape. Figure 4 displays

the results, showing how the formation was achieved. The

aerial unit displaced horizontally following the perimeter of

the ground formation. By doing so –instead of, e.g., remaining

over the team’s centroid–, it can gain a richer perception of the

ground team’s surroundings so as to, e.g., detect obstacles or
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threats. Note that this persistent UAV motion does not affect

the formation’s convergence. The camera always maintained

a good visibility of all the robots, as seen in the image traces.

The UAV controlled its vertical motion to guarantee this visual

coverage, and it also rotated during execution. We stress that

the UAV used only image information, expressed in pixels.

In another example, three aerial units controlled a team of

sixteen robots, to make them form a star-shaped configuration.

Throughout the simulation, the UAVs moved as discussed

in Section VI, and generated ground control commands as

described in Section IV. Each unit j controlled those robots

in Sj closer than certain safety thresholds to the center of

the image. The three cameras had different calibration. The

UAVs only translated and did not rotate. Each had a different

orientation. The results in Fig. 5 illustrate how the desired

ground shape was achieved. There were topology switches,

which caused the discontinuous changes observable in the

plots. The cameras eventually stabilized to fixed positions. The

plots show the scales and rotations of the partial formations

controlled by the UAVs, expressed in an arbitrary common

fixed reference unknown to any UAV (note that these are not

the scales and rotations of the image similarities (1), which

remain different for each camera and change continuously as

they move). As expected, the three scales and rotations end

up being equal as the team acquires the prescribed shape.

VIII. PRACTICAL DISCUSSION AND CONCLUSION

We first discuss some application details and advantages and

then limitations and potential improvements of our method.

• The proposed multi-UAV hybrid topology is scalable –it

can include an arbitrarily large number of ground robots, and

workspace– and reliable –there is no central point of failure–.

• The ground robots are freed from sensing, costly processing

and wireless transmission. Thus, one can use simple, low cost

robots which will also have higher autonomy due to reduced

power consumption. Their resources can hence be focused on

other tasks (e.g., environmental monitoring or exploration).

• The UAVs do not have to achieve specific relative positioning

or to synchronize their orientations. Thus, they are free to

consider other concurrent goals –aside from ground formation

achievement– and, hence, fully exploit the known advantages

of heterogeneous air/ground teams [19], [25]: they can monitor

and preserve the system connectivity, reconfigure in case

of failures, and their rich aerial imaging can enhance the

navigation capabilities of the ground robots.

• As it does not need camera calibration and knowledge of

scene scale, our method is robust to calibration errors and drifts

–which are known to affect visual control stability–, allows to

mount or change the cameras without preparative procedures,

and, e.g., directly allows the use of zoom –which is clearly a

very powerful feature for the scenario and task we consider–.

• Clearly, the UAVs will need to have localization information

to enable them to navigate, which can be available in the

infrastructure-free scenario we consider via, e.g., existing

visual-inertial approaches. Our ground control is robust to

errors in this information as it does not employ it.

• By using only local (image) measurements, our method

avoids the issues associated with using a shared UAV reference

frame: need to maintain the agreed frame (requiring consensus

or synchronization), inaccuracies in its definition –and their

propagation among UAVs–, or inter-UAV communication is-

sues (temporary losses, multi-hop delays...).

To summarize, our method demands only simple resources

from the ground robots and does not need a complex coordi-

nation strategy for the UAVs, provides a flexible architecture,

and has useful decoupling properties and robustness to various

typical sources of error. All this facilitates simpler imple-

mentation and integration of other tasks (aerial and ground

perception/actuation) with the formation control itself.

Limitations and possible improvements: Although the two-

layer architecture provides distribution, the failure of a UAV

affects not one but multiple robots –until other UAVs recover

from it–. Also, it can be hard to visually detect and identify

all robots in challenging conditions. Using interchangeable

robots could be more robust and efficient, at the cost of more

complex coordination. Performance will be perturbed if UAV

disturbances make the camera not face downward –although

image rectification as in [21] can mitigate this– or there are

terrain irregularities. Finally, collision avoidance –e.g., via

reactive methods– for robots and UAVs should be used.

REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent

networks. Princeton University Press, 2010.
[2] B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx, “Rigid

graph control architectures for autonomous formations,” IEEE Control

Systems, vol. 28, no. 6, pp. 48–63, 2008.
[3] J. Cortés, “Global and robust formation-shape stabilization of relative

sensing networks,” Automatica, vol. 45, no. 12, pp. 2754–2762, 2009.
[4] W. Ren, “Consensus tracking under directed interaction topologies:

Algorithms and experiments,” IEEE Transactions on Control Systems

Technology, vol. 18, no. 1, pp. 230–237, 2010.
[5] X. Cai and M. de Queiroz, “Adaptive rigidity-based formation control

for multirobotic vehicles with dynamics,” IEEE Transactions on Control

Systems Technology, vol. 23, no. 1, pp. 389–396, 2015.
[6] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent

formation control,” Automatica, vol. 53, pp. 424–440, 2015.
[7] A. N. Bishop, I. Shames, and B. D. O. Anderson, “Stabilization of rigid

formations with direction-only constraints,” in IEEE Conf. on Decision

and Control and European Control Conference, 2011, pp. 746–752.
[8] T. Eren, “Formation shape control based on bearing rigidity,” Interna-

tional Journal of Control, vol. 85, no. 9, pp. 1361–1379, 2012.

[9] A. Franchi and P. Robuffo Giordano, “Decentralized control of parallel
rigid formations with direction constraints and bearing measurements,”
in IEEE Conference on Decision and Control, 2012, pp. 5310–5317.

[10] S. Coogan and M. Arcak, “Scaling the size of a formation using relative
position feedback,” Automatica, vol. 48, no. 10, pp. 2677–2685, 2012.

[11] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass formation
control: A human-swarm interaction perspective,” in American Control

Conference, 2014, pp. 3881–3886.
[12] Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of

multi-agent systems using complex Laplacian,” IEEE Transactions on

Automatic Control, vol. 59, no. 7, pp. 1765–1777, 2014.
[13] S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-only

formation stabilization,” IEEE Trans. Autom. Control, vol. 61, no. 5, pp.
1255–1268, 2016.

[14] D. Zelazo, P. Robuffo Giordano, and A. Franchi, “Bearing-only forma-
tion control using an SE(2) rigidity theory,” in IEEE Conference on

Decision and Control, 2015, pp. 6121–6126.
[15] Z. Han, L. Wang, Z. Lin, and R. Zheng, “Formation control with size

scaling via a complex Laplacian-based approach,” IEEE Transactions

on Cybernetics, vol. 46, no. 10, pp. 2348–2359, 2016.
[16] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, “Vision-

based, distributed control laws for motion coordination of nonholonomic
robots,” IEEE Trans. Robotics, vol. 25, no. 4, pp. 851–860, 2009.



8

−10 −5 0 5 10 15

−10

−5

0

5

10

15

x (m)

y
 (

m
)

0 2000 4000 6000 8000
−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time (s)

v
 (

m
/s

)

0 2000 4000 6000 8000
−0.04

−0.02

0

0.02

0.04

Time (s)

ω
 (

ra
d

/s
)

0 5000 10000 15000
0.7

0.8

0.9

1

1.1

1.2

1.3

Time (s)
S

c
a
le

 o
f 
d
e
s
ir
e
d
 f
o
rm

a
ti
o
n

0 5000 10000 15000
−0.4

−0.2

0

0.2

Time (s)

R
o
ta

ti
o
n
 o

f 
fo

rm
a
ti
o
n
 (

ra
d
)

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

−300 −200 −100 0 100 200 300

−350

−300

−250

−200

−150

−100

−50

0

50

100

150

−400 −200 0 200 400 600

−300

−200

−100

0

100

200

300

400

500

−200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

0 1000 2000 3000 4000
0

50

100

150

200

Time (s)

V

0 0.5e4 1e4 1.5e4 2e4
10

11

12

13

14

15

16

Time (s)

C
a
m

e
ra

 h
e
ig

h
t 
(m

)

0 0.5e4 1e4 1.5e4 2e4
0

2

4

6

8
x 10

−3

Time (s)

N
o

rm
s
 o

f 
c
a

m
e

ra
 v

e
lo

c
it
ie

s
 (

m
/s

)

Fig. 5. Simulation results. Top-left: Robot paths –final positions joined by dashed lines–, final camera fields of view –circles–, and paths of the three cameras;
Top-right panel: evolution of linear and angular velocities of the ground robots (top), scales and rotations of the partial desired formations (bottom). Second
row: template image (left), and image traces of the robots in Sc

j
for the three cameras (initial points marked as squares, final points as circles, joined by

dashed lines). Bottom row: evolution of V (highest-valued curve) and the three V j (left), camera heights (center) and camera velocity norms (right).

[17] E. Montijano, J. Thunberg, X. Hu, and C. Sagüés, “Epipolar visual
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