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Fitted Q-function Control Methodology based on
Takagi-Sugeno Systems

Henry Diaz*, Leopoldo Armesto!, Antonio Sala

Abstract—This paper presents a combined identification/Q-
function fitting methodology, which involves identification of a
Takagi-Sugeno model, computation of (sub)optimal controllers
from Linear Matrix Inequalities, and subsequent data-based
fitting of the Q-function via monotonic optimisation. The LMI-
based initialisation provides a conservative solution but it is a
sensible starting point to avoid convergence/local-minima issues
in raw data-based fitted Q-iteration or Bellman residual minimi-
sation. An inverted-pendulum experimental case study illustrates
the approach.

Index Terms—Reinforcement learning, adaptive dynamic pro-
gramming, fitted Q-function, Takagi-Sugeno, LMI.

I. INTRODUCTION

Optimal controllers minimising an infinite-time cost index
are of interest in many fields. Dynamic programming (DP)
[1], [2] and reinforcement learning (RL) [3] are powerful
paradigms to obtain them, used in many applications [4],
[5]. DP and RL pursue computing value functions V' (z), or
action-value functions Q(x, ) [3] in order to yield optimal
controllers (also denoted as policies').

Policy iteration (PI) and value iteration (VI) are widely-used
techniques to iteratively compute such optimal value functions
and associated policies [7], [8], [9]. Based on the principles of
fixed-point theorem, PI and VI converge to the optimal value
and policy under mild conditions ensuring a contraction map-
ping [10], [11]. However, these mild conditions are actually
so only in systems with a finite number of states and control
actions. In continuous-valued settings, some approximation is
needed to map a maybe complex controller/value function;
theb exact Bellman equation gets now converted to a Bellman
residual [12] (also called Bellman error in [13]) minimisation
problem. Such approximation may spoil the contractive nature
of the iteration steps and, hence, convergence may be lost
[14]. Only in some quite restrictive settings such as fuzzy Q-
iteration [11] convergence can be guaranteed.

A way to avoid PI/VI divergence is trying to minimise the
Bellman error via gradient descent [15], [16], [17] or other
monotonic optimisation methods [18]. However, such methods
may get caught on local minima if not properly initialised.
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! Another option to look for optimal controllers is the so-called “policy
search” techniques, in which value functions are avoided and only its gradient
is estimated with respect to some controller parameters. These techniques are
out of the scope of this work, see [6] and references therein for ample detail.

In a model-based approach to optimal control, many
nonlinear systems can be modelled as the so-called fuzzy
Takagi-Sugeno (TS) systems [19], via the well-known sector-
nonlinearity approach [20]. These TS models express the
nonlinearity as a convex combination of linear systems. Some
convex conditions on the vertex linear models can easily obtain
quadratic value function bounds by solving the so-called linear
matrix inequalities (LMIs). The LMIs were introduced by the
seminal book [21] and exploited for (sub)optimal nonlinear
control in many works, for instance [20], [22], [23], [24] and
references therein. Nonlinear optimal control using linear-like
techniques can be also approached via Jacobian linearisation
at several points [25]; nevertheless, these developments are
related to predictive control, and out of the scope of our
proposal.

The objective of this paper is to propose a methodology for
nonlinear optimal control applications bridging the DP/RL and
the model-based LMI approaches: given a nonlinear system
in Takagi-Sugeno form, the LMI solution and the fuzzy
controller structures associated to them inspire a particular
parametrisation of the Q-function so that fitting algorithms
can be initialised with the LMI solution. Monotonic/gradient-
descent setups from such an initial solution provide controllers
with lower Bellman residual than the parameters they were
initialised at, without the risk of divergence of traditional PI/VI
(PI/VI can also be tested under the proposed parametrisation).
Preliminary versions of some ideas in this respect appear in
[26], [27]. In a somehow similar philosophy, the paper [28]
also bridges control-theoretic virtual-reference tuning and Q-
learning.

The structure of the paper is as follows: Section II in-
troduces necessary preliminaries of the paper and states the
problem. Section III describes our methodology proposal.
Section IV discusses the proposals on Takagi-Sugeno model
identification and guaranteed-cost LMI controllers. Section V
proposes a fuzzy Q-function parametrisation arising from the
LMIs and an improved one-step controller. The Q-function
parametrisation is generalised in section VI. Section VII
discusses the generic optimisation approach to temporal-
difference error minimisation and presents a summary of previ-
ous ideas onto a methodology proposal. Section VIII evaluates
such methodology both in a simulation case study and an
experimental inverted pendulum setup. Some conclusions are
given in Section IX.



II. PRELIMINARIES AND PROBLEM STATEMENT

This paper will consider nonlinear discrete-time systems

Tt41 :f(xt7ut)7 (D

with x; € X C R" and u; € U C R™ being the model

validity and input constraint region, where n, and n, are

the number of states and inputs, respectively. Without loss

of generality, we will assume that (z,u) = (0,0) is an

equilibrium point, i.e., f(0,0) = 0. By assumption, the above

system will be controlled by a state-feedback policy u = 7(z).
Let us define the value of a policy 7(z) as:

VT(z) == Z’Ytr(xt,ﬁ(xt)) (2)
t=0

where xg,x1,..., is the trajectory of (1) under u; = m(x¢)
with initial condition o = z. In (2), 0 <~ <1 is a discount
factor, and r(-,-) is a function r : R% T« s R* of state and
input known as immediate cost.

