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Model-Based Identification of Nanomechanical
Properties in Atomic Force Microscopy:

Theory and Experiments
Michael R. P. Ragazzon, J. Tommy Gravdahl, Kristin Y. Pettersen

Abstract—The ability of the atomic force microscope (AFM) to
resolve highly accurate interaction forces, has made it an increas-
ingly popular tool for determining nanomechanical properties of
soft samples. Traditionally, elasticity is determined by gathering
force-distance curves. More recently, dynamic properties such as
viscoelasticity can be determined by relating the observables to
sample properties, either by single- or multifrequency modula-
tion of the cantilever. In this article, a model-based technique
for resolving nanomechanical properties is presented. Both the
sample and cantilever are represented by dynamic models. A
recursive least squares method is then employed to identify the
unknown parameters of the sample model, thus revealing its
nanomechanical properties. Two sample models are presented
in this article, demonstrating the ability to swap sample models
to best suit the material being studied. The method has been
experimentally implemented on a commercial AFM for online
estimation of elastic moduli, spring constants and damping
coefficients. Additionally, the experimental results demonstrate
the capability of measuring time- or space-varying parameters
using the presented approach.

Index Terms—mechanical properties, atomic force microscopy,
parameter identification, dynamic models, biomedical systems

I. INTRODUCTION

ATOMIC force microscopy (AFM) is a versatile tool capa-
ble of imaging rigid and soft samples at nano- to microm-

eter resolutions [1]. In addition to determining the topography
of a sample, it is capable of measuring tip-sample interaction
forces in the piconewton range, due to its highly sensitive
laser-cantilever setup as illustrated in Fig. 1. AFM enjoys
many advantages over comparable techniques. In particular,
it has the ability to measure forces accurately at high spatial
resolution in most media, including air, water and solutions.
These attributes have made AFM an increasingly popular tool
for studying nanomechanical properties of materials in fields
such as cell- and molecular biology, solid-state physics, and
surface chemistry [2]–[4].

By measuring the static force response as the cantilever tip
indents a soft sample, elastic properties of the sample can be
revealed from the resulting force-distance curves [5]. In force-
volume imaging mode [6], [7], indentations are repeated across
the sample, which allows its elastic modulus to be spatially
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resolved along the lateral axes. A variation to force-volume
imaging includes the peakforce quantitative nanomechanical
mode, which forcibly oscillates the cantilever at below res-
onance frequency, allowing for faster and higher-resolution
gathering of force-distance curves [8], [9]. In HarmoniX and
torsional harmonic modes [10], special cantilevers are used
to induce a torsional force, allowing for the reconstruction of
force-distance curves.

In order to obtain viscous and other dynamic properties of
the sample, the time-history of the tip-sample interaction needs
to be considered [11], [12]. Properties such as amplitude and
phase can be gathered by modulating the cantilever near its
resonance frequency, as in dynamic mode AFM [1], [13]–[15].
However, such observables are a property of the experimental
setup and can not be considered consistent across experiments.

In an effort to relate the observables to material properties,
early results demonstrated correlations between amplitude
and elasticity, and between phase and viscosity [16]. More
recently, considerable efforts have been placed toward reveal-
ing nanomechanical properties through higher-harmonics and
multifrequency approaches [17]–[24]. These efforts typically
involve relating the observables in either single- or multifre-
quency dynamic modulation to mechanical properties of the
sample. However, these relations are often quite complicated
and are still under development [25]. Furthermore, existing
approaches are limited in terms of the properties that can be
extracted from the sample, typically isolated to viscoelastic
properties and their gradient along the depth axis. Avoiding
such complicated relations, and allowing for additional prop-
erties to be identified, would be beneficial.

Using AFM to resolve mechanical properties has already
opened up a new window into studying soft samples at
the nano- to microscale. However, there is clearly room for
improvements. Another approach, the dynamic indentation
viscoelastic (DIVE) mode, was introduced in the previous
work of the authors [26], based on preliminary results from
[27], [28]. In DIVE mode, both the sample and cantilever
are represented by separate dynamic models. By employing
identification techniques from the control literature, the param-
eters of the dynamic sample model can be identified from the
observable signals. The observables are mapped to the sample
parameters using a recursive least squares method.

In order to spatially resolve nanomechanical properties,
DIVE mode operates by indenting into the sample at regular
intervals, laterally spaced across the scanning region. During
the scan, the cantilever tip is modulated in order to gain dy-
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namic information from the sample. Between each indentation,
the cantilever is raised and moved in a raster pattern to the
next indentation point, until the entire sample is covered. The
cantilever is only moved in the lateral directions while the
tip is completely retracted from the sample. The operation of
DIVE mode is illustrated in Fig. 2.

In [26], the demonstration of DIVE mode was restricted to
numerical results with the sample modeled as spring-damper
elements. In this article, several aspects of the original work
are expanded upon and experimental results are presented.
In particular, (i) improvements are introduced to the system
model, making it suitable for experiments. (ii) An additional
sample model is introduced based on the Hertz contact model,
allowing for online estimation of elastic moduli. (iii) A suf-
ficient time interval during each indentation for guaranteed
convergence of the sample parameters to any accuracy is
derived. (iv) In order to implement the experiments, the
parameter estimator is combined with a demodulator, an XYZ
controller, and novel control logic implemented by a state
machine. (v) Experimental results demonstrate the feasibility
of the approach, using either of the two sample models,
allowing for online estimation of spring constants, damping
coefficients, and elastic moduli. Finally, (vi) experimental
results additionally demonstrate identification of time-varying
sample parameters using the presented approach.

