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Analysis, Estimation, and Validation of
Discrete-Time Epidemic Processes

Philip E. Paré , Ji Liu , Carolyn L. Beck , Barrett E. Kirwan , and Tamer Başar , Life Fellow, IEEE

Abstract— Models of spreading processes over nontrivial net-
works are commonly motivated by modeling and analysis of
biological networks, computer networks, and human contact
networks. However, learning the spread parameters of such
models has not yet been explored in detail, and the models
have not been validated by real data. In this paper, we present
several different spread models from the literature and explore
their relationships to each other; for one of these processes,
we present a sufficient condition for asymptotic stability of the
healthy equilibrium, show that the condition is necessary and
sufficient for uniqueness of the healthy equilibrium, and present
necessary and sufficient conditions for estimating the spread
parameters. Finally, we employ two real data sets, one from
John Snow’s seminal work on cholera epidemics in London in
the 1850s and the other one from the United States Department
of Agriculture, to validate an approximation of a well-studied
network-dependent susceptible-infected-susceptible model.

Index Terms— Epidemic processes, John Snow’s cholera data
set, networked control systems, nonlinear systems, system iden-
tification in biomedical applications, validation of networked
systems.

I. INTRODUCTION

SPREADING processes have been studied in many
fields. In the systems and control community, the main

interest has been on susceptible-infected-susceptible (SIS)
spread models over nontrivial networks. These models have
been proposed for discrete time [1]–[8] and continuous
time [4], [9]–[13] and are based on an infection parameter β
and a healing rate δ. A virus model is called homogeneous if
the infection and healing rates are the same for every agent,
and heterogeneous if they are different for each agent. In this
paper, we will focus on discrete-time SIS models, mainly for
the more general, heterogeneous models, but exploring esti-
mating the spread parameters of homogeneous models as well.
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Wang et al. [1] introduced a discrete-time homogeneous
virus spread model that is dependent on a nontrivial undirected
graph structure. The authors give an epidemic threshold for
the model in terms of the maximum eigenvalue of the matrix
depicting the graph structure in relation to the ratio of β and δ
that ensures convergence to the healthy state, that is, where the
virus is eradicated. Van Mieghem et al. [9] point out that the
model in [1] is only accurate for spreading processes when
it is known that the virus meets the condition to die out
in exponential time. Chakrabarti et al. [2] explored the same
model as [1] but in more detail. Ahn and Hassibi [4] studied
both discrete- and continuous-time homogeneous SIS models.
Both the healthy and the endemic1 states of several models are
considered, and existence, uniqueness, and stability conditions
for special cases of the endemic state are established. They
also provide a sufficient condition for the global stability of
the endemic state for the model in [1] and [2].

In [4], they only perform a local stability analysis of
the endemic state of the model of interest; the analysis
here is global and for a more general model. Ahn and
Hassibi [5] and Paarporn et al. [6] explored how an n-state
discrete-time model approximates a full 2n-state probabilis-
tic model, and Paarporn et al. [6] extended the model to
include human awareness. Han et al. [7] applied the geometric
programming ideas used in [10] to the discrete-time model.
Watkins et al. [8] studied a full probabilistic model that uses
partial measurements and performed inference on the states
that are not measured using a Bayesian approach and propose
a feedback control technique.

These references include the basic framework and recent
history of the models we consider, which we validate using
real spread data. The model we focus on in this paper is
similar to a special case in [4]. However, the model in [4]
assumes homogeneous virus spread and an unweighted adja-
cency matrix. The models in Sections II and III are not limited
by these assumptions.

A. Related Work

While parameter estimation of epidemic spread with real
data has been carried out for some models [14]–[17], the pre-
vious work has either not included network structure or has
employed a large probabilistic model. Ignoring network struc-
ture is tantamount to making a strong simplifying assumption,

1By “endemic” we mean relating to a virus constantly present to
greater or lesser extent in a particular area.
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and using a full probabilistic model can become very compu-
tationally expensive as the size of the network grows [9], [13].
For these reasons, we focus on a nonlinear network-dependent
ordinary differential equation model. To the best of our
knowledge, no work has been done on the estimation of
spread parameters from data for these models. Many virus
spread papers using these models have claimed to use real
data to test their models, but no true validation of nontrivial
network-dependent SIS spread models has been done. Those
papers that use real data only build the network structure using
real data, but do not have real spreading process data over
that network. Wan et al. [18], [19] compared their model to
a simulator of severe acute respiratory syndrome (SARS), not
real data. Chakrabarti et al. [2] used a router network from the
state of Oregon and simulated an artificial spreading process
over that network. To the best of our knowledge, no work has
been done that validates network-dependent SIS models using
a set of real spread data. Similarly, Preciado et al. [10] used
data from an air transportation network but simulated using
arbitrarily chosen healing and infection rates. For reviews on
epidemic processes, see [20] and [21].

We use two data sets to validate the spread model analyzed
in this paper. The first data set is the cholera data set com-
piled by Snow [22]. Snow [22] mapped the deaths caused by
cholera in the Soho District of London in 1854 to illustrate
that the infection was being spread by contaminated water via
a specific pump, the Broad Street pump, and not via the air,
as was the belief at the time. This seminal work by Snow
has led to the modern day field of epidemiology [23]. While
now, partially due to Snow, we understand cholera, how it
spreads, and how to mitigate it, and this illness is still a serious
problem in poorer parts of the world today. This is highlighted
by the recent outbreak in Yemen, where there have been over
one million suspected cases of cholera and over 2270 cholera-
related deaths since the end of April 2017 [24], [25].

John Snow’s Original Spatial data set of the cholera
epidemic is static and does not contain time series data.
Shiode et al. [26] created spatial time series data, using
additional sources and some statistical methods. However,
Shiode et al. [26] did not perform any dynamic analysis on
their data set and have not made the data set publicly available.
We use a technique developed in the analysis section herein,
combined with several strong but reasonable assumptions,
to reproduce time series data, and, in so doing, validate
the model with the data set. As far as we know, this is
the first attempt to study Snow’s cholera data set from a
dynamical systems’ perspective to validate the models of
epidemic processes.

The second data set used herein is a record of all the payouts
from the United States Department of Agriculture (USDA) to
farms/farmers for all USDA-sponsored subsidy programs from
2008 to 2013. For this paper, we focus on the 2009 Aver-
age Crop Revenue Election (ACRE) Program, which was
introduced in that year as an alternative to an existing
program, the Direct and Counter-Cyclical Payment (DCP)
Program [27], [28]. These programs are in place to reduce
the risk in the U.S. farming industry, enabling the adoption
of new technologies. One of the goals of this paper is to

determine whether the adoption of the ACRE program fol-
lowed a network-dependent discrete-time spreading consistent
with the model studied herein.