The control objective will be driving the system towards
the origin so, by, assumption, r(0,0) = 0 and r(z,u) > 0
for any (x,u) # (0,0). V™ (z) can be seen as the expected
return (cost) if policy 7(z) were used at all times from initial
condition x.

Optimal control problems for the above system are usually
stated as obtaining an optimal policy « = 7*(x) such that,
given z, the following cost index is minimised:

m(x)* = arggrneiﬁl V7 (x) 3)

In general, the above problem is solved by searching for
the optimal 7 in a suitable set of functions II, usually a
parameterised function approximator IT := {¢(x,0) : 6 € ©}
so the optimal 6* is sought in a given parameter set ©.

A. Dynamic programming and Q-function fitting
From (1) and (2), we can write the well-known Bellman
equation,

Vi (x) = r(z, m(2)) + V7 (f(z,7(x))). @)

In addition to the value of a policy, the so-called action-
value function Q7 (x, u), also known as Q-function, is defined
in [29] as the return for a given state and action if policy 7
where applied from the next instant onwards:

Q" (z,u) :==r(z,u) +yV™(24), )
being =4 = f(z,u).
For a given policy 7 (x), holds V™ (x) = Q™ (x, w(x)); thus,
the Q-function fulfills the Bellman’s equation:
Q" (z,u) — (r(z,u) + Q" (4, 7(x1))) =0, (6)

and the optimal Q-function fulfills:

Q™ (x,u) — <r(x,u) + VrzlinQ”*(er,uQ) =0 (7

In the literature there are quite a few iterative algorithms to
estimate the optimal policy, based on dynamic programming
[30] and reinforcement learning [3], such as value iteration,

policy iteration, actor-critic setups, etc. Most of them reduce
to Riccati equations (or iterations converging to the Riccati
solution) for the linear case in model (1), see [8]. Let us outline
the basic ideas of some of these algorithms which will be later
used and compared.

a) Policy iteration (PI): It can be proved that, given a
suboptimal policy 7 (z) and its action-value function Q7 (z, u),
we can define an improved policy given by

(z) = argmin Q™ (z, u), (8)

Also we can prove that [31]:

Q" (x,7(z)) < Q" (z,m(x)) )

The next step in the referred algorithms is obtaining an
expression Q7 (z,7(x)), denoted as policy evaluation, under-
standing (6) as a system of equations that the Q-function
must fulfil for all (state, input, successor state) triplets. The
interleaved policy evaluation and policy improvement steps
are denoted as policy iteration [8] algorithm.

If the set of states and control actions are finite, then a mere
lookup-table implementation of Q™ (z,u) can be used [32],
[10]. In continuous-valued state and input spaces, function ap-
proximators Q™ (z,u) = Q(x,u,0™) are needed. Usually, with
Q(x,u,0™), equation (6) cannot be fulfilled and minimising
the norm (integral over state+action space) of its (squared) left-
hand side is denoted as Bellman residual minimisation (BRM)
[12], [13]. As the parametrised version? of policy improvement
(8) ends up being:

w(x,0™) ;= arg min Q(x, u, 67) (10)

the so-called fitted policy iteration is described in Algorithm
1: from an initial stabilising policy 7 (z, 6y), its BRM policy-
evaluation (11) yields 6, so #(x,#;) is obtained, and so on.
The norm notation || - || indicates the integral of the square
over X x U.

b) Value iteration (VI): Another alternative to find an
approximately optimal Q-function is iterating (12). The dif-
ference with (11) is that both Q-function and policy are using
the parameter from previous iteration.

Fitted PI/VI are well-developed techniques; the reader is
referred to [11], [33], [34], [12], [13] for further detail.
However, it is well known, too, that these iterative approaches
do not converge in a general case [14], and only very restrictive
lookup-table-like parametrisations guarantee convergence [11].

When converged, both algorithms would end up in the
iteration fixed point given by the following Bellman residual
minimisation:

0" = argmein 1Q(x, u,0) — r(x,u) — vQ(x+, T (x4, 0),0)]|.

(13)
So, conceivably, it might be carried out with any technique, not
necessarily fitted PI/VI. This option is not without problems, as

2Note that the policy in (10) has been intentionally expressed as a
parametrised expression depending on 67™. Actually, in many cases, such
parametrisation is implicit, i.e., 7 is obtained as a numerical solution of
the optimization problem at the right-hand side, instead of a closed-form
expression in z and 6™. The parametrised notation is of interest for later
developments in this work.



the chosen algorithm and initialisation may influence conver-
gence, or getting stuck in spurious local minima. These issues
may arise even in the case when the ground-truth optimal value
function can be parametrised by Q(x, u, 8), see section VIII-A
for an example of such behaviour with a linear system.

If Q(z,u,0) := &(x,u)d, ie., the value function approx-
imator is linear in parameters 6, then problems (11) and
(12) can be easily stated as standard linear least squares
optimisation. However, this will not hold, in general, with (13).

B. Problem statement

As above discussed, fitted PI/VI or generic minimisation
(13) need a careful choice of approximator structure (regres-
sors) and initial parameters; otherwise, the learning algorithm
may not converge or, even if it does, a suboptimal or even
non-stabilising controller can be obtained.

The objective of this paper is to propose a methodology,
based on fuzzy optimal control for TS systems, to address
the above issues in applications of dynamic programing or
reinforcement learning.

