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A Comparative Study of Different Control
Structures for Flight Control with New Results

Espen Oland, Raymond Kristiansen and Jan Tommy Gravdahl

Abstract—This paper presents several different control struc-
tures that facilitates flight control and does a comparison between
them. Specifically, the paper considers command-filtered back-
stepping, nonlinear-dynamic inversion (NDI ) and a new decou-
pled approach that decouples the rotational and translational
dynamics by estimating the higher order derivatives of the
angle of attack and sideslip angle. The latter is also augmented
by exploiting a feedback of the control deficiency resultingin
improved performance. A series of simulations are performed
to gauge the performance of the different controllers, showing
the performance in the case of sensor noise, when performing
aggressive maneuvers, when exposed to wind disturbances, as
well as when there are model imperfections. The main finding is
that all control structures work well for flight control, but that
the new decoupled method is able to improve the performance.A
major reason for the improvement is that the decoupling method
alleviates the tuning of the control gains, thus allowing for faster
response through suitable gains.

Index Terms—Aircraft, backstepping, command-filtered back-
stepping, decoupled control, flight control, nonlinear dynamic
inversion, pseudo-control hedging, quaternions.

I. I NTRODUCTION

T HE problem of flight control for aircraft can be defined as
that of pointing the wind frame in a desired direction and

move with a desired positive airspeed. There is a multitude of
methods that solves this problem such as kinematic controllers
[1], gain scheduling [2], [3], Nonlinear Dynamic Inversion
(NDI) [4], [5], [6], regular backstepping [7], [8] and command-
filtered backstepping [9], [10]. Kinematic controllers ignore
the nonlinear aerodynamics and controls the aircraft at a
kinematic level, while gain scheduling uses a number of linear
controllers that provide satisfactory performance at different
operating points and switches between them to control the
aircraft.

Nonlinear dynamic inversion calculates a desired angular
acceleration and inverts the dynamics to find the desired
deflection angles that achieves the desired angular acceleration
and uses that for control. Specifically, it uses an inner-outer
loop structure through time-scale separation, where the de-
flection angles and angular velocities are considered constant
in the outer loop, allowing a desired angular velocity to be
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calculated. The inner loop then calculates the desired angular
acceleration enabling the dynamics to be inverted. Time-scale
separation is achieved through gain selection, where the outer
loop commonly has a low gain, while the inner loop has a high
gain. This puts limitations to the available gains for controlling
aircraft throughNDI, and requires some tuning to find the best
set of gains.

Command-filtered backstepping for flight control has re-
cently received much attention. The method uses command-
filters with magnitude and rate saturation to calculate the
command derivatives, thereby enabling trackable commands
for the next step in the backstepping process. Specifically,it
consists of an outer loop, a middle loop and an inner loop.
The outer loop calculates the desired thrust, desired angleof
attack and desired bank angle, the middle loop calculates the
desired angular velocities, while the inner loop calculates the
desired deflection angles that make the aircraft track a desired
heading, flight path and bank angle. With three different loops
that must be time-scale separated, much effort is required to
properly tune the command filters and the different control
loops.

In addition to these methods, a method that decouples the
rotational and translational dynamics has recently been pro-
posed [11]. The method estimates the higher order derivatives
of the angle of attack and sideslip angle, something that
allows the rotational and translational dynamics to become
decoupled. This allows a rotational controller to be designed
first, followed by a speed controller, where the gains can be
chosen almost arbitrarily. The work shows good results, but
it has never before been benchmarked relative to the state of
the art within flight control. Specifically, the method takes
basis in the quaternion error between the wind frame and
the desired frame consisting of: a desired quaternion, the
quaternion representing the orientation of the aircraft and a
quaternion representing the rotation from the wind frame to
the body frame. To find the error dynamics, the quaternion
error must be differentiated twice, resulting in the attitude
dynamics of the aircraft, a desired angular acceleration, as
well as an angular acceleration due to the wind frame. Since
the latter angular acceleration cannot be measured directly, the
decoupled method approximates it using a linear filter driven
by the angle of attack and sideslip angle and uses its input as
part of the control law. After finding the rotational controller,
it is straight forward to find a speed controller that makes the
airspeed track a desired speed profile.

This paper compares theNDI, the command-filtered back-
stepping approach and the decoupled method, discusses the re-
sults and highlights some of the advantages and disadvantages
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with the different methods. Additionally, it presents a new
approach based on pseudo-control hedging [12] that allows a
reference trajectory to be designed that increases the control
authority of the aircraft and allows for improved performance.

The paper is structured as follows: Section II presents the
notation, reference frames and modeling of aircraft, then the
main body of the paper follows through Section III, which
presents the different control structures in detail showing how
each of them can achieve the control objective. Section IV
then presents a comparison between the methods through four
different simulation scenarios: First, the methods are compared
by considering a maneuver of changing the orientation by180◦

and achieving a desired airspeed; then a study is performed
to see the impact of sensor noise; then a more aggressive
maneuver is performed in a more realistic environment using
the Dryden gust model and wind shear model; and lastly,
a comparison between the methods on their ability to cope
with modeling imperfections is performed. The paper is then
wrapped up with a discussion and conclusion through Sec-
tions V and VI.

II. M ODELING

A. Notation

The time derivative is denoteḋx = d
dt
x, vectors are

bold small letters, and matrices are bold capital letters. The
superscript of a vector denotes its reference frame whered

denotes the desired frame,b denotes the body frame,s denotes
the stability frame,w denotes the wind frame,v denotes the
velocity frame,n denotes the North East Down (NED) frame,
and r denotes a reference trajectory frame, which is used
in this paper to account for actuator saturation. The rotation
matrix that rotates a vector from framea to framec is denoted
Rc

a ∈ SO(3) = {R⊤R = I ∈ R
3, det(R) = 1} whereI is

the identity matrix. The time derivative of the rotation matrix
is given asṘc

a = Rc
aS(ω

a
c,a) whereS(·) is the cross-product

operator andωa
c,a represents the angular velocity of framea

relative to framec referenced in framea. The cross product
operator can be written for a vectorv =

[

v1 v2 v3
]⊤

as

S(v) =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 . (1)

The quaternion representing the rotation of a vector from
frame a to frame c is denoted asqc,a ∈ S3 = {q ∈ R

4 :
q⊤q = 1} and where the quaternion error between two frames
can be written as the composite quaternionqc,a = qc,e⊗qe,a,
wheree is an intermediate frame. The notation of Euler angles
are defined similarly as for quaternions, whereΘc,a ∈ R

3

represents the orientation of framea relative to framec.

B. Reference Frames

Several reference frames are required to fully describe the
aircraft dynamics. Fig. 1 shows the relationships between the
different frames, which can be formally defined as follows:

North East Down: TheNED frame has thexn axis pointing
towards the north pole,yn points East andzn points down

NED Frame

Body Frame

Stability FrameWind Frame

Velocity Frame

Desired Frame

Rn
b (φ, θ, ψ)Rn

v (χ, γ)

Rv
w(µ) Rb

s(α)

Rs
w(β)

Rn
d(µd, γd, χd)

Fig. 1. The rotation wheel describing the different reference frames required
for flight control (Inspired by [14]).

towards the center of the Earth. This reference frame is treated
as an inertial frame (also known as flat-Earth approximation).