A large body of literature in agricultural economics has
modeled the adoption and diffusion of agricultural tech-
nology, e.g., fertilizer and new seed varieties (see [29] for
a review of this literature). This literature generally mod-
els individuals’ decisions to adopt new technologies or the
extent of overall adoption, but the spread of informa-
tion and technology is treated as a “black box.” Recent
work in developing countries has examined whether farmers
learn about new technologies from “information neighbors.”
Foster and Rosenzweig examined survey data and found that
farmers’ adoption of high-yielding varieties during the Green
Revolution depended on neighbors’ experiences [30]. Recent
evidence from randomized controlled trials shows that farmers
learn from their neighbors’ experience when the technology is
novel or complex [31], but not when adjustments to current
practices are minor [32]. Ghanaian farmers learned from
neighbors’ experience when switching from traditional crops
to pineapple [31], whereas information about optimal fertilizer
used for traditional crops in Kenya did not spread among
neighbors [32]. We take a new approach by using virus spread
models to characterize the spread of complex information
among U.S. farmers.

A preliminary version of this paper is in the Proceedings of
the American Control Conference [33]. However, this paper
provides: 1) the complete proofs of all the results; 2) additional
illustrative simulations; and 3) the validation of the model
using the Snow cholera data set, which were not included
in [33].

This paper is organized as follows. In Section II, the virus
spread models are introduced with several remarks that provide
insight into how the models are related to each other. In
Section III, we analyze one of the discrete-time spreading
processes from Section II that has not been explored in
detail. In Section IV, we present necessary and sufficient
conditions for estimating the spreading process parameters of
the same model, from data produced by the models. In doing
so, we establish several assumptions that need to be met
by the data sets. In Section V, we validate the results from
Section IV via simulation. In Section VI, we introduce Snow’s
foundational cholera data set from 1854 and use it to validate
the spread model. In Section VII, we introduce the USDA data
set and the associated subsidy programs, and we estimate the
homogeneous spread parameters of the ACRE program using
data from one part of the country and verify the estimated
parameters by simulating the spread model over the complete
contiguous United States and comparing the simulated data
with the actual data. We conclude with some discussion of
the results and future work in Section VIII.

B. Notation

Given a vector function of continuous time x(t), we use
ẋ(t) to indicate the time-derivative. Given a vector function
of discrete time xk , the superscript indicates the time step
of x . Given a vector x ∈ R

n , the 2-norm is denoted by �x�
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and the transpose by x�. The notation 0 denotes the vector,
whose entries all equal 0. Given two vectors x1, x2 ∈ R

n ,
x1 > x2 indicates each element of x1 is greater than or equal
to the corresponding element of x2 and x1 �= x2, and x1 �
x2 indicates each element of x1 is strictly greater than the
corresponding element of x2. Given a matrix A ∈ R

n×n , the
spectral radius is ρ(A) and the largest real-valued part of
the eigenvalues of A is denoted by s1(A) (if the spectrum
is possibly complex). In addition, ai j indicates the i, j th entry
of the matrix A, and �A�F indicates the Frobenius norm
of A. The notation diag(·) refers to a diagonal matrix with
the argument(s) on the diagonal. For any positive integer n,
we define [n] := {1, . . . , n}.

II. SIS MODELS

We introduce two discrete-time SIS models and discuss
their relationship. For these SIS models, there are two levels
of granularity for modeling the system. The state xi can
correspond to a binary classification of whether or not the
i th agent is sick or healthy [4], [9], the probability of infec-
tion of the i th agent [9], or the proportion of infection of
group i [34]. To estimate the spreading process parameters
in Sections VI and VII, we employ the latter case.

The first discrete-time model we consider is derived from
the continuous-time model

ẋi = (1 − xi )βi

n�
j=1

ai j x j − δi xi (1)

where i indicates the i th agent or group i , xi is the infection
level, βi > 0 is the infection rate, δi > 0 is the healing
rate, and ai j ≥ 0 are edge weights between the agents/groups.
Applying Euler’s method [35] to (1) gives

xk+1
i = xk

i + h

⎛
⎝�

1 − xk
i

�
βi

n�
j=1

ai j xk
j − δi x

k
i

⎞
⎠ (2)

where k is the time index and h > 0 is the sampling parameter.
We write (2) in the matrix form as

xk+1 = xk + h((I − Xk)B A − D)xk (3)

where Xk = diag(xk), B = diag(βi), and D = diag(δi).
Note that A is the matrix of ai j values and is not necessarily
symmetric.

Remark 1: The model in (1) was derived from a mean field
approximation of a 2n state Markov chain model [9]

ẏ = Qy (4)

where Q is the transition matrix of the Markov chain (the
details of the 2n state model are not needed for the discus-
sion here, and hence are not included; for a more detailed
discussion, see [13]). Therefore, (2) is an approximation of an
approximation.

Discrepancies between (1), (2), and (4) are explored via
simulation and discussed in Section V.

An alternative discrete-time model, studied in [4], is

xk+1
i = xk

i (1 − δi ) + �
1 − xk

i

� ⎛
⎝1 −

n	
j=1

�
1 − βi ai j xk

j

�⎞⎠. (5)

Fig. 1. Graphical illustration of the discussion in Section II and the point
in Observation 1, showing how the two discrete-time spread models are
related. The first modeling layer shows the 2n state models. Arrows: different
approximations taken. By “True System,” we are referring to actual spreading
in a real process. To derive a mathematical model of the true spreading
process, some assumptions must be made; we do not assert that any of the
mathematical models represent ground truth, that is, there is no completely
accurate mathematical model.

By expanding the model given in (5), we obtain

xk+1
i

= xk
i −�

1−xk
i

� ⎡
⎣−βi

n�
j=1

ai j xk
j +· · ·+βn

i

n	
j=1

�−ai j xk
j

�⎤⎦−δi x
k
i .

Remark 2: If we assume βi < 1 ∀i , the model in (5) can
be approximated by truncating the terms with the powers of
βi greater than 1, giving

xk+1
i = xk

i + �
1 − xk

i

�
βi

n�
j=1

ai j xk
j − δi x

k
i . (6)

The preceding discussion leads us to the following
observation.

Observation 1: The approximation given by (6) and the
discrete approximation of the mean field approximation of the
continuous 2n state Markov model in (2) are equivalent, given
h = 1.
The relationships between the models introduced in this
section are shown in Fig. 1.

III. ANALYSIS

In this section, a different version of the model in (2) will
be analyzed as follows:

xk+1 = xk + h((I − Xk)B − D)xk (7)

where [B]i j = βi j , capturing the infection rate and
nearest-neighbor graph structure in one. Note βi j could be
factored into βi ai j as in (2).
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Assumption 1: For all i ∈ [n], we have x0
i ∈ [0, 1].

Assumption 2: For all i ∈ [n], we have δi ≥ 0 and, for all
j ∈ [n], βi j ≥ 0.

