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Abstract—During movements humans continuously regulate 

their joint impedance to minimize control effort and optimize 
performance. Joint impedance describes the relationship between 
a joint’s position and torque acting around the joint. Joint 
impedance varies with joint angle and muscle activation, and 
differs from trial-to-trial due to inherent variability in the human 
control system. In this study a dedicated time-varying system 
identification framework is developed involving a parametric, 
kernel-based regression, and non-parametric, ‘skirt 
decomposition’, system identification method to monitor the 
time-varying joint impedance during a force task. Identification 
was performed on single trials and the estimators included little a  
prior assumptions regarding the underlying time-varying joint 
mechanics. During the experiments, six (human) participants 
used flexion of the wrist to apply a slow sinusoidal torque to the 
handle of a robotic manipulator, while receiving small position 
perturbations. Both methods revealed that the sinusoidal change 
in joint torque by activation of the wrist flexor muscles resulted 
in a sinusoidal time-varying joint stiffness and resonance 
frequency. A 3rd-order differential equation allowed the 
parametric kernel-based estimator to explain on average 76% of 
the variance (range 52-90%). The non-parametric skirt 
decomposition method could also explain ~76% of the variance 
(range 51-89%). This study presents a novel framework for 
identification of time-varying joint impedance making use of 
linear time-varying models based on a single trial of data.  
 

Index Terms—Joint impedance, System identification, Time-
varying systems, human motor control  
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I. INTRODUCTION 
UMANS are able to perform skillful movements despite 
challenging environmental circumstances or the presence 

of external disturbances. Information provided by the body’s 
internal sensors (proprioceptors) and actions executed by the 
body’s actuators (muscles) are used to achieve this. Hereby, 
humans can adapt the dynamics of their joints by regulating 
their intrinsic and reflexive joint properties [1]. Ensuring 
adequate task performance at all times, the controller of the 
human bodyFig, i.e. the central nervous system, follows the 
principles of optimality and control effort minimization [2].  
System identification (SI) can be used to quantify properties of 
the human joints during posture and movement. For example, 
joint impedance, describing the joint’s resistance to external 
disturbances, may be determined by relating joint position and 
torques in response to a mechanical perturbation [1, 3-9]. 
However, joint impedance is affected by many physiological 
and mechanical factors like muscular fatigue [10], joint angle 
and muscle activation level [7]. Therefore, time-invariant SI 
techniques are only applicable when the system remains in a 
fixed operation point, i.e. there are only small changes in joint 
angle or muscle activation. When this is not the case, time-
varying SI techniques allow to study changing joint 
impedance across time, e.g. as a function of joint angle or 
muscle activation level. 
There are many SI techniques for time-varying systems that 
have been employed to investigate various engineering 
challenges like a metal’s electrical impedance changing as a 
result of pit corrosion [11], varying mechanical loads to 
bridges and buildings [12, 13] or aeroelastic flutter during 
flight [14]. In all cases, the system dynamics can be described 
using a model which is either parametric or non-parametric in 
its dynamics and time variation. Both parametric and non-
parametric models may be used to obtain a time-varying 
frequency response function (TV-FRF) that provides a 
description of the time-varying system dynamics. For 
parametric models, systems are typically described by using 
differential equations with time-varying coefficients. The 
differential equations can be expressed in the time- or 
frequency domain to define the assumed model structure [15, 
16]. The time-varying coefficients are expressed using time-
dependent basis functions, which may be e.g. wavelets, sines 
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and cosines or Legendre polynomials. Alternatively, time-
varying autoregressive moving average (ARMA) models have 
been successfully applied to estimate TV-FRFs [17].  
An example of a non-parametric SI tool to provide a time-
dependent spectral representation of a non-stationary signal is 
the short-time Fourier transform (STFT) [18]. In the STFT, a 
linear representation of the signals is constructed within a 
short, fixed length time window. Subsequently the TV-FRF is 
created by sliding the window over time. Other non-
parametric tools to analyze non-stationary signals include 
wavelets and Cohen’s class of distributions [18]. These 
methods have been successfully used to extract time-varying 
system properties [e.g. 19, 20]. The advantage of non-
parametric models over parametric models is that they require 
very little to no a priori assumptions on the model structure 
and order [21]. 
Both parametric and non-parametric models have been used to 
describe time-varying joint impedance [20-29]. A 2nd-order 
mass-spring-damper system is often assumed to represent  
joint dynamics. Therefore, a 2nd-order parametric model based 
on linear differential equations has often been used to describe 
joint properties [22-24]. For example, in [25] a parametric 
ARMA model is used to describe elbow stiffness during cyclic 
movements. Non-parametric models have also been used to 
describe joint properties in both the time [4, 26-30] and 
frequency domain [31].  
A challenge in estimating time-varying joint properties is the 
poor  signal-to-noise (SNR) ratios of human physiological and 
mechanical signals which typically ranges between -20 and 30 
dB [32]. These noise levels are (too) high for accurate 
identification of joint properties. Therefore, a good model of 
joint properties can only be obtained by averaging repetitive 
measurements of the same time-varying behavior before the 
model is estimated, a process called ensemble averaging. With 
ensemble averaging the SNR is improved as the noise is 
typically random and reduced by the averaging. When 
studying time-varying behaviors, there are various downsides 
to the need for ensemble averaging. Firstly, it may conceal 
important adaptations in motor control and interesting trial-to-
trial variability [33, 34] of the joint properties and motor 
performance. Secondly, as lots of data is required while the 
experimental time is limited participants may suffer from 
muscular fatigue and lapses in attention that will affect the 
behavior. Therefore there is an increased need for SI methods 
that allow for the estimation of joint properties based on a 
single trial of data, the feasibility of which has been 
demonstrated previously [17, 35, 36].  
The aim of this paper is to validate one parametric and one 
non-parametric linear time-varying (LTV) SI technique for 
identifying time-varying joint impedance of the human wrist. 
This will be done based on single trial data recorded from a 
postural task during which participants exert a time-varying 
flexion torque. The presented methods provide a novel 
framework for LTV methods to assess time-varying human 
joint properties with limited experimental constraints.  
In section II and III the SI methods employed to study joint 
impedance are outlined. Section IV describes a simulation 
study, used to demonstrate validity of the presented SI 
methods when identifying a known time-varying joint 

impedance. Following the simulation study, an experimental 
study was performed which is described in section V. Finally, 
in section VI the results are interpreted and discussed.   

II. SKIRT DECOMPOSITION METHOD 
In this section, we introduce a non-parametric estimator to 

identify continuous-time linear time-varying systems. The 
estimator allows to identify an unknown time-varying system 
based on the response to a periodic multisine perturbation 
signal [37].  

