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Iterative Identification and Control Using
Non-normalized Coprime Factors With

Application in Wafer Stage Motion Control
Frank Boeren , Alexander Lanzon, and Tom Oomen

Abstract— Robustness against model uncertainty is essential in
model-based controller design. It is well known that a relatively
small uncertainty in lightly damped poles and zeros can result in a
large distance measured in the ν-gap metric, leading to conserva-
tive robust stability and performance guarantees. This paper aims
to develop an identification and control procedure that results in
less conservative robust stability and performance conditions for
linear systems with lightly damped poles and zeros. To achieve
this, a connection is established between a distance measure based
on a nonnormalized coprime factorization of the system and
existing identification criteria in closed-loop system identification.
A nominal model of the system is determined by minimizing this
distance measure by means of a frequency-domain identification
algorithm. Then, a controller synthesis method is proposed
that addresses both nominal performance as robust stability.
Improved robustness by using the proposed approach compared
to existing approaches is confirmed in an experimental example
for a system with lightly damped poles and zeros.

Index Terms— Mechatronics, motion control, robust control,
system identification.

I. INTRODUCTION

ROBUSTNESS against model uncertainty is essential in
feedback control, and as a consequence, determining

the extent of model uncertainty is also necessary for the
associated modeling technique. In identification for control,
the only purpose of the identified linear model P̂ is to
design a high-performance controller C . When implementing
the controller C on the true (linear) system P0, stability
and performance cannot be guaranteed based on only the
nominal model. Hence, a minimal requirement is that C
achieves robust stability for a given model uncertainty set.
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This is well recognized in identification for control, where
such requirements are at the basis of iterative identification
and control approaches [1]–[5].

Several approaches have been developed to analyze the
influence of model uncertainty on the stability and perfor-
mance of a closed-loop system. For example, robustness
results can be derived by measuring the distance between
systems, as originally introduced in the graph metric [6],
gap metric [7], [8], and ν-gap metric [9]. These approaches
consider the discrepancy between systems around a normalized
coprime factorization of the nominal model P̂ to derive
robust stability and performance theorems, see [9, Sec. 3.3]
for results in the ν-gap. In [4], an iterative identification and
control approach is proposed where the identification criterion
is the ν-gap metric, and the control criterion is the four-block
performance measure used in H∞ loop-shaping [10]. The
associated robust stability results are used to quantify the
allowable controller modifications and model adjustments.
Furthermore, a model reduction based on the ν-gap metric
is presented in [11].

The ν-gap metric has important advantages in view of robust
stability analysis compared to the graph and gap metric, yet,
it has been shown in [12] and [13] that a relatively small uncer-
tainty in lightly damped zeros and poles can result in a large
distance in the ν-gap. Uncertainty in lightly damped zeros and
poles frequently occurs in mechanical systems, see [14]–[16].
A large distance measured in the ν-gap results in a robust
stability condition that is overly conservative [12], [17]. Thus,
the ν-gap may not be the most suitable distance measure for
robust stability and robust performance in uncertain lightly
damped systems.

Recently, it is shown in [12] that by relaxing the nor-
malization condition on the coprime factors of P̂ , which
is inherently at the basis of the ν-gap, less conservative
robust stability and performance guarantees can be deter-
mined for lightly damped systems. Essentially, by relaxing the
normalization condition, additional freedom is introduced to
tailor the uncertainty weighting. In particular, the additional
freedom reduces conservatism by allowing for an improved
frequency weighting and improved channel direction scaling
of the uncertainty [12, Sec. X], [18, Sec. I]. The nonnormal-
ized coprime factor uncertainty structure is embedded in the
distance measure framework of [12], where robust stability
and robust performance theorems are proposed for many
standard uncertainty structures. Controller synthesis methods
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that exploit nonnormalized coprime factorizations are pre-
sented in [17] and [19].

However, these approaches [12], [17], [19] assume that
models of P̂ and P0 are readily available. Hence, despite
the potential advantages of nonnormalized coprime factor-
izations in view of robust stability and robust performance,
these methods cannot directly be applied if models of P̂
and P0 are not yet available. One of the aims of this
paper is to develop an identification for control approach
that is tailored to the general distance measure frame-
work. Specifically, an identification procedure will be devel-
oped based on a nonnormalized coprime factor uncertainty
structure that is particularly suitable for lightly damped
systems.

The focus on normalized coprime factorizations in robust
control has led to a focus on identifying normalized coprime
factorizations in identification for control [3], [20]–[23].
Often, identification for control approaches utilizes the
dual-Youla uncertainty structure of all plants that are stabilized
by a known controller Cexp used during an identification
experiment [2], [24]. Typically, a normalized coprime factor-
ization of P̂ is used [25]. Interestingly, the potential of non-
normalized coprime factorizations in identification for control
is also explored in [18], where a particular nonnormalized
coprime factorization of P̂ is introduced in a dual-Youla
uncertainty structure to achieve a certain level of robust per-
formance and reduce conservatism in subsequent μ-synthesis.
However, μ-synthesis involves a nonconvex optimization and
typically introduces additional conservatism [26]. The aim of
this paper is to take a different approach based on nonnormal-
ized coprime factorizations by building on H∞-loop-shaping
synthesis and ν-gap analysis, both of which only consider
normalized coprime factorizations.

The main contribution of this paper is a new framework
for identification and control, which is particularly suited for
lightly damped systems. The key point is that any identi-
fied model is an inexact representation of the true system.
Although there are many ways of measuring the identification
error, the interesting question is how to measure identifica-
tion error in a specific way that can be used to synthesize
a controller that a priori guarantees robust stability and a
level of robust performance. The developed new framework
substantially differs from existing mainstream robust control
design frameworks. On the one hand, it extends the H∞-loop-
shaping and ν-gap framework, e.g., [9], toward the use of
nonnormalized coprime factorizations and compatible system
identification techniques. On the other hand, it takes a fun-
damentally different approach compared to commonly used
μ-synthesis by avoiding such a nonconvex optimization. The
focus of this paper is on the choice of uncertainty structure,
not on quantification of the size of the uncertainty itself,
which is only briefly touched upon in Section V of this
paper. The following specific technical subcontributions are in
this paper.
C1: Development of new results on traditional dual-Youla

structures in a general framework that characterize a sta-
bility margin when a controller is changed and that char-
acterize the associated robust performance degradation,

which will form the basis for the controller design
approach developed in this paper.

C2: Development of a new measure on identification error
based on a distance that is compatible with the afore-
mentioned stability margin, and the development of a
subsequent optimal identification algorithm. In addition,
it is shown how this newly developed distance captures
criteria used in prior identification literature [22], pro-
viding a theoretical foundation for those earlier results
in terms of a distance framework.

C3: A compatible controller synthesis approach is developed
that addresses robust performance, which is subse-
quently embedded in an overall identification and control
design procedure.

C4: A case study on an industrial wafer stage system is
performed, confirming a substantial improvement in
performance. In addition, a thorough comparison of the
proposed nonnormalized factorization methodology with
existing normalized factorization techniques reveals that
the proposed approach provides a guarantee for robust
performance, while existing techniques provide none.

An outline of this paper is as follows. In Section II,
the notation is introduced and background information is
provided. In Section III, Contribution C1 is provided. Next,
in Section IV, Contribution C2 is contained, followed by
Contribution C3 in Section V. Then, in Section VI, an experi-
mental case study on the wafer stage is provided, constituting
Contribution C4. Conclusions are provided in Section VII.