In addition to this, it would be of interest in applications
to choose a parametrisation of Q(x, u, #) such that an explicit
closed-form solution of 7 can be derived, to avoid the need
of real-time optimisation or large memory requirements and,
too, speeding up the computations.

Our proposal will use data-based Takagi-Sugeno identifi-
cation, fuzzy LMI-based control, and BRM to achieve the
mentioned goals.

III. METHODOLOGY PROPOSAL

This paper will present a series of ingredients to build up a
methodology proposal mixing model-based and data-based Q-
function fitting approaches, in the line expressed in the above
problem statement.

The said ingredients will be as follows:

1) Fuzzy TS modelling and identification, with the ob-

jective of building a model so that (sub)optimal fuzzy
controllers can be build upon it.

Algorithm 1 Approximate (fitted) policy/value iteration

1: Set an initial parameter 6.
2: Using the policy-improvement definition (10), solve one
of the optimisation problems*:
[policy iteration ] - -
0i+1 ‘= arg H%in ||Q(l‘, u, 9)—T($, u)_'YQ(I-‘rv ﬁ($+, 97,)7 0)”
(1)
The initial parameter in the policy iteration case must yield a stabilising

policy 7 (z, o), ensuring that Q(z,u,61) > 0 for all (z,u) € D, see
[31].
[value iteration]

01+1 = arg méin ||Q(1‘7 u, é)—r(x, U)_'}/Q(«IJ,-, fr(‘r-ﬁ 97,)7 97,) ||

(12)

3: If ||0;41— 0] > e, seti =i+1 and go to step 2; otherwise
STOP.

*Note: in exact policy/value iteration algorithms [3], [11] the minimum achieved norm

would be zero. Note also, that the policy has been expressed as the parametrised
expression (10), even if such parametrisation may be implicit, see footnote 2.

2) The referred fuzzy controllers will be computed with the
so-called guaranteed cost solutions in literature which,
using Linear Matrix Inequalities (LMI) can provide an
upper bound on the value function Q.

The above LMIs can only optimise over Q-function
parametrisations in quadratic form. An improved con-
troller will be found by solving one step of the Bellman
equation.

A more general fuzzy parametrisation of the Q-function
will be proposed in Section VI, and its optimisation via a
generic (monotonic descent) optimization algorithm will
be discussed. In this way, conservatism over LMI results
can be reduced.

3)

4)

With all these tools, we can craft a methodology in which an
initial model-based approach based on fuzzy-TS models can
be a very good starting point for data-based fitted Q-function
approaches: with good LMlI-based initialisation, the second
stage can avoid getting caught at spurious local minima and,
also, if monotonic optimisation is used, the LMI result can be
improved even in the case PI/VI were not convergent.

Remark: Instead of the actual norm in (11)—(13), minimisa-
tion of these Bellman residuals will be carried out using the
finite sum over a set of points in a dataset D composed of
triplets (z,u,xy), being x the successor state. The dataset
can be obtained either by simulation or by experimentation.
So we need exciting the system with an input sequence
{up,u1,...,un} and collect {zg,...,zn+1}. The dataset
will be arranged as :

D := {(zo,u0, 1), (x1,u1,22), ..., (N, un, Tn41)} (14)

Experiment design in such situation may be an important issue,
as the relevant region of the state and action space should be
well explored. Nevertheless, these issues are out of scope of
the present work. Note that the collected data do not need to
be generated with any of the policies involved in Algorithm
1, i.e., the proposal is an off-policy learner [3].

IV. TS MODELS AND GUARANTEED COST CONTROLLERS

This section will review prior results which will be part
of our proposed methodology for engineering applications of
fitted Q-function algorithms.

A. Takagi-Sugeno modelling and identification

If f(x,u) in (1) can be expressed as f(z,u) = h(z)+g(z)u,
and h(z) has continuous first derivatives, then the nonlinear
system can be exactly modelled using sector nonlinearity
based on Takagi-Sugeno fuzzy models [20], [35]:

P
Tyl = Z,Ui(xt)(Ail't + Biut) = Apgas + Bpue  (15)

i=1
being p(x) = {pi(xs),...,up(xr)} a set of p = 27
membership functions with p nonlinearities, where
P
Zﬂi(xt) =1, 0<pu(e) <1 (16)

i=1



and the notation Ay, := >0 | pi(x¢)A;, and similarly for
B, has been introduced for compactness.

The above technique is a model-based one, however in the
learning approach considered in this manuscript, we pursue a
data-based approach. Hence, the TS models will be identified
from experiments.

We will assume that a preliminary theoretical model exists
for the process under control, so that the membership functions
can be extracted from it. If such memberships are known, then
the dataset D can be used to identify the vertices of the TS
model, because (15) can be written as:

pi1 (@)
pia (e g
Tep1 = (A1 B A, Bp) : 17)
P ()T
P () U
Now, if we form matrices:
X = (1’1 To... xNH)nsz (18)
p (o) o pi(zn)TN
p (o) uo p1(zN)un
I':= (19)
tp (o) o pp(TN)TN
molzo)uo - pplaenun) o oo
the least-squares estimate of the model matrices is:
(A, By A, B,)=TTx (20)

where T'f denotes the Moore-Penrose pseudo-inverse.