Body: The body frame is fixed to the center of mass of the
aircraft where thexb axis goes through the fuselage towards
the nose of the aircraft,yb goes through the right wing, and
zb completes the right-handed orthonormal system.

Stability : The stability frame is initially aligned with the
body frame and is found by rotating by the angle of attack
(α) around theyb axis as a counter-clockwise rotation.

Wind : The wind frame is initially aligned with the stability
frame, and is found by rotating by the sideslip angle around
the zs axis. In the wind frame, the airspeed is aligned along
thexw axis.

Velocity: The velocity frame describes the direction that the
aircraft is moving and can be described using the heading (χ)
and flight path angle (γ) which are described relative to the
NED frame. In the velocity frame the airspeed is also aligned
along thexv axis, but the wind frame and velocity frame are
not the same, and are related through the bank angleµ.

Desired: The desired frame can be described arbitrarily
depending on the objective. In the recent paper [13], it is
shown how to design desired orientations to facilitate way-
point tracking, collision avoidance, ground avoidance, wind
compensation and how to fuse them together using the sub-
sumption method.

C. Flight Dynamics

The translational dynamics for an aircraft can be written as
(cf. [15])

ṗn =Rn
b v

b (2)

vb
r =vb −Rb

nw
n (3)

v̇b
r =

1

m
f bthrust +

1

m
Rb

wf
w
aero +Rb

nf
n
g − S(ωb

n,b)v
b
r (4)

where pn is the position vector,vb is the velocity vector
relative to the ground,vb

r :=
[

u v w
]⊤

is the velocity
vector relative the surrounding air,wn is the wind vector,m
is the mass,f bthrust =

[

T 0 0
]⊤

is the thrust vector with
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T ≥ 0 as the total thrust,fng =
[

0 0 g
]⊤

is the gravity
vector whereg = 9.81m/s2 is the acceleration due to gravity,
ωb

n,b :=
[

p q r
]⊤

is the angular velocity of the body frame
relative to theNED frame referenced in the body frame. The
aerodynamic force vector is commonly represented in the wind
frame as

fwaero =
1

2
ρSV 2

a

[

−CD CY −CL

]⊤
(5)

CD =CD0
+ CDα

α+
c̄

2Va
CDq

q + CDδe
δe (6)

CY =CY0
+ CYβ

β +
b

2Va
CYp

p+
b

2Va
CYr

r

+ CYδa
δa + CYδr

δr (7)

CL =CL0
+ CLα

α+
c̄

2Va
CLq

q + CLδe
δe (8)

whereC(·) represent aerodynamic coefficients,ρ is the air den-
sity, S is the surface area of the wings,b is the wing span,̄c is
the mean aerodynamic chord,Va = ||vb

r|| =
√

(vb
r)

⊤vb
r is the

airspeed of the aircraft andδa, δe, δr represent the deflection
angles of the ailerons, elevator and rudder respectively. The
angle of attack is found asα = sin−1(w

u
) and the sideslip

angle is found asβ = sin−1( v
Va

). The time derivative of the
airspeed can be found as

V̇a =
d

dt
||vb

r || =
u

mVa
T +

(vb
r)

⊤

Va
(
1

m
Rb

wf
w
aero +Rb

nf
n
g ) (9)

allowing relatively simple speed controllers to be designed.
The rotational dynamics can be written using Euler angles

or quaternions as (cf. [15], [16], [17])

Θ̇n,b =T(Θn,b)ω
b
n,b (10)

q̇n,b =
1

2
qn,b ⊗

[

0
ωb

n,b

]

=
1

2
T(qn,b)

[

0
ωb

n,b

]

(11)

Jω̇b
n,b=− S(ωb

n,b)Jω
b
n,b + f(x)−D(x)ωb

n,b +G(x)u (12)

where Θn,b =
[

φ θ ψ
]⊤

is the vector of Euler angles
representing the roll, pitch and yaw angles with

T(Θ) =





1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)



 , (13)

while the quaternion is defined asqn,b =
[

ηn,b ǫ⊤n,b
]⊤

with

T(qn,b) =

[

ηn,b −ǫ⊤n,b
ǫn,b ηn,bI+ S(ǫn,b)

]

. (14)

The inertia matrix is given as

J =





Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz



 (15)

where Jxx, Jyy, Jzz , Jxz represent constant positive inertia
components. The aerodynamic vectorf(x) is given as

f(x) =
1

2
ρSV 2

a





b(Cl0 + Clββ)
c̄(Cm0

+ Cmα
α)

b(Cn0
+ Cnβ

β)



 (16)

and the damping matrix as

D(x) = −
1

2
ρSV 2

a







b2

2Va
Clp 0 b2

2Va
Clr

0 c̄2

2Va
Cmq

0
b2

2Va
Cnp

0 b2

2Va
Cnr






. (17)

Note thatD(x) is positive definite for allVa > 0, which
together with the limits in actuation makes the angular velocity
bounded. The control vector is defined asu =

[

δa δe δr
]⊤

and the control effectiveness matrix as

G(x) =
1

2
ρSV 2

a





bClδa
0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr



 (18)

which is invertible as long asCmδe
(Clδa

Cnδr
−Clδr

Cnδa
) 6=

0. The rotation matrix can now be constructed using either
quaternions asRn

b = I + 2ηn,bS(ǫn,b) + 2S2(ǫn,b) or using
Euler angles as shown in (19) (cf. [18]). In the following, both
methods will be employed depending on the control structure.
Note that even though Euler angle kinematics has singularities
at θ = ±π

2 , there are ways to deal with that, something that
is outside the scope of this paper.

III. C ONTROL STRUCTURES

This paper examines three different control structures. First
it considers command-filtered backstepping using mixed dy-
namics where scalar equations from both the rotational and
translational dynamics are combined. By mixing equations
like this, the good properties of the rotation matrix and skew-
symmetric matrices are lost, and the dynamics become singular
at certain angles. The second method that is examined is
the well-known Nonlinear-Dynamic Inversion (NDI), which
dates back to the 1980’s. While it has mainly been used
to track desired angle of attack and sideslip angles, which
are not defined relative to an inertial frame, the method is
changed to facilitate tracking of desired heading, flight path
and bank angles. The third approach that is addressed, is a
new decoupled method where the higher order derivatives of
the angle of attack and sideslip angle can be approximated
using a simple filter, something that decouples the rotational
and translational systems, allowing a rotational controller to
be designed first followed by a translational controller.