Assumption 3: For all i ∈ [n], we have hδi ≤ 1 and
h

�
j �=i βi j ≤ 1.

Lemma 1: For the system in (7), under the conditions of
Assumptions 1–3, xk

i ∈ [0, 1] for all i ∈ [n] and k ≥ 0.
Proof: Suppose that at some time k, xk

i ∈ [0, 1] for all
i ∈ [n]. Consider an index i ∈ [n]. Rearranging (2)

xk+1
i = xk

i (1 − hδi ) + �
1 − xk

i

�⎛
⎝h

n�
j=1

βi j xk
j

⎞
⎠

we see that xk+1
i is a convex combination of (1 − hδi )

and h
�n

j=1 βi j xk
j . Since, by Assumptions 2 and 3,

hδi , h
�n

j=1 βi j xk
j ∈ [0, 1], we have xk+1

i ∈ [0, 1].
Furthermore, by Assumption 1, x0

i ∈ [0, 1] for all i ∈ [n],
thus it follows that xk

i ∈ [0, 1] for all i ∈ [n] and k ≥ 0.
Lemma 1 implies that the set [0, 1]n is positively invariant
with respect to the system defined by (7). Since xi denotes
the fraction of group i infected or is an approximation of
the probability of infection of individual i (see Fig. 1), and
1 − xi denotes the fraction of group i that is healthy or is an
approximation of the probability of individual i being healthy,
it is natural to assume that their initial values are in the interval
[0, 1], since otherwise the values will lack physical meaning
for the epidemic model considered here. Therefore, we focus
on the analysis of (7) only on the domain [0, 1]n .

We also make the following assumption to ensure nontrivial
virus spread.

Assumption 4: We have h �= 0 and ∃i �= j s.t. βi j > 0.
Note that we do not assume the healing rates to be nonzero.

This allows for the possibility of susceptible-infected (SI)
models [36].

Definition 1: Consider an autonomous system

xk+1 = f (xk) (8)

where f : X → R
n is a locally Lipschitz map from a domain

X ⊂ R
n into R

n . Let z be an equilibrium of (8) and E ⊂ X be
a domain containing z. If the equilibrium z is asymptotically
stable such that for any x0 ∈ E we have limk→∞ xk = z, then
E is said to be a domain of attraction for z.

Proposition 1: Let z be an equilibrium of (8) and E ⊂ X
be a domain containing z. Let V : E → R be a continuously
differentiable function such that V (z) = 0, V (x) > 0 for all
x in E \ {z}, and �V k := V (xk+1) − V (xk) < 0 for all xk in
E \ {z}. If E is a positively invariant set, then the equilibrium
z is asymptotically stable with a domain of attraction E .

This proposition is a direct consequence of Lyapunov’s
stability theorem for discrete-time systems, which can be
found in [37], and the definition of domain of attraction.

Finally, we need an assumption on the structure of the B
matrix. A square matrix is called irreducible, if it cannot be
permuted to a block upper triangular matrix.

Assumption 5: The matrix B is irreducible.
Note that this assumption is equivalent to the underlying

graph being strongly connected.

Theorem 1: Suppose that Assumptions 1–5 hold for (7).
If ρ(I −h D+h B) ≤ 1, then the healthy state is asymptotically
stable with the domain of attraction [0, 1]n.

To prove the theorem, we need the following lemmas.
Lemma 2 [38]: Suppose that M is an irreducible non-

negative matrix such that ρ(M) < 1. Then, there exists a
positive diagonal matrix P such that M� P M − P is negative
definite.

Lemma 3: Suppose that M is an irreducible nonnegative
matrix such that ρ(M) = 1. Then, there exists a posi-
tive diagonal matrix P such that M� P M − P is negative
semidefinite.

Proof: From the Perron Frobenius Theorem for irreducible
nonnegative matrices [39, Th. 8.4.4], there exists v � 0 such
that Mv = v. Since M� is also irreducible and nonnegative,
there exists u � 0 such that M�u = u. Let P be a diagonal
matrix, whose i th diagonal entry is equal to ui/vi , which gives
Pv = u. Therefore,

(M� P M − P)v = M� Pv − Pv = M�u − u = 0.

Then by [40, Lemma 2.3], ρ(M� P M − P) = 0.
Proof of Theorem 1: To simplify notation, let M = I +h B−

h D and M̂ = I + h((I − Xk)B − D). By Assumptions 2–5,
M is an irreducible nonnegative matrix. First, we evaluate the
case where ρ(I −h D+h B) < 1. Therefore, by Lemma 2, there
exists a positive diagonal matrix P1 such that M� P1 M − P1
is negative definite. Consider the Lyapunov function V1(xk) =
(xk)� P1 xk . Using (7) with xk �= 0 gives

�V k
1 = (xk)�M̂� P1 M̂xk − (xk)� P1xk

= (xk)�(M� P1 M − P1)xk − 2h(xk)�B�Xk P1 Mxk

+ h2(xk)�B�Xk P1 Xk Bxk

< h2(xk)� B�Xk P1 Xk Bxk

− 2h(xk)�B�Xk P1 Mxk (9)

= h2(xk)� B�Xk P1 Xk Bxk

− 2h2(xk)�B�Xk P1 Bxk

− 2h(xk)�B�Xk P1(I − h D)xk

≤ h2((xk)� B�Xk P1 Xk Bxk

− 2(xk)�B�Xk P1 Bxk) (10)

≤ −h2(xk)� B�Xk P1(I − Xk)Bxk

≤ 0 (11)

where (9) holds by Lemma 2, (10) holds by Assumptions 2
and 3, and (11) holds by Lemma 1. Therefore, by Propo-
sition 1, the system converges asymptotically to the healthy
state for this case.

For the case where ρ(I − h D + h B) = 1, we have,
by Lemma 3, that there exists a positive diagonal matrix P2
such that M� P2 M − P2 is negative semidefinite. Consider
the Lyapunov function V2(xk) = (xk)� P2 xk . Using (7) with
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xk �= 0 gives

�V k
2 = (xk)�M̂� P2 M̂xk − (xk)� P2xk

= (xk)�(M� P2 M − P2)xk − 2h(xk)� B�Xk P2 Mxk

+ h2(xk)�B�Xk P2 Xk Bxk

< h2(xk)� B�Xk P2 Xk Bxk − 2h(xk)�B�Xk P2 Mxk

= h2(xk)� B�Xk P2 Xk Bxk − h(xk)�B�Xk P2 Mxk

− h2(xk)�B�Xk P2 Bxk

− h(xk)�B�Xk P2(I − h D)xk

≤ h2(xk)� B�Xk P2 Xk Bxk − h(xk)�B�Xk P2 Mxk

− h2(xk)�B�Xk P2 Bxk

≤ −h2(xk)�B�Xk P2(I − Xk)Bxk

− h(xk)�B�Xk P2 Mxk

≤ −h(xk)�B�Xk P2 Mxk

≤ 0.