Furthermore, in this article we present an upper bound on
the exponential convergence of the parameter error, for the
recursive least squares estimator in general. Preliminary results
on this were presented in [29]. In this article, the results are
extended by determining the estimation time interval for which
the parameter error is guaranteed to have been reduced to some
fraction of the initial error, after performing a covariance reset.

The modeling and identification approach taken by the
DIVE mode, enjoys several advantages over comparable tech-
niques. Because the sample and cantilever dynamics are sep-
arated, the complicated relationships between the observables
and the sample properties are circumvented. Instead, the
observable signals are fit to the sample model in a least squares
sense. Furthermore, this separation makes it easy to swap out,
or expand, the sample model for one which could better match
the material, as demonstrated in this article. Additionally,
since the technique employs a recursive method, it can be
implemented online and allows for observing time- or space-
varying changes of the parameters.

The article is organized as follows. In Sec. II the cantilever
and sample dynamics are modeled. The estimation procedure
for the unknown sample parameters is presented in Sec. III.
Implementation details of the approach are given in Sec. IV.
System identification of the cantilever model and tuning of the
parameter estimator is demonstrated in Sec. V. Experimental
results are presented in Sec. VI. Finally, conclusions are drawn
in Sec. VII.

II. SYSTEM MODELING

In this section, the dynamics governing the AFM cantilever
interacting with the sample are established. This is later used
for developing appropriate parameter identification laws for
the sample mechanical properties.

Laser Mirror

Detector
Piezo modulator

xy Piezo scanner

Cantilever

Sample

z Piezo
scanner

Fig. 1: AFM dynamic mode setup.

The following is based on [26]. However, in the original
work, modulation of the cantilever was generated by mod-
ulating the z-scanner. In a typical AFM setup, this scanner
is severely bandwidth-limited, and unable to oscillate the
cantilever near its resonance frequency. In this work, modifica-
tions are introduced by instead employing the piezo modulator
typically used in dynamic modes of AFM. Additionally, in
the original work, only a spring-damper model was used
to describe the sample. In this work, contact mechanics are
considered, resulting in a second, nonlinear dynamic sample
model.

A. System overview

The coordinate system in the xz-plane of the AFM can-
tilever and sample is illustrated in Fig. 3. The position of the
tip along the xyz-axes is denoted by (X,Y, Z). The vertical
tip position Z, the cantilever deflection D, and the cantilever
tip rest position Z0 are related by

Z = Z0 +D. (1)

The deflection D is typically measured through a photodetec-
tor setup, and assumed available. The signal is positive along
the z-direction with its origin placed at Z0.

The interaction between the various components of the
system is shown in Fig. 4, with corresponding inputs and
outputs assumed available. The cantilever dynamics are sub-
ject to an external tip-sample interaction force Fts, as well
as a modulating input force Fmod. The resulting cantilever
deflection, as well as the z-actuator position, determines the tip
position Z. As the tip indents the sample at depth δ, restoration
and viscous forces from the sample are acting on the tip. The
cantilever dynamics and contact forces are discussed in the
following sections.

The xy- and z-actuators are often implemented by piezo
scanners along each axis, as illustrated in Fig. 1. These
actuators typically display vibration dynamics as well as
nonlinear effects, such as creep and hysteresis [30]–[32].
However, these dynamics are not considered in this work,
instead, any disturbances are assumed suppressed through
feedback control. Such control schemes have been the topic
of a large amount of research [33]–[36]. The signals X,Y, Z0

are considered measurable and controllable through actuators
on each axis, by the signals Ux, Uy, Uz , respectively.
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Fig. 2: Operation of DIVE mode in AFM, for a 4× 4-resolution image. The tip is indented into the sample at each red circle.
The lateral movement is paused during indentation. During the entire procedure, the cantilever is oscillated using the piezo
modulator, which enables identification of dynamical properties such as viscosity.
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Fig. 3: AFM cantilever interacting with the sample. The
deflection and tip size is exaggerated for illustration purposes.
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Fig. 4: Plant dynamics and corresponding inputs and outputs.
The sample properties – here k, c, h – are to be identified from
the available signals.

B. Cantilever dynamics

The cantilever dynamics can be approximated by its first
resonance mode [13], resulting in the spring-damper system

MD̈ +KD + CḊ = Fmod + Fts (2)

where M is the effective mass of the cantilever [37], K,C
are the cantilever spring and damping constants respectively,
Fmod is the modulation force from the piezo modulator, and
Fts is the force from the sample acting on the cantilever tip.
Furthermore, the cantilever resonance angular frequency is
denoted by ω0.

C. Indentation depth

The indentation depth of the tip δ can be determined during
the approach phase for each indentation into the sample. The
indentation is given by

δ = h− Z (3)

where h is the sample topography at the current tip position.
As the origin of the topography is arbitrarily placed along
the z-axis, any constant terms, such as the tip radius and
height, can safely be disregarded. The topography h is found
by measuring and recording the first point of contact during
approach, thus δ is assumed known. The detection scheme for
the first point of contact is described in Sec. IV. Once detected,
the topography h at the current indentation is set and used in
the relevant computations.