Fig. 2 shows the structure of the command-filtered back-
stepping controller, Fig. 3 shows the structure of theNDI

controller, and Fig. 4 shows the structure of the decoupled
method with a reference. The main differences between the

Rn
b =





cos(ψ) cos(θ) − sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(φ) sin(ψ) sin(φ) + cos(ψ) cos(φ) sin(θ)
sin(ψ) cos(θ) cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ) − cos(ψ) sin(φ) + sin(θ) sin(ψ) cos(φ)

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)



 (19)
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methods are as follows: The command-filtered backstepping
approach comprises three time-scale separated loops, where
the outputs are filtered to provide trackable commands for the
next loop. Especially, note that both the thrust and deflection
angles are used in the outer and middle loops to calculate the
desired commands, requiring the previous values to calculate
the new commands. In theNDI approach, the desired Euler
angles are compensated for the angle of attack and sideslip
angle to enable theNDI controller to track desired bank,
flight path and heading angles. TheNDI comprises two main
loops, a slow outer loop and a fast inner loop. The gains for
both the command-filtered backstepping andNDI controllers
must be chosen carefully to maintain time-scale separation.
The last method is the decoupled approach. Given desired
quaternion, angular velocity and acceleration, the required
deflection angles can be found to make the aircraft track
the desired orientation. Furthermore, the computed deflection
angles can then be used as part of the speed controller to
track a desired speed profile. The filter uses measurements
of the angle of attack and sideslip angle to decouple the
rotational and translational dynamics. To further improvethe
performance of the approach, a reference generator is used to
account for actuator saturation. The control structure forthe
decoupled method without reference is similar to Fig. 4, but
without the reference block.

The control problem can now be formally defined. Let
Ṽ = Va − Vd denote the speed error withVd, V̇d ∈ L∞ as
desired airspeed and acceleration, and let the tracking errors of
the heading, flight path and bank angle be defined respectively
asχ̃ = χ−χd, γ̃ = γ−γd andµ̃ = µ−µd, where subscriptd
denotes bounded desired angles with bounded derivatives, then
the control objective is to make(Ṽ , χ̃, γ̃, µ̃) → (0, 0, 0, 0).
This will be achieved using the three different control struc-
tures.

A. Command-Filtered Backstepping

The wind frame can be related to theNED frame through
the flight path, heading and bank angle. The velocity vector
(4) can be rotated to the velocity frame and differentiated,

allowing the speed and angular rates to be found as described
in [19, p. 65]. Letx1 :=

[

χ γ Va
]⊤

, x2 :=
[

µ α β
]⊤

andx3 := ωb
n,b, then the dynamics can be written as

ẋ1 =f1(x1,x2,x3, T,u) + g1(x1,x2,x3, T,u) (20)

ẋ2 =f2(x1,x2,x3, T,u) +G2(x2)x3 (21)

Jẋ3 =f3(x1,x2,x3) +G(x)u (22)

where f3(x1,x2,x3) = −S(x3)Jx3 + f(x) − D(x)x3 and
where the other vectors and matrices are described in (23)-
(26). For this system, the sideslip angle will always be driven
to zero, to avoid the singularity of the dynamics whenβ =
±π

2 . Using backstepping, the statex1 can be driven to desired
values using the bank angle, angle of attack and thrust. The
bank angle, angle of attack and sideslip can then be driven to
desired values using the angular velocities, which again can be
controlled using the deflection angles. Hence, under certain as-
sumptions the system is controllable (cf. [10]). Especially note
that the angle of attack and bank angle do not appear affine
in the x1-system, such that stabilizing that system requires
special care. Furthermore, the translational aerodynamics are
function of the angular velocity and deflection angles, which
therefore must be assumed to be constant (or slowly changing)
in the x1-system. This puts strict limitations to the available
gains as they must enforce time-scale separation.

This system has been treated in the literature using
command-filtered backstepping in works such as [9] and
[10], where the system is divided into three different systems
that are time-scale separated. The arguments of some of the
functions are omitted for ease of notation. In the following
subscriptd will denote desired states, and the main objective is
to makex1 → x1,d. First the vectorg1(·) is treated as a control
signal to stabilize the outer loop, which can be achieved by
the control law

g1(·) =ẋ1,d − f1(·)−K1(x1 − x1,d) (27)

where K1 is a positive definite gain matrix. By properly
choosing the desired trust (T ), bank angle (µ) and angle

f1(x1,x2,x3, T,u) =





1
mVa cos(γ)(D sin(β) cos(µ) + Y cos(µ) cos(β) − T cos(µ) sin(β) cos(α)

1
mVa

(−D sin(β) sin(µ)− Y sin(µ) cos(β) + T sin(µ) sin(β) cos(α)) − g
Va

cos(γ)
1
m
(−D cos(β) + Y sin(β))− g sin(γ)



 (23)

g1(x1,x2,x3, T,u) =





1
mVa cos(γ)(L+ T sin(α)) sin(µ)

1
mVa

(L + T sin(α)) cos(µ)
1
m
T cos(β) cos(α)



 (24)

f2(x1,x2,x3,T,u)=











1
mVa

(D sin(β) cos(µ) tan(γ) + Y tan(γ) cos(µ) cos(β) + L(tan(β) + tan(γ) sin(µ)) + · · ·

· · ·+T (sin(α) tan(γ) sin(µ)+sin(α) tan(β)−cos(α) tan(γ) cos(µ) sin(β))− g cos(γ) cos(µ) tan(β)
Va

− 1
mVa cos(β) (L+ T sin(α)) + g cos(γ) cos(µ)

Va cos(β)
1

mVa
(D sin(β) + Y cos(β)− T sin(β) cos(α)) + g cos(γ) sin(µ)

Va











(25)

G2(x2) =





cos(α)
cos(β) 0 sin(α)

cos(β)

− tan(β) cos(α) 1 − tan(β) sin(α)
sin(α) 0 − cos(α)



 (26)
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Outer Loop Filter Middle Loop Filter Inner Loop Flight Dynamics

z−1 z−1 z−1

u

u uT

T

T

µ̇d, α̇d, β̇d

µd, αd, βdx0
2,d

ω̇b
n,d

ωb
n,d

Va, α, β,Θn,b,ω
b
n,bx0

3,d

χd, γd, Vd

χ̇d, γ̇d, V̇d

Fig. 2. Command-filtered backstepping control structure.

Transformation kθ Slow Inversion kω Fast Inversion Flight Dynamics

Translational
Controller

Θ̇n,d ωb
n,d ω̇b

n,d u

T

− −

Θn,d

Θn,bΘn,b ωb
n,bωb

n,b

ωb
n,b

Θn,bχd, γd

VdV̇d

Fig. 3. An inner-outer loop nonlinear dynamic inversion controller showing the main signal paths. Using the angles of attack, the transformation block
transforms the desired flight path and course angle to desired Euler angles, which then are tracked using this controller.