II. GENERAL DISTANCE MEASURE FRAMEWORK

A. Notation

Throughout linear and time-invariant systems are con-
sidered. The set of proper real-rational transfer functions
is denoted as R. Let RL∞ denote the space of proper
real-rational transfer functions bounded on jR including ∞,
and RH∞ denote the space of proper real-rational transfer
functions bounded and analytic in the open right half-complex
plane. For P ∈ R, �P�∞ = maxω∈R∪∞ σ̄ (P( jω)). The
winding number wno p(s) of a scalar p(s) is defined as
the number of encirclements of the origin made by p(s)
as s follows the standard Nyquist D-contour, indented into
the right half-plane (RHP) around any imaginary axis poles
of p(s). An upper linear fractional transformation (LFT) is
given by Fu(H,�) = H22 + H21�(I − H11�)−1 H12, and a
lower LFT by Fl(H, C) = H11 + H12C(I − H22C)−1 H21.
Throughout this paper, s = jω, where ω ∈ R denotes a
frequency. Furthermore, R[s]p×q denotes a polynomial matrix
of dimension p × q with real coefficients.

The pair {N, M} denotes a right coprime factorization (rcf)
of P ∈ R if M is invertible in R, N, M ∈ RH∞, P =
N M−1, and ∃Xr , Yr ∈ RH∞ such that the Bezout identity
Xr M + Yr N = I holds. The pair {N, M} is a normalized
rcf of a plant P if {N, M} is a rcf and M ∗ M + N∗ N = I ,
where M∗ = M(−s)T . Dual definitions hold for a left coprime
factorization (lcf), where P = M̃−1 Ñ denotes a lcf of P .
Furthermore, {U, V } denotes a rcf of a controller C , while
{Ũ , Ṽ } denotes a lcf of a controller C . Define G = [

N
M

]
,
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Fig. 1. Feedback interconnection.

G̃ = [−M̃ Ñ ], as the right and left graph symbols of P ,
respectively, and K = [

V
U

]
, K̃ = [−Ũ Ṽ ], as the right

and left inverse graph symbol of C . Here, G̃G = 0 and
K̃ K = 0 [9, (2.13)].

B. Control Setup

Let [P, C] denote the positive feedback interconnection
in Fig. 1, where P ∈ Rny×nu denotes the plant and C ∈
Rnu×ny denotes the feedback controller. Here[

y
u

]
=

[
P
I

]
(I − C P)−1[−C I ]

[
r2
r1

]
.

Furthermore, define T (P, C) as

T (P, C) =
[

P
I

]
(I − C P)−1[−C I ].

Then, [P, C] is internally stable if (I − C P)−1 ∈ R and
T (P, C) ∈ RH∞. Furthermore, let P̂ ∈ Rny×nu denote a
nominal model of an unknown true plant P0 ∈ Rny×nu .

A model-based control approach is adopted to determine a
controller C , where performance and robustness requirements
are specified by means of the weighting scheme from [27].
This scheme is to precompensate and postcompensate P̂ and
P0 with weighting functions W1 and W2, respectively. The
strictly proper shaped nominal model and shaped true plant
become P̂s = W2 P̂W1 and P0,s = W2 P0W1, respectively,
while the shaped controller is given by Cs = W−1

1 CW−1
2 .

Furthermore, the weighted feedback interconnection is con-
sidered, as denoted by [P̂s , Cs ] and [P0,s, Cs ]. The stabilizing
feedback controller that is used during a closed-loop identi-
fication experiment is denoted by Cexp

s . Thus, [P0,s, Cexp
s ] is

assumed internally stable.
Let {Ñs , M̃s } be a lcf of P̂s , with left graph symbol G̃s as

defined in Section II-A. Furthermore, {N0,s , M0,s } is a rcf of
P0,s , while {Ñ0,s , M̃0,s } is a lcf of P0,s . The corresponding
right and left graph symbols are G0,s and G̃0,s , respectively.
Furthermore, {Ũ exp

s , Ṽ exp
s } is a lcf of Cexp

s , while {Us , Vs} is
a rcf of Cs . The corresponding left and right inverse graph
symbols are K̃ exp

s and Ks , respectively.
Finally, let the standard linear fractional interconnection

in Fig. 2 is denoted by �H, Cs	, with the generalized plant

H =
[

H11 H12

H21 H22

]
∈ R

Fig. 2. Standard linear fractional interconnection.

and transfer function mapping
[ w

r2
r1

]
to

[ z
y
u

]
given in (1), as

shown at the bottom of this page. The generalized plant is
a widely adopted formulation that encompasses a large range
of control problems and distance metrics, see [9] and [26] for
details. Finally, H is said to be stabilizable if there exists a
Cs such that �H, Cs	 is internally stable, that is, the transfer
function in (1) belongs to RH∞.

C. General Distance Measure Framework

In this paper, robust stability and performance theorems are
proposed according to the general distance measure framework
in [12] and [28]. This framework is based on a generic distance
measure d H (P̂s , P0,s) and a generic robust stability margin
bH (P̂s , Cs), as are defined next.

Definition 1 [12, Definition 4]: Let a nominal model be
given by P̂s ∈ Rny×nu , a generalized plant by H ∈ R with
H22 = P̂s , and a true plant by P0,s ∈ Rny×nu . Let the set of
all admissible perturbations be given by

� = {
�s ∈ RL∞ : (I−H11�s)

−1 ∈ R, P0,s = Fu(H,�s)
}
.

The distance measure d H (P̂s, P0,s) between P̂s and P0,s for
the uncertainty structure implied by H is defined as

d H (P̂s , P0,s) =
⎧⎨
⎩

inf
�s∈�

||�s ||∞, if � 
= ∅
∞, otherwise.

Note that d H (P̂s , P0,s) ≥ 0 and d H (P̂s , P̂s) = 0. The
counterpart of the distance measure d H (P̂s , P0,s) in robust
stability and performance analysis is the robust stability margin
bH (P̂s , Cs) of �H, Cs	.

Definition 2 [12, Definition 3]: Let a nominal model be
given by P̂s ∈ Rny×nu , a generalized plant by H ∈ R
with H22 = P̂s , and a controller by Cs ∈ Rnu×ny . The
robust stability margin bH (P̂s, Cs ) for the uncertainty structure
implied by H is defined as

bH (P̂s , Cs)=

⎧⎪⎨
⎪⎩

||Fl(H, Cs)||−1∞ , if 0 
=Fl(H, Cs)∈RL∞ and

[P̂s, Cs ] is internally stable

0, otherwise.

Within the general distance measure framework, spe-
cific expressions for d H (P̂s, P0,s) and bH (P̂s , Cs) are

⎡
⎣ z

y
u

⎤
⎦ =

⎡
⎢⎣

Fl(H, Cs) H12(I − Cs H22)
−1

[−Cs I
]

[
H21
0

]
+

[
H22

I

]
(I − Cs H22)

−1Cs H21

[
H22

I

]
(I − Cs H22)

−1
[ −Cs I

]
⎤
⎥⎦

⎡
⎣ w

r2
r1

⎤
⎦ (1)
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derived in [12] for the commonly used uncertainty struc-
tures listed in [29, Table 9.1]. These expressions are presented
in [12, Table II].