D. Contact mechanics

As the cantilever approaches the sample, two different
regimes determine the nature of the tip-sample interaction.
During approach (non-contact), the interaction force can be
described using the Lennard-Jones potential [38]. As the tip
comes in contact with the sample and starts indenting it, the
mechanical response of the sample due to its deformation
determines the interaction. The latter interaction is of main
interest in this work.

Traditionally, the Hertz contact model has been widely
used in the AFM community to describe elasticity of soft
samples [16], [39]. This approach assumes small indentations,
no friction, and continuous, non-conforming surfaces. For a
spherical tip with radius R indenting into an elastic half-space,
the contact force as a function of indentation δ is given by

FHertz = 4
3E
∗R

1
2 δ

3
2 (4)

where

E∗ =

(
1− ν2tip
Etip

+
1− ν2

E

)−1
(5)

and νtip, ν are the Poisson ratios of the tip and sample,
respectively, and Etip, E are the elastic moduli of the tip and



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 4

sample. Since the cantilever tip is made of a stiff material, it
can safely be assumed that Etip � E, which simplifies (5) to

E∗ =
E

1− ν2
. (6)

In the following, two separate models are presented for
modeling the sample. The first one is a linear spring-damper
model, while the second is based on the nonlinear Hertz
model with an additional viscous term. Using two such models
demonstrate that the presented approach can operate with
various material descriptions, from a simple one which em-
phasizes implementation simplicity, to increasingly complex
descriptions emphasizing accuracy.

E. Sample model A: Spring-damper

A simplified approach to the sample interaction is achieved
through modeling the sample by a spring-restoration force and
a damper. This is equivalent to the Kelvin-Voigt model, con-
sidered one of the simpler models for viscoelasticity [3]. This
model effectively captures viscoelastic effects such as creep,
but may result in widely varying parameters due to being
dependent on the frequency or time scale of the experiment.
Additionally, due to the linearity of the elastic component of
the model, the spring constant will change with depth, as well
as the radius of the tip. The advantage of this approach is
the simplicity of the equations, especially with regards to the
linearity in terms of the indentation depth. The interaction
force is given by

FAts = kδ + cδ̇ (7)

where k is the spring constant, c is the damping coefficient,
and δ is the indentation of the tip into the sample.

In the context of the Hertz contact model, the spring
constant will change with the indentation depth, thus k = k(δ).
If the spring constant is already known, the elastic modulus
can be found offline by using (4), (6) and Hooke’s law
FHooke = kδ, which gives

E = 3
4k(1− ν2)R−

1
2 δ−

1
2 . (8)

F. Sample model B: Modified Hertz model

An alternative implementation of the sample model is
obtained by directly using the Hertz contact model (4),(6). By
supplementing this approach with a linear damping force as
in the Kelvin-Voigt model, a viscoelastic model of the sample
is obtained. The resulting tip-sample interaction force is given
by

FBts = E′δ
3
2 + cδ̇ (9)

E = 3
4R
− 1

2 (1− ν2)E′ (10)

where E is the elastic modulus of the sample, E′ is the variable
identified by the parameter estimator and proportional to the
elastic modulus, R is the cantilever tip radius, and ν is the
Poisson ratio of the sample – typically ν = 0.5 for soft and
biological samples [40]. The elastic modulus found by this
approach should be invariant in terms of indentation depth, as
long as the assumptions of the Hertz contact model hold.

III. PARAMETER IDENTIFICATION

In this section, an online estimation scheme for identifica-
tion of the unknown sample parameters, k, c, E, is established.
The cantilever deflection D and indentation depth δ are
considered known signals during estimation, while the can-
tilever dynamics from the previous section, represented by the
parameters M,K,C, are considered fixed during experiments.

First, the system dynamics are rewritten in a parametric
form, suitable for estimation. Here, the two sample models A
and B are treated separately. The two models are then applied
in a generic recursive least squares estimator for identifying the
unknown parameters. Finally, convergence of the parameter
estimates is discussed.

A. Parametric system model
For the spring-damper model A, by applying the interaction

force (7) to the cantilever model (2), the equations can be
rearranged and rewritten in the complex s-domain as

Ms2D + CsD +KD − Fmod = (cs+ k) δ. (11)

Defining

w′ ,Ms2D + CsD +KD − Fmod (12)

the system (11) can be rewritten in parametric form as

w′ =

[
c
k

]T [
sδ
δ

]
(13)

= θTAφ
′
A (14)

where θA is the unknown parameter vector to be estimated
and φA is the known signal vector.

Following the same procedure for the Hertz model B, the
interaction force (7) and cantilever model (2) can be written
as

Ms2D + CsD +KD − Fmod = csδ + E′δ1.5. (15)

By using (12), the system can be written as

w′ =

[
c
E′

]T [
sδ
δ1.5

]
(16)

= θTBφ
′
B (17)

which gives the parametric formulation of the second sample
model.

B. Filtered system equations
In order to avoid pure differentiation of the signals w′,φ′i

in (14), (17), both sides of each equation are filtered by a
second-order low-pass filter such as 1/Λ(s) = 1/(τs+ 1)2,

w′

Λ
= θTi

φ′i
Λ

(18)

w = θTi φi (19)

for i ∈ {A,B}. Since w′ is of degree two, and φ′i is of degree
one, using a second-order low-pass filter makes the transfer
functions w,φi proper and thus implementable.