Clearly, if xk = 0, then −h(xk)� B�Xk P2 Mxk = 0. Since,
by Assumptions 2 and 4, B, P2, M are nonzero, nonnegative
matrices, and if −h(xk)� B�Xk P2 Mxk = 0, then xk = 0.
Therefore, by Proposition 1, the healthy state is asymptotically
stable with the domain of attraction [0, 1]n . �

Proposition 2: Let Assumptions 1–5 hold. If ρ(I − h D +
h B) > 1, then (7) has two equilibria, 0 and x∗, where x∗ � 0.

Proof: Clearly, 0 is always an equilibrium of (7).
By the Perron Frobenius Theorem for irreducible nonnega-

tive matrices [39, Th. 8.4.4], ρ(I − h D + h B) = s1(I − h D +
h B) and there exists v � 0 such that

(I − h D + h B)v = ρ(I − h D + h B)v > v

since ρ(I − h D + h B) > 1. Therefore,

(−h D + h B)v = ρ(−h D + h B)v = s1(−h D + h B)v > 0v

which implies

ρ(I − h D + h B) > 1 ⇐⇒ h(s1(−D + B)) > 0.

This condition is the same as the condition of [41, Proposi-
tion 3] and [42], and the proof follows similarly, showing that
there exists x∗ � 0 such that

h((−D + B) − X∗B)x∗ = 0.

Therefore, 0 and x∗ are equilibria of (7).
Theorem 1 and Proposition 2 give the following result.
Theorem 2: Under Assumptions 1–5, the healthy state is

the unique equilibrium of (7) if and only if ρ(I − h D +
h B) ≤ 1.

In [4], a counterexample is provided to show that the non-
trivial equilibrium of (5) is unstable. However, this example
does not hold for the models in (2) and (7), because it does
not meet Assumption 3. Consequently, the state of the system
does not stay in the domain of interest, [0, 1]n .

Remark 3: If the system has homogeneous spread para-
meters, the condition in Theorems 1 and 2 reduces to
ρ(A) ≤ (δ/β).

IV. ESTIMATING SPREAD PARAMETERS

In this section, we provide the assumptions and the learning
techniques for several versions of the model in (2), intro-
duced in Section II. We assume that the underlying graph
structure A is known and that we have full-state measure-
ment with no noise on the measurements, which we admit
are strong assumptions. However, for the second application
considered here, these assumptions are well-founded because
we aggregate the data by county and the adjacency of counties
is known, i.e., the graph structure is known, and any farmer
that received a subsidy payout is in the data set, i.e., there are
no hidden, unmeasured states.

We present several results on estimating the spread parame-
ters of the model in (2) from data.

Theorem 3: Consider the model in (2) under Assump-
tions 1–5 with homogeneous virus spread, that is, β and δ
are the same for all n agents, with n > 1. Assume that A,
x0, . . . , x T , and h are known. Then, the spread parameters
can be learned uniquely if and only if T > 0, and there exists
l ∈ [T ] such that xl �= x0.

Proof: Since A, x0, . . . , x T , and h are known, using the
notation in (3), we can construct the matrix

� =
⎡
⎢⎣

h(I − X0)Ax0 −hx0

...
...

h(I − X T −1)Ax T−1 −hx T −1

⎤
⎥⎦. (12)

Therefore, we can rewrite (2) as⎡
⎢⎣

x1 − x0

...

x T − x T−1

⎤
⎥⎦ = �

�
β
δ

�
. (13)

By the assumption that there exists l ∈ [T ] such that xl �= x0,
the left-hand side of the equation is nonzero, and by construc-
tion, the left-hand side is in the range of �. This is clearly
overdetermined if T ≥ 1 and n > 1; therefore, it will have a
unique solution using the pseudoinverse.

If T = 0, then there is only one data point, and learning the
dynamic spread parameters is not possible. Similarly, if there
does not exist l ∈ [T ] such that xl �= x0, then

x0 = · · · = x T . (14)

This would only occur if x0 were an equilibrium point of (2).
So by (14), we have that the left-hand side of (13) is⎡

⎢⎣
x1 − x0

...

x T − x T −1

⎤
⎥⎦ = 0. (15)

By Proposition 2, there are two cases where (14) can occur:
1) the healthy state (x0 = x∗ = 0) or 2) the endemic state
(x0 = x∗ � 0).

1) If x0 = x∗ = 0, then, by (12) and (14), � = 0.
Therefore, by (13) and (15), β and δ can take any values,
that is, they are not unique.

2) If x0 = x∗ � 0, then � �= 0. Therefore, by (13)
and (15), [β δ]� is in the null space of �. This
implies that [β δ]� is not unique, unless the null space
equals {0}. If the null space equals {0}, then [β δ]� = 0,
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which is a contradiction because if [β δ]� = 0, then
there is no spreading process; therefore, there is no
endemic state. �

Now, we present two corollaries regarding how the ratio of
the spread parameters, δ/β, can be recovered. The first covers
the case for when h is unknown.

Corollary 1: Consider the model in (2) under Assump-
tions 1–5 with homogeneous virus spread with n > 1. Assume
that A and x0, . . . , x T are known. Then, the ratio of the spread
parameters can be learned uniquely if and only if T > 0 and
there exists l ∈ [T ] such that xl �= x0.

Proof: Since h factors out of the right-hand side of (13)
and is nonzero by Assumption 4, even if h is not known,
a scaled version of the pair β and δ, that is, hβ and hδ,
can be recovered exactly. Therefore, the proportion of the two
parameters can be found.

Corollary 2 shows that the ratio of the spread parameters
can be recovered for the heterogeneous case with different δi

and βi values for each agent (and includes the homogeneous
case as a special case) if A and the endemic state are known.

Corollary 2: Considering the model in (2) under Assump-
tions 1–5, if A and the endemic state, x∗ � 0, are known,
then

δi

βi
=

�
1 − x∗

i

�
x∗

i

n�
j=1

ai j x∗
j . (16)

Proof: By replacing xk+1
i and xk

i in (2) with x∗
i , we have

δi x
∗
i = �

1 − x∗
i

�
βi

n�
j=1

ai j x∗
j .

Since x∗
i > 0, we can divide by x∗

i giving the result.
These corollaries illustrate that under certain conditions,

while the exact behavior of the system may not be recoverable,
the limiting behavior of the system may be determined,
by employing Theorems 1 and 2 with Remark 3.

If the assumption is made that the underlying spreading
process is heterogeneous, that is, different δi and βi values for
each agent, a similar result to Theorem 3 can be concluded.

Theorem 4: Consider the model in (2) under Assump-
tions 1–5 with n > 1. Assume that A, x0, . . . , x T , and h are
known. Then, the spread parameters of node i can be learned
uniquely if and only if T > 0, and there exists l ∈ [T ] such
that xl

i �= x0
i .