In the case where no preliminary model exists and there
is no prior insight on which membership functions are the
involved, we have a pure black-box identification problem
that might need clustering, non-linear model fitting, etc. These
issues are, intentionally, out of the scope of this work; the
reader is referred to [36], [37], [38], [39] and references therein
for details.

B. Guaranteed-cost control

It is well known that a suboptimal control policy for a TS
model and an upper bound of its value function can be nu-
merically found in a very efficient way (convex optimisation)
using LMIs [20]. The fact that these LMIs provide only an
upper bound of the cost motivates that these algorithms are
known in literature as guaranteed-cost design methods.

These methods, derived from the LQR techniques, require
a quadratic cost index:

r(z,u) = 2T Hyx +u’ Hyu 2n

thus, this immediate cost structure will be assumed in the
sequel.

The aim of LMI approaches is to find a positive-definite
matrix X that overbounds the optimal value function, with
guaranteed-cost:

VreMt (p) = T X 7l > VML (g) > VT (2). (22)

where the LMI policy 7parr(z:) is fixed to the following
structure, known as parallel-distributed compensator (PDC):

p
moymr(x) == F[H]X_l Sx = — Zui(m)FiX_lx, (23)
i—1

F;, X being the decision-variable matrices to be found by
solving a set of LMIs:

L(i,§) >0 Vj=i (24)
25(_%? + L(i,7) + L(j,i) >0 Vj > (25)

with,
X X F; (AP - BiFj)

J
(PAT —FTBT) 0 0

where (25) is a relaxation to avoid double summation of the
Lyapunov equations [40].

The proof of the above assertion appears in the Appendix. In
fact, it is a straightforward adaptation of the well-known undis-
counted v = 1 expressions in literature. Furthermore, gen-
eralisations to non-quadratic cost bounds V(z) = «" X, ]195
can be also thought of [41], [42] but, for brevity, they are
left to the reader. The goal of the TS framework will be
providing a reasonable initialisation for further data-based
learning improvements; actually, the final result will have
membership-dependent value functions and non-PDC con-
trollers even if the initial LMIs have membership-independent
Lyapunov functions.

X

V. IMPROVED TS GUARANTEED-COST CONTROLLERS

Now we will present a so-called one-step controller which
will improve the performance bound from LMIs based on the
evaluation of the Q-function arising from the LMI solution.

Let us first discuss how the action-value function relates to
Lyapunov functions in a linear discrete-time case. Consider
f(xt,ug) in (1) be:

Tiy1 = Axy + Buy,

under a linear state feedback law u; = 7(z;) = —K7xy. It is
well known that the value function V'™ is quadratic, in the form
V™ (x) = T P™x, where P™ is the solution to the Lyapunov
equation associated to the feedback gain:

P"—H, — (K" )" H,K™ —~v(A— BK™)" P"(A—BK™) =0

(26)
coming from the Bellman equation (4). From V'™, it can be
proved that the Q-function in a linear case is, too, quadratic,
because replacing the model and value functions in (5) we
get:

o[ [0 £ () ol

_ mT { H, +vATP"A ' 4ATP™B } m

o [ HatgdPTA
2] [Sew ST [«
=[] 5 sal] e



As (27) is quadratic in wu, straightforward differentiation
obtains the explicit solution for the improved policy 7 in (8):

f(x) = =S Syy - T = —K™z. (28)

Alternatively, a matrix-based proof of the fact that 7(x)
improves over 7(x) appears in the Appendix.

Obviously, if K™ = K™ we have converged to the optimal
controller. Thus, policy iteration evaluates repeatedly (26), (27)
and (28) until convergence.

A. Fuzzy Q-function

Based on (27), we can extend to a TS case the above
argumentation. Instead of a Lyapunov equation, in a TS case
(22) provides an upper bound V™M1 (z) of the cost function
of a fuzzy controller 777 (x) given in (23) obtained from
LMIs. Analogously to the linear case, we can assert an upper
bound of the Q-function given by:

T
QﬂLMI (x,u) = |:Z:| S[/J2] |:$:| (29)

u

being S[,2; a matrix, depending on membership functions,
which is partitioned analogously to (27) with:

Sip2),ze = Hy +WZM2 AT - X1 Z,U/z )A;  (30)
—vZul )B - X! Zuz (31)
S :—WZM )B - X! Zuz )Bi + Hy (32)

Note that elements of matrix S|,2; are quadratic polynomials
in the membership functions, which motivates the introduced

subscript [,,2) notation.

B. One-step controller

Now, using (28) and replacing the S},2) matrix from (29),
the resulting controller is a rational function in the membership
functions (with degree-2 numerator and denominator terms):

™ (a:) = _(S[#Q]’uu>_1

Invertibility of the required matrices is guaranteed if H, > 0.
We can prove that the worst-case performance (upper

bound) of 71 (x) improves over mp7(x). Indeed, an upper

bound of the value function of 71 (z) can be computed as:

S[;ﬁ],ux - X. (33)

VA (2) = 27 | S}z ee — S[T,,QWS[;%WS[MQW -z (34)

The proof of the above is straightforward, by substitution of
(33) in (29). From (34), a proof that V71 (z) < V™t (1) can
be found in the Appendix.

The feedback law (33) will be denoted as one-step con-
troller. Thus, we have proof that the performance bound
V7 (z) is better than that of the PDC fuzzy controller (23),
and it is directly obtained from the LMI decision variables and
vertex model matrices.