This linear parametric form is suitable for implementation of
various parameter estimation schemes, such as given in [41].
The objective of the estimator is thus to find the unknown θi
given the known signals w and φi.
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C. Parameter estimator

Several estimation methods for the systems (14),(17) can
be employed with similar stability and convergence properties.
We have chosen the least squares method with forgetting factor
from [41], due to its greater ability to suppress measurement
noise over many comparable techniques. Furthermore, because
of the slowly varying nature of the parameters, a forgetting
factor is useful. The method is restated here for completeness,

ŵ = θ̂Tφ (20)

ε = (w − ŵ)/m2 (21)

m2 = 1 + αφTφ (22)
˙̂
θ = Pεφ (23)

Ṗ = βP− P
φφT

m2
P (24)

P(0) = P0 (25)

where the parameter estimate vector θ̂ = θ̂i, and signal vector
φ = φi are implemented for some i ∈ {A,B}. Additionally, α
is a positive constant, typically unity, β > 0 is the main tunable
for the convergence speed of the estimates, and P ∈ R2×2 is
the covariance matrix.

The sample rate needs to be sufficiently high to achieve
numerical stability of the estimator. If numerical instability is
observed, the estimator gain β can be reduced to ease the nu-
merical demands. A recommended lower limit on the sample
rate can be found by considering the cantilever oscillating near
its resonance frequency f0 = ω0/(2π). To capture information
at this frequency, by the Nyquist criterion, the sample rate
needs to be at least twice this frequency, giving a lower limit
of fs,min = 2f0. However, the sample rate may need to be
increased further to achieve numerical stability.

D. Convergence of parameters

The least squares estimator guarantees convergence of the
error ε to zero, given constant parameters θ. However, for the
parameter vector θ̂ to converge to θ, which is of prime im-
portance in parameter identification, the signal vector φ needs
to be persistently exciting (PE). Indeed, this is a sufficient
condition for exponential convergence of θ̂ → θ [41].

Definition 1 (Persistency of excitation). The signal vector φ
is said to be PE if there exist constants, α0, α1, Tp > 0 such
that

α0I ≤ 1

Tp

∫ t+Tp

t

φφT dτ ≤ α1I, ∀t ≥ 0, (26)

where I is the identity matrix and α0 is known as the level of
excitation.

For a modulating cantilever, that is, by using a sinusoidal
input signal

Fmod = A′ sin(ω0t) (27)

for some amplitude A′, the signal vector is PE as demonstrated
later. Thus, in dynamic mode AFM the parameters will con-
vergence in exponential time.

The estimation scheme guarantees exponential convergence
only for constant parameters. However, exponential conver-
gence in the constant parameter case, guarantees some degree
of tracking even for slowly-varying parameters [42]. Thus, the
estimation scheme can be used to track sample mechanical
changes over time, or as a function of another signal, such
as the indentation depth. To capture more rapid changes in
parameters, e.g. during indentation, one could reduce the
scanning speed or increase the gain of the parameter estimator.

E. Estimation time interval for convergence

Although the PE property guarantees exponential conver-
gence of the parameters, even exponential convergence can be
slow. In DIVE mode AFM, the parameters can be assumed
to take on new constant values at regular intervals from
one indentation to the next. The question then remains, how
long does the parameter estimator need to run during a
given indentation in order to guarantee convergence to some
specified error? This topic was investigated in detail in [29]
for the general case of the recursive least squares method.
Some results are restated here and extended for the case of
covariance reset between each interval. A covariance reset, that
is, setting P(t0) = P0 at some time t0, is used as it allows
for tighter error bounds and thus faster guaranteed convergence
time.

In the following theorem, an upper limit on the parameter
error is given. Let the parameter estimation error be given by
θ̃ = θ̂ − θ.

Theorem 1. Let m,φ ∈ L∞, φ be PE, and θ constant. Then,
by a covariance reset at time t0 such that P(t0) = P0, the
least squares algorithm guarantees∣∣∣θ̃(t)

∣∣∣ ≤ ae−λ(t−t0) ∣∣∣θ̃(t0)
∣∣∣ , ∀t ≥ t0 (28)

for any t0 ≥ 0, where the constants a > 1, λ > 0 are given
by

a =

√
γ2

γλmin(P0)
, λ = − ln γ

2Tp
, (29)

where

γ =
1− µ

1 + βTp
(30)

µ =
α0Tpγ1

2m̄2 + φ̄4T 2
p γ

2
2

(31)

γ1 =
(
λmin(P0)−1 + (αβ)

−1
)−1

(32)

γ2 = max

{
m̄2

α0Tp
, λmax(P0)

}
eβTp . (33)

Additionally, m̄2 = suptm
2(t), φ̄ = supt |φ| and λmin(·),

λmax(·) denote the minimum and maximum eigenvalue, re-
spectively.

Proof: This theorem is a reformulation of [29, Theo-
rem 1].

