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Abstract

Cardiovascular diseases represent, to date, the major cause of mortality worldwide. Di-
agnosis of the most frequent of such disease, Acute Myocardial Infarction (AMI), requires
the evaluation of time-series measurement of specific cardiac biomarkers concentration.
The aim of this work is to provide the clinicians with a quantitative tool to analyze such
time-series, with the final goal of enhancing the diagnostic and prognostic procedures. The
proposed approach is based on a novel dynamical model, which synthetically describes the
basic mechanisms underlying cardiac troponin (cTnT) release into the plasma after the on-
set of AMI. Leveraging tools of system identification and a dataset of AMI patients treated
at our University Hospital, the model has been assessed as an effective tool to quantify
the characteristic release curves observed under different conditions. Furthermore, it has
been shown how the devised approach is also suitable in those cases where only partial
measurements are available to the clinician, to recover important clinical information. Fi-
nally, an Optimal Experimental Design (OED) analysis has been performed in order to
gain insights on how to optimize the experimental data collection phase, with potentially
relevant implications on both the quality and cost of the diagnosis procedure.

Index terms— System identification; biological models; cardiac biomarkers; acute myocardial infarc-
tion; identifiability; optimal experimental design.

1 Introduction

Circulating biomarkers of myocardial damage are the base for diagnosis of AMI and for the stratification
of patients’ risk. Among the different types of biomarkers, tissue-specific cardiac troponins T(¢TnT) and
I(cTnl) are the most widely used for the identification of myocardial injury, and specific diagnostic guidelines
for their use have been implemented within the current clinical practice [1], [2], [3]. Clinical guidelines are
mostly based on whether or not the cTnT concentration level is above a certain threshold, which is determined
by means of a statistical analysis of a healthy population sample: the diagnosis of AMI requires that the
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Figure 1: Typical biphasic pattern of the time-evolution of ¢TnT concentration in the plasma following an
AMI.

c¢TnT concentration is above the 99th percentile of the upper reference limit (URL), in combination with
other evidences of myocardial ischemia, as detected, either by clinical symptoms, electrocardiographic (ECG)
or imaging evidences. The ¢TnT concentration level is measured upon clinical suspect and repeated in a
time-series, following the most recent diagnostic protocols, with typical sampling intervals varying between
6 and 24 hours over the course of time; therefore, the experimental ¢cTnT data for an AMI patient takes the
form of a time-series response.

The release curve in the bloodstream after the onset of AMI typically exhibits a biphasic pattern: the
concentration of ¢TnT, which is generally undetectable in healthy patients, undergoes an initial rapid in-
crease, with a peak after 12-24 hours, followed by a plateau phase, lasting about 48 hours and possibly
comprising a second peak, and eventually decreases exponentially to undetectable levels in one-two weeks.
A typical time-course of plasma ¢TnT concentration caused by an AMI is showed in Fig.1.

The shape of the release curve, along with the inter-individual variability (determined also by different
treatment strategies and co-morbidities), possible missing samples (especially in the first hours), experimental
noise and, in some cases, the uncertainty on the exact time of occurrence of the ischemic event, renders the
clinical interpretation of the experimental data quite difficult, especially. To further complicate the problem,
one should also take into account that there are other forms of myocardial damage that may result in elevated
c¢TnT concentration levels (e.g., cardiac trauma, myocarditis, severe pulmunary embolism or hypertension).
Therefore, there is an urgent need of more specific and quantitative characterization methods for the diagnosis
of AMI from ¢TnT experimental observations.

Considering the points above, it is clear how a simple threshold-based analysis would completely neglect
the dynamic nature of the release process, along with all its valuable intrinsic information, which may be of
great help in the characterization of the specific pathologic case under observation. The alternative strategy,
to overcome this limitation and achieve a quantitative and personalized characterization of the patient
pathology, is to base the analysis of the experimental data on a dynamical model of the release process.
Ideally, such a model should recapitulate the basic mechanisms of the release kinetics, though allowing enough
degrees of freedom to accommodate the different evolutions observed within the AMI patients population.
This calls for the use of a parametrized model, whose parameters can be fitted to the specific release curve
of each patient, thus enabling the extraction of a discrete number of clinically relevant, personalized and
quantitatively gradable features. Thus, the first main contribution of the present work is the design of a
novel mathematical model to predict the release of cardiac troponin T (¢TnT) subsequent to AMI. Many
analysis techniques are based on dynamical models in several fields of medicine and biology, ranging from
the reverse-engineering of gene regulatory networks [4], [5], and the characterization of cell differentiation [6],
to oncology [7], [8], [9] and cardiology [10]. However, to the best of our knowledge there is no previous work
presenting a dynamical model of cardiac troponin release. Preliminary versions of the present work have been
presented in [11] and [12]. The present work is refined and extended along several directions: the clinical
dataset has been considerably expanded, comprising ¢TnT time-series of 85 patients with elevation of the
ST segment of the ECG wave, which enhances the statistical value of the results. The system identification
step has been refined, by implementing a robust regression method, to cope with outliers. Furthermore,



in this work the devised model is leveraged to compute Optimal Experimental Design (OED): realizing
the importance of fine-tuning the estimated model to get reliable information even in the presence of few
measurements, we have exploited the methods of OED to investigate the optimal allocation of experimental
measurements over a reference time window.

The development of a reliable cTnT release model and identification procedure is a valuable step towards
AMI personalized diagnosis and treatment. For instance, hereinafter we investigate two possible ways to
leverage the proposed mode-based approach: i) to extrapolate information about the ¢TnT release peak,
and ii) to optimize the blood sampling procedure.