A. Background 
The behavior of a time-varying system 𝐺𝐺 is considered 

linear with respect to its arbitrary input 𝑢𝑢(𝑡𝑡) and response 
output 𝑦𝑦(𝑡𝑡). The latter can be computed as: 

𝑦𝑦(𝑡𝑡) = 𝐺𝐺{𝑢𝑢(𝑡𝑡)} ≡ � 𝑔𝑔(𝑡𝑡, 𝜏𝜏)𝑢𝑢(𝜏𝜏)𝑑𝑑𝜏𝜏,
∞

−∞
 (1) 

where 𝑔𝑔(𝑡𝑡, 𝜏𝜏) is the time-varying impulse response function of 
𝐺𝐺. This means that 𝑔𝑔(𝑡𝑡, 𝜏𝜏) is the response of the system at 
time 𝑡𝑡 to an impulse applied at time 𝜏𝜏. The Fourier transform 
of the time-varying impulse response function defines the 
system function or time-varying FRF 𝐺𝐺(𝑗𝑗𝑗𝑗, 𝑡𝑡) [38]: 

𝐺𝐺(𝑗𝑗𝑗𝑗, 𝑡𝑡) = � 𝑔𝑔(𝑡𝑡, 𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝜏𝜏
∞

0

, 
 
(2) 

The system function 𝐺𝐺(𝑗𝑗𝑗𝑗, 𝑡𝑡) relates the Fourier transform of 
the perturbation signal 𝑈𝑈(𝑗𝑗𝑗𝑗) to the output signal 𝑦𝑦(𝑡𝑡) as 

𝑦𝑦(𝑡𝑡) =
1

2𝜋𝜋
� 𝐺𝐺(𝑗𝑗𝑗𝑗, 𝑡𝑡)𝑈𝑈(𝑗𝑗𝑗𝑗)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑗𝑗
∞

−∞

, 
 
(3) 

For convenience of the identification procedure elaborated 
further down, we write the system function 𝐺𝐺(𝑗𝑗𝑗𝑗, 𝑡𝑡) as a 
series expansion. 

𝐺𝐺(𝑗𝑗𝑗𝑗, 𝑡𝑡) = �𝐺𝐺𝑝𝑝(𝑗𝑗𝑗𝑗)𝑏𝑏𝑝𝑝(𝑡𝑡)
∞

𝑝𝑝=0

 
 
(4) 

with {𝑏𝑏𝑝𝑝(𝑡𝑡)}𝑝𝑝=0∞  representing a complete set of basis functions. 
These basis function are used to represent the time variation 
across a series of LTI systems 𝐺𝐺𝑝𝑝. By inserting (4) into (3), the 
system behavior is described by 

𝑦𝑦(𝑡𝑡) = �𝐺𝐺𝑝𝑝{𝑢𝑢(𝑡𝑡)}𝑏𝑏𝑝𝑝(𝑡𝑡)
∞

𝑝𝑝=0

,         ∀𝑡𝑡 ∈ [0,𝑇𝑇] 
 
(5) 

where 𝐺𝐺𝑝𝑝{𝑢𝑢(𝑡𝑡)} is the response of an LTI system 𝐺𝐺𝑝𝑝 to an 
input 𝑢𝑢(𝑡𝑡) applied during a time window of length T. 

B. Identification procedure 
The goal is to extract a non-parametric estimate of the FRFs of 
the LTI systems 𝐺𝐺𝑝𝑝(𝑗𝑗𝑗𝑗) for a given (or chosen) set of basis 
functions. The strategy consists of applying a sparse multisine 
as excitation signal. The multisine perturbation is defined as: 

𝑢𝑢(𝑡𝑡) =  � 𝐴𝐴𝑘𝑘ecos (𝑗𝑗𝑘𝑘e𝑡𝑡 + 𝜙𝜙𝑘𝑘e)
𝑘𝑘e∈𝕂𝕂exc

 (6) 

Thus, the multisine signal is a sum of cosines, with  
• angular frequencies 𝑗𝑗𝑘𝑘e = 2𝜋𝜋𝑘𝑘e/𝑇𝑇𝑚𝑚𝑚𝑚, where 𝑇𝑇𝑚𝑚𝑚𝑚 is 
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the length (in s) of the multisine signal, 
• 𝕂𝕂exc ⊂ ℕ a sparse set of excited frequency bins, 

chosen sufficiently separated to ensure the 
identifiability of the model (as elaborated in [37]). 

• amplitudes 𝐴𝐴𝑘𝑘e, which, in concordance with 𝕂𝕂exc, 
determine the spectral content of the perturbation.  

• phases 𝜙𝜙𝑘𝑘e, which are chosen randomly, uniformly 
distributed in [0,2𝜋𝜋[. 

Considering that a multisine is used as an excitation signal, the 
system equation (5) can be rewritten in terms of the discrete 
Fourier transforms (DFTs) of the perturbation signal, output 
signal and basis functions (denoted 𝑈𝑈(𝑘𝑘), 𝑌𝑌(𝑘𝑘) and 𝐵𝐵𝑝𝑝(𝑘𝑘) 
respectively) as:   

𝑌𝑌(𝑘𝑘) =
1
𝑁𝑁
� � 𝐺𝐺𝑝𝑝�𝑗𝑗𝑗𝑗𝑘𝑘e�𝑈𝑈(𝑘𝑘e)𝐵𝐵𝑝𝑝(𝑘𝑘 − 𝑘𝑘𝑒𝑒) …

𝑘𝑘e∈𝕂𝕂exc

𝑁𝑁p

𝑝𝑝=0
+ 𝑇𝑇𝑌𝑌(𝑗𝑗𝑗𝑗𝑘𝑘) 

(7) 

where the sum in (5) has been truncated to the first 𝑁𝑁p terms, 
where 𝑁𝑁p is the order of the time variation. 𝑇𝑇𝑌𝑌(𝑗𝑗𝑗𝑗𝑘𝑘) captures 
transient effects, which are due to the difference between the 
initial and end conditions of the system. It is assumed that the 
applied input DFT 𝑈𝑈(𝑘𝑘) is known, and that measurements 
𝑌𝑌𝑚𝑚(𝑘𝑘) of the output DFT spectrum are available, corrupted by 
an additive output noise 𝑉𝑉(𝑘𝑘): 

𝑌𝑌𝑚𝑚(𝑘𝑘) = 𝑌𝑌(𝑘𝑘) + 𝑉𝑉(𝑘𝑘) (8) 
In (7), the output DFT spectrum 𝑌𝑌(𝑘𝑘) of the system model is 
linear in the FRFs 𝐺𝐺𝑝𝑝�𝑗𝑗𝑗𝑗𝑘𝑘e�, for 𝑝𝑝 = 0, … ,𝑁𝑁p and 𝑘𝑘e ∈ 𝕂𝕂exc. 
Thus, these FRFs can be extracted from the measured output 
by a linear least squares algorithm. This results in a maximum 
likelihood estimator under some weak assumptions 
(Assumption 7 in [37]) on the measurement noise 𝑉𝑉(𝑘𝑘) 
(which should be uncorrelated over the frequencies) and for an 
implementation in a sliding frequency domain window, as 
explained in Appendix VIII.A. Note that 𝐺𝐺𝑝𝑝 is only estimated 
at a discrete set of frequencies (known as the excited 
frequencies of the multisine). For this reason, this estimate is 
called ‘non-parametric’. 
Sparsity of the multisine is important to obtain a well-posed 
problem. Namely, in (7), the number of unknowns equals 
𝑁𝑁p ∙ 𝑁𝑁exc (where 𝑁𝑁exc is the cardinality of 𝕂𝕂exc, i.e. the 
number of excited frequencies). A necessary condition for the 
problem to have a unique solution is that 𝑁𝑁p ∙ 𝑁𝑁exc is smaller 
than the number of data points (which equals the number of 
bins in the frequency band of interest). This is illustrated in 
Fig. 1, for 𝑁𝑁p = 7. The black dots give the output spectrum 
𝑌𝑌(𝑘𝑘) in a limited frequency band, which comprises 3 excited 
frequencies (vertical arrows). Due to the time-varying 
character of the system, the output spectrum consists of skirt-
shaped contributions around the excited frequencies. These 
‘skirts’ are modelled in (7) as linear combinations of terms of 
the form 𝐺𝐺𝑝𝑝�𝑗𝑗𝑗𝑗𝑘𝑘e�𝑈𝑈(𝑘𝑘e)𝐵𝐵𝑝𝑝(𝑘𝑘 − 𝑘𝑘e). Hence the sparsity of the 
set of excited frequencies is important to enable distinguishing 
the individual terms. 