Reference

Rotational Controller

Translational Controller

Flight Dynamics

Filter

Transformation

qn,r

ωr
n,r

ũ

ũ

qn,d

ωd
n,d

ω̇d
n,d

qb,w ωw
b,w ω̇w

b,w

µd, γd, χd

qn,b ωb
n,b

α, β

qn,b

ωb
n,b

α, β

u

T

V̇dVd

Fig. 4. Decoupled control structure with reference generator showing the main signal paths. In the case when not using the reference, the desired states are
used directly by the rotational controller and the reference block can be ignored. The transformation block comprise a linear filter to find the second order
derivatives of the desired trajectories, which then allowsthe calculations of the desired quaternion, angular velocity and acceleration.

of attack (α), the objective can be achieved. Let the lift be
decomposed asL = L0 + Lαα, where

L0 =
1

2
ρSV 2

a (CL0
+

c̄

2Va
CLq

q + CLδe
δe) (28)

Lα =
1

2
ρSV 2

a CLα
(29)

then (24) can be rewritten as

g1(·) =





1
mVa cos(γ)(L0 + Lαα+ T sin(α)) sin(µ)

1
mVa

(L0 + Lαα+ T sin(α)) cos(µ)
1
m
T cos(β) cos(α)



 . (30)

From the control law, the left-hand side is known, such
that its results must be achieved using the available control
signals. The two first components of the vector can be seen
as Cartesian coordinates that can be transformed into polar

coordinates whereL0 + Lαα + T sin(α) can be seen as the
radius. Let a vector of scaled points be defined as





x0
y0
z0



 =





mVa cos(γ) 0 0
0 mVa 0
0 0 1



 g1(·), (31)

whereg1(·) is from (27), then the desired angle of attack can
be found using

√

x20 + y20 = L0 + Lαα
0
d + T sin(α) as

α0
d =

1

Lα

(
√

x20 + y20 − L0 − T sin(α)) (32)

while the bank angle can be found asµ0
d = atan2(x0, y0),

where atan2(·, ·) is the four quadrant version oftan−1(·). Note
that the bank angle will not necessarily converge to zero as
x0 is a function of f1(·), which again is a function of the
aerodynamic sideforceY . The aerodynamic sideforce contains
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the coefficientCY0
, which can be non-zero depending on the

shape of the aircraft, as well as sideforces created due to the
ailerons and rudder. With the desired bank angle and angle of
attack, the thrust can be found directly using (24) and (31) as

Td =
m

cos(α0
d) cos(β

0
d)
z0 (33)

whereβ0
d = 0. The next step now is to design the middle

loop, and to ensure that the desired states and their derivatives
remain bounded, a command filter will be employed. A
command filter with magnitude and rate saturation can be
defined as [9]

q̇1(t) =q2(t) (34)

q̇2(t) =2ζωn

(

σR

(

ω2
n

2ζωn

σM (x0d)− q1

)

− q2

)

(35)

where σR(·) and σM (·) are rate and magnitude saturation
functions,ωn is the natural frequency,ζ is the relative damping
ratio, andx0d is a desired signal (e.g. α0

d). The command-
filtered signals can now be found asxd = q1 and ẋd = q2
providing the signals for the next step in the backstepping
process.

With the desired state vectorx2,d andẋ2,d generated using
a command-filter, the middle loop can be now designed. From
(21), a control law can be chosen as

x0
3,d =G−1

2 (x2)(ẋ2,d − f2(·) −K2(x2 − x2,d)) (36)

with K2 as a positive definite gain matrix. Note that even
though this is backstepping, the cross-term that would arise
through the backstepping process is not included in [10]. By
using another command-filter, the desired angular velocityand
acceleratioṅx3,d andx3,d are obtained, allowing a control law
to be designed as

u =G−1(x)(Jẋ3,d − f3(·)−K3(x3 − x3,d)) (37)

where K3 is another positive definite gain matrix. Using
original notation, the control law can be written as

u =G−1(x)(Jω̇b
n,d + S(ωb

n,b)Jω
b
n,b − f(x)

+D(x)ωb
n,b −K3(ω

b
n,b − ωb

n,d)) (38)

where it is evident that the backstepping and command filter
provides the desired angular acceleration and angular velocity.

B. Nonlinear Dynamic Inversion

Based on [20], an inner-outer loop controller can be de-
signed using Euler angles. Given the inputµd, γd and χd,
representing the bank, flight path and heading angles, the
desired Euler angles can be found asΘn,d =

[

φd θd ψd

]⊤

whereφd = µd, θd = γd + α andψd = χd − β. A similar
definition has been applied in [21] to design desired angles
that can be tracked using a rotational controller. The under-
lying assumptions are that the longitudinal and lateral motion
are decoupled and can be treated independently, something
that works satisfactory for most cases. Nonlinear dynamic
inversion requires a desired angular acceleration to invert the
system (12) with regards to the deflection angles, resulting

in a control signal that produces a given desired angular
acceleration.Tracking of desired angles can then be achieved
by properly defining the desired angular acceleration. First
the outer loop can be designed, which is considered slowly
varying. Based on the errors between the actual Euler angles
and their desired ones, the desired angular rates are found as

Θ̇n,d =kθ(Θn,d −Θn,b) (39)

where kθ is a positive gain. Note that this is a simple
proportional controller, and other implementations usingPI or
PID controllers may also be used for this. Based on the desired
angular rates, the desired angular velocity can be found as

ωb
n,d = T−1(Θn,b)Θ̇n,d. (40)

Note thatT(Θn,b) is singular whenθ = ±π
2 . The desired

angular acceleration can now be obtained as

ω̇b
n,d =kω(ω

b
n,d − ωb

n,b) (41)

wherekω is another positive gain. By using nonlinear dynamic
inversion, the deflection angles are now found through inver-
sion of (12) as

u =G−1(x)
(

Jω̇b
n,d + S(ωb

n,b)Jω
b
n,b − f(x)

+D(x)ωb
n,b

)

, (42)

providing a control law that enables an aircraft to track desired
angles.

C. Decoupled Approach

The control problem of pointing the wind frame in a
desired direction and move with a positive desired airspeed
can also be achieved using a quaternion representation. Letthe
desired trajectory be defined throughqn,d,ω

d
n,d, ω̇

d
n,d ∈ L∞,

then the quaternion error can be defined asqd,w = qd,n ⊗
qn,b ⊗ qb,w where qb,w represents the rotation from the
wind frame to the body frame and can be defined using
the angle of attack and sideslip asqb,w = qb,s ⊗ qs,w

where qb,s =
[

cos(α2 ) 0 − sin(α2 ) 0
]⊤

and qs,w =
[

cos(β2 ) 0 0 sin(β2 )
]⊤

. Furthermore, the angular velocity
and acceleration of the wind frame relative to the body frame
are found as

ωw
b,w =





−α̇ sin(β)
−α̇ cos(β)

β̇



 (43)

ω̇w
b,w =





−α̈ sin(β) − α̇β̇ cos(β)

−α̈ cos(β) + α̇β̇ sin(β)

β̈



 . (44)

From (44) it is observed that the angular acceleration of the
wind frame relative to the body frame comprises the second
order derivatives of the angle of attack and sideslip angle.
These angles are not available for measurements, but the angle
of attack and sideslip can be measured using a 5-hole probe.
This allows estimates of their second derivatives to be found
using, e.g. a linear filter, a Kalman filter [11], or using sliding
mode differentiator [22]. While each of the three methods
work very well for finding the higher order derivatives, the
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authors have obtained the best results using a simple linear
filter. A linear filter can be proposed as (cf. [23])

˙̂xr =Ax̂r +Br (45)

A =





−(2η + 1)Ω −(2η + 1)Ω2 −Ω3

0 1 0
0 0 1



 (46)

B =
[

Ω3 0 0
]⊤

(47)

wherex̂r =
[

¨̂r ˙̂r r̂
]⊤

with r = α in the case of the angle
of attack, and similarly for the sideslip angle. The relative
damping ratio,η, and natural frequency,Ω, can be used to
tune the performance of the filter, but in this work it is simply
set asη = Ω = 1.