The work is structured as follows: Section II provides a short explanation on the clinical and patholog-
ical concepts treated; in Section III we introduce the proposed mathematical model and the experimental
dataset, as well as the techniques used for identifiability analysis, parameters identification, and optimal
experimental design. The results of such analysis are reported in Section IV, whereas in Section V discussion
and conclusions are given.

2 Background

One of the most common cardiovascular diseases, acute myocardial infarction (AMI), represents the first
cause of death worldwide. Usually, an AMI begins with a coronary block, as a result of a thrombosis. This
block causes the necrosis of cardiac tissue due to insufficient or missed perfusion of the myocardium. Acute
myocardial infarction (AMI) encompasses two different conditions, depending on the ECG signal:

e STEMI: ST-Elevation Acute Myocardial Infarction (ST is a section of the ECG wave); the obstruction
completely blocks the blood flow downstream of it and the ECG exhibits an elevated value in the ST
interval;

e NSTEMI: Non ST-Elevation Acute Myocardial Infarction; in this case the obstruction is partial, the
ECG signal does not show ST-segment elevation and may even be normal, in some cases. In these
patients the analysis of the ¢TnT levels is even more crucial to identify an AMI [2].

STEMI and NSTEMI present some common features, including the presence of myocardial necrosis, although,
however, each of these two clinical syndromes show specific characteristics, requiring different treatment
strategies. Considering the lack of previous work on the mathematical modeling of these phenomena, and
the much higher heterogeneity of the release curves presented by NSTEMI patients, in the present work we
focused on the STEMI case, whereas the NSTEMI one will be the subject of future investigation. The reason
why we focused on STEMI was the possibility to determine the time of symptoms’ onset more precisely.
This has important implications for the quality of the model to predict the age of the AMI.

Cardiac troponin was identified as the optimal biomarker for the following characteristics: i) high speci-
ficity for cardiac tissue; ii) high sensitivity to the cardiac damage; iii) wide observation window, which
facilitates the collection of samples and the elaboration of the information needed to delineate an accurate
clinical profile. In particular, the ¢TnT is only a part of the cardiac troponin complex, composed by: i)
troponin C (¢TnC), which binds the calcium, favoring later muscle contraction. However, ¢TnC, being
very similar to its skeletal isoform, has low specificity for cardiac tissue; ii) troponin I (¢Tnl), which in-
hibits the interaction between actin and myosin; iii) troponin T (¢TnT), which allows the complex to bind
to tropomyosin. c¢TnT exhibits all of the features of an ideal cardiac disease biomarker; therefore, it is
considered the gold standard for the diagnosis of AMI:

e Sarcomere, where ¢TnT is linked to tropomyosin;
e Cytosol, which contains unbound ¢TnT;

e Plasma, where the ¢TnT concentration, under physiological conditions, is negligible.
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Figure 2: Compartmentalization of ¢TnT under physiological and pathological conditions (reproduced from
[13]).

Fig. 2 shows ¢TnT compartmentalization in healthy and damaged cardiomyocytes. After the onset of AMI,
the affected cardiac cells undergo necrosis, which causes a rupture of the outer cell membrane and of the sar-
coplasmic reticulum, with the consequent release of the unbound ¢TnT molecules. The ¢TnT concentration
in the plasma peaks to a maximum value, after 12-24 hours post-AMI, subsequently decreasing to reach a
plateau phase, and in most cases a secondary peak in the subsequent days (see Fig. 1). One of the criteria
to confirm the diagnosis of AMI is that plasma ¢TnT concentration exceeds the 99" Upper Reference Limit,
calculated on a reference population.

It is also important to take into account that the STEMI patients may be subjected to one or both of the
following treatments: i) Early percutaneous revascularization, to restore the normal bloodflow downstream
of an obstruction, by means of balloon dilation and or stent implantation of the occluded or stenotic vessel; ii)
thrombolytic therapy, that consist in administration of drugs able to dissolve the blood clots in the occluded
vessels. This group of patients usually undergoes coronary angiography at variable time after thrombolytic
treatment, depending on patient’s clinical characteristics and efficacy of the thrombolysis. Of course, the two
treatments have an impact on troponin T release kinetics, affecting the correct estimation of the parameters,
the resultant model and, therefore, the correct prognosis/diagnosis.

If we look at the current analysis techniques, we can see how these suffer from several problems, such
as: 1) the raw experimental measurements, in most cases, do not allow the clinicians to identify significant
values, needed to quantitatively assess the extent of the cardiac damage, like the peak values and the
corresponding time point; 2) the exact time of the occurrence of the AMI is often uncertain as well, due



to either unconscious patient or neglected symptoms. In the next sections, we will present our strategy to
address these issues, which is based on: i) the development of a dynamical model for the prediction of ¢cTnT
release from patient-specific experimental data and ii) the use of the model to compute patient-specific values
of clinical interest.

3 Methods
3.1 Mathematical Model of ¢cTnT Release

Cardiac troponin T is normally located into three distinct compartments: the sarcomere, the cytoplasm and
the plasma. Therefore, the linchpin out of the model is the description of the fluxes of ¢TnT between these
three compartments. To this regard, notice that the sarcomere is contained within the cell, therefore the
model will not comprise any direct flux between the sarcomere and plasma compartments, but only between
sarcomere and cytoplasm, and between cytoplasm and plasma.