 

Fig. 1 approximately here 

III. KERNEL-BASED REGRESSION METHOD 

In this section, we introduce a parametric estimator to identify 
continuous-time linear time-varying systems. The estimator 
was adopted as suggested in [39].  
The system’s input and output signals, 𝑢𝑢(𝑡𝑡) and 𝑦𝑦(𝑡𝑡), are 
assumed to satisfy a linear differential equation of the form: 
 

𝑦𝑦(𝑡𝑡) =  −�𝑎𝑎𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑛𝑛𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡𝑛𝑛

+ �𝑏𝑏𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑛𝑛𝑢𝑢(𝑡𝑡)
𝑑𝑑𝑡𝑡𝑛𝑛

𝑁𝑁𝑏𝑏

𝑛𝑛=0

𝑁𝑁𝑎𝑎

𝑛𝑛=1

 
 
(9) 

 
Where 𝑎𝑎𝑛𝑛(𝑡𝑡) and 𝑏𝑏𝑛𝑛(𝑡𝑡) are the time-varying coefficients 
which are smooth functions of 𝑡𝑡. These coefficients are 
estimated via kernel-based regression (KBR). In essence, the 
estimate is defined as the following minimizer: 
 

𝑎𝑎�𝑛𝑛, 𝑏𝑏�𝑛𝑛 =
argmin
𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛

�
|𝐸𝐸(𝑘𝑘, 𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛)|2

𝜎𝜎�𝐸𝐸2(𝑘𝑘, 𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛)
𝑘𝑘∈𝕂𝕂int

+ 𝑅𝑅(𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛) (10) 

 
where 𝐸𝐸 is the DFT of the equation error (i.e. the difference 
between the left and right hand side of (9)), evaluated in 𝕂𝕂int, 
and 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛 are vectorised versions of 𝑎𝑎𝑛𝑛(𝑡𝑡) and 𝑏𝑏𝑛𝑛(𝑡𝑡) in 
𝑡𝑡 = 0,𝑇𝑇𝑚𝑚, … , (𝑁𝑁 − 1)𝑇𝑇𝑚𝑚. 𝕂𝕂int represents the bins of the 
frequency band of interest and 𝜎𝜎�𝐸𝐸2 is (an estimate of) the noise 
variance of 𝐸𝐸. 𝑅𝑅(𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛) is a quadratic regularisation term, to 
impose the smoothness of the estimates. This is elaborated in 
more details in Appendix VIII.B, and in Lataire, et al. [39]. 

IV. SIMULATION STUDY 
In this section, a simulation study is described to confirm the 
validity of the SI methods with a known time-varying 
stiffness.  

A. Modelling human joint dynamics 
A time-varying wrist stiffness was simulated using a model 
describing endpoint dynamics of a joint interacting with a 
1 degree-of-freedom robotic manipulator. The dynamics of the 
joint, when only small rotations are applied, can be 
represented by a simple 2nd-order IBK model 𝐻𝐻𝑖𝑖(𝑠𝑠) together 
with the visco-elasticity of the interaction between 
manipulator and human 𝐻𝐻𝑐𝑐(𝑠𝑠) [1]: 

𝐻𝐻𝑖𝑖(𝑠𝑠) =  
1

𝐼𝐼𝑠𝑠2 + 𝑏𝑏𝑠𝑠 + 𝑘𝑘
 (11) 

𝐻𝐻𝑐𝑐(𝑠𝑠) =  𝑏𝑏𝑐𝑐𝑠𝑠 + 𝑘𝑘𝑐𝑐 (12) 
in which s is the Laplace variable and equals 𝑗𝑗2𝜋𝜋𝜋𝜋 (f 
represents the frequency) when evaluated on the imaginary 
axis. 𝐻𝐻𝑖𝑖(𝑠𝑠) represents the intrinsic and reflexive joint 
dynamics where I is the limb inertia, b the joint viscosity and k 
the static joint stiffness. 𝐻𝐻𝑐𝑐(𝑠𝑠) represents the contact 
dynamics, a simple spring-damper system where bc is the 
contact viscosity and kc the contact stiffness. 
The overall system representing the mechanical joint 
impedance from joint angle (𝑢𝑢(𝑡𝑡) – and taken equivalent to 



TCST-2017-1215 
 
 

4 

the angle of the handle of the manipulator) to joint torque 
(𝑦𝑦(𝑡𝑡)) is then: 

𝐻𝐻wrist(𝑠𝑠) =  
𝐻𝐻𝑐𝑐(𝑠𝑠)

1 + 𝐻𝐻𝑐𝑐(𝑠𝑠)𝐻𝐻𝑖𝑖(𝑠𝑠) 

 

=  
𝐼𝐼𝑠𝑠3 + (𝑏𝑏𝑐𝑐𝑏𝑏 + 𝑘𝑘𝑐𝑐𝐼𝐼)𝑠𝑠2 + (𝑏𝑏𝑐𝑐𝑘𝑘 + 𝑘𝑘𝑐𝑐𝑏𝑏)𝑠𝑠 + 𝑘𝑘𝑘𝑘𝑐𝑐

𝐼𝐼𝑠𝑠2 + (𝑏𝑏 + 𝑏𝑏𝑐𝑐)𝑠𝑠 + (𝑘𝑘 + 𝑘𝑘𝑐𝑐)
 

(13) 

 
The system considered is shown in Fig. 2.  
 

Fig. 2 approximately here 
 

B. Model Implementation 
The system as presented in Fig. 2 was implemented in 
MATLAB 2017b - Simulink 9.0 (The MathWorks, Inc., 
Natick, Massachusetts, United States). Output noise 𝑣𝑣(𝑡𝑡) was 
added as a 15 Hz low-pass filtered (2nd order Butterworth) 
Gaussian white noise. The amplitude of the noise was adjusted 
to result in a signal-to-noise ratio of the output of 10 dB, in 
line with previous simulation studies on joint impedances [35, 
40]. 

C. Simulation parameters 
The system, representing a human wrist joint, was simulated 
for 50 s (fs = 2500 Hz), with a sinusoidally time-varying joint 
stiffness (𝑘𝑘) at 0.05 Hz between ~4.7 and 6.5 Nm/rad. Limb 
inertia (𝐼𝐼) and joint viscosity (𝑏𝑏) were considered time-
invariant and taken as 3 gm2 and 0.035 Nms/rad respectively. 
Contact dynamics was also considered time-invariant (𝑏𝑏𝑐𝑐 = 10 
Nms/rad, 𝑘𝑘𝑐𝑐 = 100 Nm/rad). In total three trials were 
simulated, one with no noise (SNR = Inf dB) and two with 
both a SNR of 10 dB but different noise realizations.  

D. Perturbation signal design 
Random-phase multisine perturbations were used as the input 
signal to the simulations. Each multisine perturbation signal 
had a period of 10 s with excited frequencies 0.1-19.3 Hz and 
a spacing of 0.8 Hz between the excited frequencies. The 
perturbation signal was designed such that the rotation of the 
wrist had a root mean square (RMS) value of ≈1.1° (0.02 rad). 
A perturbation signal with a bandwidth limited to 20 Hz is 
able to reveal all relevant wrist joint dynamics [41]. The 
magnitude of each excited frequency was constant up to 6 Hz 
and decreased at higher frequencies (slope of -20 dB/decade).  

E. Data Analysis 
Before applying the KBR and the skirt decomposition 
identification algorithms the data was decimated in the 
frequency domain to a sampling frequency of ~ 44 Hz. 
Subsequently, data of the first and last 5 seconds of each trial 
was discarded as it was only used for initialization and did not 
contain a perturbation. Finally, data is only shown in the time 
interval [0,30] s. The estimate in the intervals [-5,0] s and 
[30,35] s is unreliable because of initial transient effects. 
 