Note that both the classic PDC and the one-step controllers
are shape-independent [35], in the sense that, at design-
time, no specific knowledge about the shape of the pu;(x)
functions is needed. Thus, our first proposal is to actually
use (33) in applications, instead of (23) as its implementation
is straightforward and it provides an improved performance
bound.

VI. Q-FUNCTION PARAMETRISATION FOR
TAKAGI-SUGENO SYSTEMS

Inspired in the polynomial-in-memberships expression (29)
for the Q-function of the one-step controller, we will propose
a generalisation of it in order to apply fitted Q-iteration and
related algorithms to achieve further improvements.

In our proposal, we will set @ to be a polynomial-in-
membership expression with arbitrary degree d (homogeneous,
with no loss of generality). A monomial of degree d in
variables 1 € R” will be represented as:

P

a ,__ a;

-
=1

for any multi-index vector a := (ai,...,a,) such that
la] := >>%_,a; = d and each q; is a non-negative integer.
Dependence on x of the elements of x has been omitted for
notation compactness.

An homogeneous polynomial of degree d, denoted as =4,
will be the sum of all these monomials multiplied by a real

coefficient, i.e.:
Z /v‘aga
la]=d

(35)

(36)

E[Md] =

where &, conforms a d-dimensional coefficient tensor. Using
a similar notation for monomials in x and u, we can express
the value function bound (29) as:

QTEMI (g, u) = T[uz](m, U, qLmr) = E Maﬂ?bucqabc
la] =2
b+c|l=2
(37)

for some values of the coefficients gapc Which can be
obtained in a straightforward way from (30)-(32). Notation
qra1 denotes the vector containing all gapc in any prescribed
order.

Note that (37) is linear in the coefficients gapc, thus we
can think on gr ;7 as a parameter vector and T a linear-in-
parameter approximator. Thus, the proposal at this stage is
identifying the learnable parameter vector 6y = Grps; thus
initializing it at the LMI solution. With this initialisation, we
may start an iterative Q-function optimisation procedure with
the parametrisation Q(x, u, ) = Y,2)(z, u, #), with a total of
1p(p + 1) (g + ny)(ng + ny, + 1) adjustable parameters.

In fact, the value function approximator can be generalised
to a higher-degree homogeneous polynomial in the member-

ships:
la] =d
|b+c|l=2

T[ud](aj,u,@) = /-lal'buc(Zabc (38)



and the initial parameter value can be obtained from the
coefficients resulting from multiplying the terms in (30)—(32)
by (3, 1:)%2 (or (3, p;)? in the case H,, and H,).

As an example, in a system with d = 3, p = 2,
T1ya)(z, u,0) would yield the following expression:

Ty (w,u,0) = (@7 ul) (43S0 + pinaSye 2

i1k So) 3 + HaS(s,a) (2) (39)

Partial derivatives of the memberships may be added to
the parametrisation, too, [27]. Of course, a last generalisation
would be adding to Y'(,4) any approximator (a neural network
NN(z,u,0nnN), for instance), with its parameters initialised
to zero output. In this way, LMI-based initialisation would
still be possible. Even if, in theory, such option would offer
greater flexibility, this NN approach will not be further pursued
because it would, in a generic case, hinder obtaining explicit
expressions of the controller (10) in the policy-improvement
step. The lack of an explicit controller would slow the learning
algorithms due to nested numerical optimisation and possibly
cause convergence issues. Also, given that the scope of this
paper is exploiting the partial knowledge of the nonlinear-
ities (embedded in memberships) and LMI information for
TS systems, we are, intentionally, leaving neural function
approximators (or any other unstructured generic option) out
of the scope of this work. For neural-network optimal-control
applications of the concepts in this paper, the reader is referred
to [32], [2], for instance. Kernel-based function approximators
and Gaussian processes might also be used in reinforcement
learning [43], [44].

VII. A GENERIC-OPTIMISATION APPROACH

An alternative interpretation of the fitted Q-function objec-
tive would be, as discussed in Section II, directly solving (13).

The above can be conceived as a generic optimisation prob-
lem: actually, Algorithm 1 can be interpreted as an iterative
way of solving it, but any other iterative numerical optimisa-
tion algorithm in literature (gradient, Levenberg-Marquardt,
Nelder-Mead, ...) may be equally used. Thus, under this
interpretation, the relevant result of learning is a parameter
value achieving good accuracy in the cost index in (13),
independently of the the actual algorithm used to compute
it.

The Q-function parametrisation proposed in the previous
section allows to obtain an explicit expression for 7, hence-
forth of the Bellman residual, that avoids nested optimisation
and eases the optimisation steps.

For instance, the gradient with respect to 6 of the Bellman
residual inside the norm in (13), denoted as e(x, u, ), can be
computed as follows:

e 0Q 0Q, . 0Q, . on
%*%(Lu’o)*“Y%(lﬁmﬂﬁ) *’Y%(I%W,o)% (40)
~————

Q

On the other hand, if no explicit expression for © were
available, as 7 is optimal, the value function must fulfil

g—g(er,ﬁ,H) = 0. Using a quadratic Taylor-series approxi-
mation of Q(x, 7 + 67,0 + 66) and taking derivatives of it
with respect to é7, and equating to zero (optimality of &),
after some manipulations, the derivative of the optimal policy
required in (40) is:

or  (0°Q\ ' 9°Q

00 <8u2) oudl
In this way, we have completed the computation of the gradient
of the Bellman Residual.