Using the previous theorem, a time interval T can then be
found such that the parameter error is guaranteed to be reduced
to some fraction Q of the initial error.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 6

Corollary 1. Given that the assumptions of Theorem 1 are
satisfied. Then, for any 0 < Q < 1, the recursive least squares
algorithm guarantees that within the time interval

T =
1

λ
ln
a

Q
(34)

the parameter error has been reduced to the fraction Q, that
is ∣∣∣θ̃(T + t0)

∣∣∣∣∣∣θ̃(t0)
∣∣∣ ≤ Q (35)

Proof: Let T = t− t0, and rewrite (28) as∣∣∣θ̃(T + t0)
∣∣∣ ≤ ae−λT ∣∣∣θ̃(t0)

∣∣∣ , ∀T ≥ 0. (36)

Note that, since a > Q and λ > 0, we have T > 0 using (34),
thus, the condition T ≥ 0 in (36) is automatically satisfied.
Now, inserting for T from (34) gives∣∣∣θ̃(T + t0)

∣∣∣ ≤ ae−λ 1
λ ln a

Q

∣∣∣θ̃(t0)
∣∣∣ (37)

≤ aQa
∣∣∣θ̃(t0)

∣∣∣ (38)

≤ Q
∣∣∣θ̃(t0)

∣∣∣ . (39)

which confirms (35).
As long as the PE parameters are known, specifically α0, Tp

from (26), then the time interval T can be found using (29)
and (34).

IV. IMPLEMENTATION

The control logic and parameter estimator is implemented
according to the block diagram shown in Fig. 5. The imple-
mentation details of the various components are discussed in
the following.

A. State machine and parameter estimator

The state machine controls the logic of the operation. Its
procedure is summarized in Fig. 6 and the following:

1) Lower the cantilever until indenting into the sample, and
record the initial point of contact h (topography).

2) Pause the vertical movement of the cantilever when the
mean deflection reaches some Dmax.

3) Enable the parameter estimator. The duration of this
step should be sufficient to guarantee convergence of
the parameters as discussed later.

4) Raise the cantilever until it is free from the sample.
5) Move the cantilever in the lateral directions to the next

indentation coordinate.

The above procedure is repeated n× n times for each inden-
tation laterally spaced across the sample, where n determines
the resolution of the resolved nanomechanical properties. The
parameter estimator implements (20)–(25) for either sample
model A or B. Between each indentation, all internal states of
the parameter estimator are reset.

B. Demodulator

The cantilever deflection signal is demodulated using a
digital Lyapunov filter which provides the amplitude, phase
and mean of the signal [43]. This demodulator has been
compared to state-of-the-art techniques and demonstrates a
high performance with simplicity of implementation [44]. The
demodulator is exclusively used for:
• Determination of the initial point of contact with the sam-

ple during the approach phase – that is, the topography.
• Acquisition of the amplitude and phase for offline data

analysis purposes.
Thus, only the state machine makes use of the demodulated
signals. Contrarily, the parameter estimator rather uses the
oscillating signals directly. Therefore, the performance of
the demodulator does not directly influence the identified
parameters.

The demodulator is implemented as

˙̂x = Γc(D − D̂), (40)

D̂ = cT x̂, (41)

where the constant diagonal matrix Γ = diag(γa, γa, γb), and
γa, γb > 0 determine the bandwidth of the demodulation and
the mean estimate, respectively. Furthermore, the state vector
x̂ and quadrature signal vector c are given by

x̂ = [x̂1, x̂2, x̂3]
T
, (42)

c = [sin(ω0t), cos(ω0t)]
T
. (43)

The deflection amplitude DA, phase Dϕ, and mean D̄ can
then be recovered from

DA =
√
x̂21 + x̂22, (44)

Dϕ = atan2 (x̂2, x̂1) , (45)
D̄ = x̂3, (46)

where atan2(·) is the four-quadrant inverse tangent function.
The Lyapunov filter requires an exact knowledge of the

frequency ω0 of the modulated signal. The frequency is deter-
mined by the applied modulation signal Fmod from (27). Thus,
by feeding this signal into the demodulator, the frequency will
match trivially.

C. XYZ Controller

The XYZ controller positions the cantilever as commanded
by the state machine. The controller takes the rate of move-
ment along each axis, dX, dY, dZ, as reference, and positions
the cantilever/sample accordingly.

Hysteresis and creep in the lateral piezo scanners can
negatively influence the results. E.g., if the tip moves toward
an area of higher topography during an indentation in DIVE
mode, the value of the initial contact point would become
invalid, and result in lower or even negative indentation depth
values. This would introduce an error or completely invalidate
the estimated parameters, especially for stiff samples and steep
topography. In order to suppress such occurrences, a feedback
PI-controller is implemented for accurate positioning along the
lateral axes.
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Fig. 5: Block diagram of the control logic and parameter estimator.
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Fig. 6: State machine controlling the overall operation of the
procedure. One cycle represents a single indentation and is
repeated for each pixel across the sample. The initial state
is given by ‘•’, while ‘ ’ represents entry action. For other
actions, their signals are reset to zero at state exit.

The vertical (z-axis) scanner on the other hand, is imple-
mented using feedforward only. This scanner also displays
hysteresis and creep. However, the effects along this axis are
negligible as the recorded initial contact point is still valid.
This leads to a correct measurement of indentation depth, and
the estimated parameters remain valid even when the sample
creeps in the vertical direction.