Skirt decomposition 
For the skirt decomposition method, the basis functions 𝑏𝑏𝑝𝑝(𝑡𝑡) 
used in this work are the following: 

 
𝑏𝑏0(𝑡𝑡) = 1 
𝑏𝑏1(𝑡𝑡) = 2𝑡𝑡 𝑇𝑇⁄ − 1 
𝑏𝑏𝑝𝑝(𝑡𝑡) = cos�𝑗𝑗𝑝𝑝 2⁄ 𝑡𝑡�                 𝑝𝑝 > 1, 𝑝𝑝 even 
𝑏𝑏𝑝𝑝(𝑡𝑡) = sin�𝑗𝑗(𝑝𝑝−1) 2⁄ 𝑡𝑡�          𝑝𝑝 > 1, 𝑝𝑝 odd 

(14) 

 
Considering 𝐵𝐵𝑝𝑝(𝑘𝑘) = DFT�𝑏𝑏𝑝𝑝(𝑡𝑡)�, the individual terms 
𝐺𝐺𝑝𝑝�𝑗𝑗𝑗𝑗𝑘𝑘e�𝑈𝑈(𝑘𝑘e)𝐵𝐵𝑝𝑝(𝑘𝑘 − 𝑘𝑘𝑒𝑒) from (7) can be recognized in 
Fig. 1: 

• the vertical arrows (excited frequencies) are terms 
with 𝑝𝑝 = 0. Since 𝑏𝑏0 is a constant, see (14), 𝐵𝐵0(𝑘𝑘 −
𝑘𝑘e) is only different from 0 when 𝑘𝑘 = 𝑘𝑘e in (7).  

• the grey full lines are terms with 𝑝𝑝 = 1. With 𝑏𝑏1 
being a ramp, 𝐵𝐵1(𝑘𝑘 − 𝑘𝑘e) is an (approximate) 
hyperbolic function, centered around the excited 
frequency bin 𝑘𝑘e. 

• the grey circles are terms for 𝑝𝑝 > 1. (Co)sines have 
discrete Fourier transforms, which allow to capture 
individual bins of the output spectrum, at both sides 
of each excited frequency. 

Since 𝑏𝑏0 is a constant, and 𝑏𝑏𝑝𝑝(𝑡𝑡) for 𝑝𝑝 > 0 is zero mean in the 
measured time window (T). 𝐺𝐺0 represents the Best Linear 
Time Invariant (BLTI) approximation of the system, as 
defined in [42, 43]. (Co)sines are included as basis functions 
in (14) to account for the periodic nature of the imposed time 
variation. 
The order of the time variation was set to 𝑁𝑁p = 7. This is 
motivated by the observation that, in about six unexcited bins 
around the excited frequency (namely three to its left and three 
to its right), the output spectrum has a value which is 
significantly higher than the noise. By using 𝑁𝑁𝑝𝑝 = 7, we have 
a total of six goniometric basis functions (see (14)), which 
allow to capture these six bins. 
 
Kernel based regression 
In this study, for the kernel based regression method, outlined 
in Section III, the regularisation term 𝑅𝑅 uses a kernel matrix 𝐾𝐾 
obtained from the squared exponential kernel: 

𝐾𝐾(𝑡𝑡, 𝑡𝑡′) =  𝛾𝛾𝑒𝑒
−(𝑗𝑗−𝑗𝑗′)2

𝜎𝜎2 ,   𝑡𝑡, 𝑡𝑡′ = 0,𝑇𝑇𝑚𝑚, … , (𝑁𝑁 − 1)𝑇𝑇𝑚𝑚 (15) 

in which 𝜎𝜎 determines the smoothness of the estimated time-
varying coefficients. The hyperparameter 𝛾𝛾 represents the 
inverse of the amount of regularisation applied, defining a bias 
versus variance trade-off of the estimated coefficients. The 
hyperparameters 𝛾𝛾 and 𝜎𝜎 together determine the complexity of 
the estimated model.  
The assumed model structure has a 3rd-order numerator and 
2nd-order denominator, based on the assumed system of joint 
impedance (13). Therefore, the parameter Na was chosen as 2 
and Nb as 3. We define the frozen transfer function of the 
time-varying system as: 

𝐻𝐻wrist(𝑠𝑠, 𝑡𝑡∗)

=  
𝑏𝑏3(𝑡𝑡∗)𝑠𝑠3 + 𝑏𝑏2(𝑡𝑡∗)𝑠𝑠2 + 𝑏𝑏1(𝑡𝑡∗)𝑠𝑠 + 𝑏𝑏0(𝑡𝑡∗)

𝑎𝑎2(𝑡𝑡∗)𝑠𝑠2 + 𝑎𝑎1(𝑡𝑡∗)𝑠𝑠 + 𝑎𝑎0(𝑡𝑡∗)
 

(16) 

When evaluated in 𝑡𝑡∗, the function 𝐻𝐻wrist(𝑠𝑠, 𝑡𝑡∗) is the transfer 
function of the LTI system, obtained by fixing the time-
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varying parameters to their values at time instant 𝑡𝑡∗, i.e. 
𝑎𝑎𝑛𝑛(𝑡𝑡∗) and 𝑏𝑏𝑛𝑛(𝑡𝑡∗). 
The hyperparameter 𝜎𝜎 was chosen based on the periodicity of 
the time-varying stiffness as 𝜎𝜎 ≈ 20𝑠𝑠 in case of the presence 
of noise. For the noiseless case, 𝜎𝜎 was reduced to ~8 s. This 
increases the flexibility of the estimator and, thus, reduces the 
bias (this is important to show the correctness of the 
estimator). In addition, 𝛾𝛾 was chosen based on the variance of 
the data in presence of noise as the estimate was insensitive to 
the precise value of 𝛾𝛾 in a wide range. When no noise was 
present in the simulation, 𝛾𝛾 was set to 25.000.  
 
Quality of the estimators 
The quality of the estimators was determined in time domain 
using the variance-accounted-for (VAF). The identification 
was performed on a trial with output noise and validated on 
one trial with a different noise realization and one trial without 
noise. VAFself, determined on the estimation data set, and 
VAFval determined on a validation data sets, were calculated 
according to: 

VAF = 1 −  
var(𝑦𝑦(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡))

var(𝑦𝑦(𝑡𝑡))
 (17) 

where 𝑦𝑦(𝑡𝑡) is the measured torque and 𝑦𝑦�(𝑡𝑡) is the simulated 
output based on the estimated model. In addition, true 
simulated joint stiffness and estimated joint stiffness, extracted 
as the magnitude of the FRF at the lowest frequency, were 
compared. For this study the difference between system 
function or TV-FRF (2) and frozen FRF as extracted from (9), 
are neglected. 

F. Results 
Fig. 3 presents the estimated joint stiffness as a function of 
time in comparison to the known true stiffness as imposed in 
simulation. When joint stiffness is estimated based on a trial 
without noise the true stiffness is closely matched for both 
analysis methods. Identification of the joint stiffness from a 
simulation trial with a SNR of 10 dB still allows extracting the 
sinusoidal periodicity but with a mismatch to the true stiffness. 
The estimate of joint stiffness by the skirt method is more 
affected by the presence of noise than the KBR method.  
Table I shows the quantitative results using the VAF on the 
joint torque. Based on the VAF on the estimation data (with 
noise) both methods provide a good model for the data 
(VAFself > 96%). When validating the model VAF is still high 
(VAFval >94%). The KBR method achieves a higher VAF 
(VAFval = 96.7%) on the validation set then the skirt method 
(VAFval = 94.9%). Both methods provide an excellent estimate 
of the true FRF despite the noise as evident from the VAF on a 
trial without noise (VAFval  > 98%). The KBR method (VAFval 
= 99.9%) outperforms the skirt method (VAFval = 98.2%).   