This filter allows the rotational and translational dynamics
to become decoupled as the rotational controller can be easily
design from the error dynamics where all the states now are
available. The output from the rotational controller can then
serve as input to the translational controller when calculating
the desired thrust, something that again can be designed using
standard Lyapunov methods.

1) Desired Quaternion, Angular Velocity and Acceleration:
It is typical to define a desired bank, flight path and course
angle as well as a desired airspeed. In order to find the
desired quaternion, angular velocity and angular acceleration,
the desired angles can be sent through a linear filter as shown
above, enabling the estimation ofΘn,d =

[

µd γd χd

]⊤

and its first and second order derivatives. Now to find the
desired quaternion,qn,d, it can be constructed using the
desired angles as described in [23, p. 32]. To find the de-
sired angular velocity and acceleration, they can be found as
ωd

n,d = T−1(Θn,d)Θ̇n,d and ω̇d
n,d = Ṫ−1(Θn,d)Θ̇n,d +

T−1(Θn,d)Θ̈n,d. There are naturally many other ways of
finding the desired states, but this is the approach used in
this paper.

2) Backstepping Control using Decoupled Method:A back-
stepping controller can now be designed to make the attitude
and angular velocity errors go to zero. Some preliminary
results on this approach is given in [24], which shows how to
decouple the translational and rotational dynamics, and how
to control the aircraft using a sliding surface controller.This
section presents a nonlinear backstepping controller using the
decoupled dynamics, where the control objective is to make
qd,w →

[

±1 0 0 0
]⊤

andωb
d,w → 0. First let an error

function be defined as (cf. [25])

eq± =

[

1∓ ηd,w
ǫd,w

]

, (48)

with the kinematics as

ėq± =Te(eq±)R
w
b ω

b
d,w (49)

Te(eq±) =
1

2

[

±ǫ⊤d,w
ηd,wI+ S(ǫd,w)

]

(50)

and whereωb
d,w = ωb

n,b−Rb
dω

d
n,d+Rb

wω
w
b,w. By introducing

this error function, the equilibrium point becomes shiftedto
zero such that the objective is to make(eq±,ωb

d,w) → (0,0).

The control problem can be made easier through the following
assumption.

Assumption 1:Assume that sgn(ηd,w(t0)) = sgn(ηd,w)(t)).
This assumption divides the rotational sphere into two halves,
allowing the control design to focus only on one of the
two equilibrium points (physically the same orientation, but
mathematically different). This simplifies the controllerdesign
and will work very well for most cases. What might happen,
is that if the aircraft starts with an initial condition thatis far
away from the correct equilibrium point, it might perform a
360◦ maneuver to reach the selected equilibrium point, but in
practice this is not an issue. The reader is referred to the work
by [26] on the topic of the unwinding phenomenon for more
details regarding this. By using Assumption 1, the following
inequality holds (cf. [25] and [27])

e⊤q±TeT
⊤

e eq± ≥
1

8
e⊤q±eq±. (51)

Also note thatT⊤
e eq = 1

2ǫd,w. Now consider the positive
equilibrium point such thateq := eq+ and let a Lyapunov
function candidate be chosen asV1 := 1

2e
⊤
q eq, which can be

differentiated using (49) as

V̇1 = e⊤q TeR
w
b ω

b
d,w. (52)

The angular velocity error can now be treated as a virtual
control signal and chosen as

ωb
d,w =− kqR

b
wT

⊤

e eq + z (53)

wherekq > 0 is a positive gain andz is a new variable that
arise through the backstepping process. Inserting (53) into (52)
and using (51) results in

V̇1 ≤ −
kq

8
e⊤q eq + e⊤q TeR

w
b z, (54)

which is negative definite as long asz = 0. The dynamics of
the new variable is found from (53) by using (12) as

Jż =− S(ωb
n,b)Jω

b
n,b + f(x) −D(x)ωb

n,b +G(x)u

+ JS(ωb
n,b)R

b
dω

d
n,d − JRb

dω̇
d
n,d + JRb

wω̇
w
b,w

+
kq

2
JRb

wS(ω
w
b,w)ǫd,w +

kq

2
JRb

wǫ̇d,w. (55)

A second Lyapunov function candidate can now be chosen as
V2 := V1 +

1
2z

⊤Jz and differentiated using (52) and (55) as

V̇2 ≤−
kq

8
e⊤q eq + e⊤q TeR

w
b z

+ z⊤
(

−S(ωb
n,b)Jω

b
n,b + f(x)−D(x)ωb

n,b +G(x)u

+JS(ωb
n,b)R

b
dω

d
n,d − JRb

dω̇
d
n,d + JRb

wω̇
w
b,w

+
kq

2
JRb

wS(ω
w
b,w)ǫd,w +

kq

2
JRb

wǫ̇d,w

)

. (56)

The control law can now be chosen as

u =G−1(x)(JRb
dω̇

d
n,d − JS(ωb

n,b)R
b
dω

d
n,d − JRb

wω̇
w
b,w

+ S(ωb
n,b)Jω

b
n,b − f(x) +D(x)ωb

n,b −
1

2
Rb

wǫd,w

−
kq

2
JRb

wS(ω
w
b,w)ǫd,w −

kq

2
JRb

wǫ̇d,w −Kzz) (57)
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whereKz = K⊤
z > 0 is a gain matrix, and by inserting (57)

into (56), it results inV̇2 ≤ −
kq

8 ||eq||
2 − kz||z||

2, which is
negative definite and wherekz is the smallest eigenvalue of
Kz. By applying Theorem 4.10 from [28], it follows that the
origin (eq, z) = (0,0) is uniformly exponentially stable. As
(eq, z) → (0,0), it follows from (53) thatωb

d,w → 0 thereby
completing the control objective. A similar proof can be done
for the negative equilibrium point.

3) Decoupled Approach with Reference:It is well estab-
lished that ailerons are much better than the rudder for con-
trolling the heading. By using nonlinear dynamic inversionor
the decoupled method, the heading error becomes mapped to
the rudder, while the command-filtered backstepping approach
uses the bank angle as a state variable that naturally becomes
mapped to the ailerons. To achieve comparable results with
the command-filtered backstepping (or better), a reference
signal will be designed in this section. The results are inspired
by pseudo-control hedging by [12], such that the reference
deviates whenever the actuators are in saturation to avoid the
deterioration of the adaptive update laws. While [12] (and later
[29]) designed the reference from the angular velocity level, an
adaptive approach to this is presented in [30], which designs
the reference from the quaternion level. One very interesting
result of starting at the quaternion level that has not been
studied before, is that it allows a mapping of control deficiency
from one actuator to another, thereby increasing the control
authority of the aircraft.