Proof: Since A, x0, . . . , x T , and h are known, for each i ,
we can construct the matrix

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

h
�
1 − x0

i

� n�
j=1

ai j x0
j −hx0

i

...
...

h
�
1 − x T −1

i

� n�
j=1

ai j x T−1
j −hx T −1

i

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

Then, we have ⎡
⎢⎣

x1
i − x0

i
...

x T
i − x T −1

i

⎤
⎥⎦ = �i

�
βi

δi

�
. (18)

The remainder of the proof follows that of Theorem 3.

Fig. 2. Lines show the average final infection for (1), (2), and (4) with
h = 0.001, 0.01., 0.1, 0.5, 0.9, 1 in blue, red, green, magenta, cyan, black,
yellow, and gray, respectively. All models are simulated with the same graph
structure of n nodes in a line, the same initial condition with every node
infected, and for the same period of time, 10 000 time steps (except for h =
0.001, the simulations were run for 100 000 time steps, because since h was
so small it took longer to reach the equilibrium).

Note that (2) and (13), for k = 0, 1, . . . , T − 1, are an
equivalent reformulation of (18).

Learning heterogeneous spread parameters, however inter-
esting, will not help estimate the spread in other areas.
Therefore, a homogeneous system should be more informative
for some applications. For the Snow data set in Section VI,
we will employ the heterogeneous approach, using Corollary 2
and assuming βi = 1 for all i values. We will employ homo-
geneous formulation on the USDA data set in Section VII.

V. SIMULATIONS

In this section, we explore the discrepancies between (2),
and (1) and (4), and we present a simulation that implements
the results of Section IV.

A. Approximation Error

To quantify the error between the approximation in (2)
and the full probabilistic 2n state model in (4) and its
continuous-time mean field approximation in (1), we simulate
the models over a path graph with every node completely
infected initially (different initial conditions performed sim-
ilarly). The (β, δ) pairs used are [(.1, 1), (.215, 1), (.464, 1),
(.5, .5), (1, .464), (1, .215), (1, .1)], and the number of nodes,
n = 6, 8, 10, 12. We simulate (2) for h = 0.001, 0.01., 0.1,
0.5, 0.9, 1. Due to the constraints of Assumption 3 and the
presence of numerical error, several of the simulations of (2)
failed, namely, the tuples (β, δ, h) = (1, .464, .9), (1, .464, 1),
(1, .215, 1), (1, .1, 1).

The comparisons of the simulation results depicted by the
final average infection are in Fig. 2. As the simulations
indicate, the model in (2) is very similar to (1), and, consistent
with previous work [9], [13], (1) is different from (4) in the
cases, where δ and β are close to each other in value. There-
fore, (2) has similar disadvantages to (1) as an approximation
of (4), which is logical, since (2) is an approximation of (1).

To better quantify the quality of (2) as an approximation
of (1), we plot the Euclidean distance (2-norm) between the
final states of (1) and (2) with all of the different h values



PARÉ et al.: ANALYSIS, ESTIMATION, AND VALIDATION OF DISCRETE-TIME EPIDEMIC PROCESSES 85

Fig. 3. Lines show the 2-norm error between the final states of (1) and (2)
with the different h = 0.001, 0.01., 0.1, 0.5, 0.9, 1 values in green, magenta,
cyan, black, yellow, and gray, respectively. All models are simulated with the
same graph structure of n nodes in a line and the same initial condition with
every node infected.

Fig. 4. This virus system follows (2) with β = 1, δ = 0.1,
h = 0.1, and A depicted by the edges. Teal indicates healthy or susceptible,
while red indicates infected. For a video of this simulation please, see
http://youtu.be/JhU1mEvlV-g. (a) System at time zero. (b) System at time 100.

in Fig. 3. As can be seen, the error is quite low. Therefore,
we conclude that (2) is a good model when Assumption (3)
is met. In addition, (2) is a decent approximation of (4)
when δ and β are not too similar in magnitude and a good
approximation of (1).

B. Estimation Simulation

We present here a simulation that implements the parameter
estimation results from Section IV to see how they perform in
practice with clean and noisy data. While the data used in this
section are generated in MATLAB, the insights gained from
the exercises here contribute toward our approach using the
USDA data set in Section VII.

Consider a system with 40 agents, with a random set of
initially infected agents, where β = 1, δ = 0.1, h = 0.1, and
the weighting matrix A is determined by the agents’ relative
positions given by zi , that is, for radius r = 2 and i �= j

ai j (t) =
�

e−�zi −z j �2
, if �zi − z j � < r

0, otherwise.
(19)

See Fig. 4 for plots of the initial and final conditions.
Assuming that the correct value for h and the A matrix
are known, using (13) exactly recovers β and δ. If only
two time-steps are used, the exact spread parameters can be
recovered, consistent with Theorem 3. Using (13) with an

TABLE I

AVERAGES OF 1000 ESTIMATES FOR THE SPREAD PARAMETERS GIVEN
ZERO-MEAN GAUSSIAN MEASUREMENT NOISE WITH STANDARD

DEVIATION σ . THE PARAMETERS β̂ AND δ̂ ARE CALCULATED

USING THE NOISY DATA. THE PARAMETERS β̃ AND δ̃ ARE

CALCULATED USING THE NOISY DATA RESTRICTED TO THE
INTERVAL [0,1]. RECALL THAT THE ORIGINAL

PARAMETERS WERE (β, δ) = (1, 0.1)

TABLE II

AVERAGES OF 1000 ESTIMATES FOR THE SPREAD PARAMETERS

USING Â� IN (20). RECALL THAT THE ORIGINAL

PARAMETERS WERE (β, δ) = (1, 0.1)

incorrect h value to recover β and δ gives incorrect values for
β and δ, but results in the right proportion between the two,
consistent with Corollary 1. If the system is at the endemic
state, the proportion between the spread parameters can be
solved exactly using Corollary 2.

When we add measurement noise

yk+1 = xk+1 + vk+1

where yk+1 is the measurement, xk+1 is from (2), and each
vk+1

i is an i.i.d. zero-mean Gaussian random variable with
standard deviation σ , and use the same estimation tech-
nique from Theorem 3, the results are inaccurate; with every
0.01 increase in σ , the estimation result for β is off by 6%–7%
(and always in the positive direction), and δ (always) decreases
by about 10% to about 5%. See Table I for the exact values of
the average values of the estimates of β and δ for a thousand
runs each, for different standard deviations σ . Future work
will consider maximum likelihood-type estimators.

We also added zero-mean Gaussian noise to the A matrix,
therefore, allowing for uncertainty in the edge weights,
as follows:

Â = A + �

where � is a matrix of i.i.d. zero-mean Gaussian random
variables. We simulated the system with Â�, where

â�
i j =

⎧⎪⎨
⎪⎩

âi j , if âi j ∈ [0, 1]
1, if âi j > 1

0, if âi j < 0.