 
 

Table I approximately here 
 
 

Fig. 3 approximately here 

V. EXPERIMENTAL STUDY 
This section describes how the experimental study was 
performed. 

A. Subjects 
Six healthy participants (2 men; 33 ± 4.2 years, 4 women; 28 
± 4.1 years) with no self-reported history of neurological or 
orthopedic arm problems, participated in the experiment. All 
participants were right handed. The study was approved by the 
human research ethics committee (HREC) of Delft University 
of Technology, and all participants provided written informed 
consent before participating. 

B. Experimental Setup 
A torque-controlled wrist manipulator applied angular position 
perturbations to the wrist of the right arm [44]. The 
manipulators’ handle is actuated by an electric motor 
(Baumuller DSM-130N) via a lever which ensures the motor 
axis is aligned with the axis of rotation of an average wrist. A 
torque sensor, consisting of strain gauges, was mounted 
halfway the lever to measure the torque applied by the 
participant. The core of the haptic controller is its velocity 
servo, which has a bandwidth of ~50 Hz.    
Every participant was comfortably seated in front of the 
manipulator and asked to grab the handle with the right hand. 
To ensure a firm and time-invariant grip, Velcro was used to 
strap participants to the handle and the lower arm was 
immobilized. During the perturbations, the participants were 
asked to apply a prescribed time-varying torque. A screen in 
direct line of sight of the participant provided a target line, 
representing the torque that had to be exerted, and a cursor, 
that was indicative for the exerted torque (0.6 Hz low-pass 
filtered). Participants were instructed to trace the target line 
with the cursor throughout each trial. Fig. 4 provides a 
schematic of the experimental setup. During all trials, the 
torque on the handle and position of the handle were 
measured, sampled at 2500 Hz and stored.  
 

Fig. 4 approximately here 
 

C. Measurement Protocol 
The participants completed 12 trials, 6 trials each for two 
different tasks. Before the trials, the maximum voluntary 
torque (MVT) was determined. The first task required the 
voluntary modulation of flexion torque. Participants had to 
vary their exerted flexion torque between 5-20% MVT 
according to a sinusoidal pattern (with a frequency of 0.05 
Hz). Participants were instructed to track a target line 
presented on the screen while ignoring the continuous 
multisine angular perturbation on the handle of the 
manipulator. The torque variations due to the perturbation 
were much smaller than the requested voluntary modulation. 
Each trial lasted 50 s, including 5 s at the start and end of each 
trial without perturbation. The second task was a time-
invariant condition, without bias force, where participants 
were instructed to keep their wrist relaxed while angular 
perturbations were applied. For both tasks, the same 
perturbation signal was used as during the simulation study 
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with the rotation of the wrist restricted to 0.02 rad and excited 
frequencies between 0.1-19.3 Hz (section IV.D – Fig. 5a). 

D. Data Analysis 
The same data preprocessing was performed as for the 
simulation study: part of the data was discarded and the 
remaining data was decimated.  
The exerted time-varying voluntary torque was applied to 
ensure time-varying joint properties, but is not relevant for the 
estimator. Therefore, before performing system identification, 
the 0.05 Hz time-varying voluntary exerted torque was 
removed by fitting and subtracting a low-frequency signal 
composed of a constant, a linear function and four goniometric 
functions (cos(𝑗𝑗𝑡𝑡), sin(𝑗𝑗𝑡𝑡), cos(2𝑗𝑗𝑡𝑡), sin(2𝑗𝑗𝑡𝑡))  (Figure 5b 
– white solid line).  
For the skirt decomposition and KBR method the same model 
structure and parameters were used as during the simulation 
study. The order of the time variation for the skirt method was 
set to 𝑁𝑁𝑝𝑝 = 7 and the hyperparameter 𝜎𝜎 for the KBR method 
was set to ~20s, with 𝛾𝛾 based on the variance of the data.  
 
Quality of the estimators 
The quality of the estimators was assessed using the VAF 
(17). Next to the VAF on the data set used for the estimation, 
each estimator of a single trial was validated on the five other 
trials within a participant. Before determining the VAF, 
frequencies below 0.8 Hz were removed as these frequencies 
are dominated by trial-to-trial variability in voluntary motor 
control and have little contribution to joint dynamics.  

E. Comparison with other techniques 
The two proposed identification methods for joint impedance 
were compared with two other methods previously presented. 
Both methods are ensemble averaging methods, requiring 
multiple repetitions of the same time-varying behaviour. The 
first is a method proposed by Ludvig and Perreault [45] who 
used a non-parametric estimator in time domain to 
successfully identify joint impedance averaging across short 
data segments (SDS) and multiple (but a reduced number of) 
realizations [27]. We implemented this method ourselves. The 
second method is one designed by Guarin and Kearney [40] 
(scripts available online) who combine ensemble and 
deterministic approaches to estimate TV joint impedance.  
For a fair comparison of the methods, those presented in this 
paper and those by Guarin and Ludvig five of the six collected 
trials are used as an input for estimating the joint impedance 
model and the sixth trial is used for validation. For the SDS 
method we used a window length of 100 samples, i.e. this is 
the time window over which joint impedance is considered 
time-invariant, and a maximum lag of the impulse response 
function of 40 ms. 

 
Fig. 5 approximately here 

F. Results 
Position and torque data are presented in Fig. 5b. The position 
data is equivalent to the imposed perturbation. Torque data 
shows the torque exerted by the participant, expressed as a 
percentage of their maximum voluntary torque level, on top of 

the rapid torque changes as resulting from the applied position 
perturbation.  

Skirt decomposition method 
Fig. 6 presents the results obtained when using the skirt 
decomposition method on the experimental data. The 
measured and fitted output spectrum are well matched at, and 
close to, the excited frequencies (Fig. 6a). The green dashed 
line gives the estimated noise floor. 
The corresponding system function shows a sinusoidally 
varying joint stiffness and resonance frequency analogue to 
the sinusoidal exerted voluntary torque (Fig. 6b). This is 
highlighted in its 2D representation (Fig. 6c  - top left). Fig. 6c 
shows the system function of all six trials recorded for this 
participant. All trials demonstrate a sinusoidal-like change in 
joint stiffness and resonance frequency, however with marked 
inter-trial variability. All together, VAFself for the non-
parametric skirt decomposition method for all trials and all 
participants was on average 84.3% ± 4.6% (mean ± SD) (range 
for individual participants: 66-91%) (Table II). The estimated 
model for joint impedance estimated on a single trial was 
validated on the other five trials. On average this resulted in a 
VAFval of 66.1 ± 6.0 % (mean ± SD) (range for individual 
participants: 40-83%). 
Analysis of the task without bias force, i.e. no time-variying 
behaviour, confirmed time-invariant joint dynamics with a 
similar resonance frequency across the full time window. 
Moreover, VAFself and VAFval were >93% for all trials of all 
participants.  
 

Table II approximately here 
 

Fig. 6 approximately here 

KBR identification 
Fig. 7 presents the results obtained when using KBR 
identification with the recorded data. The frozen FRF (Fig. 7a) 
demonstrates a sinusoidally varying joint stiffness and 
resonance frequency, for all  trials performed by this 
participant (Fig. 7b). The VAFself for the parametric KBR 
identification method on the trials performed by the first 
participant was on average 76.4% ± 7.3% (mean ± SD) (range 
for individual participants: 52-90%) (Table II). The estimated 
model for joint impedance estimated on a single trial was 
validated on the other five trials. On average this resulted in a 
VAFval of 75.8 ± 7.3 % (mean ± SD) (range for individual 
participants: 51-89%). 
Analysis of the task without bias force, i.e. no time-variying 
behaviour, confirmed time-invariant joint dynamics with a 
similar resonance frequency across the full time window. 
Moreover, VAFself and VAFval were >97% for all trials of all 
participants. 
 