Note that, in policy-evaluation BRM approaches [12], i.e.,
the gradient involved in (11), we have ) = 0; thus, the policy-
evaluation gradient does not move the parameters in the actual
gradient-descent direction implied in (40).

In addition to this, it is well-known that convergence
(numerical stability) of generic optimisation tools may be a
problem; indeed, this is often the case with PI and VI which
require restrictive contraction-related conditions recalled in
Section II-A. Contrarily, state-of-the-art optimisation tech-
niques incorporate variable step-sizes, intermediate line search
stages, etc. greatly improving its numerical stability [45]. In
the examples in Section VIII, Matlab has been used to carry
out the optimization, using the default quasi-Newton plus line-
search algorithm of fminunc, as well as the simplex Nelder-
Mead in fminsearch.

Nevertheless, when generic nonlinear optimisation is con-
sidered, it is well known that many of the algorithms in
literature can easily get trapped in spurious solutions (local
minima). A good initialisation is essential for succeeding in
finding a good optimiser #* in this case; this is why our
methodology proposes LMI-based initialisation®.

(41)

A. Summary

Given the above issues, our proposal outlined in Section
VII-A and developed in sections IV onwards can be sum-
marised as:

1) From preliminary theoretical insight, identify the most
relevant nonlinearities and build the associated member-
ship functions.

2) Identify a TS model, as proposed in Section IV-A.

3) Obtain a guaranteed-cost LMI controller, Section IV-B.

4) Build the fuzzy Q-function (29) based on the LMI
solution.

5) Initialise a monotonic optimisation algorithm with the
above Q-function decision variables, and perform the
optimisation of (13).

The reason of proposing the last monotonic optimisation
step is to ensure that the result of our proposal will, at
least, improve over the conservative LMI solution in the
cost index of (13) without convergence problems. Note that,
however, PI/VI (Algorithm 1) using the initial LMI solution
might also be a sensible option. Furthermore, greedy search

30Obviously, global optimisers using, say, evolving algorithms or other
population-based ideas [46], [37] might avoid the need of a good initialisation.
However, their computational efficiency with large parameter sets is usually
worse than the Quasi-Newton or Nelder-Mead options, so these options will
not be further discussed.



TABLE I
INVERTED PENDULUM MODEL PARAMETERS
Model parameter ‘ Symbol ‘ Value ‘ Units ‘
Pendulum mass M 2.40 kg
Center of gravity length L 0.30 m
Friction Coefficient I6] 0.35 | kg-m?-s!
Pendulum inertia 1 0.272 kg - m?
Gravity g 9.81 m-s?

or population-based directed random search (genetic, swarm,
etc.) techniques may be used instead of the suggested mono-
tonic optimisation. However, these algorithms are much slower
than derivative-based options, so they are not proposed as a
first-choice option.

VIII. CASE STUDY: INVERTED PENDULUM

This section will present a case study using an inverted
pendulum where the previous proposals will be illustrated.
First, simulation studies with a theoretical model will be
addressed. Later on, experimental identification and learning
on an actual pendulum will be tested.

The objective of these examples will be showing the ad-
vantages of our proposed methodology (LMI initialisation +
monotonic optimization) with respect to the other alternatives
reviewed in previous sections. In particular, a simulation of
an ideal linearised setup will show that VI/PI (Algorithm 1)
may fail even if the function approximator includes the true
value function (known to be quadratic in this case). In fact,
even the BRM may fail if wrongly initialised, as shown there.
Examples show, too, that with LMI initialisation, in case PI/VI
are convergent they converge to basically the same solution as
the monotonic BRM optimization.

A. Simulation examples

Consider an inverted pendulum model with 1 degree of
freedom discretised with forward Euler approximation:

Olt+1 = Q¢ —+ 60[,5 (42)

. . uy — Boy + MgLsin(«

at+1 :Oét‘f'(s t /6 t I g ( t) (43)
with z; = [ay &y]T where oy is the beam angle and ¢ its

velocity, M the mass, L length of the bar (and the position of
the centre of gravity), S the friction coefficient, I the inertia
and 9 = 0.01 s the sampling time; see Table I for numerical
values of physical parameters.

Linearised case: Now, the linearisation of the inverted
pendulum (42)-(43) system is considered. Specifically, we will
linearise the equations around the vertically upward equilib-
rium position, a; = 0. So, the resulting linearised system is

Tiy1 = Axy + Buy (44)
with:
1 0.0100 0
A= [0.2598 0.9871} B = [0.0368] “5)

The control problem will be stated using the quadratic cost
(21) with:

H, = diag([100, 10]), H, =1

and the discount factor will be set to v = 1, so it is a standard
LQR setup.

The optimal solution for the above-stated quadratic cost
problem is well-known, as well as the fact that the true Q-
function is quadratic in states and control inputs. The actual
LQR solution is:

Q" (z,u) = 6350.827 + 140.1623

+1272.821 29 + 42.88z1u 4+ 9.2525u + 1.165u> 46)

Thus, if we define the following linear-in-parameters ap-
proximator:

61
Q(z,u,0) = [p(x) p@)u o(@)u?]- |6 47
03
for some unknown parameter vector 6 := [07 61 61] and
regressor vector ()
o(x):=[z] zimy 25 x1 22 1] (48)

then, this choice of Q(x,u,0) with 18 adjustable parameters
can exactly fit the optimal LQR Q-function if the 6 parameters
multiplying 2%, z179, 23, T1u, Tou, u? are non-zero and the
remaining 12 are zero.