III. ROBUST STABILITY AND ROBUST PERFORMANCE

GUARANTEES FOR A DUAL-YOULA

UNCERTAINTY STRUCTURE

In this section, the dual-Youla uncertainty structure, as often
used in identification for control [25], [30], is embedded in the
general distance measure framework described in Section II-C.
The dual-Youla representation has the form

P0,s = (
M̃s + �sŨ exp

s
)−1(

Ñs + �s Ṽ exp
s

)
(2)

where (M̃s +�sŨ exp
s )−1 ∈ R. In view of the technical machin-

ery used in the general distance measure framework, (2) is in
the rest of this paper represented as P0,s = Fu(H,�s) [under
the assumption that (I − H11�s)

−1 ∈ R], with generalized
plant H given by

H =
[

−Ũ exp
s M̃−1

s Ṽ exp
s − Ũ exp

s P̂s

M̃−1
s P̂s

]
(3)

and (unstructured) uncertainty block � ∈ RLny×nu∞ .
Note that H in (3) depends via the lcf {Ũ exp

s , Ṽ exp
s } on the

known stabilizing controller Cexp
s as used in an identification

experiment on [P0,s , Cexp
s ]. Clearly, [P0,s, Cexp

s ] is internally
stable. Furthermore, it is assumed that P̂s is determined such
that [P̂s, Cexp

s ] is also internally stable.
Given H in (3), a distance measure dY (P̂s , P0,s) and robust

stability margin bY (P̂s, Cs) will be derived in Section III-A
based on d H (P̂s , P0,s) in Definition 1 and bH (P̂s , Cs) in
Definition 2. These results extend [12, Table II] toward the
dual-Youla uncertainty structure. Then, in Section III-B, robust
stability and performance conditions are formulated based on
dY (P̂s , P0,s) and bY (P̂s , Cs). These conditions are essential
for the identification approach in Section IV and the controller
synthesis method in Section V.

A. Distance Measure and Robust Stability Margin

To determine dY (P̂s , P0,s) according to Definition 1, all
solutions �s ∈ RL∞ should be determined that satisfy the
consistency of equations condition, i.e., P0,s = Fu(H,�s),
and the well-posedness condition (I − H11�s)

−1 ∈ R.
By assuming that (I − H11�s)

−1 ∈ R, all �s ∈ RL∞ that
satisfy P0,s = Fu(H,�s) for given P̂s , P0,s , and Cexp

s can be
determined as follows:

P0,s = Fu(H,�s)

= P̂s+M̃−1
s �s

(
I+Ũ exp

s M̃−1
s �s

)−1(
Ṽ exp

s −Ũ exp
s P̂s

)
⇔ P0,s−P̂s = (

M̃s+�sŨ exp
s

)−1
�s

(
Ṽ exp

s −Ũ exp
s P̂s

)
⇔ (

M̃s + �sŨ exp
s

)
(P0,s − P̂s) = �s

(
Ṽ exp

s − Ũ exp
s P̂s

)
⇔ M̃s(P0,s − P̂s) = �s

(
Ṽ exp

s − Ũ exp
s P0,s

)
⇔ (M̃s N0,s − Ñs M0,s ) = �s

(
Ṽ exp

s M0,s − Ũ exp
s N0,s

)
⇔ −G̃s G0,s = �s

(
K̃ exp

s G0,s
)

⇔ �s = −G̃s G0,s
(
K̃ exp

s G0,s
)−1 (4)

which reveals that for H in (3), a unique solution �s always
exists for P0,s = Fu(H,�s) [under the assumption that (I −
H11�s)

−1 ∈ R]. Furthermore, since [P0,s, Cexp
s ] is internally

stable ⇔ (K̃ exp
s G0,s)

−1 ∈ RH∞, see, [9, Proposition 1.9],
it follows from (4) that �s ∈ RH∞, as is indeed demanded
via the Youla parametrization.

Next, the well-posedness condition (I − H11�s)
−1 ∈ R is

checked. Substituting (3) and (4) into (I − H11�s)
−1 gives

(I − H11�s)
−1 = (

I − Ũ exp
s M̃−1

s G̃s G0,s
(
K̃ exp

s G0,s
)−1)−1

= K̃ exp
s G0,s

(
K̃ exp

s G0,s −Ũ exp
s M̃−1

s G̃s G0,s
)−1

= K̃ exp
s G0,s

((
K̃ exp

s − Ũ exp
s [−I P̂s ]

)
G0,s

)−1

= K̃ exp
s G0,s

((
Ṽ exp

s − Ũ exp
s P̂s

)
M0,s

)−1

= K̃ exp
s G0,s M−1

0,s

(
Ṽ exp

s − Ũ exp
s P̂s

)−1

= (
Ṽ exp

s − Ũ exp
s P0,s

)(
Ṽ exp

s − Ũ exp
s P̂s

)−1
.

Consequently, (I − H11�s)
−1 ∈ R is equivalent to(

Ṽ exp
s − Ũ exp

s P0,s
)(

Ṽ exp
s − Ũ exp

s P̂s
)−1 ∈ R

⇔ (
Ṽ exp

s
)−1(

Ṽ exp
s − Ũ exp

s P0,s
)(

Ṽ exp
s − Ũ exp

s P̂s
)−1

Ṽ exp
s ∈ R

⇔ (
I − Cexp

s P0,s
)(

I − Cexp
s P̂s

)−1 ∈ R
which is trivially fulfilled since [P̂s, Cexp

s ] is well posed.
Thus, given H in (3) and �s in (4), (I − H11�s)

−1 ∈ R
is always automatically guaranteed by the well-posedness
assumption of [P̂s , Cexp

s ] and there always exists a unique
�s ∈ RH∞ such that P0,s = Fu(H,�s) holds. Straight from
Definition 1, the solution set � becomes

� = {
�s = −G̃s G0,s

(
K̃ exp

s G0,s
)−1 ∈ RH∞

}
for a given P̂s , P0,s , and Cexp

s . Note that � contains only
one element, and that �s ∈ RH∞ rather than RL∞.
This considerably simplifies the robust stability and per-
formance analysis, by eliminating the need for an addi-
tional condition on the winding numbers [9], [12]. For �s

given in (4), it can be shown that wno det(I − H11�s) =
wno det[(K̃ exp

s Gs)M−1
s M0,s(K̃ exp

s G0,s)
−1] = η(P0,s)−η(P̂s).

Hence, η(P0,s) = η(P̂s) + wno det(I − H11�s) is trivially
fulfilled, where η(.) is the number of RHP poles and the
winding number is evaluated on a contour indented to the
right around any imaginary axis poles of P̂s and P0,s . Then,
straight from Definition 1, it follows that the distance measure
dY (P̂s, P0,s) for the dual-Youla uncertainty structure becomes

dY (P̂s , P0,s) = ∥∥G̃s G0,s
(
K̃ exp

s G0,s
)−1∥∥∞. (5)

The robust stability margin bY (P̂s, Cs) can be determined
by substituting Fl(H, Cs) as given by

Fl(H, Cs)

= ( − Ũ exp
s + (

Ṽ exp
s − Ũ exp

s P̂s
)
Cs(I − P̂sCs)

−1)M̃−1
s

= ( − Ũ exp
s (I−P̂sCs)+

(
Ṽ exp

s −Ũ exp
s P̂s

)
Cs

)
(I−P̂sCs)

−1 M̃−1
s

= [−Ũ exp
s Ṽ exp

s
] [

I
Cs

]
(I − P̂sCs)

−1 M̃−1
s

= −K̃ exp
s Ks(G̃s Ks)

−1
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in Definition 2. Then, it follows directly from Definition 2 that
bY (P̂s , Cs) for the dual-Youla uncertainty structure is given by

bY (P̂s , Cs)

=

⎧⎪⎨
⎪⎩

∥∥K̃ exp
s Ks(G̃s Ks)

−1
∥∥−1

∞ , if Cs 
= Cexp
s and

[P̂s, Cs ] is internally stable

0, otherwise.