Fig. 7 approximately here 
 

Comparison with other techniques 
Table II presents the VAF for all participants when ensemble 
data was used of five trials for estimating the joint impedance 
model, and the sixth trial was used for validation. In addition 
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to the KBR and skirt method, results are presented for the SDS 
and Guarin method. On average, the KBR method provides 
the best results (VAFval = 76.8 ± 7.2 %) closely followed by 
the skirt method (VAFval = 75.3 ± 5.4 %). The other methods 
perform similar but on average have a lower VAF (SDS: 
VAFval = 61.6 ± 7.2 %; Guarin: VAFval = 63.1 ± 7.2 %). 

VI. DISCUSSION 
In this section, results from the simulation and experimental 
study will be discussed in light of the new identification 
procedures to quantify joint impedance. 

A. Parametric and non-parametric identification of joint 
impedance 
This study demonstrates that it is possible to obtain a good 
model fit based on a single trial of data, in line with some 
other recent studies [35, 36]. Both the KBR method and skirt 
decomposition method revealed a sinusoidal time-varying 
resonance frequency and joint stiffness. The time-varying 
system dynamics of the human wrist resembled the time-
varying simulated joint stiffness or instructed joint torque. 
Both algorithms require little a priori information about the 
expected time variations. The minimal information provided 
to the estimator about time-varying behavior contrasts the 
commonly employed linear parameter varying (LPV) models. 
LPV models require a measured time-dependent scheduling 
function that induce the change of the model parameters [35, 
46]. There are no assumptions about the order of the system 
dynamics, or a scheduling variable, in the skirt decomposition 
method, but it assumes the time variations can be described by 
a set of smooth basis functions. For the KBR method, the 
order of system dynamics is set a priori and the 
hyperparameter σ determines the smoothness of the time 
variation. 
The performance of the KBR method depends on the choice of 
the model order and on the values for the hyperparameters σ 
and γ. Although a 2nd-order joint impedance model has been 
used often in the literature, in this study a 3rd-order model (3 
zeros, 2 poles) was used. The choice for a 3rd-order model 
structure was made based the joint dynamics (modelled as a 
2nd-order mass-spring-damper system) and the grip dynamics 
to capture the interaction between the joint and the 
manipulator [1]. A 3rd-order model may better capture the 
musculoskeletal structure for joints where multiple muscles 
act around a joint (agonist-antagonist muscle pairs) [47]. Fixed 
values were used for the hyperparameters in the presence of 
noise. Lataire, et al. [39] developed an optimisation procedure 
to determine the optimal values for the hyperparameters by 
minimizing a leave-two-out-cross validation criterion (LTO-
CV) [48]. However, this criterion proved to be fairly 
insensitive to the value of the hyperparameters, as soon as they 
are in an acceptable range. Hyperparameter σ was  chosen in 
accordance with our expectations; 𝜎𝜎 ≈ 20𝑠𝑠, which is of the 
same order of magnitude as the period of the exerted time 
variation. This value ensures that the resulting estimate is 
smooth, effectively suppressing noise contributions. The 
hyperparameter 𝛾𝛾 was chosen near the global minima of the 
LTO-CV evaluated for all the trials, as our results were 
insensitive to the exact value of 𝛾𝛾.  

The non-parametric skirt decomposition method does not 
require an a priori defined model order and thereby has more 
flexibility to capture the dynamics, albeit smooth, as dictated 
by the used basis functions. The method needs a multisine 
perturbation signal that includes sufficient excited frequencies 
to quantify the system dynamics and at the same time leaves 
appropriate space between excited frequencies to capture the 
time variations in the skirts. When measuring humans, the 
frequency resolution is limited as the measurement time in 
humans is restricted e.g. to prevent fatigue. This is critical at 
the lowest frequencies up to ~5 Hz, where the human has the  
ability to modulate his/her joint impedance. Hence, up to 5 Hz 
ideally there are many excited frequencies that allow proper 
identification of joint impedance but at the same time 
sufficient unexcited frequencies are required to capture time-
varying behavior. The non-parametric nature of the skirt 
method provides more freedom at the cost of a greater 
variance especially below the resonance frequency. 
For both methods a well-defined LTV model could be 
constructed using only a single trial of 30 s of data (VAFval > 
70%). Up to ~90% of the data could be explained using either 
the KBR method or the skirt based method (on the estimation 
data set). An explanation for the high VAFs (>85%) in some 
and low VAFs (< 70%) in others may be found in the 
sensitivity of the methods to the smoothness of the time 
variation, i.e. data sets from participants that were better at 
smoothly following a sinusoidally time-varying torque 
resulted in higher VAFs. The skirt method suffers less of this 
as no a priori model structure is applied. However, the lower 
VAFs on validation data compared to estimation data (drop by 
~10-20%), not seen for the KBR method, may indicate 
overfitting. It is noteworthy that validation based on single 
trial data may not only reflect modelling errors but will also be 
negatively affected due to inherent human trial-to-trial 
variability. This is reflected in the results of the trials without 
bias force, i.e. participants are fully relaxed, which result in a 
higher VAF as the human does not intervene. Moreover, the 
trials without bias force demonstrate the methods do not have 
any a priori assumptions on time variance, provided they fit 
time invariant data well.   
A potential limitation of the methods is the speed of time 
variation that can be successfully identified. The 0.05 Hz time-
varying torque that was used is slower than most relevant 
time-varying human behavior (~1-2 Hz for e.g. human 
walking). Preliminary simulations have demonstrated that the 
KBR method can identify these rapid time-variations by 
optimizing its hyperparameters. However, this will result in a 
model of higher complexity, and therefore higher uncertainty 
as there is a greater risk of modelling noise. The skirt 
decomposition method is unable to capture rapid time-
variations using the current design of the multisine 
perturbation signal. It will require optimization of the 
multisine perturbation signal to provide greater space between 
excited frequencies. Considering the limited bandwidth of 
human joints this may become difficult. Future work will have 
to establish the exact possibilities and constraints of both 
methods for identifying time-varying joint impedance.  
In the present study the comparison with ensemble based 
methods of Ludvig and Perreault [4] and Guarin and Kearney 
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[40] revealed consistently higher VAFs on a validation trial 
for the KBR and skirt method. However, both methods were 
developed with a pseudorandom arbitrary level perturbation 
signal, which is different from a multisine as applied in this 
study.. Therefore the only conclusions to draw from the 
comparison is that the KBR and skirt method allow a better 
estimate of a model for joint impedance based on limited data 
collected using a multisine perturbation and under slowly 
time-varying behavior. 