First a reference signal can be defined as

q̇n,r =
1

2
T(qn,r)

[

0
ωr

n,r

]

(58)

where the angular acceleratioṅωr
n,r is to be designed. The

objective of the reference signal is to track the desired tra-
jectory, but deviate whenever the actuators are in saturation.
Let the attitude error be defined asqr,d = qr,n ⊗ qn,d and

an error function aseqr =
[

1− ηd,r ǫ⊤d,r
]⊤

where only the
positive equilibrium point is considered. The error between the
reference trajectory and the desired frame has the kinematics

ėqr = Ter (eqr )(ω
r
n,r −Rr

dω
d
n,d), (59)

which can be driven to zero using backstepping similarly as
before. Letωr

n,r = Rr
dω

d
n,d − k1T

⊤
er
eqr + zr, giving the

dynamics of the new variable as

żr = ω̇r
n,r + S(ωr

n,r)R
r
dω

d
n,d −Rr

dω̇
d
n,d +

k1

2
ǫ̇d,r. (60)

The angular acceleration of the reference trajectory relative to
NED can now be chosen as

ω̇r
n,r =Rr

dω̇
d
n,d − S(ωr

n,r)R
r
dω

d
n,d

−
k1

2
ǫ̇d,r −

1

2
ǫd,r − k2zr + ξ := Υ+ ξ (61)

where ξ is a bounded function to be designed. Given a
Lyapunov function candidate asV3 := 1

2e
⊤
qr
eqr + 1

2z
⊤
r zr it

can be differentiated and by inserting (61) results in

V̇3 ≤−
k1

8
||eqr ||

2 − k2||zr||
2 + z⊤r ξ, (62)

indicating that the origin (eqr , zr) = (0,0) is uniformly asymp-
totically stable as long asξ = 0. By allowing the functionξ to
be a bounded converging function, i.e.ξ → 0 ast→ ∞, then
it follows by applying Definition 4.7 in [28] that the system
(59)-(60) is input-to-state stable, where(eqr , zr) → (0,0)
as ξ → 0. Now to account for actuator saturation, let the
actuator signal be rewritten asu = σ(u) + ũ, whereσ(u)
denotes the saturated signal (the available signal), whileũ is
the difference between the commanded and saturated signal
(i.e. command deficiency). The quaternion error can now be
redefined asqr,w = qr,n ⊗qn,b ⊗qb,w with an error function

as eq2 =
[

1− ηr,w ǫ⊤r,w
]⊤

(only considering the positive
equilibrium point). The error kinematics become

ėq2 =Te2(eq2)R
w
b ω

b
r,w (63)

whereωb
r,w = ωb

n,b−Rb
rω

r
n,r+Rb

wω
w
b,w. The control objective

is therefore to make(eq2,ωb
r,w) → (0,0) while accounting for

the actuator limitations. Through backstepping, the angular
velocity can again be used as a virtual control signal and
chosen asωb

r,w = −k3R
b
wT

⊤
e2eq2 + z2 wherek3 > 0 is a

gain andz2 is a new variable with the dynamics using (12)
and (61) as

Jż2=− S(ωb
n,b)Jω

b
n,b + f(x) −D(x)ωb

n,b +G(x)σ(u)

+G(x)ũ+JS(ωb
n,b)R

b
rω

r
n,r−JRb

r(Υ+ξ)+JRb
wω̇

w
b,w

+
k3

2
JRb

wS(ω
w
b,w)ǫr,w +

k3

2
JRb

wǫ̇r,w. (64)

The control deficiency can now be removed from the error
dynamics by choosing

ξ :=Rr
bJ

−1G(x)ũ, (65)

which will be part of the reference signal (61). This means that
the reference signal will deviate from the desired trajectory
whenever the actuators are in saturation. By assuming that
the desired trajectory is a feasible trajectory for the aircraft,
it is reasonable to assume that the control deficiency,ũ, is
bounded, and will go to zero in finite time makingξ → 0.
Note that this assumption is paramount for the design. Now
consider the case where the rudder is in saturation such that
|δ̃r| > 0, then the function can be expanded as

ξ =
1

2
ρSV 2

a R
r
bJ

−1





bClδa
0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr









0
0

δ̃r



 (66)

where it is obvious that the control deficiency becomes
mapped onto thex axis, creating rolling commands in the
reference trajectory such that the aircraft starts to roll.The
inverse of the inertia matrix and the rotation matrix also
contribute to map the control deficiencies to the other axes.

The control law can now be designed following the same
procedure as in Section III-C2. With basis in the Lyapunov
function candidateV4 := 1

2e
⊤
q2eq2 + 1

2z
⊤
2 Jz2, a control law

can be chosen as

σ(u) =G−1(x)(JRb
rΥ− JS(ωb

n,b)R
b
rω

r
n,r − JRb

wω̇
w
b,w

+ S(ωb
n,b)Jω

b
n,b − f(x) +D(x)ωb

n,b −
1

2
Rb

wǫr,w

−
k3

2
JRb

wS(ω
w
b,w)ǫr,w−

k3

2
JRb

wǫ̇r,w−K4z2) (67)
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whereK4 = K⊤
4 > 0 is a gain matrix. By inserting (67) into

the derivative of the Lyapunov function candidate, it results in
V̇4 ≤ −k3

8 ||eq2||
2−k4||z2||

2 with k4 as the smallest eigenvalue
of K4, and it follows that origin(eq2,ωb

r,w) = (0,0) is
uniformly exponentially stable. Note that even though the
wind frame will converge exponentially fast to the reference
trajectory, the reference trajectory will diverge whenever the
actuators are in saturation. This moves the saturation problem
from the controller to the reference with the gained advantage
of increased control authority.

Remark 1: The generated moments from the deflection
angles are functions of the airspeed. This means that at low
airspeeds, the actuators tend to go into saturation (due to
stalling), while at high airspeeds the required moments can
be generated using small deflection angles. Any of the control
laws presented in this paper require the inverse of theG(x)
matrix, which can be written as

G−1(x) =
2

ρV 2
a





bClδa
0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr





−1

. (68)

From (68) it follows that the right hand side of the control
laws can be made arbitrarily small by increasing the airspeed,
thereby keeping the deflection angles within their linear region.
This idea is used in [31] by designing a reference airspeed
that deviates from the desired airspeed whenever the deflection
angles are in saturation. This addresses the saturation problem
of the deflection angles by using the speed, something that
represents another way to further increase the control authority
of the aircraft.

4) Translational Controller: The objective of the transla-
tional controller is to make the airspeed tracking error go to
zero. Let a desired speed profile be defined throughVd, V̇d ∈
L∞ and assume thatVa, u > 0 ∀ t ≥ t0. A Lyapunov function
candidate can then be chosen asV5 := 1

2 Ṽ
2 > 0 ∀ Ṽ 6= 0

and differentiated using equation (9) as

V̇5 =Ṽ

(

u

mVa
T+

(vb
r)

⊤

Va
(
1

m
Rb

wf
w
aero+Rb

nf
n
g )−V̇d

)

. (69)

A speed controller can now be chosen as

T =
mVa

u

(

V̇d−kpṼ −
(vb

r)
⊤

Va
(
1

m
Rb

wf
w
aero+Rb

nf
n
g )

)

, (70)

resulting inV̇5 = −kpṼ
2, which is negative definite. It follows

that the originṼ = 0 is uniformly exponentially stable, such
that the airspeed will exponentially track the desired airspeed
as long as the thrust is not in saturation. This controller isused
for both decoupled methods and theNDI to make the speed
error go to zero.