(20)
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Fig. 5. This is the map of cholera spread in London in 1854 compiled by
Snow [22].

Fig. 6. Digitization of Fig. 5. The uncontaminated water pumps are depicted
by blue diamonds, the contaminated water pump by the yellow diamond, and
household deaths by red dots with the diameters scaled by the number of
deaths, respectively.

The restrictions on Â� are imposed so that Assumptions 2 and 3
are not violated, and the state does not lose its meaning of
being the proportions of infected subpopulations. The average
of 1000 runs of estimating the spread parameters is given
in Table II.

VI. VALIDATION: SNOW DATA SET

In this section, we employ the foundational cholera data set
collected by Snow [22] for the validation of the model in (2).

A. Snow Data Set

Snow depicted the number of deaths per household caused
by cholera in the Soho District of London in 1854 on a
map of the area. In Fig. 5, the map is shown, where each
small rectangle corresponds to one death at that address.
Snow created this map to illustrate to officials that the cholera
epidemic was being spread by infected water from the Broad
Street Pump, and not through the air, as was the common belief
of those times. These data are plotted in Fig. 6, with diamonds

Fig. 7. Deaths per day in the Soho District of London in 1854 compiled by
Snow [22].

indicating the water pumps and red dots indicating deaths. The
data set is comprised of 250 households with at least one death
per household. Snow also documented the cumulative deaths
per day in [22, Table I], plotted in Fig. 7. The exact times
of the deaths for each address are not recorded. There are
616 total cumulative deaths, but the total number of deaths on
the map is 489. Therefore, there is a discrepancy of 127 deaths,
whose household addresses are not included in the map. For
the validation of the model in (2), we use the proportion of
deaths in the households as the state of the disease spread
system.

B. Spread Validation

For the validation, there are three cases: 1) allowing cholera
to spread through the air via nearest neighbor connection;
2) incorporating nearest neighbor connections and direct con-
nections from the Broad Street pump; and 3) only allow-
ing the pump to affect every relevant household. We make
various assumptions in order to employ model (2). Each
household with a death recorded by Snow in the map in Fig. 5
corresponds to a node in the model. The last node in the
model corresponds to the contaminated pump, the one on
Broad Street. The healthy water pumps are not included in
the model. We realize that ignoring the households with no
recorded deaths and ignoring the healthy pumps are nontrivial
assumptions. However, as was noted by Snow, many residents
fled the city once they became aware of the outbreak [22]. For
the households that did not flee, we assume they either had
such a high healing rate that their inclusion would have been
trivial and/or that these households exclusively drank from
another pump. Despite these (and subsequent) relatively strong
assumptions, the validation results are quite promising.

The state of the system, xk , is the proportion of total
deaths in each household up to time k. There were three
attempts made to capture the behavior of the epidemic that
used different graph structures and different household sizes
to calculate the endemic equilibrium.

The endemic equilibrium of the system, which we call x∗,
was calculated from the data in Fig. 6, for the first two
attempts, by dividing the total number of deaths in each
household by 20, and therefore assuming that each house-
hold has 20 members. This number was chosen because the
maximum number of deaths in any single household was 15.
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Fig. 8. Initial condition of simulations with graph structures. Blue
circles: healthy households. Yellow diamond: infected pump. Note that A(1)

and A(3) are portrayed, and that A(2) is the result of the union of the two
sets of edges. (a) A(1) from (22). (b) A(3) from (24).

For the third attempt, we approximated the household sizes
using [26, Fig. 1] (see Table III). The last element of x∗,
corresponding to the pump, was set to (19/20) (alternatively,
setting it to 1 makes the corresponding δi equal zero, which
is clear by Corollary 2, and only slightly changes the rest of
the estimated spread parameters).

We employed Corollary 2 to calculate the (δi/βi ) values.
In the simulation, βi = 1 for all i and h is chosen as large
as possible while still meeting Assumption 3 (note that a
larger h makes the system evolve more quickly and, therefore,
renders a single time step closer to a full day). Recall that
the Broad Street pump corresponds to the last agent in the
model (agent n). For the initial condition in the simulations,
we assume that the Broad Street pump is infected and all the
households are healthy

x0 = [0 · · · 0 1]�. (21)

This initial condition is shown in Fig. 8, where the contami-
nated pump is depicted as a yellow diamond. As a consequence
of these assumptions, our tuning parameter for adjusting the
estimated δi parameters, and consequently the spread behavior,
is the connectivity matrix A.

For the case that captures the general belief of the era that
cholera spreads through the air, we chose a graph structure
that allows for local mixing. That is, we designed A(1) such
that

a(1)
i j =

⎧⎪⎨
⎪⎩

1, if �zi − z j� < r

1, if i = j

0, otherwise

(22)

where zi is the location of household i and r is the small-
est number such that the graph remains connected [shown
in Fig. 8(a)]. Using the δi parameters derived from Corollary 2
using A(1) (again βi = 1 ∀i ), the system was simulated
according to (2). To meet the constraints of Assumption 3,
we set h = (1/175). This simulation resulted in the distri-
bution of deaths shown in Fig. 9; this plot was created by
multiplying the state of the system, i.e., the proportion of
deaths in each household up to that point, by the household
sizes (assumed to be 20), rounding to the nearest integer,
taking the difference between the states of each time step
(since the state represents cumulative number of deaths up to

Fig. 9. Simulated data using the estimated parameters from the data in Fig. 6,
employing Corollary 2 and A(1) from (22).

Fig. 10. Comparison of Figs. 7 and 9. Note that the model does not capture
the behavior of the system well. The Euclidean distance between the two plots
is 146.52, and the infinity norm is 105.

that point), and then summing every three time series points
(due to the small h value), therefore assuming that each time
series point corresponds to one-third of a day. Note that for
this simulation, and similarly for the subsequent simulations,
zeros were added to the beginning of the simulation data to
align the peaks of the simulations with the peak of the data set.
As would be expected, this graph structure does not capture
the behavior of the system, as shown in Fig. 10.

For the case that is more realistic, since it is well
known (now) that cholera spreads primarily through contami-
nated water and that the Broad Street pump was the source of
this epidemic, it was assumed that the pump affected everyone.
This was done by setting

A(2) = [ A(1)(1 :n, 1 :n − 1) v ] (23)

where v = 1 ∈ R
n and the notation A(1)(1 : n, 1 : n − 1)

indicates all of the A(1) matrix except the last column. The
system was simulated using the δi parameters derived from
Corollary 2 using A(2), and again setting h = (1/175). The
resulting distribution of deaths is shown in Fig. 11 (created
similar to Fig. 9). Note that the shape is very similar to the
original data set from [22], shown in Fig. 7, capturing the
behavior of the true epidemic.