Since ¢TnT levels into the sarcomere and cytoplasm compartments are not measurable, the model will
be evaluated only with respect to its capability to fit the plasma concentration measurements. The release
curve presents a biphasic pattern, which is generated by the following dynamics:

i) fast dynamics due to early and rapid leakage of the ¢TnT molecules contained in the cytoplasm,
following the rupture of the outer cell membrane;

ii) slower dynamics due to the later release of ¢cTnT molecules bound to the sarcomere; the basic assump-
tion here is that the disassembly of the sarcomeric reticulum, with the consequent unbinding of the
c¢TnT molecules, requires the persistent cell damage with respect to the membrane rupture.

The slower dynamics seem to be caused by the action of particular lytic enzymes that, ultimately, attack
the subunit T of cardiac troponin, allowing it to detach from tropomyosin.

The state variables of our model are chosen to be the cTnT concentrations in the three compartment: Cs,
C., and C, for sarcomere, cytosol and plasma concentration, respectively. Usual simplifying assumptions
are made: the concentration in the compartment is homogeneous and the flux between compartments is
considered mono-dimensional. The structure of our model has been formulated in the form of the following
ODE system

Co(t) = —Joe(OT(2)

CC(t) = Jse(O)T'(1) — ch)(t) (1)

Cp(t) = Jep(t) = Tpm (1)
where the functions Js¢, Jep, Jpm model the diffusion process of ¢TnT between the compartments and I'(¢)
is a function that modulates the sarcomeric rupture (and thus the flux between sarcomere and cytosol) over
time.

Using Fick’s first law of diffusion [14], we assume the flux between compartments to be proportional to
the concentration difference, thus the diffusion terms take the following forms:

o Jso := Dy (Cs(t) — C.(t)), the diffusion flux of ¢TnT between sarcomere and cytosol compartments,
the positive flux direction is oriented from the sarcomere to the cytosol;

o Jp = Dy (Ce(t) — Cp(t)), the diffusion flux of ¢cTnT between cytosol and plasma compartment, the
positive flux direction is oriented from the cytosol to the plasma;

o Jym 1= agp Cp(t), the clearance rate of ¢cTnT from the circulatory system.

The parameters Dy, D, represent the diffusion coefficients between sarcomere and cytosol, and cytosol and
plasma, respectively, o, is the clearance rate from the plasma.



Note that in system (1) the diffusion process of ¢TnT between sarcomere and cytosol is obtained by
multiplying the Fickian diffusion term Js. by the modulator function I'. Our choice for the modulator
function is

I = e (2)

which takes values between 0 (intact sarcomere, no ¢TnT release into the cytosol) and 1 (sarcomere com-
pletely disassembled, unconstrained release of ¢TnT into the cytosol). T represents the time threshold for
sarcomeric disassembly. As illustrated Fig. 3, function I' has a sigmoidal shape, with a slow initial growth
for t < T and a sudden rise to values close to 1 starting around ¢ = 7. Note that the time of switching
between 0 and 1 can be tuned by changing the parameter 7. By substituting the expressions of the flux and
of the modulator function in system (1), the full model of ¢TnT release reads

Cs(t) = —Dse (Cs(t) — Ce(t)) T(t)

Ce(t) = Dac (Ca(t) = Ce(t)) T(t) — ( e(t) — Gp(1)) (3)
Cp(t) = Dep (Ce(t) — (1)) —
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Figure 3: Time evolution of T'(t) function with T = 60, in the range from 0 to 1.

3.2 Experimental Dataset and Preprocessing

The experimental dataset was collected by the Interventional Cardiology Unit of the Magna Graecia Uni-
versity Hospital in Catanzaro, Italy, and includes clinical information and biomarkers measurements of 85
patients aged between 18 and 85 years who have been subject to an AMI event. The initial dataset has been
examined by the clinical experts to remove patients with low number of acquisitions and/or atypical trend
(which may be due to the occurrence of other pathologic events or treatments), leading to the exclusion
of 14 patients from the present study. The dataset contains experimental data of STEMI patients with
AMI. The measurements were taken using a highly sensitive assays, able to detect even very low levels of
troponin in the blood. The cut — off value for this assay, calculated on a reference population, is equal to a
concentration of 0.014 ng/ml. In general, the first acquisitions were performed every 6 hours from the time
of admission for the first one/two days and then every 24 hours. Clearly, this is very dependent on many
factors, e.g. symptoms severity, time elapsed from the ischemic event, other clinical evidences. A throm-
bolytic treatment was administered only to 22 patients, 7 of which did not exhibit an effective response to
this first-line treatment and, consequently, underwent a rescue percutaneus revascularization. All remaining
patients underwent primary percutaneous coronary intervention for myocardial reperfusion.

It is important to take into account that the thrombolytic treatment was always administered to patients
at the first Emergency Unit (typically the closest hospital, which is often not the University Hospital); hence,
the dataset does not contain acquisitions at time points preceding the admission to the University Hospital
structure, as these were not directly available in our institutional database and used different analytical
standards. To test the model, we used 60 patients as training dataset and the remaining 11 patients as
validation dataset. We have used the training dataset to define the lower and upper bound and in the
statistical and sensitivity analysis, while the validation dataset was used to test the hypotheses derived by



analyzing the results obtained from the training dataset. Before the analysis, a preprocessing of data was
performed by visual inspection, under the supervision of the clinicians in order to identify potential outliers
and correct them if possible.