D. Other considerations

1) Contact point detection: In order to determine the depth
of the cantilever during indentation, first the point of contact
with the sample must be detected. This additionally serves
as a measurement of the topography h at the current lateral
position. A rigorous contact point detection can be challeng-
ing, especially for soft samples with strong surface forces
[5]. During approach, attractive forces can result in a jump
to contact, possibly causing sample indentation in addition
to adhesion forces. For these reasons, there is no simple
solution to determining the contact point. In our experiments
the contact point was determined by the deflection amplitude

becoming less than some predetermined value, chosen as
DA < 10 nm. When this condition is reached, the topography
is determined from the current vertical tip position, as detailed
in Fig. 6.

2) Calibration: All signals are converted to SI units. For
accurate indentation values, the deflection and vertical posi-
tioning need to be well calibrated. The vertical positioning
can be calibrated by performing a scan over a rigid sample
with a known step height. The deflection can be calibrated by
performing an indentation into a rigid sample with the same
cantilever as used in the experiment, and comparing this to
the previously calibrated vertical positioning.

3) Deflection creep: It was observed that the resting, static
deflection point of the cantilever creeped slowly over time.
This also appeared to change the deflection calibration over
time. This is believed to be due to temperature changes, in
particular from the reflective coating on the cantilever, which
can result in bending of the cantilever [5]. This effect was
mitigated by turning on the equipment some time before
performing experiments, which let the thermals come to equi-
librium in operating conditions. Additionally, the deflection
zero-level was reset between each subsequent indentation.

V. SYSTEM IDENTIFICATION AND TUNING

In order to implement the parameter estimator, the cantilever
dynamics (2) need to be known. In particular, the system pa-
rameters M,K,C need to be identified in order to implement
w using (12).

The experiments were implemented on a commercial AFM
(Park Systems XE-70) using a spherical carbon tip cantilever
with 40 nm tip radius (B40 CONTR), operated in air.

A. System identification
The cantilever spring constant K was calibrated by the

thermal noise method [45] with modifications from [5]. In
this method, first, the power spectral density of the cantilever
is recorded without any applied force. The spectral density is
then fit to a Cauchy distribution near the first resonance mode.
The mean square deflection 〈D2〉 can then be found through
integration of the fit. Finally, the spring constant is found by
using

K = β∗
kBT

〈D2〉
(47)
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where β∗ = 0.817 is a correction factor, kB is the Boltzmann
constant and T is the absolute temperature of the cantilever.
The fit of the spectral density to the Cauchy distribution, from
our experiments, can be seen in Fig. 7a.

In order to identify the cantilever effective mass and
damping coefficient, the frequency response of the cantilever
deflection was found by applying white noise to the piezo
modulator. The resonance frequency of the first mode, ω0, was
then identified at peak magnitude. Furthermore, the effective
mass was found using the relationship

M =
K

ω2
0

. (48)

Finally, the transfer function was fitted to the frequency re-
sponse data by adjusting C. A good fit near the resonance peak
was emphasized, and the result is seen in Fig. 7b. Note that the
cantilever is actuated from the base of the cantilever fixture,
which excites additional dynamics. Self-actuated cantilevers
are also available resulting in a cleaner frequency response
[46].

The resulting system parameters are given by

K = 0.816 N/m, C = 7.86× 10−8 Ns/m,

M = 8.42× 10−11 kg, f0 = 15.7 kHz

with ω0 = 2πf0.
Additionally, a calibration for the piezo modulator voltage-

to-force ratio need to be determined. This was performed by
applying a sinusoidal signal at cantilever resonance frequency
and comparing the deflection response with the expected
output from the previously found transfer function.

B. Estimator tuning
The parameter estimator needs to be appropriately tuned

for the experimental conditions. The main tunables are β and
P0. Here, β determines the bandwidth of the estimator, with
very high values resulting in noisy estimates. The P0 matrix
determines the level of trust in the initial conditions of the
parameter estimates, with large values meaning low trust, and
thus fast initial convergence.

The following values were determined which provided a
reasonable bandwidth with low noise:

β = 50, P0 = diag(5× 107, 1× 1018).

Additionally, α was set to unity.

C. Estimation time interval
By using the results from Corollary 1, the estimation time

during each indentation, for which the parameter error is
guaranteed to be sufficiently small, can be found. However,
the PE properties of the signal vector need to be known in
order to apply the results. In the following, it is demonstrated
how to find the desired time interval when using sample model
A, and the estimator tuning from the previous section.

Consider the applied sinusoidal cantilever modulation force
(27). Assuming that the resulting cantilever deflection is dom-
inated by a linear response, and that the cantilever is in contact
with the sample, we have

δ = A sin(ω0t+ ϕ) + δ̄ (49)
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Fig. 7: System identification. (a) Cantilever spring constant
calibration. (b) Cantilever frequency response and approxi-
mated second-order model, from piezo modulator to deflec-
tion.

for some amplitude A, phase ϕ, and mean depth δ̄ ≥ A. While
nonlinear tip-sample interaction forces can induce a response
at other frequencies, they would be substantially attenuated
due to the strong resonance effect of the cantilever near ω0.
Thus, (49) should be a close approximation to the experimental
situation. Inserting (49) into φA from (14) gives the signal
vector

φA =
[
Aω cos (ω0t+ ϕ) A sin (ω0t+ ϕ) + δ̄

]T
. (50)

Next, consider the PE expression from (26) and define

S ,
1

Tp

∫ t+Tp

t

φAφ
T
Adτ. (51)

By choosing
Tp = 2πω−10 (52)

and using (50), it can be shown that the solution to (51) is
given by

S =

[
1
2A

2ω2
0 0

0 1
2A

2 + δ̄2

]
. (53)

Thus, φA is PE with level of excitation α0 and α1 given by

α0 = min
{

1
2A

2ω2
0 ,

1
2A

2 + δ̄2
}

(54)

α1 = max
{

1
2A

2ω2
0 ,

1
2A

2 + δ̄2
}

(55)

which satisfy the PE condition

α0I ≤ S ≤ α1I. (56)
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Fig. 8: Minimum estimation time T which guarantees conver-
gence of the parameter estimate error to within Q fraction of
the initial error.