Plotting the distributions from Figs. 7 and 11 on the same
plot for comparison in Fig. 12 shows that they are not
identical. One of the reasons for the discrepancy is, as noted
in Section VI-A, that the total number of deaths in the map
(see Fig. 5), used to derive x∗ and consequently the spread
parameters and the simulation, is 489, and the total number
of deaths in [22, Table I], used to create the distribution
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Fig. 11. Simulated data using the estimated parameters from the data
in Fig. 6, employing Corollary 2 and A(2) from (23).

Fig. 12. Comparison of Figs. 7 and 11. Note that there is a difference
in the magnitude, but the general shapes are very similar. The Euclidean
distance between the two plots is 72.77, and the infinity norm is 59. One of
the reasons for this discrepancy is due to the fact that we used the spatial
data set in Figs. 5 and 6, which had only 489 documented deaths, while the
cumulative data from [22, Table I], shown in Fig. 7 and the blue line in Fig. 14,
has a total of 616 deaths. The difference of 127 has caused the discrepancy.

TABLE III

ESTIMATES FOR HOUSEHOLD SIZES FROM [26, FIG. 1] USED IN

THE SIMULATION WITH A(3) . ∗ THE WORKHOUSE

POPULATION WAS SET TO 403

of deaths over days in Fig. 7, is 616. Therefore, the lack
of address information for the additional 127 deaths results
in this inaccuracy. However, the largest discrepancy occurs
near the peak of the epidemic, when people were arriving at
hospitals too sick to provide their addresses [22]. Nevertheless,
the results are very promising, showing that the model in (2)
captures the behavior of the cholera epidemic from John
Snow’s 1854 data set quite well.

For the third case, heterogeneous household sizes were
instead assumed, using [26, Fig. 1] to approximate these
values (see Table III). We also removed all edges except the
self-loops and the binary directed edges from the pump to
every household with at least one death. The connection from

Fig. 13. Simulated data using the estimated parameters from the data
in Fig. 6, employing Corollary 2 and A(3) from (24). A video of the spread
of the simulation can be found at http://youtu.be/PXqyce7zZFM.

Fig. 14. Comparison of Figs. 7 and 11. Note that there is a difference
in the magnitude, but the general shapes are very similar. The Euclidean
distance between the two plots is 75.16, and the infinity norm is 70. One of
the reasons for this discrepancy is due to the fact that we used the spatial
data set in Figs. 5 and 6, which had only 489 documented deaths, while the
cumulative data from [22, Table I], shown in Fig. 7 and the blue in this plot,
have a total of 616 deaths. The difference of 127 has caused the discrepancy.

the pump to the workhouse was set to (1/10) (corresponding
to the 208th index), because the workhouse had its own well
and only a small fraction of the 403 residents drank from
the Broad Street pump [22] (by choosing (1/10) we assume
that approximately 10% of the residents drank water from the
Broad Street pump). Therefore, we have

A(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 1

0 1 . . . 0
...

0 0
. . . 0

1

10

0 0 . . . 1
...

0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

[shown in Fig. 8(b)]. Using the δi parameters derived from
Corollary 2 using A(3), the system was simulated setting
h = (1/30). The distribution of the deaths is shown in Fig. 13.
As a result of the larger h value, no aggregation of the data was
required; the plot shows the complete simulated data set. For
completeness, a link to a video of this simulation is included
in the caption of Fig. 13. Simulations showed that as long
as the edge weight corresponding to the workhouse was less
than or equal to 0.45, the results were very similar.

Plotting the distributions from Figs. 7 and 13 on the same
plot for comparison in Fig. 14 shows that we capture the
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behavior of the outbreak quite well. The lack of the address
information for the additional 127 deaths is one of the reasons
the plots are not identical. However, the discrepancy is distrib-
uted fairly evenly across the whole sample time. Consequently,
we have shown that the model in (2) captures the behavior of
the cholera epidemic from John Snow’s 1854 data set very
well. Note that by both error metrics, the simulation from
the second attempt in Fig. 12 outperforms this last attempt but
recalls it required summing every three data points. Therefore,
it can be argued that the last attempt captures the behavior of
the data set best since no summing was required. In addition,
note that the fact that A(3) from (24) performs the best supports
Snow’s hypotheses that the Broad Street pump was the source
of the cholera outbreak and that cholera does not spread via
the air, which is known to be true today.

VII. VALIDATION: USDA DATA SET

The goal of this section is to study whether variation
in the spatial pattern of farmers’ enrollment in ACRE dur-
ing 2009–2012 follows the spreading processes presented in
Section II. As we elaborate in the following, ACRE is a
complex program, making the experience and knowledge of
early adopters likely to spread by word of mouth through
social and professional networks. For this data set, we assume
homogeneous spread parameters, that is, β and δ are the same
for all nodes.

A. USDA Data Set

The characteristics of the ACRE program make it a good
candidate to empirically test the model of spreading. Farm-
ers rely on the experience of neighbors in the adoption
of new or complex technologies [30]–[32]. As we elaborate
in the following, ACRE is a complex program. Social and
professional networks will likely facilitate the spread of infor-
mation about the ACRE program from the experiences of early
adopters.

The ACRE program was introduced by the Food, Con-
servation and Energy Act of 2008 (2008 Farm Bill). Initial
enrollment was unexpectedly low, in part because of the
program’s complexity [43]. The ACRE payment ak

i j for year
k is calculated by the following formula:

ak
i j = φ

υ̂k
i j

υ̂k
σ j

min

��
gk
σ j − rk

σ j

�
,

gk
σ j

4

�
min

�
ρk

i j , bk
i j

�
1
�
rk

i j < gk
i j

�
1
�
rk
σ j < gk

σ j

�
(25)

where i is the farm index, j is the crop or commodity that
subsidy corresponds to, φ is a constant scaling factor (equal
to 0.85), σ indicates the state (e.g., Idaho), and the benchmark
yield (also known as the Olympic yield) is

υ̂k
ιj = 1

3

�
5�

l=1

υk−l
ιj − max{ϒιj } − min{ϒιj }

�

where υk−l
ιj is the crop yield in year k − l; the set ϒιj =

{υk−1
ιj , . . . , υk−5

ιj }, for ι ∈ {i, σ }; the farm and state guaranteed

revenues per acre are gk
i j = υ̂k

i j p
k
j and gk

σ j = .9υ̂k
σ j p

k
j ,

respectively, with p
k
j = (1/2)

�2
l=1 p̄ k−l

j , where p̄k
j is the

National Average Market Price of crop j ; actual revenue per
acre is rk

ιj = υk
ιj q

k
j , with qk

j = max{0.7lk
j , p̄k

j }, where lk
j is

the National Loan Rate, which Congress sets in the farm bill;
ρk

i j is the number of acres planted with crop j on farm i ;

bk
i j is the number of acres of crop j on farm i qualifying for

the DCP subsidy, which are known as base acres; and 1(·) is
the indicator function [27].