Appropriate algorithms to identify potential outliers will be necessary in order to automate this step and
make efficient the software for the model exploitation in a clinical setting.

3.3 Identifiability Analysis

The devised model comprises six parameters, all of them taking only positive values (negative values would
lead to a biologically meaningless model): i) two diffusion coefficients D, and D,,; ii) a clearance coefficient,
Qep; 1ii) time threshold for sarcomeric disassembly, T', previously introduced; iv) the initial concentrations of
¢TnT into sarcomere and cytosol or the initial conditions for the state variables, Csy and C.q, respectively.
The initial concentration of the ¢TnT in the plasma is assumed to be negligible, therefore it is set equal
to zero. These parameters are not available in the literature nor measurable (except perhaps the clearance
rate of plasma ¢TnT, but at present this value is not available). Therefore, their values must be estimated
by fitting the model to each patient experimental available data, that is to dynamic measurements of C,(?).
Before applying a regression algorithm to estimate such parameters, it is important to carry on a thorough
identifiability analysis. Indeed, to uniquely recover the unknown value of the parameters from the output
evolution, it is necessary that the model is identifiable. The identifiability analysis can yield one of the
following responses:

e structurally non-identifiable: it is impossible, due to the structure of the model, to determine the true
value of the parameters from input-output experiments; in this case, it might be possible to overcome
the limitation by reducing the complexity of the model;

e practically non-identifiable: the number of experimental data is too low or the data are too noisy; in
this case a possible strategy could be to improve the number of acquisitions.

There are several methods for determining the structural identifiability of nonlinear models [15,16]:

e the similarity transformation approach, based on the local state isomorphism theorem that requires to
prove that the system is controllable and observable and it is usually computationally prohibitive for
non-linear systems;

e the differential algebra methods based on replacing the stimuli-observables behavior of the system by
some polynomial or rational mapping;

e the direct test solving directly the identifiability problem from uncontrolled and autonomous systems;
e the power series approaches like the the Taylor series and the generating series approach.

For some of these methods there are software tools available: DAISY [17], GenSSI [18], COMBOS [19]
and STRIKE-GOLDD [20]. The choice depends on the features of the model [16]. For example, roughly
speaking, DAISY requires the use of numerical calculations for very complex problems and STRIKE-GOLDD
is very good for large systems but computes only local identifiability.

GenSSI was selected for our model, as a pure symbolic analysis is possible. GenSSI is based on the
generating series approach, which allows to extend the analysis to the entire class of bounded and measurable
stimuli when the model is linear in the stimuli.

We should note that our model does not exhibit control inputs, thus the generating series approach is
equivalent to the Taylor series approach. The observable y(¢,0) = C,(¢t,0), which is a function of the
parameters © = [Dgc, Dep, acp, T, Cs0, Ceo], is expanded in a neighborhood of the initial state [Cso, Ceo, 0],

(0.) = l(t0.©) + tit0. ©) + Si(t0.©) + . (1)



and defining
arp(®) = lim —y(t,0), k=0,1,2,..., kmaz (5)

then a sufficient condition for global structural identifiability is given by
ak(@):ak(e*)v k:071727-~~7kmaz:>6:@*

where k4. is the smallest positive integer, such that the symbolic computations give the solution of the
parameters (see [16] for a deeper discussion).

The structural identifiability analysis determined that model (3) with k... = 12 was non-identifiable.
This prompted us to carefully reconsider the structure of the model, eventually realizing that there is some
redundancy in the parameters. In this case, the non-identifiability issue can be fixed by computing an
equivalent scaled model, to reduce the number of free parameters. In our case this is readily obtained by
dividing the left- and right-hand sides of the three differential equations in (3) by the diffusion coefficient
D, which yields

dC 73
)
dcC 73

€ = — L — 6
& = (€= C) gy ~ (G~ C) (6)
% = a(C.—Cp) —bC,

where the parameters of the scaled model are a = D,/ Ds¢, b = acp/Dse, Ty = T/ Dy and 7 = Dy t. The
scaling has reduced the number of parameters from six to five (0 = [a,b, Ty, Cs0, Cep]). Now, applying the
identifiability analysis, we can conclude that model (6) is locally structurally identifiable, thus it is possible
to proceed with the parameters identification phase.

3.4 Parameters Identification

Parameter identification is a crucial step in the analysis of the collected experimental data, especially in
the clinical context we deal with, since the proposed model sets out to fit the ¢TnT release curves of a
heterogeneous population of patients, with potentially very different severity grading of ischemic attack
and different ages, physical characteristics, co-morbidities and treatment records. Before setting up the
identification algorithm, it is important to clarify what is the purpose of the estimated model. In many
cases, especially in the control engineering field, the estimated model is intended to be used as an accurate
proxy of the behavior of the real system, which can be used to predict the system behavior under different
stimuli and initial conditions and/or to design the control law. If the system parameters can be reasonably
assumed to be constant, the best strategy to tackle the regression problem is to find the best-fitting model
on the overall dataset, i.e., computing a unique point in the parameter space that minimizes a cost function
that involves all of the experimental data.

An interesting case, which is often encountered in biological studies, is when the system parameters are not
deterministic, but can be assumed to belong to a known probability distribution. In this case, the regression
problem can still be tackled using a cost function that includes the whole dataset, by describing the system in
the form of a mixed-effects model, i.e., a model with parameters consisting of a constant value plus a random
variable [21]. This class of models is usually the best choice when dealing with repeated measurements on
the same subjects, e.g. in clinical longitudinal studies. In such cases, indeed, the parameters are expected
to randomly vary around a fixed value.