IV. COMPARISON

The following simulations assume that the aircraft is
equipped with a 5-hole probe providing the airspeed and
angles of attack, an inertial navigation system providing the
orientation and angular velocity, while a GPS provides the
position of the aircraft (not really needed here; but is natural
to expect from a navigation system and is an essential part of
a guidance system). Four different scenarios are considered:

• Performing a180◦ maneuver with perfect knowledge of
states and models.

• Performing a180◦ maneuver when exposed to sensor
noise.

• Tracking an aggressive maneuver when exposed to wind
gusts and wind shears.

• Tracking an aggressive maneuver when exposed to wind
gusts and wind shears with modeling imperfections.

The objective is to gauge how each of the different con-
trol laws behave to the different scenarios. The simulations
consider a fixed-wingUAV with the parameters as pre-
sented in Appendix A, with the deflection angles bounded
as −0.3491 ≤ δa, δe, δr ≤ 0.3491 and the thrust as0 ≤
T ≤ 250 N. The UAV has the following initial conditions:
ωb

n,b(0) =
[

0.1 −0.2 0
]⊤

, qn,b(0) =
[

0 0 0 1
]⊤

,

vb(0) =
[

25 0 0
]⊤

.

A. Gain Selection

For the command-filtered backstepping approach, the gains
are chosen asK1 = diag{0.5, 0.5, 2}, K2 = 8I andK3 =
diag{2, 20, 20}. The filter for the middle loop is designed
as ωn = 2, ζ = 1, with rate saturation limit of100, and
magnitude saturation asπ2 . The inner loop filter has both
magnitude and rate saturations limits at10 with ωn = 20,
ζ = 1. The NDI controller has the gains askθ = 2, kω = 10
and kp = 2, the decoupled method has the gainskq = 20,
Kz = 10J and kp = 2, and for the decoupled method with
a reference the gains are chosen ask1 = k2 = k3 = 10,
K4 = 10J andkp = 2.

The gains have been tuned empirically to obtain the best
performance for each method, but there might exist better sets
of gains that can improve the performance of the different
methods. In general, it is more difficult to properly tune the
gains of the command-filtered backstepping approach, as time-
scale separation must be enforced through the gains. This
also puts limits on the available gains that can be used when
implementing the control law and required substantial trial and
error before finding the best gains for the different simulation
scenarios.

When tuning the decoupled controller, it is sufficient to set
the gains to a positive number that can be increased until you
obtain your desired performance. When using the decoupled
approach using a reference, it is recommended to choose equal
gains, as that has given the best performance.

B. Simulation with Perfect Knowledge

Before ”muddying the water” by including noise and model
imperfections, consider the case where all controllers have
perfect knowledge of the states and model. The objective is to
perform a180◦ maneuver and make the wind frame become
aligned with theNED frame. The desired states are defined
as qn,d =

[

1 0 0 0
]⊤

, ωd
n,d = ω̇d

n,d = 0, V̇d = 0
andVd = 40 m/s; while the wind vector is set to a constant
wn =

[

10 0 0
]⊤

.
Fig. 5 shows the rotational errors of the different control

structures. It can be observed that all four methods are ableto
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TABLE I
T IME TO CONVERGENCE

Controller Time (s)
Decoupled Method with Reference 4.84

Decoupled Method 5.82

Command-Filtered Backstepping 10.73

Nonlinear Dynamic Inversion 11.77

make the errors go to zero. TheNDI approach makes the rudder
go into saturation, thereby limiting the convergence speed.
There are also some oscillations for the angular velocities.
The decoupled approach exploits both the rudder and aileron
(due to gain selection) and is therefore able to achieve fast
convergence for both the angles and angular velocities. The
command-filtered backstepping approach uses the bank angle
as a control variable, and applies a rolling motion to perform
the maneuver. The decoupled approach using a reference, is
able to achieve the fastest convergence in less than 5 seconds,
by exploiting all three actuators.

Fig. 6 shows the speed errors. All speed errors go fast
to zero, but note that the command-filtered backstepping
approach and theNDI have some undesired motion before
convergence. Since the speed controller for theNDI is the same
as for the decoupled methods, this is related to the rotational
dynamics of the two controllers.

In order to have a comparative metric on the different
approaches, consider the following objective function

W1 =Θ⊤

d,wΘd,w + (ωb
n,b)

⊤ωb
n,b + Ṽ 2, (71)

where the quaternion-based controllers can be represented
using Euler angles as

Θd,w =





atan2(2(ηǫ1 + ǫ2ǫ3), 1− 2(ǫ21 + ǫ22)))
sin−1(2(ηǫ2 − ǫ3ǫ1))

atan2(2(ηǫ3 + ǫ1ǫ2), 1− 2(ǫ22 + ǫ23))



 (72)

whereqd,w :=
[

η ǫ1 ǫ2 ǫ3
]⊤

.
Fig. 7 shows a comparison between the different controllers

using the metricW1, where the decoupled method using a
reference is able to achieve the best performance, followed
closely by the decoupled method without a reference. Table I
shows the time to convergence for the different controllers.
The error is defined to have converged whenW1 crosses
below 1 · 10−3. It is observed that the decoupled method
using a reference is55% faster than the command-filtered
backstepping approach and59% faster than theNDI approach.
Also note that the decoupled method without a reference is
able to obtain very good performance, but about1 second
is saved by using the reference. One of the main reasons
for the good performance of the decoupled methods are the
selection ofKz = 10J, whereJ allows the mapping of rudder
commands to the ailerons and vice versa. Using this kind of
gain for the command-filtered backstepping approach did not
improve the performance. For theNDI approach, a convergence
time of about6 seconds was achievable, but when introducing
noise, the performance was severely deteriorated.

C. Simulation with Noise

One of the main advantages of the decoupled structure is
that the gains can be chosen almost arbitrarily, and they arenot
required to enforce time-scale separation of different control
loops. Since noise becomes amplified with high gains, the
following simulation has included noise to see how each of the
methods cope with uncertainties in the sensor-measurements.
It is assumed that the inertial navigation system provides
estimates of the Euler angles, quaternion and angular velocity,
while a 5-hole probe provides estimates of the airspeed and
angles of attack. This means that the available signals are
Θn,b,qn,b,ω

b
n,b, Va, α, β, where each term is exposed to noise

to model state estimation based on noisy sensor measurements
(accelerometer, gyro, magnetometer, GPS and 5-hole probe).