(6)

The condition 0 
= Fl(H, Cs) in Definition 2 is satisfied if
and only if Cs 
= Cexp

s . Note that robust stability is trivially
satisfied for Cs = Cexp

s . Furthermore, Fl(H, Cs) ∈ RL∞
is not required in (6), since internal stability of [P̂s , Cs ] is
equivalent to (G̃s Ks)

−1 ∈ RH∞ which in turn implies that
Fl(H, Cs) ∈ RH∞.

In summary, a distance measure dY (P̂s, P0,s) and a robust
stability margin bY (P̂s , Cs) are determined for the dual-Youla
uncertainty structure in (2). Next, robust stability and perfor-
mance theorems are proposed based on dY (P̂s , P0,s) in (5)
and bY (P̂s , Cs) in (6).

B. Robust Stability and Robust Performance

In this section, robust stability and robust performance
theorems are proposed based on dY (P̂s, P0,s) in (5) and
bY (P̂s , Cs) in (6). The robust stability theorem gives con-
ditions for internal stability of [P0,s, Cs ] through an upper
bound on dY (P̂s , P0,s). In the robust performance theorem,
the difference in the performance between [P̂s , Cs ] and
[P0,s, Cs ] is quantified using dY (P̂s , P0,s), bY (P̂s , Cs), and
bY (P0,s , Cs). First, a robust stability condition is proposed in
Theorem 1. It can be seen that this theorem is a specialization
of [12, Th. 1] to the dual-Youla uncertainty structure.

Theorem 1 (Robust Stability): Let P̂s ∈ Rny×nu , P0,s ∈
Rny×nu , H in (3), Cexp

s ∈ Rnu×ny , and Cs ∈ Rnu×ny . Further-
more, let dY (P̂s , P0,s) be given by (5) and bY (P̂s , Cs) be given
by (6). Then, [P0,s , Cs ] is internally stable if dY (P̂s, P0,s) <
bY (P̂s , Cs).

Proof: If dY (P̂s , P0,s) < bY (P̂s , Cs), then
bY (P̂s , Cs) > 0, and from (6), it follows that [P̂s, Cs ]
is internally stable and Fl(H, Cs) ∈ RH∞. By substituting
H as given in (3) into (1) and using that Fl(H, Cs) ∈ RH∞,
(1) implies that �H, Cs	 is internally stable. This shows that
H is stabilizable.

Since H is stabilizable and [P̂s, Cs ] is internally
stable, it follows from the proof of [9, Lemma 1.22] that
dY (P̂s , P0,s) < bY (P̂s , Cs) ⇒ [P0,s , Cs ] is internally
stable.

Next, robust performance conditions are proposed in
Theorem 2. To illustrate the connection between Theorem 2
and the generic robust stability and performance conditions
in [12, Theorems 1 and 3], note that the conditions in [12] are
based on a generalized plant H gen expressed as

H gen =
[

Sz

I

]⎡
⎣ I −P̂s P̂s

0 0 I
I −P̂s P̂s

⎤
⎦[

Sw

I

]

with Sw, Sz ∈ R, and H gen
0 as

H gen
0 =

[
Sz

I

] ⎡
⎣ I −P0,s P0,s

0 0 I
I −P0,s P0,s

⎤
⎦ [

Sw0

I

]

with Sw0 = Sw(I − k�s Sz Sw)−1 ∈ R for a given k ∈ {0, 1}.
The dual-Youla uncertainty structure with H in (3) and H0
in (8) will be generated by using k = 1, Sz = K̃ exp

s , and
Sw =

[
M̃−1

s
0

]
.

Theorem 2 (Robust Performance): Let the assumptions of
Theorem 1 hold and furthermore suppose that dY (P̂s , P0,s) <
bY (P̂s , Cs). Then

|bY (P0,s, Cs) − bY (P̂s , Cs)| ≤ dY (
P̂s , P0,s

)
(7)

and

||Fl(H0, Cs) − Fl(H, Cs)||∞ ≤ dY (P̂s , P0)

bY (P̂s , Cs)bY (P0,s, Cs)

with H in (3) and

H0 =
[

−Ũ exp
s M̃−1

0,s Ṽ exp
s − Ũ exp

s P0,s

M̃−1
0,s P0,s

]
. (8)

Proof: This theorem is a specialization
of [12, Theorem 3] to the dual-Youla uncertainty structure
using k = 1, Sz = K̃ exp

s , and Sw =
[

M̃−1
s
0

]
.

Concluding, robust stability and performance conditions
are proposed for the dual-Youla uncertainty structure within
the general distance framework outlined in Section II-C.
This constitutes Contribution C1. Furthermore, the results in
this section confirm the generality of the distance measure
approach in [12].

Throughout this section, it was tacitly assumed that P̂s ,
P0,s , and Cs were known when evaluating the robust stability
and performance conditions. This assumption is removed
in the remaining of this paper. Only a frequency response
function (FRF) of P0,s is known beforehand. Then, the goal of
the identification and control approach proposed in this paper
is to determine Cs based on a to-be-identified model P̂s that
achieves high robust performance, as precisely characterized
in Theorem 2. Robust stability is a minimal requirement
to achieve high robust performance. Therefore, the robust
stability condition in Theorem 1 is at the basis of the proposed
identification and control approach in this paper, similar to the
identification and control approaches in [1]–[5]. In Section IV,
P̂s is identified based on a FRF of P0,s in view of the robust
stability condition in Theorem 1.

IV. IDENTIFICATION FOR CONTROL WITHIN THE

GENERAL DISTANCE MEASURE FRAMEWORK

In this section, a nominal model P̂s is determined as a
representation for the unknown true plant P0,s . To this end,
measured data are used that are obtained from a closed-loop
identification experiment on [P0,s, Cexp

s ]. In view of the robust
stability and performance conditions derived in Section III-B,
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the following optimization problem is proposed to determine
P̂s :

min
P̂s

dY (P̂s , P0,s) (9)

with dY (P̂s, P0,s) in (5). In Section IV-B, appropriate iden-
tification experiments on the unknown true system P0,s are
conducted to obtain a tractable optimization problem regard-
ing (9). The only purpose of P̂s in an H∞ setting is to
enable the synthesis of Cs that achieves high performance
on [P0,s, Cs ]. Condition (7) shows that the performance
in terms of bY (P0,s, Cs ) is comparable to bY (P̂s , Cs) if
dY (P̂s , P0,s) is small and Cs achieves a robust stability margin
bY (P̂s , Cs) greater than the distance measure dY (P̂s, P0,s).
Then, a controller Cs that achieves high nominal performance
also achieves high performance on [P0,s, Cs ]. This is the
motivation to consider (9) in the identification step of the
proposed identification and control approach.

In Section IV-A, it is shown that the distance mea-
sure dY (P̂s , P0,s) in (5) depends on the particular choices
of coprime factorizations of P̂s and Cexp

s . This free-
dom in coprime factorizations is exploited to propose a
dY (P̂s , P0,s) that is connected to existing identification criteria
in closed-loop system identification. Then, in Section IV-B,
a frequency-domain algorithm is proposed to determine P̂s

based on measured FRF data.