Our problem cannot be classified in one of the above categories: in our setting, the variability of the
parameters derives from the different characteristics of each patient and from the other clinical factors. This
makes it impossible to estimate a model that satisfactorily fits the experimental data on multiple patients.



Each patient is different from the other in terms of peak values and times, initial concentration rate of climb,
length of the plateau phase and settling time.

On the other hand, it is important to consider that our aim is not to model the average response over a
population, but rather to analyze the response of each specific patient subjected to AMI and to extrapolate
useful information on the basis of patient specific measurements. With this in mind, it is now clear that the
parameter identification algorithm has to be applied to each experimental curve separately, thus deriving a
unique parameter vector for each patient. Such parameter vector can be thought of as a set of quantitative
features that characterizes each subject of our patients sample.

Since the model is nonlinear in the parameters, and it is locally structural identifiable, we had to resort
to global optimization methods. Specifically, we tested two different techniques: i) the interior-point method
[22], combined with multiple runs with a randomized choice of the initial guess over the parameter space,
and ii) the particle-swarm optimization algorithm [23]; the two approach yielded almost identical results.
The two global optimization strategies were applied using the corresponding software routines implemented
in the Matlab Global Optimization Toolbox. Regarding the multi-start optimization procedure, we set the
number of initial guesses to 40, which is sufficient to consistently find the global minimum in all of the
examined cases.

On the other hand, the result of the fitting procedure heavily depends on the definition of the cost
function that is minimized by the global optimization algorithm. Note that the typical release curve to be
interpolated is characterized by an initial peak, which, in most cases, attains much higher values than the
rest of the curve. In this case, a standard least square regression would favor the interpolation of the high
values, to the detriment of the other points of the curve. To avoid this problem, we adopted a weighted least
squares approach, choosing the weights of the residuals to be inversely proportional to the estimated values.

Another point to be carefully considered is the presence of outliers, which are inevitably introduced in
operator-dependent experimental measurements of the type taken in a clinical scenario. In order to cope
with this issue, a robust identification procedure has been implemented in combination with the weighted
least squares. The robust implemented procedure belongs to the class of iteratively reweighted robust (IRR)
algorithms [24]. The details are reported in the form of a pseudo-code in Algorithm 1.

Algorithm 1 Pseudo-code of the implemented variant of Iteratively Reweighted Robust algorithm
1: Imit: w +— w; <+ 1
2: for iter = 1 to Njier do

3 oy = argming >, wy (Y — Jk)”
4 rly =4

5: if /N < B then

6: we < (1 —(r/N)/B?)?

7 else

8: We — 0

9: end if

10: w; = 2

11: W 4— We - W;

12: end for

0: model parameters; r: residuals; we, w;, w: external, internal and total weights; y: experimental data; §:
estimated response; B: tuning parameter; N: normalization factor.

The TRR regression algorithm typically converges in a few iterations (Nijter = 5 in our case). The
implemented variant blends two weights: the internal weight compensates the magnitude differences of the
data points, whereas the external one confers robustness to outliers. To this end, the latter weight is set to
lower values for data points farther away from the current estimated curve and takes zero value when such
distance exceeds a certain threshold, which can be tuned. The tuning parameter B was set to 4.68 and the
normalization factor N to 1.48xmedian(r) as suggested in [24].



Finally, we had to define the admissible bounds for each parameter. In this case, the bounds cannot
be derived from physical considerations, therefore the upper and lower bounds were selected heuristically,
according to the following procedure: an initial guess has been evaluated on the basis of the typical rates of
change and concentration values attained by the release curves. Subsequently, starting from this guess, we
have gradually enlarged the admissible range of the parameter values, iteratively repeating the identification,
and evaluated the distribution of the parameters over the population: the optimization ranges were fixed
once most of the identified values were lying strictly between the bounds.

The calculations were carried out on a PC with Intel Core i7 processor, 16 Gb RAM and 2.5 GHz,
resulting in a mean simulation time of 15 minutes for each patient.

The distribution of the estimated parameter values over our training set is reported in Fig. 4: the
parameters Ty and Cyy exhibit a Gaussian-like trend, centered around a modal value, whereas a, b and Cyg
appear to belong to long-tailed distributions. Therefore, we can conclude that the latter parameters are those
that are mostly affected by inter-individual variability. This consideration can be exploited, as illustated in
the following, in order to reduce the number of optimization parameters.

3.5 Confidence Intervals

The confidence intervals (CIs) of the estimated parameters allow us to evaluate the reliability of the fitting
results: the tighter the Cls, the smaller the uncertainty on the estimated values.

For the computation of the Cls, first of all the original data have been used to get estimated release
curves for each patient; then, the estimated curves have been corrupted with multiplicative noise, according
to the error model Ymeas = Ytrue(l + J), using the estimated value, yest, in place of the unknown true value
Ytrue, and assuming § € N(0,5). The value of the standard deviation & = 0.225 has been derived by the
analysis of the residuals.

Thus, a sample of 50 noise-corrupted time-series data has been generated and, by applying the identi-
fication procedure on each time-series, we have computed the corresponding sample of parameter vectors,
which is used to compute the relative confidence intervals (i.e., each CI is normalized with respect to the
average estimated value of the parameter) shown in Fig. 5.

This information, along with the results of the sensitivity analysis, is exploited to identify the most
critical parameters for the identification procedure.