Thus, with the PE condition found, Corollary 1 can then be
used to find the time interval T , within which the parameter
error is guaranteed to be desirably small. First, the following
properties can be determined by considering φA from (50)

φ̄2A = A2ω2 +
(
A+ δ̄

)2
, m̄2

A = 1 + φ̄2A, (57)

Using (29)-(34), the time interval can be plotted as a function
of β at various values of Q, as seen in Fig. 8.

By using the tuned value of β, it was found that the time
interval which guarantees that the estimator error has been
reduced to Q = 0.001% of the initial value is given by

T = 1.13 s. (58)

For the actual implementation, the time interval was rounded
up to 1.2 s. This value was used as the time spent in the
Stationary state during each indentation, see Fig. 6.

The analysis used to ultimately arrive at the value given in
(58) is inherently conservative. Thus, the actual convergence of
the parameters might occur at a faster rate. If a faster imaging
procedure is desired, the time interval can be reduced by
considering the rate of convergence achieved in simulations or
experiments. For reference, we found in our own experiments
that the time until convergence was around one-tenth of the
value given in (58).

VI. EXPERIMENTAL RESULTS

The method was implemented on the commercial AFM
(Park Systems XE-70) employed in the previous section, using
the same cantilever (B40 CONTR). The AFM was connected
to an embedded computer (dSpace DS1103) controlling all
aspects of the operation. A Simulink program implements the
necessary equations from the previous sections, as well as the
scanning logic. The program was transferred to the embedded
computer before operation.

The parameter estimator and demodulator was implemented
online at a sampling rate of 200 kHz. The state machine
and XYZ controller was run at a separate sampling rate of
1 kHz. This separation allows for faster sampling speed for
the estimator. The XYZ controller was tuned for relatively
low bandwidths, and its sampling rate was thus sufficient.

A. Two-component polymer film sample

The first experiment was performed to demonstrate the
normal operating procedure of DIVE mode AFM, revealing
spatially varying viscoelastic properties of the sample. A total
of 30×30 indentations into a PS-LDPE-12M film sample were
performed. This two-component polymer sample has specified
elastic moduli of around 0.1 GPa and 2 GPa for the two
components. The sample is especially suitable for measuring
variations in elasticity due to its clear contrast between the
two polymer components.

In this experiment, sample model A was used for online
estimation of spring constants and damping coefficients. In
order to find the elastic modulus, equation (8) was used offline.
The results of the scan can be seen in Fig. 9. The contrast
in elasticity between the two polymer components is clearly
visible.

For each pixel in the scan results, the online estimator
recursively estimates the spring constant and the damping
coefficient. The vertical tip position and corresponding pa-
rameter estimates in the time-domain, during two subsequent
indentations, are shown in Fig. 10. The first indentation is
located in the softer region of the sample, while the second
indentation near the stiffer region. This results in the first
indentation going deeper, as seen in Fig. 10a. Since the
second indentation does not reach deep into the sample, it
is consequently more prone to noise in the depth estimate,
resulting in somewhat more noisy parameter estimates as seen
in Fig. 10b. To mitigate such noise, it is emphasized that the
spring constant and tip radius of the cantilever used, need
to be suitable for the sample being investigated. A very soft
cantilever will deflect too much before it sufficiently indents
the sample, while a very stiff cantilever will indent the sample
without sufficiently deflecting and can cause damage.

B. Homogeneous gel sample

In the second set of experiments, a soft gel sample (PDMS-
SOFT-1-12M) was used with a specified elastic modulus of
about 2.5 MPa. Four experiments at 20 × 20 resolution were
performed in order to compare sample model A and B at
different indentation depths, 100 nm and 250 nm, respectively.
The resulting identified spring constants (sample modelA) and
elastic moduli (sample model B) are shown in Fig. 11.

The mean of the identified parameters from each experiment
is given in Table I. The identified elastic modulus is close to
the specified value of 2.5 MPa. If the sample perfectly com-
plies with the Hertz model, then the elastic modulus should
be invariant with regards to the indentation depth. However,
the results indicate some difference at the two depths. This
suggests that the Hertz model is not completely descriptive
for the experimental setup. In particular, the indentation is
large compared to the radius of the cantilever, which violates
the assumption of small indentations. This could be mitigated
by using a cantilever with a larger tip radius, or lower
spring constant. Additionally, adhesion effects could be large,
something which is further discussed in the next experiment.

Note that the difference in the mean spring constant is larger
than for the elastic modulus. This can be used as an argument
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Fig. 9: AFM experiment for a two-component polymer sample.
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Fig. 10: Tip position (a) and parameter estimation (b) during
two subsequent indentations into the two-component polymer
sample. In (a), crosses ‘×’ mark contact detection point
(topography), while within the circles ‘◦’ the stationary state
is active and sample parameters are estimated.