A. Identification for Control

In this section, the freedom in coprime factorizations of
P̂s and Cexp

s is exploited to connect (9) to a closed-loop
identification criterion. First, it is shown that dY (P̂s , P0,s)
depends on the coprime factorizations of P̂s and Cexp

s .
Given a lcf {Ñs , M̃s } of P̂s , all possible lcf’s of P̂s can be

generated by {QÑs , QM̃s }, where Q, Q−1 ∈ RH∞. In the
remainder of this section, any possible lcf of P̂s is related to a
normalized lcf of P̂s . Let { ¯̃Ns ,

¯̃Ms } be a normalized lcf of P̂s

with corresponding normalized left graph symbol ¯̃Gs . Then,
{Ñs = Q1

¯̃Ns , M̃s = Q1
¯̃Ms} is a (not necessarily normalized)

lcf of P̂s related to { ¯̃Ns ,
¯̃Ms } via Q1, Q−1

1 ∈ RH∞, and left

graph symbol G̃s = Q1
¯̃Gs . Similarly, let { ¯̃U exp

s , ¯̃V exp
s } be a

normalized lcf of Cexp
s with normalized left inverse graph

symbol ¯̃K exp
s . Then, K̃ exp

s = Q2
¯̃K exp

s with Q2, Q−1
2 ∈ RH∞.

Using G̃s = Q1
¯̃Gs and K̃ exp

s = Q2
¯̃K exp

s in (5) gives

dY (P̂s , P0,s) = ∥∥Q1
¯̃Gs Ḡ0,s

( ¯̃K exp
s Ḡ0,s

)−1
Q−1

2

∥∥∞ (10)

which shows that dY (P̂s , P0,s) depends on the particular
choices of lcf’s of P̂s and Cexp

s . Note that dY (P̂s , P0,s) is
invariant to the specific choice of rcf of P0,s . Here, a normal-
ized rcf of P0,s is used with right graph symbol Ḡ0,s .

From (10), it follows that any P̂s determined based on (9)
depends on arbitrary transfer function matrices Q1 and Q2.
The key technical result of this section is the derivation of
particular expressions for Q1 and Q2 such that dY (P̂s , P0,s)
in (10) becomes equal to the traditional closed-loop identi-
fication criterion �T (P0,s, Cexp

s ) − T (P̂s , Cexp
s )�∞ as is used

in, e.g., [2], [22], and [31]. In particular, this constitutes Con-
tribution C2 of this paper and provides a formal distance
interpretation to the earlier obtained, that is,

dY (P̂s, P0,s) = ∥∥T
(
P0,s, Cexp

s
) − T

(
P̂s , Cexp

s
)∥∥∞. (11)

Note that the right-hand side of (11) has a very natural inter-
pretation. Indeed, by the application of the triangle inequality∥∥T

(
P0,s , Cexp

s
)∥∥∞ ≤ ∥∥T

(
P̂s , Cexp

s
)∥∥∞

+ ∥∥T
(
P0,s, Cexp

s
) − T

(
P̂s, Cexp

s
)∥∥∞

see [2], implies that �T (P0,s , Cexp
s )�∞ ≈ �T (P̂s , Cexp

s )�∞,
i.e., the closed-loop performance of [P0,s, Cexp

s ] and [P̂s, Cexp
s ]

are equal.
To proceed with the derivations, first note

that [9, Sec. 1.2.3]

T
(
P̂s, Cexp

s
) = Ḡs

( ¯̃K exp
s Ḡs

)−1 ¯̃K exp
s

where Ḡs is a normalized right graph symbol for P̂s , and ¯̃K exp
s

is a normalized right inverse graph symbol for Cexp
s . Suppose

that Q1 in (10) is chosen as Q1 = ( ¯̃Gs K̄ exp
s )−1. This choice

of Q1 is allowed since [P̂s , Cexp
s ] is assumed internally stable

which yields Q1, Q−1
1 ∈ RH∞. Then, {Ñs = Q1

¯̃Ns , M̃s =
Q1

¯̃Ms} is a nonnormalized coprime factorization of P̂s with
corresponding left graph symbol G̃s given by

G̃s = ( ¯̃Gs K̄ exp
s

)−1 ¯̃Gs . (12)

Next, (11) is derived in the following theorem.
Theorem 3: Let P̂s ∈ Rny×nu , P0,s ∈ Rny×nu , and Cexp

s ∈
Rnu×ny such that [P̂s, Cexp

s ] and [P0,s , Cexp
s ] are internally

stable. Let {Ñs = Q1
¯̃Ns , M̃s = Q1

¯̃Ms } be an lcf of P̂s with
Q1 = ( ¯̃Gs K̄ exp

s )−1, where { ¯̃Ns ,
¯̃Ms } is a normalized lcf of P̂s .

Furthermore, let { ¯̃U exp
s , ¯̃V exp

s } denote a normalized lcf of Cexp
s ,

i.e., Q2 = I . Then

dY (P̂s, P0,s) = ∥∥T
(
P0,s, Cexp

s
) − T

(
P̂s , Cexp

s
)∥∥∞.

Proof: Substituting Q1 = ( ¯̃Gs K̄ exp
s )−1 and Q2 = I into

(10)

dY (P̂s, P0,s) = ∥∥( ¯̃Gs K̄ exp
s

)−1 ¯̃Gs Ḡ0,s
( ¯̃K exp

s Ḡ0,s
)−1∥∥∞

= ∥∥K̄ exp
s

( ¯̃Gs K̄ exp
s

)−1 ¯̃Gs Ḡ0,s
( ¯̃K exp

s Ḡ0,s
)−1 ¯̃K exp

s
∥∥∞.

(13)

By substituting the identity K̄ exp
s ( ¯̃Gs K̄ exp

s )−1 ¯̃Gs = I −
Ḡs(

¯̃K exp
s Ḡs)

−1 ¯̃K exp
s in (13), it follows that

dY (P̂s , P0,s)

= ∥∥(
I − Ḡs

( ¯̃K exp
s Ḡs

)−1 ¯̃K exp
s

)
Ḡ0,s

( ¯̃K exp
s Ḡ0,s

)−1 ¯̃K exp
s

∥∥∞
= ∥∥Ḡ0,s

( ¯̃K exp
s Ḡ0,s

)−1 ¯̃K exp
s − Ḡs

( ¯̃K exp
s Ḡs

)−1 × ¯̃K exp
s

∥∥∞
= ∥∥T

(
P0,s , Cexp

s
) − T

(
P̂s , Cexp

s
)∥∥∞.

Theorem 3 gives expressions for Q1 and Q2 such that
dY (P̂s, P0,s) in (10) becomes equal to the closed-loop iden-
tification criterion �T (P0,s , Cexp

s ) − T (P̂s , Cexp
s )�∞. This



BOEREN et al.: ITERATIVE IDENTIFICATION AND CONTROL USING NON-NORMALIZED COPRIME FACTORS 419

four-block identification criterion is frequently used in the
identification for control, see [2], [22], and [31], and is par-
ticularly suitable for lightly damped systems. In Section IV-B,
a numerical tractable identification algorithm is proposed that
exploits the distance measure dY (P̂s , P0,s) as proposed in
Theorem 3 to estimate a nominal model P̂s .

Remark 1: The presented results are related to the non-
normalized coprime factorization of P̂s proposed in [18],
where {Ns , Ms } is a rcf of P̂s with graph symbol Gs =
Ḡs(

¯̃K exp
s Ḡs)

−1. Similarly, {N0,s , M0,s} is a rcf of P0,s with

graph symbol G0,s = Ḡ0,s(
¯̃K exp

s Ḡ0,s)
−1. Based on these

definitions for Gs and G0,s , it can be shown that

∥∥T
(
P0,s , Cexp

s
) − T

(
P̂s , Cexp

s
)∥∥∞ = ||G0,s − Gs ||∞.