3.6 Optimal Experimental Design

The objective of the Optimal Experimental design (OED) is to maximize the confidence of the estimated
parameters by designing the most informative experiments. The problem may be mathematically formu-
lated as a general dynamic optimization problem searching for those manipulable variables (time-dependent
stimuli, initial experimental conditions, experiment durations, sensor locations, sampling times or type of
observables) that maximize the information.

In this work, the objective is to minimize the uncertainty of the unknown parameters (0 = [a, b, Ty, Cso, Ceo])
by selecting the best sampling times (¢5). The method assumes that each measurement C), is independent
and identical distributed (i.i.d) normal random variable. The mean (C,,) is obtained from the model in (6).

The Fisher Information Matrix (FIM) is the standard measure for the amount of information that mea-
surements carry about an unknown parameter. The FIM is defined as the variance of the score:

o -{(52) (%))

where J,,; is the negative log-likelihood function [25]. For independent and identical distributed (i.i.d.)
normal error the Fisher information is equivalent to:

F(O,1.) = ;E{@ngg,ts)f (a.fmgg,m)} ®)
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Figure 4: Distribution of estimated parameter values over the patients population.

where J,,,(0,ts) is the sum of the square errors and o its standard deviation.

Therefore the problem is formulated as the following dynamic optimization problem: Calculate best
sampling times so as to optimize a scalar measure of the FIM (Jogp).

Different scalar functions of the FIM are formulated (Jogp). The FIM determines typically a hyperel-
lipsoid in the parameter space. This hyperellipsoid represents the quantity and quality of information of the
selected experiments. The largest and the more spherical the hyperellipsoid defined by the FIM, the better
the experimental design. Common criteria are:

e D criterion that maximizes the volume of the information hyperellipsoid but not its shape. The higher
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Figure 5: Relative confidence intervals calculated on four patients, using the full time-series (top panel) and
the truncated time-series (low panel, see Section 4.1 for details on the truncated time-series).

its value the biggest the expected parameter confiance for the parameter estimates.

Jp = maxdet(.%)

e A criterion that maximizes the arithmetic mean of the hyperellipsoid semi-axes.

J4 = maxtrace(.F)

e F criterion that maximizes the minimum semi-axis of the hyperellipsoid and offers a compromise
between D and Emod
JEg = max Apin (F)

e Modified E criterion (EFmod) that minimizes the relationship between the longest and shortest semi-
axes of the hyperellipsoid, i.e., improves the eccentricity of the information hyperellipsoid. The global
optimal solution is Jg;meq = 1, when the parameter confidence is equally distributed

. )\maw (ﬁ)
JEmod = min o ()

Generally speaking, D and A are criteria to improve information and Emod to decorrelate parameters. F
criterion is the option to optimize a compromise between improving information and parameter decorrelation.

Numerics of the optimization depends on the criterion selected. A criterion is insensitive to singular
FIM matrices. Thus A may lead to undesirable results as was already pointed out by [26] and has not been
used in this work. F criterion is non-differentiable and requires the use of appropriate global optimizers
[27]. In this work we selected the global optimizer based on scatter search (eSS, Enhanced Scatter Search)
method [28]. This algorithm can optimize non-differentiable functions and it is very efficient in finding the
best experimental designs. Last, when parameters are of different orders of magnitude, FIM is usually badly
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conditioned and criteria such as E,,,q = 1 are not necessarily decorrelating the parameters (see [29] for
details). To avoid these problems we used the normalization proposed in [30].

Computations of the different optimal experimental designs require advanced numerical techniques. In
this work we used AMIGO2 (Advanced Model Identification using Global Optimization), a multi-platform
toolbox implemented in Matlab [31]. The optimization of the FIM was computed using the common control
vector parametrization technique, which transforms the original infinite dimension optimization problem into
a non-linear programming problem [32].

4 Results

4.1 Estimation of Patient-Specific Responses

The system identification approach illustrated in Section 3.4 was first applied to the training set, to evaluate
the distribution of the parameters (reported in Fig. 4): to give a feeling of how the model fits the experimental
data, in Fig. 6 we report the estimated response for 4 patients. Since the use of the standard R? index is
debatable in the case of nonlinear regression, in order to assess the quality of the interpolation results on
each curve, we evaluate the Average Normalized Residual (ANR), defined as

1 (ymeas - yest)2
ANR = — Wmeas  Jost) 9
Np Z ygst ©)

where Ymeas Tepresents the experimental acquisition, . the vector of the estimated values, and N, the
number of the experimental acquisitions, for each curve.

The distribution of the ANR metrics for the training and validation datasets, along with the results
obtained optimizing all the 5 parameters (hereafter we refer to this case as 5-parameters model), are shown
in Fig. 7. Note that smaller ANR values are associated to better interpolation.

The fitting results are generally good, which suggests that the devised model provides a satisfactory
description of the ¢TnT release dynamics. The usefulness of the model, so far, consists in the possibility
of recovering a detailed picture of the evolution of ¢TnT concentration after AMI, starting from a few
experimental samples.