TABLE I: Depth versus elasticity.

Indentation Spring constant Elastic modulus

100 nm 0.335N/m 2.73MPa

250 nm 0.435N/m 2.31MPa

Difference 26.0% 16.7%

in favor of implementation of the Hertz sample model B, and
demonstrates the necessity of a nonlinear sample model.

For many soft, biological materials it is not possible to
calculate the elastic modulus [40], as they do not even ap-
proximately behave in accordance with Hooke’s law or its
nonlinear variants, which is the basis of the elastic models
presented in this article. For such materials, a more suitable
sample model could be developed, and used in the modeling
and identification approach as presented.

C. Time-varying estimation

Since the approach presented in this article uses a recursive
parameter estimation scheme, the time-varying nature of the
parameters can be recorded. This can be demonstrated by
performing a single indentation into a soft sample. If the
sample complies with the Hertz model, then the spring con-
stant from sample model A should increase with increasing
indentation depth. Thus, if the cantilever tip is lowered and
raised again, experimental results should demonstrate time-
varying parameters.

This experiment was performed on the same gel sample as
previous (PDMS-SOFT-1-12M). During the experiment, the
cantilever was lowered until it reached some specified depth
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Fig. 11: Four AFM experiments demonstrating spring constant
(sample model A) versus elastic modulus (sample model B)
identification at different indentation depths on a homogeneous
gel sample.
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Fig. 12: Time-varying parameter estimates. The estimated
spring constant is shown to change with the indentation depth.
Unmodeled adhesion effects give rise to unreliable results at
the start and end of the experiment.

into the sample, then raised again. Throughout the whole
procedure, while the tip was in contact with the sample,
the parameter estimator was enabled. The experiment was
implemented at a slow vertical speed, to make sure that the
parameter estimates were accurate. The cantilever and exper-
imental setup from the previous experiments have otherwise
been used.

The results of the experiment are given in Fig. 12. The
parameter estimates as shown in Fig. 12a demonstrate that the
spring constant generally increases with increasing indentation
depth as expected, and decreases as the tip is raised again.
Thus, proper estimation of time-varying parameters by using
the presented approach is demonstrated.

The results also demonstrate several effects due to adhesion
and deformation that should be considered when performing
experiments:

1) After initial contact: Initially after contact, the spring
constant estimates become negative. Negative spring constants
make little physical sense unless one considers the effect of
adhesion. As the tip approaches the sample, attractive adhesion
forces pull the tip onto the sample, resulting in a negative
cantilever deflection (Fig. 12b) which is interpreted as negative
interaction forces by the parameter estimator. The best fit
of the positive indentation depth signal onto the negative
cantilever deflection using the sample models implemented,
results in negative parameter estimates.

2) Raising the cantilever: A similar effect is seen towards
the end of the experiment, just before the tip is freed from
the sample. As the tip is raised, adhesion forces will make
the sample stick to the cantilever tip. This could also result
in deformation of the sample, by raising it towards the tip
as it is lifted. For these reasons, in the experiment, at some
point the indentation depth becomes zero and then negative. As
it approaches zero depth, the spring constant estimate grows
toward either positive or negative infinity, depending on the
net force experienced by the cantilever. Generally, the sample
model and estimates in the adhesive regime is thus invalid.

These effects could explain the difference of the elastic
modulus at different depths in the previous experiment. In or-
der to mitigate the effect of adhesion, the sample model could
be modified to include adhesion, such as by employing the
Johnson-Kendall-Roberts (JKR) or Derjaguin-Muller-Toporov
(DMT) contact models [8].

VII. CONCLUSIONS

A model-based identification technique is presented for
determining spatially resolved nanomechanical properties in
AFM. Both the cantilever and sample behavior is described by
dynamic models. The cantilever dynamics are assumed known
by identifying its parameters before performing the experi-
ments, while the sample dynamics incorporate the unknown
parameters to be identified. A recursive least squares estimator
is used for identification of the sample parameters.

Employing a recursive estimator has several advantages over
comparable techniques. First, it allows online identification
of the nanomechanical properties, enabling the operator to
see real-time conditions. Secondly, it allows the determination
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of time-varying changes of the parameters as demonstrated
by the experiments. This could be useful by itself, such as
for observing changing conditions in cells or other biological
material. Finally, observing such time-varying changes could
reveal erroneous conditions or unmodeled dynamics, as this
could dramatically affect the estimated parameters. An exam-
ple of this is seen in the last experiment, where negative and
diverging spring constant estimates are seen near the beginning
and end of the experiment. This is believed primarily to occur
due to unmodeled adhesion effects.

Furthermore, we have derived an analytical expression for
the estimation time interval of the recursive least squares
estimator. Within this time interval, the parameter error is
guaranteed to have been reduced to any given fraction of the
initial error. The time interval can be determined a priori,
and spending this length of time at each indentation point
then guarantees that the parameters will converge to any
desired accuracy. This is verified by the experiments, where
the parameters are seen to converge within the determined time
interval.

Two sample models are developed and implemented for this
approach – a linear spring-damper model and a nonlinear Hertz
model. It is demonstrated that only minor modifications are
needed to switch between the models. The experiments show
the Hertz model to be a better match. However, some materials
may not be well described by this model, and it is then a
clear advantage of the proposed modeling and identification
approach that the sample model can be exchanged for a more
suitable dynamic model.
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