B. Frequency-Domain Identification Algorithm

The proposed coprime factorizations in Section IV-A lead
to the following criterion for (9):

dY (P̂s , P0,s) = ||G̃s G0,s ||∞ (14)

with G̃s as defined in (12), and G0,s = Ḡ0,s(
¯̃K exp

s Ḡ0,s)
−1.

Solving (9) with criterion (14) would, however, require an
infinite data set due to H∞-norm. Therefore, an algorithm is
proposed in this section to determine P̂s based on a finite set
of measured frequencies.

Let a discrete frequency grid be denoted as � =
{ω1, ω2, . . . , ωm}, with frequency points ωi , i = 1, 2, . . . , m,
where m is the number of frequencies. Define dY

�(P̂s , P0,s) on
the discrete frequency grid � as

dY
�(P̂s , P0,s) = max

ωi∈�
σ̄ (G̃s( jωi )G0,s( jωi )).

From the frequency-domain interpretation of the H∞-norm,
it follows that dY

�(P̂s , P0,s) ≤ dY (P̂s , P0,s). This bound is,
in general, tight if � is chosen sufficiently dense, which can be
enforced by an appropriate experiment design, see [3], [32].
Therefore, the following optimization problem with finite
measurement data is proposed:

min
P̂s

dY
�(P̂s , P0,s). (15)

To determine P̂s according to (15), three steps are presented
in the remaining as follows.

1) Frequency Response Function Measurements: An
approach is presented to determine a FRF of G0,s( jωi)
based on T (P0,s( jωi ), Cexp

s ( jωi)) for �.
2) Model Parametrization: A parametrization is proposed

for P̂s based on matrix fraction descriptions that are
particularly suited for multivariable systems.

3) Identification Criterion and Algorithm: An algorithm is
proposed to solve (15).

First, an approach is described to determine the FRF of
G0,s( jωi ).

1) Frequency Response Function Measurements: Let
T (P0,s( jωi ), Cexp

s ( jωi )) denote a FRF measurement
on the frequency grid �, see [32] for further details.
By using that T (P0,s , Cexp

s ) = Ḡ0,s(
¯̃K exp

s Ḡ0,s)
−1 ¯̃K exp

s

and ¯̃K exp
s ( ¯̃K exp

s )∗ = I , see [9], it directly follows that
G0,s( jωi ) can be estimated based on T (P0,s( jωi ), Cexp

s ( jωi ))
according to

G0,s( jωi) = T (P0,s( jωi ), Cexp
s ( jωi))

( ¯̃K exp
s ( jωi)

)∗
. (17)

2) Model Parametrization: A parametrization is proposed
for P̂s in terms of matrix fraction descriptions, see [33] for
further details. The multivariable model P̂s is represented
by a polynomial left matrix fraction description P̂s(s, θ) =
A(s, θ)−1 B(s, θ), where A(s, θ) ∈ R[s]ny×ny , B(s, θ) ∈
R[s]ny×nu , and θ is a real-valued parameter vector. Then, using
G̃s = (V̄ exp

s − P̂sŪ exp
s )−1[I − P̂s ], it follows that G̃s(s, θ) is

by substituting P̂s(s, θ) = A(s, θ)−1 B(s, θ) and rearranging
terms given by

G̃s(s, θ) = R(s, θ)[−A(s, θ) B(s, θ)] (18)

with R(s, θ) = (B(s, θ)Ū exp
s (s) − A(s, θ)V̄ exp

s (s))−1. Note
that the parametrization of G̃s(s, θ) in (18) is not unique.
Alternatives include a polynomial parametrization of G̃s ,
see [4, Sec. 3.3], [34], for single-input, single-output systems.
The key advantage of the parametrization in (18) is that
the following result holds [18, Th. 4]: [P̂s, Cexp

s ] is internally
stable if and only if G̃s(s, θ) ∈ RH∞. As a result, only the
condition G̃s(s, θ) ∈ RH∞ has to be checked to guarantee
that the closed-loop system is internally stable.

3) Identification Criterion and Algorithm: Let G̃s be para-
metrized as in (18). Then, (15) can be rewritten as the
following optimization problem that aims to determine the
parameters θ of P̂s(s, θ) :

min
θ

max
ωi∈�

σ̄ (G̃s( jωi , θ)G0,s( jωi )) (19)

based on G̃s( jωi , θ) parametrized as in (18), and G0,s( jωi )
in (17). Here, Lawson’s algorithm [35], [36] is used to deter-
mine θ according to (19). A comparison of methods pre-
sented in [37] showed that Lawson’s algorithm results in
good convergence properties and accurate solutions when
used for similar identification problems as (19). The proposed
algorithm employs an iterative scheme that alternates between
solving a weighted least-squares problem, and adjusting the
weighting used in this least-squares problem. Hence, efficient
gradient-based optimization can be used to determine θ .

For the selected parametrization of G̃s in (20), minimizing
V (θ) in (20) is nonlinear in the parameters θ . This nonlinearity
in θ is addressed by considering a sequence of linear least
squares problems. In particular, by substituting (18) evalu-
ated at ωi in (20), rearranging terms and using the identity
vec(ABC) = (CT ⊗ A)vec(B) [38], (20) becomes

V (θ) =
m∑

i=1

∥∥W<k>
ls,i ( jωi , θ)vec([−A( jωi , θ)B( jωi , θ)])∥∥2

2

(21)

with W<k>
ls,i ( jωi , θ) in (16), as shown at the bottom of the

next page.
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Algorithm 1 Lawson’s Algorithm

By using the parameterization in (18), minimization of V (θ)
in (21) is addressed by iteratively solving a linear least squares
problem, see [36], which is a closed-loop extension of clas-
sical Sanathanan–Koerner (SK) iterations and Gauss–Newton
iterations [32]. In addition, numerically reliable implementa-
tions are provided in [36] to guarantee accurate solutions and
reliable convergence properties. Since the SK-algorithm used
in Step b) in Algorithm 1 can result in a local optimum, global
convergence of Algorithm 1 cannot be guaranteed in general.
Extensive experience has shown good convergence properties,
which is in line with [37].

C. Concluding Remarks

In this section, an identification for control approach is
proposed which completes Contribution C2. First, a partic-
ular choice is proposed for coprime factorizations of P̂s

and Cexp
s such that the distance measure dY (P̂s, P0,s) is

equal to a frequently used cost criterion in closed-loop
system identification. Second, an identification algorithm is
proposed to determine P̂s based on finite measurement data.
Based on the identified P̂s and its associated value of
dY
�(P̂s , P0,s), a controller Cs can be determined that achieves

high nominal performance, while taking robust stability into
consideration.

In the remaining of this paper, it is assumed that
Algorithm 1 converges and that dY

�(P̂s , P0,s) = dY (P̂s, P0,s).
Then, the robust stability and performance conditions derived
in Section III-B also hold for dY

�(P̂s , P0,s) [instead of
dY (P̂s , P0,s)].