To further evaluate the applicability and usefulness of the model, we decided to investigate how the
estimated response changes when some experimental data points are removed (the identification algorithm
is run on a truncated time-series). This resembles the most very common situation that occurs when the
patient are presented to the hospital after several hours, or even days, after the onset of AMI. Under this
circumstance, the initial data points of the curve would not be available and the clinician would not be able
to estimate the time and amplitude of the first ¢TnT peak. Thus, we challenged our model to recover this
information. As shown in Fig. 6, on the same 4 patients we simulated the situation above, by removing
all of the initial data points until the first peak (marked with green crosses), before performing the model
identification step. The resulting estimated responses (solid red line) show that we are still able to identify
with good approximation the first peak time point, although it is not possible to precisely estimate the
amplitude of the peak. A look at Fig. 5 confirms that, as expected, the CIs obtained with the truncated
time-series data are higher than with the full time-series data. Thus, the proposed model confirms as an
effective tools not only for the interpolation of the experimental data, but also for extrapolating values of
the release curve outside the experimental observation window.

Particular attention must be paid when the number of experimental data points is too low with respect
to the number of optimization parameters. In these situations, the model is expected to overfit the data and
the estimated response is, therefore, not reliable. An example of this is represented by patient 28 estimated
response on the truncated time-series: having only 4 points left (and 5 optimization parameters) the model
overfits the data (though, in this case, the time of the estimated peak is still quite close to the one estimated
on the full time-series). A possible way to overcome this issue, when it is not possible to increase the
number of acquisitions, consists in reducing the number of optimization parameters, by setting one or more
parameters to a fixed value.
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Figure 6: Model fitting using the full and truncated dataset. The blue curves (—) are obtained by fitting
the model to all the experimental time-points. The red curves (-), instead, are obtained by removing the

time-points marked with a green cross(+), to simulate analysis of patients admitted at the hospital after the
concentration peak has been attained.
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Figure 7: Distribution of the ANR index over the dataset, using the 5 parameters model on the whole (AP),
training (TS), truncated (TrS) and validation (VS) dataset, and the 4- and 3- parameters models on the
validation (VS) dataset.

To evaluate the capability of the model to estimate the first missing acquisitions, we computed the ANR
index on the results obtained from the experiment described above. In this case, to avoid overfitting problems
when reducing the dataset, we have selected 46 patients such that the truncated dataset would still contain
at least 6 acquisitions. The distribution of the ANR metrics for these 46 patients are shown in Fig.7 (label
TTS5Par)~

4.2 Sensitivity Analysis

To gain a deeper insight on how the various parameters influence the response of model (6), we performed
sensitivity analysis (SA) [33]. More specifically, in our case SA has been applied to identify the parameters
that have major influence on the two peaks of the curve, corresponding to the two release phases. Properly
identifying these values is of great importance to the clinician for diagnostic purposes.

We have performed a normalized local SA [34], numerically computing the first-order partial derivatives
of the quantities of interest, with respect to each parameter, that is

g — Ayi/yi _ Oln(yi)
" op/p dln(p)

Numerically, the sensitivity analysis was computed by varying the parameters by a small amount (around
1%), computing the corresponding changes in the peaks and then the ratio.

The results of the sensitivity analysis are reported in Fig. 8: the first peak on the curve is mainly affected by
the initial concentration of ¢TnT into the cytosol, C,y, and by the normalized diffusion coefficients a and b.
The second peak, instead, is influenced by the normalized diffusion coefficient b, by the initial concentration
of ¢TnT into the sarcomere, Cyy, and by the threshold of the modulator function, Ty.

4.3 Estimated response with some fixed parameters

As discussed above, a critical requisite, to get useful response estimates from the proposed ¢TnT model, is
that the number of experimental acquisitions is not too low. This requirement would hinder the application
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Figure 8: Sensitivity analysis for the peak values and their time, by increasing the parameter values by 1%
with respect to the optimal starting value.

of the devised estimation approach in the first hours after the onset of AMI, when only 2-3 points are typically
available.

A possible strategy, to enable response estimation also during this first phase, may consist in reducing the

number of optimization parameters, so as to avoid the problems of inconsistency and reliability of the results
associated to overfitting. On the other hand, to reduce the number of optimization parameters, we need to
fix one or more parameters to a preassigned value. A sensible choice would be to fix the parameters that
have the lowest influence (i.e., low sensitivity) on the response shape and that exhibit the lowest variability
among our patients sample. The selection of the fixed parameters and of the preassigned values was done
on the basis of the empirical distributions of the parameters and of the sensitivity analysis computed in the
previous sections.
In particular, we have chosen to fix Ty and Cjyp, because these parameters have a negligible influence on
the first peak, which enables us to provide good estimates of the first peak even with fewer optimization
parameters. We computed the estimated response i) with only one fixed parameter, namely Cso = 10 (this
case is denoted as (4- parameters model), and ii) with two fixed parameters, namely Cyo = 10, Ty = 200
(3-parameters model).

Some estimation results obtained with the 5-, 4-, and 3-parameters models are compared in Fig. 9. Note
that the tests were run on patients of the validation set, whereas the preassigned values of the fixed parameters
have been chosen (approximately) as the median values of the empirical distributions obtained on the training
dataset. Interestingly, the degradation of the estimated responses when fixing one or two parameters does
not appear to be dramatic (see Fig.7, labels V Syp,, and V Ssp,,), although a deeper investigation on a larger
dataset would be required to definitely state the effectiveness of this strategy.

4.4 Optimal Experimental Design Analysis

The OED problem for model (6) has been solved using various objective functions, to test the best solution
for our case. More specifically, we run OED with the criteria Dopt, Eopt and Emod; for each criterion, we
computed the optimal sampling times, assuming that it is possible to take 5, 10, and 15 measurements. We
consider the following optimization constrations: intervals between successive measurements should be of at
least half an hour, and measurements cannot be taken during the first hour. Once the optimal sampling
times were calculated, we compute the CIs corresponding to the optimized experimental data points. Since
the real concentration values are not available at the optimal time-points, they have been replaced by the
values estimated using the originally available experimental time-series. These estimated optimal data points
are corrupted with a multiplicative noise vector before applying the identification algorithm.