The ACRE program benefits farmers by paying out when
the farmers’ actual revenue is low. In contrast, the Counter-
cyclical Program (CCP), which ACRE replaces, considers
current prices, but the payout is determined by the subsidized
land’s productivity in the early 1980s.

The cost to participate in ACRE is not trivial. By choosing
ACRE, farmers must forgo 20% of their annual unconditional
subsidy, i.e., direct payment, and 30% of the production
subsidy they would receive in the event of low crop prices.
Another important consideration is that the decision to partici-
pate in ACRE is irreversible. Although farmers must re-enroll
in ACRE every year, they cannot switch back to the CCP.
Failure to enroll disqualifies farmers from the benefits of
ACRE but not the costs. Since switching from ACRE back
to CCP is not allowed, we should expect the healing rate δ to
be small (or effectively zero) compared to the infection rate β,
when we estimate the model parameters from the data.

The data set includes the total annual payments received by
each farm in the U.S. for each USDA-sponsored program from
the year 2008 to 2012. Each datapoint has a program, payment
amount, payment date, contract number, commodity (usually
the crop), the farm number, and the customer’s (farmer’s)
identification number and address. The data set allows the
opportunity to investigate the spread of the ACRE program
through several different networks. Farmer-to-farmer networks
could be created from the data by connecting farmer-nodes
who receive payments on the same field or live nearby.
Alternatively, farms can be aggregated to the county level. The
USDA has an office in every county in the United States that
distributes subsidies and administers’ farm programs locally.
Farmers go to these offices (not necessarily their own county’s
office since an adjacent county’s office could be closer) to learn
how the subsidy programs work. Therefore, there are strong
inner county dependences, since, in addition to receiving the
same information at their county offices, farmers meet each
other at these offices as well. The approach of aggregating by
county allows us to convert the binary decision to enroll in
ACRE into a continuous measure of the proportion of eligible
farms that enroll in ACRE in each county. The proportion of
farms enrolled in ACRE corresponds exactly to the density
of infection, facilitating our investigation of the spread of
ACRE. For counties where no farms are enrolled in either,
the infection state is set to zero. Alaska and Hawaii are
omitted. The data for the four years considered can be found
in Fig. 15(a)–(d).

B. USDA Farm Subsidies as a Spreading Process

We apply the estimation techniques presented in Section IV
and tested in Section V for the model in (2) on the data
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Fig. 15. Proportion of farms enrolled in the ACRE Program that are enrolled
in either ACRE or CCP calculated from the USDA data set. (a) 2009. (b) 2010.
(c) 2011. (d) 2012.

presented in Section VII. We estimate the homogeneous model
parameters using a subset of the data set, the USDA data from
Idaho, and then simulate the spread of ACRE over the whole
contiguous United States using the estimated parameters.
The adjacency matrices are calculated using the adjacency of

Fig. 16. Simulated data using Fig. 15(a) as the initial condition, simulating
using the model in (2) with parameters calculated using the data from Idaho,
given in (27). (a) 2009. (b) 2010. (c) 2011. (d) 2012.

counties, that is,

ai j =

⎧⎪⎨
⎪⎩

1, if county i and county j share a border

1, if i = j

0, otherwise.

(26)
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Fig. 17. Error plots for Figs. 15 and 16.

To calculate the adjacency matrix for Idaho, adjacent counties
from bordering states were ignored. Substituting the Idaho data
set into (13) with h = 1 and using the pseudoinverse give the
following spread parameters:�

δ̂

β̂

�
=

�
0.00909176
0.02237450

�
. (27)

As expected, switching h to the value 0.1 moves the decimal
point one place to the right.

To validate the model, we simulate the spread over the con-
tiguous United States using the model in (2) with parameters
calculated using the data from Idaho, given in (27), with the
data from Fig. 15(a) being used as the initial condition. The
simulation results are given in Fig. 16(a)–(d). The scaled error
between the data set, F, and the simulated data, F̂, using the
Frobenius norm is

�F − F̂�F

�F�F
= 2.5331

10.8646
= 0.2332

showing that the system has approximately 23% error. For
completeness, in Fig. 17, we include a plot of the error for
each time step (year), �F

k−F̂
k� and (�F

k − F̂
k�/�F

k�). While
the model does not perfectly fit the data, it does seem to give
some insight into the behavior of the system. Therefore, if the
USDA wanted to test a pilot program in a certain region of the
country, for example, Idaho, the resulting behavior could give
some insight into how the whole country would react. The
four time steps (years) do not allow the system to reach the
equilibrium state, and so the behavior depends significantly on
the initial condition. Therefore, given the model learned from a
pilot program, the USDA could determine the best counties to
target for advertising of the new subsidy programs, assuming
they wanted to maximize adoption of the new program.

VIII. CONCLUSION

We have investigated the relationship between several dif-
ferent spread models. We have provided necessary and suf-
ficient conditions for uniqueness of the healthy equilibrium
and proved the existence of an endemic state under certain
conditions. We have also provided a necessary condition for
asymptotic stability of the healthy state. We have presented
necessary and sufficient conditions for estimating discrete-time
spread models from data. We have validated a discrete-time

SIS virus spread model using John Snow’s Seminal cholera
data set with very good results. We have also used a USDA
data set to validate the same model by simulating the spread of
farming subsidies among farms/farmers aggregated by county.

In the future work, we would like to provide further analysis
on the endemic state of the system. We would like to further
study identification of the spread model allowing noise in
the data. We would also like to find additional data sets to
help further validate the SIS spread models. Finally, we would
like to employ the results herein to develop effective control
techniques to mitigate the spread of disease in real systems.
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time spread processes: Analysis, identification, and validation,” in Proc.
Annu. Amer. Control Conf., Jun. 2018, pp. 404–409.

[34] A. Fall, A. Iggidr, G. Sallet, and J. J. Tewa, “Epidemiological models and
Lyapunov functions,” Math. Model. Natural Phenomena, vol. 2, no. 1,
pp. 62–83, 2007.

[35] K. Atkinson, An Introduction to Numerical Analysis. Hoboken, NJ, USA:
Wiley, 2008.

[36] T. Zhou, J.-G. Liu, W.-J. Bai, G. Chen, and B.-H. Wang, “Behaviors
of susceptible-infected epidemics on scale-free networks with identical
infectivity,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 74, no. 5, p. 056109, 2006.

[37] M. Vidyasagar, Nonlinear Systems Analysis. Philadelphia, PA, USA:
SIAM, 2002.

[38] A. Rantzer, “Distributed control of positive systems,” in Proc. 50th IEEE
Conf. Decis. Control, Dec. 2011, pp. 6608–6611.

[39] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[40] R. S. Varga, Matrix Iterative Analysis. New York, NY, USA:
Springer-Verlag, 2000.
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