V. PROPOSED IDENTIFICATION AND

CONTROL PROCEDURE

The aim of the identification and control approach proposed
in this paper is to design Cs such that high performance
is achieved for the true plant P0,s . The robust stability and
performance conditions in Theorems 1 and 2 are at the

basis of the developed approach. Recall that condition (7)
in Theorem 2 illustrates that the performance in terms of
bY (P0,s , Cs) is comparable to bY (P̂s, Cs) if dY (P̂s , P0,s)
is small and the robust stability condition dY (P̂s , P0,s) <

bY (P̂s , Cs) holds. In view of these observations, an identi-
fication approach was presented in Section IV that aimed to
determine a model P̂s such that dY (P̂s, P0,s) is minimized.
In this section, a controller synthesis method is proposed
that simultaneously addresses nominal performance and robust
stability. Together with the identification method in Section IV,
this constitutes the following identification and control
approach.

Procedure 1 Identification and Control Approach for the
Dual-Youla Uncertainty Structure

1. Measurements: Determine a FRF T (P0( jωi),
Cexp( jωi )), ωi ∈ �;

2. Weighting function design: Construct weighting func-
tions W1 and W2 to specify performance and robustness
requirements, and construct T (P0,s( jωi ), Cexp

s ( jωi ))
according to

T
(
P0,s , Cexp

s
) =

[
W2 0
0 W−1

1

]
T (P0, Cexp)

[
W−1

2 0
0 W1

]

3. Identification: Solve the optimization problem (19) by
using Algorithm 1. Let d� be the achieved minimum
cost and P̂s a model which achieves this minimum cost;

4. Controller synthesis: Determine Cs based on the H∞-
norm minimization problem

min
Csstabilizing

∥∥[
d�K̄s(G̃s K̄s)

−1 	 K̄s(G̃s K̄s)
−1G̃s

]∥∥∞,

(22)

with G̃s as in (12), and 	 ∈ (0, 1) a design parameter.
5. Verification: Check the robust stability condition d� <

bY (P̂s , Cs). If d� ≥ bY (P̂s , Cs), change the perfor-
mance specifications in W1 and W2 and repeat from
Step 2.

In Step 1 of Procedure 1, T (P0( jωi), Cexp( jωi )) is
determined by means of FRF measurements,1 see [32] for
further details. Weighting functions are designed in Step 2
according to the procedure in [27].

In Step 3, a nominal model P̂s is determined by solving (19),
with achieved cost d�. Then, the condition in Theorem 1
becomes

d� < bY (P̂s , Cs) (23)

1Closed-loop frequency response data can also be used in iterative identifi-
cation and control redesigns to invalidate a proposed controller update on the
basis of loss of closed-loop stability or performance deterioration if the orig-
inal controller were to be replaced by a proposed new controller [39], [40].

W<k>
ls,i ( jωi , θ) = (

GT
0,s( jωi) ⊗

√
w<k>

i

(
B( jωi , θ)Ū exp

s ( jωi) − A( jωi , θ)V̄ exp
s ( jωi )

)−1)
. (16)
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under the assumption in Section IV-B that dY
�(P̂s, P0,s) =

dY (P̂s , P0,s). In addition, it is noted that in practice satisfaction
of this assumption may be subject to further experimental
procedures. Indeed, the identified FRF in Step 1 may contain
measurement noise, intergrid frequency errors, and so on.
Various experimental procedures exist to quantify these errors.
Depending on the experimental conditions, these errors may
be considered from different perspectives. On one hand of the
spectrum of approaches, a worst case perspective essentially
overbounds all these error sources, potentially leading to a very
conservative model set, see [9, Sec. 9.5.2]. Such an approach
may be useful when only a single data set is available.
On the other hand, a model validation perspective attempts
to invalidate some of the irrelevant model sets, which may
be very suitable if a large number of data sets is employed,
otherwise, it may lead to a rather optimistic estimation of
uncertainty [9, Sec. 9.5.1]. In between these extreme view-
points, many relevant uncertainty modeling techniques have
been developed, the interested reader is referred to [41]–[43]
for approaches that have been developed for the same applica-
tion class as is considered in this paper. Depending on which
viewpoint is taken, that, of course, depends on the particu-
lar application at hand, this leads to different consequences
on how these phenomena affect the bound dY (P̂s, P0,s),
as well as possible adjustment of the criterion (19) to identify
the smallest model set. To anticipate, in the application in
Section VI, the input will be selected such that the frequency
grid is sufficiently dense and such that noise is averaged
out. Hence, only the estimated FRF is needed for completing
Procedure 1.

The goal of the subsequent controller synthesis based on
P̂s in Step 4 of Procedure 1 is to achieve: 1) high nominal
performance and 2) robust stability as precisely characterized
by (23). Since �K̄s(G̃s K̄s)

−1�−1∞ ≤ bY (P̂s , Cs), it can be
easily seen that �d� K̄s(G̃s K̄s)

−1�∞ < 1 is a sufficient
condition for the robust stability condition in (23) to hold.
Furthermore, �K̄s(G̃s K̄s)

−1G̃s�∞ = �T (P̂s , Cs)�∞ is a mea-
sure for nominal performance. Hence, the rationale behind
the used cost function is that (22) combines robust stability
and nominal performance requirements in a single-objective
function. The design parameter 	 is used to allow for a tradeoff
between both requirements. Note that the McMillan degree
of Cs is bounded by the sum of the McMillan degrees of
P̂s and Cexp

s . This is a direct consequence of the choice for
a nonnormalized lcf {Ñs M̃s} of P̂s in Section IV-A, which
has a McMillan degree that is bounded by the McMillan
degrees of P̂s and Cexp

s . In contrast, the McMillan degree
of ¯̃Gs based on a normalized lcf { ¯̃Ns

¯̃Ms} of P̂s is bounded
by the McMillan degree of P̂s [9]. As a result, Cs obtained
with the proposed approach has a higher McMillan degree
than for the case based on a normalized lcf of P̂s . The H∞-
norm minimization problem in (22) can be readily solved
using the general approach proposed in [29]. Finally, in Step
5 of Procedure 1, the robustness stability condition (23) is
verified, and if required, the weighting functions W1 and
W2 can be changed based on engineering insight, or the
weight-optimization approach used in [44] and [45].

Fig. 3. Prototype industrial positioning system.

VI. APPLICATION TO A WAFER STAGE

A. Wafer Stage Control Design

Wafer scanners are the state-of-the-art equipment for the
automated mass-production of integrated circuits (ICs). In the
production process, a photoresist is exposed on a silicon disk,
which is called a wafer. In this exposure, the image of the
desired IC patterns is contained on a reticle, which is projected
through a lens on the photoresist. Typically, more than 20 lay-
ers are required for each IC, and each wafer contains more than
200 ICs that are sequentially exposed. During this exposure
task, the wafer must track an extremely accurate reference
trajectory in six motion degrees of freedom. In turn, this
requires the design of a high-performance feedback controller.

In this paper, the feedback control design for the prototype
industrial positioning system depicted in Fig. 3 is considered.
Traditionally, the feedback control design of such systems
is performed through manual loop-shaping [46]. In view of
increasing requirements, a systematic model-based approach
is promising, e.g., [43], [47]. Interestingly, model-based
approaches that involve an H∞-norm have been most success-
ful for a number of reasons, including their natural connection
to loop-shaping [9]. Indeed, typical performance is specified
through specification of the closed-loop bandwidth, defined
as a crossover frequency. This performance is limited by
a performance-robustness tradeoff, as is clearly exemplified
in [48, Sec. 3], where it is also shown that H∞-loop-shaping
offers a very natural framework for wafer stage motion control
design.