The Eopt criterion gave the best results, probably because it provides a balance between information
maximization and parameters decorrelation. The other two criteria only focus on one objective, either
information maximization (Dopt) or parameters decorrelation (Emod). Interestingly, Eopt performed better
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than Emod, which suggests that the parameters of our model are not highly correlated

In Fig. 10 we report the OED time points for two cases with only 5 acquisitions. The results of the
OED analysis suggest that most of the measurements should ideally be located just before the first peak
is attained, possibly repeating the acquisition 3-4 times in the first 4 hours when the ¢TnT concentration
rapidly increases and leaving only one acquisition in the intermediate plateau phase. This choice is quite
different with respect to the classical experimental routine, which generically aims to cover the whole period
of ¢TnT release with a much more regular sampling (typically on a daily basis).

To further confirm the indications of OED, we repeated the OED optimization using a generic patient’s
response (i.e., setting each parameter equal to the median value of the corresponding empirical distribution).
For this generic patient, we computed the optimal sampling times with 10 and 15 measurements. The results,
reported in Fig. 11 are consistent with those found with 5 points: the optimal allocation of the measurements
is not obtained with a regular spanning of the interval, but concentrating the points mostly around the first
peak and then a few points allocated in the later days.

Clearly, an immediate consequence of these OED results, should they be confirmed by experimental tests,
would be the possibility to significantly reduce the discomfort of the patient, who is currently compelled to
undergo daily blood tests for a period of one/two weeks after the ischemic event. If the model was proven
to provide reliable patient-specific estimates of the ¢cTnT evolution, it would imply the necessity of a smaller
number of experimental measurements to be performed, with consequences also in terms of diagnostic and
follow-up costs.

5 Discussion and Conclusions

The main contribution of the present work consists in the development of a novel mathematical model of
c¢TnT release into the plasma after the onset of AMI. The model was built using a bottom-up mechanistic
approach, starting from the dynamics underlying the diffusion of species of interest between the involved
compartments. This is, to our knowledge, the first model accounting for the dynamics of cardiac biomarker
release. Once the model structure was devised, we performed a structural identification analysis, a step
that is often neglected in system identification, but that is crucial to obtain consistent findings, especially
when dealing with biological systems, which are intrinsically subject to high inter-individual variability.
This analysis enabled us to derive a structurally identifiable version of the ¢TnT release model, which
was subsequently used for the identification of the parameters and estimation of the response on a sample
of patients, whose data were collected by the interventional cardiology unit at our University Hospital in
Catanzaro.

The model interpolation results show a good agreement with the experimental data and the capability
of reproducing the characteristics biphasic kinetics of ¢TnT release. In particular, we have shown that the
model, along with the proposed identification approach, can be effectively exploited to estimate the patient-
specific cTnT concentration time-course, both between experimental samples (interpolation) and outside the
observational window (extrapolation). identification of clinically relevant patient-specific features. Although
model simulations cannot replace clinical acquisitions, fitting the model to the available acquisitions enables
the estimation of otherwise unavailable clinical data, like ¢TnT concentration evolution before the patient
hospitalization and, in particular, the time of occurrence of the peak concentration, as shown by the tests
illustrated above, which is a valuable information for a correct diagnosis and prognosis. Furthermore, the
model is expected to prove itself a useful tool also for other purposes, e.g., in retrospective clinical studies.

We have pointed out that the parameter identification procedure requires a minimum number of experi-
mental data points, which poses the problem of how to exploit the model in the early phase after the ischemic
event, when few measurements are available. A possible strategy to cope with this issue has been proposed,
which seems to yield promising results.

Overall, the results of our work suggest that the devised model can be leveraged as a quantitative
diagnostic tool, e.g., to give estimates of the the time of occurrence and the extent of the AMI, to assess the
current stage of the pathology and to predict its evolution in the short term.

Furthermore, the optimal choice of the sampling times was also investigated, using the methods of Optimal
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Experimental Design. The results of this optimization are clinically interesting, indeed they suggest that, in
principle, to obtain effective information on the ¢TnT response, it is not necessary to take measurements on
a daily basis, but it could be sufficient to have a tight sampling in the first hours and then an acquisition in
the plateau phase.

Future work will focus on the extension and refinement of the model along several directions: firstly,
an important study will regard the role played by additional risk factors like, for instance, diabetes, renal
insufficiency or previous myocardial damage, on the release kinetics of ¢TnT; secondly, we will explore
the advantages of linking the troponin release model with other cardiac disesases biomarkers, like creating
kinase (CK-MB). Furthermore, a particular attention will be devoted to further validation of the model,
both expanding the patients database and by using robustness analysis methods, which can be effectively
used as an alternative (with respect to data fitting) means of model validation as discussed in [35], [36].
Finally, a crucial point for the applicability of the methods described in this work will be the development
of a simple and efficient software platform for the real-time automated analysis of the experimental ¢cTnT
release data, to be used by clinicians during the treatment of AMI patients.
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Figure 10: Optimal sampling times with Fopt for patient 29 and 71.
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Figure 11: Optimal sampling times with Fopt for a generic patient, using 10 and 15 measurements.
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