The objective of this subsection is showing that even in
this idealistic situation (linear process, true model of Q in the
model set, i.e., the function approximator for () includes the
LQR solution), the PI/VI (Algorithm 1) or local optimisation
approaches (Section VII) might fail.

In order to show these drawbacks, we have initialised the
parameter vector § to the following values:

6) = [6342.3 163.7 1329.4 —0.216 0 0]
6, =[0004239.270]"

03 = [0.051 0.002 —0.061 00 0.359}T

With these parameters, the resulting controller from (10)
was slightly nonlinear but, nevertheless, it was shown to be
stabilising when starting in several simulations with random
initial conditions with x; € [—m, 7], 22 € [-15, 15].

A dataset (14) was generated from an equally-spaced grid
in the above position/speed region, as well as a similar grid
in the interval for control action v € [—120, 120].

Applying Algorithm 1 with the above dataset, approximator
and initial (stabilising) parameters, it can be shown that neither
VI nor PI versions of the algorithm converge to a stabilising
controller (details omitted for brevity).

Additionally, using fminsearch or fminunc functions
from Matlab Optimisation Toolbox Version 7.6 (R2017a) to
solve problem (13), the objective function gets stuck on a local
minimum and the resulting controller is not stabilizing, even
if the original one was.

In summary, PI and VI algorithms cannot provide a valid
controller despite of having a linear system with an initial



stabilising controller and a Q-function approximator able to
represent the true LQR solution. Of course, such divergence
can occur in many other situations [14]. Also, generic optimi-
sation may give useless results if not properly initialised.

Proposed fitted Q-function methodology: In the model (43),
the nonlinearity is given by the sinusoidal function and the
membership functions for the TS model are:

sina/a—sin(maz)/Amax

= 1—sin(@maz)/¥maz
pa () { 1

p2(x) ==1— pi(x)

ifa#0
ifa=0

with ay € [—Qmaz, ¥max] 1ad. and @, = 7. Model vertex

matrices are:
1 1) 0
A= |:6I\/IgL 1 ,86} ) B, = {5] ;
1 T
0
5 [0]
T

T
The LMI controller for the same problem as in the linearised

1 0

Ay =

=l Ty

case provides the following bound for the value function:

= 7598.37 588.28
TLMI —_ .7
vrei(z) =« {588.28 130.05} v “49)
and a policy* from (23):
Frar(z) = — [19.19972 4.25071] z. (50)

From the LMI output in (50), the resulting matrices for the
one-step controller (33) are:

7698.37 + 305.6501 (x)+  656.69-+
Sz e () = +8.77712 () +34.88)1 ()
656.69 + 34.8811 () 149.1

Sz ua (@) = [21.63 4 124 (x)  4.93]
Siz)un(z) = [1.17]

where (o has been replaced by 1 — p; so only p appears.
This provides an improved one-step controller yielding a
fuzzy policy:

#1(x) = — [18.39977 + 1.05675; ()  4.19946] =

Figure 1 represents the ratio between the actual performance
of the one-step and LMI controllers, evaluated by a simulation
from a grid of different initial conditions. Note that the figure
plots actual 300-step “measured” performance (2), and not the
performance bounds V™M1 (z) or V7™ (x) in (34). Thus, the
proposed one-step controller slightly improves performance up
to 2% in some states over the LMI solution (50).

One-step controller will be further improved via fitted Q-
function algorithms using a dataset D, with N = 1000
samples equally spaced on the interval oy € [—m, 7] rad,
&, € [—15,15] rad/s and u; € [—120,120] N-m using the
nonlinear model in (42)-(43).The fuzzy Q-function approxi-
mator (38) was set to d = 2, and initialised with (30)—(32).

“4In this case, the particular model and cost index parametrisation results in
a linear state-feedback controller, because the LMI solver outputs F7; = F5.

1.005
1
0.995
0.99
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U

Q

Fig. 1. Ratio of measured performance of one-step controller with respect to
the LMI controller.

Then, using fminunc’optimisation of (13) the Q-function
approximation converges to:

T
x x
Q(;v,u) ~ (u> (S[#z]) <u) (51)
with:
4736.7 — 6887.6p1 (z)+ 319.4 — 586.641 (x)+
g _ 2089.5u1 (z)? 208.2411 (z)?
[w2]02 319.4 — 586.6y1 (x)+  104.8 — 121.64; (x)+
208.2411 (z)? 81.61 ()2
g _[10.6 — 1729 (x)+ 3.5 — 3.6p1 (z)+
[w?]ue = 5.2u% () 2.3y ()2

S[uz],uu = [1.1 — 0.4/1,1(33) + 0.3/,61(1‘)2]

and, as a result, the controller (8) yields the following rational-
in-memberships controller:

5.2657 12 (x:)+6.6635.1 (z;)+10.643 T
0.0902612 (21)—0.048143 111 (w4 )+1.12789
2.63982 () —1.33381 (24)+3.46478
0.090264:7 () —0.048143 11 (w4)+1.12789

7?('#2($t):— c Tt

If we compare this learnt controller against the initial one,
we can see that there is a performance improvement of around
15% in some states, as shown in Figure 2.