B. Time-varying human joint impedance 
Observing a time-varying joint stiffness and resonance 
frequency when varying the level of torque is in line with 
earlier reports [7, 9, 49]. An increasing resonance frequency, 
accompanied with an increase in joint stiffness, was reported 
for the ankle joint when generating a torque by pushing the 
foot down (i.e. plantarflexion) [9]. The KBR method 
demonstrates a similar sinusoidal pattern in joint stiffness. 
Impedance is high when torque is high, and vice versa. For the 
skirt method, this distinction is less clear. This may be partly 
attributed to the frequency resolution inherent to the non-
parametric skirt method.   
The KBR method (Fig. 7b) also reveals a change in the size of 
the peak at the resonance frequency. This peak is larger for 
higher levels of torque which may be attributed to the 
underlying mechanisms that allow humans to successfully 
complete the requested motor task. Humans can adapt the 
mechanical behavior of their joints by regulating intrinsic and 
reflexive joint properties [1, 50]. Intrinsic properties can be 
tuned by co-contracting, activating different muscles that act 
in opposite directions around a joint at the same time, 
effectively resulting in an increased joint impedance. This is 
primarily expressed in a change in intrinsic stiffness, which 
has a greater sensitivity for muscle activation than intrinsic 
viscosity [7, 49]. Reflexive properties cannot be voluntarily 
adjusted and depend on pre-programmed stimulus-response 
characteristics of the nervous system. Whereas intrinsic 
properties are primarily tuned feedforward, reflex properties 
involve feedback pathways with an inherent time delay. An 
increase in torque level up to 20% MVT has been 
demonstrated to raise the contribution of both the intrinsic and 
reflexive stiffness [7, 35]. A larger reflexive contribution will 
result in enhanced oscillatory behavior at the resonance 
frequency as the reflexive (feedback) pathway involves a time 
delay resulting in phase lags [51]. This may explain the 
increased resonance peaks when the generated torque 
increases to 20% MVT. The currently employed identification 
technique does not yet allow for separation of intrinsic and 
reflexive contributions to the motor behavior but this is 
worked on. This could for example be done by fitting a 
parametric model to the TV-FRFs so to extract these detailed 
parameters that determine joint impedance [1]. 

VII. GENERAL CONCLUSION 
This study presents a novel framework for the identification of 
time-varying joint impedance by making use of two different 
LTV SI methods. Both the parametric kernel-based regression 
(KBR) method and the non-parametric skirt method allow 
identification of joint impedance over time using a single trial 

of data. Despite the low SNR of the recorded signals in the 
biomedical domain, there is the possibility to successfully 
quantify changes in joint impedance over time based on 
limited data. In future this may allow to gain valuable new 
insights in how humans control their limbs and learn new 
tasks. The successful application of SI methods unknown in 
the biomedical domain demonstrates that cross domain 
collaborations are important to make full use of all that the 
field of system identification has to offer in studying human 
control behavior. 

VIII. APPENDIX 

A. Skirt decomposition method 
This appendix summarizes the algorithm for the skirt 
decomposition method, which is proposed in [37]. The model 
in (7) is approximated in a frequency band comprising three 
successive excited frequencies, denoted 𝑘𝑘e−, 𝑘𝑘e and 𝑘𝑘e+, as 
 

𝑌𝑌𝑚𝑚(𝑘𝑘) ≈
1
𝑁𝑁
� � 𝐺𝐺𝑝𝑝(𝑗𝑗𝑗𝑗𝑘𝑘′)𝑈𝑈(𝑘𝑘′) …

𝑘𝑘′∈{𝑘𝑘e−,𝑘𝑘e,𝑘𝑘e+}

𝑁𝑁p

𝑝𝑝=0

 

𝐵𝐵𝑝𝑝(𝑘𝑘 − 𝑘𝑘′) + 𝐼𝐼𝑌𝑌(𝑗𝑗𝑗𝑗𝑘𝑘) 

(A.1) 

expressed in the frequencies 𝑘𝑘 =  𝑘𝑘𝑒𝑒− − Δ𝑘𝑘𝑒𝑒 , … ,𝑘𝑘𝑒𝑒+ + Δ𝑘𝑘𝑒𝑒  
with  

𝐼𝐼𝑌𝑌(𝑘𝑘) = �𝑟𝑟𝑛𝑛

𝑁𝑁r

𝑛𝑛=0

𝑘𝑘𝑛𝑛 (A.2) 

a polynomial in 𝑘𝑘, which captures 𝑇𝑇𝑌𝑌(𝑗𝑗𝑗𝑗𝑘𝑘) and the fact that 
only a limited number of terms from (7) are included in (A.1), 
∆𝑘𝑘e is the distance (in bins( between two excited frequencies. 
By solving (A.1) for 𝐺𝐺𝑝𝑝(𝑗𝑗𝑗𝑗𝑘𝑘′) and 𝑟𝑟𝑛𝑛 in least squares sense, 
for all 𝑘𝑘𝑒𝑒  𝜖𝜖 𝕂𝕂𝑒𝑒𝑒𝑒𝑐𝑐  , the LTI blocks 𝐺𝐺𝑝𝑝 are effectively estimated 
non-parametrically (i.e. at the excited frequencies only) in a 
sliding frequency band. Note that (A.1) is linear in all the 
unknowns (𝐺𝐺𝑝𝑝(𝑗𝑗𝑗𝑗𝑘𝑘′) and 𝑟𝑟𝑛𝑛). 

B. Kernel based regression method 
This appendix summarizes the algorithm for the KBR method, 
which is proposed in [39]. The estimate is defined as 
 

𝑎𝑎�𝑛𝑛, 𝑏𝑏�𝑛𝑛 =
argmin
𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛

�
|𝐸𝐸(𝑘𝑘, 𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛)|2

𝜎𝜎�𝐸𝐸2(𝑘𝑘, 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛)
𝑘𝑘∈𝕂𝕂int

…

+ �𝑎𝑎�𝑛𝑛𝑇𝑇𝐾𝐾−1𝑎𝑎�𝑛𝑛 +
𝑁𝑁𝑎𝑎

𝑛𝑛=1

�𝑏𝑏�𝑛𝑛𝑇𝑇𝐾𝐾−1𝑏𝑏�𝑛𝑛

𝑁𝑁𝑏𝑏

𝑛𝑛=0

 

 
(B.1) 

 
With 

𝐸𝐸(𝑘𝑘, 𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛) = 𝐷𝐷𝐷𝐷𝑇𝑇 �𝑦𝑦 −�𝑏𝑏𝑛𝑛𝑢𝑢(𝑛𝑛) +
𝑁𝑁𝑏𝑏

𝑛𝑛=0

�𝑎𝑎𝑛𝑛𝑦𝑦(𝑛𝑛)

𝑁𝑁𝑎𝑎

𝑛𝑛=1

� 𝑘𝑘 

𝑎𝑎𝑛𝑛 = 𝑎𝑎
⃘ 
𝑛𝑛 + 𝑎𝑎�𝑛𝑛,       𝑏𝑏𝑛𝑛 = 𝑏𝑏

⃘ 
𝑛𝑛 + 𝑏𝑏�𝑛𝑛 

 
(B.2) 

where 𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛 are vectorised versions of 𝑎𝑎𝑛𝑛(𝑡𝑡) and 𝑏𝑏𝑛𝑛(𝑡𝑡) in 
𝑡𝑡 = 0,𝑇𝑇𝑚𝑚, … , (𝑁𝑁 − 1)𝑇𝑇𝑚𝑚, 𝑢𝑢(𝑛𝑛) and 𝑦𝑦(𝑛𝑛) are the sampled and 
vectorised 𝑛𝑛th derivatives of 𝑢𝑢(𝑡𝑡) and 𝑦𝑦(𝑡𝑡). The parameters 
𝑎𝑎𝑛𝑛 and 𝑏𝑏𝑛𝑛 are decomposed into  and  (which are constant 
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vectors to which no regularisation is applied) and 𝑎𝑎�𝑛𝑛 and 𝑏𝑏�𝑛𝑛 
(which are time-varying and regularised to impose their 
smoothness). The latter is done by including the sums of 
𝑎𝑎�𝑛𝑛𝑇𝑇𝐾𝐾−1𝑎𝑎�𝑛𝑛 and 𝑏𝑏�𝑛𝑛𝑇𝑇𝐾𝐾−1𝑏𝑏�𝑛𝑛. The kernel matrix 𝐾𝐾 is semi-positive 
definite and symmetric, and imposes structure on the 
estimated parameters.  
𝜎𝜎𝐸𝐸2 is the variance of 𝐸𝐸. Explicit expressions for 𝐸𝐸 and 𝜎𝜎𝐸𝐸2, 
based on the sampled signals 𝑢𝑢(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) are available 
in[39].  
Note that (B.2) is a non-quadratic (and in general non-convex) 
problem, due to the division by 𝜎𝜎�𝐸𝐸2. This is solved via an 
iterative convex relaxation, where  𝜎𝜎�𝐸𝐸2 is initialized to 1 and, 
for the 𝑚𝑚th iteration, is computed as 
𝜎𝜎�𝐸𝐸,𝑚𝑚
2 (𝑘𝑘) ← 𝜎𝜎�𝐸𝐸2(𝑘𝑘, 𝑎𝑎�𝑛𝑛,𝑚𝑚−1, 𝑏𝑏�𝑛𝑛,𝑚𝑚−1), with 𝑎𝑎�𝑛𝑛,𝑚𝑚−1, 𝑏𝑏�𝑛𝑛,𝑚𝑚−1 the 