Fig. 8 shows the simulation results. All errors converge close
to zero, but it can be observed that the angles and angular
velocities for the command-filtered backstepping approach
oscillates much more than the other methods. Also note that
there is an undesirable initial oscillation the first secondfor the
command-filtered approach. The control signals for the differ-
ent methods also contain noise due to the measurement errors,
where the amplitude is higher for theNDI and command-
filtered backstepping approach than the decoupled methods.
This indicates that the decoupled methods are more robust
than by using time-scale separation.

D. Simulation with Aggressive Maneuvers and Dryden Gust
Model and Wind Shear Model

To really see the performance of each method, consider
the case of a more aggressive maneuver, where the aircraft
must follow a time-varying trajectory described by a desired
course and flight path angle. In this scenario, the Dryden gust
model and wind shears (cf. [32]) are also modeled to enable a
more realistic simulation for studying the different controllers.
The Dryden gust model and wind shear model produce a
noisy wind vector as well as angular velocity components
affecting the aircraft. This is an important step, as the wind
variations will excite both the slow and fast modes. In order
to get the best results from the command-filtered backstepping
approach, its gains were changed toK1 = diag{0.5, 0.5, 2},
K2 = diag{2, 8, 8} and K3 = 20I, and the rate saturation
for the outer filter is reduced to0.5. This selection of gains
is also more natural than in the previous simulations, as the
gains should in general be||K1|| < ||K2|| < ||K3||.

Fig. 9 shows the performance of the different methods.
The NDI controller is able to track the trajectory, but oscil-
lates somewhat around the desired trajectory. The decoupled
method and decoupled method with reference obtain compa-
rable results, both having a small deviation around25 seconds
as the rudder goes into saturation. The command-filtered
backstepping controller is struggling to track the trajectory,
even though considerable time was spent on tuning the gains.
Especially note that only a little actuation is applied by the
controller, such that by increasing the saturation limitations
for the filters, the convergence time of the tracking errors
will most likely improve. At around60 seconds, the flight
path angle becomes negative increasing the airspeed as the
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Fig. 6. Speed error and thrust for the different control structures in the case
of perfect knowledge.

aircraft moves towards the Earth. This can be observed in
Fig. 10 and affects the performance of each method, as less
deflection is required to create a desired moment. The integral
of the tracking error,W2 =

∫ t

0
((χ − χd)

2 + (γ − γd)
2)dt, is

given in Fig. 12, showing that the decoupled method using the
reference is able to achieve the best tracking performance.
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Fig. 7. Cost function showing the convergence of the different methods in
the case of perfect knowledge.

E. Simulation with Aggressive Maneuvers and Modeling Im-
perfections

So far, the model has been assumed to be perfectly
known. In this simulation, the aerodynamic coefficients are
changed to 45% of their true values, while a bias term
bb = J−1

[

1.3 1.3 1.3
]⊤

is added to the angular accelera-
tion (12). Trying to introduce larger errors in the aerodynamics
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Fig. 10. Airspeed error and thrust for the different controlstructures when
tracking an aggressive trajectory. Note that airbrakes arenot used, such that
the speed increases when the aircraft is moving with a negative flight path
angle and zero thrust.

or bias term resulted in a loss of control when using the
command-filtered backstepping approach.

Fig. 11 shows the performance of the different controllers,
where all controllers are more or less able to track the
trajectory, but theNDI and command-filtered backstepping
controllers have a higher inaccuracy than the decoupled meth-
ods. Further, a comparison of the impact of modeling errors
is shown in Fig. 12 showing the integral of the course and
flight path errors. It follows that the command-filtered back-
stepping approach is most sensitive to model imperfections.
One interesting aspect with this comparison, is the fact that
the decoupled method without a reference is able to achieve the
best performance. This is due to the bias term, which will be
a good or bad term dependent on the direction of rotation. As
can be seen in Fig. 11, the decoupled method rotates initially
in an opposite direction compared to the other solutions in this
simulation, and as such gets help from the bias term.

V. D ISCUSSION

The main limitation for the convergence time of the
command-filtered backstepping is the static limitations inthe
command filters. This is natural, as the filters impose saturation
to the signals, and thereby limits the overall performance.
A future direction with regards to this is to apply nonlinear
limitations to these filters, as it is desirable to obtain large
commands when the error is large, and small commands when
the error is small while keeping the system stable. The work
by [33] on exponential gain selection can be a good starting
point for implementing such a solution in the filters. This will
probably improve the performance of the command-filtered
backstepping approach. Another issue with the command-
filtered backstepping approach that became evident through
simulations, is that the bank and roll angles do not go to zero.
This is due to the method of finding the desired bank angle
from the non-affine form, resulting in a non-zero desired angle.

All the controllers presented in this paper should be im-
plementable on a standard microcontroller, e.g. a STM32f4
or similar chipset running a real-time operating system. The
easiest controller to implement from these is theNDI, as it
has a very simple structure; while the decoupled methods and
command-filtered backstepping approach will require more
time to implement, but should still run fine on any modern
microcontroller.

While this work has mainly focused on classicalNDI and
command-filtered backstepping approaches with their inherent
time-scale separation issues, it is important to stress thefact
that there are adaptive versions of these controllers [34],[35]
and [36]. The adaptive controllers will naturally exhibit very
different performance in the presence of modeling imperfec-
tions, but adaptive control also allows for dealing with the
time-scale separation issues, and as such can be considered
an important step to improve the performance of any of the
controllers presented in this paper.

VI. CONCLUSION

This paper has presented three different control structures,
where the different simulations show that the new decoupled
method using a reference signal shows very good perfor-
mance when compared to nonlinear dynamic inversion and
the command-filtered backstepping approach. By increasing
the gains sufficiently, the convergence time can be made
very short, with relatively small steady-state error due tothe
noise or modeling imperfections. While the new approach has
advantages over the existing approaches, it is important tonote
that theNDI and command-filtered backstepping can increase
their gains to most likely provide comparable results with the
decoupled method, but it is challenging to properly tune the
gains due to the inner-middle-outer loop structures.
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APPENDIX A

The YF-22 UAV model is given in [17] and is reproduced
here. Note that the stabilizer is treated as an elevator.

m = 20.64 Jxx = 1.607 Jyy = 7.51
Jzz = 7.18 Jxz = −0.59 b = 1.96
c̄ = 0.76 S = 1.37 CD0

= 0.008
CDα

= 0.508 CDq
= 0 CDδe

= −0.034
CL0

= −0.049 CLα
= 3.258 CLq

= 0
CLδe

= 0.189 Cm0
= 0.022 Cmα

= −0.473
Cmq

= −3.449 Cmδe
= −0.364 CY0

= 0.015
CYβ

= 0.272 CYp
= 1.215 CYr

= −1.161
CYδa

= 0.183 CYδr
= −0.459 Cl0 = −0.001

Clβ = −0.038 Clp = −0.213 Clr = 0.114
Clδa

= −0.056 Clδr
= 0.014 Cn0

= 0
Cnβ

= 0.036 Cnp
= −0.151 Cnr

= −0.195
Cnδa

= −0.036 Cnδr
= −0.055
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Fig. 11. Comparison between the different control structures when performing trajectory tracking in the presence of modeling imperfections.
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