The wafer stage in Fig. 3 is designed to be lightweight
and includes an additional number of actuators and sen-
sors to actively control flexible dynamical behavior [48],
which is in sharp contrast to traditional mechatronic sys-
tem designs [49], [50]. The system is controlled in all six
motion degrees-of-freedom (DOF) (i.e., three rotations and
three translations). The actuators are Lorentz motors, whereas
the measurement system consists of three linear incremental
encoders with a resolution of 1 nm in the vertical plane in
addition to capacitive sensors in the horizontal plane. In this
paper, Procedure 1 is applied to a single translational DOF in
the horizontal plane to show the potential of nonnormalized
coprime factorizations.
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Fig. 4. Identified FRF of the closed-loop system T (P0, Cexp) for ωi ∈ �id .

B. Application of Procedure 1

1) Step 1: A stabilizing controller Cexp
s is given that

achieves a crossover frequency of 10 Hz. A closed-loop
identification experiment is performed to obtain the FRF
T (P0( jωi ), Cexp( jωi )), ωi ∈ �id , as depicted in Fig. 4.
Here, multisine experiments are performed as is explained
in [43, Appendix A]. The main advantage is that the noise
error is rendered negligible by increasing the experiment
length. In addition, a dense frequency grid is chosen such that
intergrid interpolation errors can be neglected [42].

2) Step 2: Then, in Step 2 of Procedure 1, weighting filters
are selected in view of the loop-shaping paradigm. Irrespective
of the different nonnormalized coprime factorization-based
approach developed in this paper to represent model uncer-
tainty, the weighting filters can be either manually chosen
as indicated in [27] or obtained via optimization methods as
described in [44], [52], and [53], see also [53, Sec. 2A] for
an application to wafer stage motion control. In particular,
the weighting functions

W1(s) = 1, W2(s) = 8.883 × 105s + 3.349 × 107

s3 + 754s2 + 8.883 × 105s
(24)

are considered. This selection aims at a target crossover
frequency of 30 Hz, and specifying integral action and
controller rolloff in the low-frequency and high-frequency
range, respectively. Indeed, the reference in wafer stage
motion control typically has low-frequency content. This par-
ticular weighting filter choice thus implies that good ref-
erence tracking is achieved at low frequencies, i.e., below
30 Hz. In addition, it avoids the amplification of measure-
ment noise above the crossover frequency of 30 Hz, which
is a well-known tradeoff in feedback design, and clearly
observed in loop-shaping-based designs [26, Ch. 9]. Based on
this design, T (P0,s( jωi), Cexp

s ( jωi )) is now constructed.
3) Step 3: In Step 3 of Procedure 1, a 10th-order nominal

model P̂s is identified by using Algorithm 1 based on the
FRF T (P0,s( jωi), Cexp

s ( jωi )), ωi ∈ �id . Three iterations of
Algorithm 1 were required to converge to a stationary point.
Since the condition G̃s(s, θ) ∈ RH∞ holds, it follows that
[P̂s , Cexp

s ] is internally stable and that {Ñs , M̃s } is a lcf of P̂s .

Fig. 5. FRF of the true plant P0,s for ωi ∈ �id (blue dotted) and 10th-order
parametric model P̂s (red solid).

Fig. 6. Identification criterion σ̄ (G̃sG0,s ), ωi ∈ �id .

The identified model P̂s = M̃−1
s Ñs is depicted in Fig. 5, and

it can be seen to very accurately describe the true plant’s
rigid-body behavior and three resonance phenomena. That
is, the proposed identification procedure automatically yields
a good fit around the target crossover frequency of 30 Hz.
Resonance phenomena in the high-frequency range are not
modeled in P̂s . Essentially, these dynamics are not important
for robust stability due to rolloff in the high-frequency range as
specified in W2. This is confirmed in Fig. 6, which shows that
the identification criterion σ̄ (G̃s( jωi)G0,s( jωi)) has dominant
contributions for the first three resonance phenomena, which
are, therefore, included in P̂s . The achieved minimum cost of
the identification algorithm is given by d� = 0.6113.

4) Step 4: In Step 4 of Procedure 1, Cs is determined
according to (22) with d� = 0.6113 and design parameter
	 = 0.5.

5) Step 5: The resulting controller Cs achieves a nominal
performance of �T (P̂s , Cs)�∞ = 5.5932. By using a robust
stability condition in the H∞ minimization problem in (22),
the robust stability margin for Cs becomes bY (P̂s , Cs) =
0.6473, which implies that [P0,s , Cs ] is guaranteed to be
internally stable since d� = 0.6113. Finally, note that
�T (P̂s , Cexp

s )�∞ = 79.4801, confirming that Cs significantly
improves performance for the considered mechanical sys-
tem with lightly damped poles and zeros compared to the
preexisting controller Cexp

s . In particular, a small value of
�T (P̂s , Cs)�∞ implies that the desired loop-shape, specified
by (24), is closely matched, whereas a large value implies a
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large discrepancy, see [54] for a theoretical justification. The
achieved performance can be further improved by repeating
Procedure 1 with Cs as initial controller.

C. Comparison and Discussion
To appreciate the importance of nonnormalized

factorizations, the proposed approach is compared to
the H∞ loop-shaping approach in [10] which employs
normalized coprime factorizations. The controller resulting
using these normalized coprime factorizations is referred to as
C∞

s . First, note that due to the specific criterion (22), the H∞
loop-shaping achieves improved nominal performance,
i.e., �T (P̂s , C∞

s )�∞ = 3.1390, compared to the nominal
performance for �T (P̂s , Cs)�∞ = 5.5932. However, for
C∞

s , it holds that bY (P̂s , C∞
s ) = 0.3456, and since

0.6113 = d� > bY (P̂s , C∞
s ), internal stability of [P0,s, C∞

s ]
cannot be guaranteed. As a result, the H∞ loop-shaping
approach does not deliver a controller that is guaranteed to
stabilize the true system, while the use of nonnormalized
coprime factorizations has delivered a controller that
is robustly stable and achieves good performance. This
illustrates the advantages of the proposed approach compared
to the H∞ loop-shaping approach in [10]. These results
corroborate the earlier results on nonnormalized coprime
factorizations from an uncertainty modeling perspective,
see [18] for details.

Furthermore, when comparing to earlier robust controller
designs, these typically employ μ-synthesis. Although this is a
conceptually systematic approach, the involved optimization is
nonconvex a requires a substantial computational load, in addi-
tion to an excessively high order of the resulting controller,
see [47], [24] for wafer stage motion control results. Although
this is substantially improved by also using nonnormalized
coprime factorizations, see [18], the presented approach in this
paper completely avoids these difficulties.

VII. CONCLUSION

In this paper, an identification and control procedure is
developed within the general distance measure framework.
In particular, results are derived for the dual-Youla uncertainty
structure, as is commonly used in identification for control.
First, a particular nonnormalized coprime factorization of P̂s

is introduced to connect the general distance measure for
a dual-Youla uncertainty structure to a closed-loop identifi-
cation criterion. Second, a frequency domain identification
algorithm is proposed to determine P̂s . Third, a controller
Cs is determined according to a H∞ minimization problem
with an objective function that addresses nominal performance
and robust stability requirements. An experimental example
of a mechanical system with lightly damped poles and zeros
demonstrates the use of the proposed identification and con-
trol approach and confirms the advantages of the proposed
approach for such systems.

Future work includes an extension of the proposed frame-
work to other uncertainty structures in the distance measure
framework of [12], the use of the developed distance mea-
sures for model reduction, and an application to multivariable
systems with lightly damped poles and zeros.
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