estimates obtained at the (𝑚𝑚 − 1)th iteration. This algorithm is 
outlined in Section 6.2 of [39]. The computation of  𝜎𝜎�𝐸𝐸2 also 
requires an estimate of the noise variance on the measured 
spectra, which is computed via the method presented in [52].  
Note that this estimator does not require the explicit 
computation of 𝐾𝐾−1. This allows for the use of (close to) 
singular kernel matrices. 
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Fig. 1 The black dots give the output spectrum of a time-varying 
system, excited by a sparse multisine. This output spectrum is 
decomposed into: 1) excited frequencies (vertical arrows), 2) skirt 
shaped contributions (grey full lines), and 3) discrete spectral 
contributions (grey circles) which are due to the periodic nature of 
the applied time variation. 

 
Fig. 2 The system of the human wrist. The manipulator provides a 
multisine position input (𝒖𝒖(𝒕𝒕)) to the human wrist of which the 
dynamics are represented by 𝑯𝑯(𝒋𝒋𝒋𝒋).  The measured torque output 
𝒚𝒚(𝒕𝒕) is assumed to contain measurement noise 𝒗𝒗(𝒕𝒕).  

 
Fig. 3 Joint impedance estimates obtained using the KBR and skirt 
method from simulation data. Simulations were ran including a time-
varying joint impedance both without (SNR = Inf dB) and with (SNR 
= 10 dB) output noise. Both the KBR and skirt method allow to 
obtain a good estimate of joint impedance despite the presence of 
output noise.  

Fig. 4 Experimental setup used to measure time-varying joint 
impedance. The right arm of the participant was fixated, with 
the flexion-extension axis of the wrist aligned with the axis of 
rotation of the handle of the manipulator. Multisine position 
perturbations were imposed on the handle while the 
participant had to track a sinusoidal torque pattern. Feedback 
on torque exerted and target torque level was provided on a 
monitor directly in front of the participant.  

 
Fig. 5 Details of perturbation signal and raw data recorded. (a) 
Position perturbation signal in frequency and time domain. 
Perturbation signal is built of 10 s periods, containing only 
frequencies between 0.1-19.3 Hz (Δf = 0.8 Hz). (b) Raw position and 
torque data recorded during a single trial. The shaded areas are data 
not analyzed to avoid modelling artefacts or transient effects. The 
voluntary exerted sinusoidal time-varying torque (white line) was 
removed prior to analysis, as it only served to obtain time-varying 
joint impedance. 
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Fig. 6 Results obtained using the skirt decomposition method. (a) 
Measured (dots) output spectrum, fitted (red line) output spectrum 
and their difference (residuals – crosses). The green line indicates the 
noise floor. (b) Estimated system function, as defined in (2) with the 
estimated 𝑮𝑮𝒑𝒑. (c) System function for all trials recorded for a single 
participant in the condition where voluntary torque was sinusoidally 
varied between 5-20% of maximum voluntary torque. Color scale 
same as in (b). 

 

 

 

 

Fig. 7 Results obtained using the kernel based method. (a) Estimated 
frozen FRF, using kernel-based regression. (b) Frozen FRF for all 
trials recorded in a single participant in the condition where voluntary 
torque was sinusoidally varied between 5-20% of maximum 
voluntary torque. Color scale same as in (a). 
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TABLE I 
VAFS FOR SIMULATION DATA 

 

 
VAFself [%] 

10 dB 
VAFval [%]  

Inf dB 
VAFval [%]  

10 dB 
KBR 96.7 99.9 96.7 
Skirt 97.7 98.2 94.9 

Variance-Accounted-For (VAF) for both KBR and skirt method 
when using simulation data with and without noise. The model estimate 
is based on a single trial with 10dB filtered white noise and validated on 
de data used for estimation (left column). In addition, validation is 
performed on a trial without noise (Inf dB – middle column) and trial 
with different noise realization (right column).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
VAFS FOR EXPERIMENTAL DATA

 Single trial  Ensemble 
 KBR Skirt  KBR Skirt SDS Guarin 
 VAFself [%] 

mean±S.D. 
VAFval [%] 

mean±S.D 
VAFself [%] 

mean±S.D 
VAFval [%] 

mean±S.D 
 VAFval [%] 

mean±S.D  
VAFval [%] 

mean±S.D  
VAFval [%] 

mean±S.D 
VAFval [%] 

mean±S.D  
P1 89,7±3.0 89.1 ± 2.9 91.2 ± 3.3 82.9 ± 3.3  89.2± 2.9 87.3± 3.2 60.6± 3.4 61.6± 2.5 
P2 88.8 ± 5.0 88.1 ± 4.5 90.8 ± 3.9 81.8 ± 3.9  88.6± 4.8 86.5± 3.8 80.1± 5.7 81.4± 6.2 
P3 80.8 ± 8.7 79.9 ± 9.0 85.5 ± 7.3 76.2 ± 6.9  80.6± 8.6 80.0± 5.1 71.3± 9.8 73.3± 10.5 
P4 52.4 ± 14.5 51.4 ± 14.2 66.1 ± 8.0 39.8 ± 9.3  52.4± 14.5 51.8± 9.4 40.8± 12.0 43.6± 11.9 
P5 75.8 ± 5.2 75.4 ± 5.5 86.3 ± 3.1 66.7 ± 7.2  75.8± 5.2 74.7± 7.3 61.9± 6.4 62.8± 6.7 
P6 70.9 ± 7.4 71.3 ± 7.4 85.8 ± 2.2 60.6 ± 4.8  71.1± 7.5 71.6± 3.5 54.6± 5.9 56.1± 5.5 

Overall 76.4 ± 7.3 75.8 ± 7.3 84.3 ± 4.6 66.1 ± 6.0  76.3 ± 7.2 75.3 ± 5.4 61.6 ± 7.2 63.1 ± 7.2 
Variance-Accounted-For (VAF) for both KBR and skirt method when using experimental data. The left side shows VAFs for each participant when 

estimates were based on a single trial of data. Mean ± S.D. of 6 VAFs  is shown when validation is performed on the data used for estimation (VAFself), and 
30 VAFs when the one trial is used for estimation and the other five for validation (VAFval),. The right side of the table shows VAFs for four different 
methods (KBR, Skirt decomposition, Short Data Segments (SDS) and Guarin) when the ensemble average of 5 trials was used for model estimation and the 
sixth trial for validation (e.g.  Mean ± S.D. of 36 VAFs). 

 
 
 
 
 
 
 
 
 
 
 