If the procedure is done with a Q-function approximator of
degree d = 3, the result is practically identical in this example
as the one with d = 2, so a degree increase does not seem
worthwhile for this particular application.

As an alternative, using policy iteration Algorithm 1 from
the same initial parameters (i.e., obtained with LMI and
one-step controller) yielded basically the same solution, as
discussed in our previous work [26]: LMI initialisation is a
convenient option per se, whatever the later tuning steps are.
However, our proposal has a guaranteed Bellman residual
descent from an already sensible LMI solution, whereas PI
does not.

Summarising, the proposed methodology for Q-function
parametrisation and initialisation is able to achieve improved
controllers with respect to the LMI solution in this process.

5According to Matlab’s documentation, fminunc implements a quasi-
Newton plus line-search monotonic descent algorithm.
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Fig. 3. Inverted Pendulum for experiments

B. Experimental evaluation

Now, we will apply our proposed methodology in Section
VII-A, from scratch, to a dataset obtained from the 1 DoF
pendulum in Figure 3, including identification steps.

The hardware is an inverted pendulum mechanism consist-
ing of an electric motor, which actuates a link with a bar. A
power drive is able to operate the motor in the range +12 V. A
position sensor based on an Hall effect encoder is used for data
acquisition. Control sampling period was set to § = 10 ms and
the position sensor was operated at 1 ms sampling period. The
controller was fed with filtered position/speed data (every 10
samples) coming from a Kalman filter for a double-integrator
model. Dataset acquisition is performed in real-time using a
NI myRIO-1900 embedded device by National Instruments
and LabVIEW 2015. The learning algorithm phase and data
processing were implemented in Matlab R2017a.

Also, as there was a significant actuator dead-zone due to
Coulomb friction, such dead-zone was compensated as follows

Uqg = U+ Ucomp
if |u| < k1,

0,
Ucomp = { ko - sign(u), otherwise
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Fig. 4. Position dataset for identification and learning.

where k; and ko are 1% and 15% of input range respectively,
and u is the output of the controllers to be designed whereas
u, is the actual voltage applied to the motor. Note that, as
intuitively expected, there will be some chattering in control
input when the state is close to the equilibrium. The chattering
appears due to the combined action of disturbances on an un-
stable system and the sign function in the above compensation.

As the pendulum is unstable, we need an initial stabilising
controller to be able to collect any significant amount of data.
Thus, the PD controller u = —60 * (& — oipep) — 1 % & was
implemented to gather the dataset.

A dataset of 7200 data points (72 seconds of experiment)
has been collected using the above PD controller and a varying
set-point signal. In addition to the control action of this PD,
we added a Gaussian noise with standard deviation 5% of the
actuator range to generate some extra excitation, as typically
required in identification and learning techniques. The sample
time T is 10 ms. The set-point and actual pendulum angle is
shown in Figure 4.

Thus, according to the proposed methodology, we will
obtain first an identified TS model, second and an initial
model-based stabilizing control law using LMIs, for a later
third stage of data based tuning.

c) Identification and model-based LMI controller: Ap-
plying the identification method proposed in Section IV-A the
estimated matrices are:

A, — 10019 0.0097 5. — [0-0001
17 10.3312 0.9718 L7 10.0220
A4, — | 1.0002 0.0097 5, — |0-0001
27 1-0.0156  0.9529 27 10.0131

The quadratic cost index was set with H, =
diag([100, 2.5]), H, = 0.15 and v = 1 for the discount
factor. The LMIs provide the following bound for the value
function and its associated state feedback policy:

(52)

VTFLJWI (.TJ) < Z‘T |:40504 3601:|

360.1  60.4

WLM](I) = — [411 58] x
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Fig. 5. PD (yellow), LMI (blue) and learning (red) controller trajectories from
xo = [1.6,5.2]T. Recall that position and speed figures have been obtained
from a 10x oversampling Kalman filter which averages measurement noise.

These computations with the identified TS model will be only
used to initialise the function approximation for data-based
fitted Q-function, to be discussed next.

d) Data-based fitted Q-function tuning: After these
model-based initial stages, finally, a data-based optimisation
with fminsearch (which implements variations of simplex
Nelder-Mead monotonic descent algoritm [18]) is carried out
(obviously fminunc may also be used, as done in the
simulation examples, but we chose fminsearch to illustrate
another option).

The said optimisation minimises the sum of the squares of
the Bellman residual, i.e., (13), over the same experimental
dataset used for identification (Fig. 4) arranged as in (14), so
the second phase of the Q-function fitting is model-free. The
linear-in-parameter fuzzy Q-function approximator was (37),
initialised with the LMI solution.

The resulting controller using the Fuzzy fitted Q-function
algorithm converges to the following controller (rational in
the membership functions):

—9.172 (z)+6.19u1 (x)+7.91 T
—0.36p2(x)+0.33u1(z)+0.18

—1.122 () +0.9411 () +0.98
—0.36p2 (2)+0.33p1 (x)+0.18

7%[”2](33) = — T (53)

From the initial state 2o = [1.6,5.2]7, Figure 5 show the
position, speed trajectories and control input. For the sake
of comparison, the trajectories for the initial PD, the LMI
controller and the final learnt one (53) are all plotted.

In order to show the actual experimental cost index perfor-
mance, Figure 6 depicts the accumulated quadratic cost for
the three compared controllers.

IX. CONCLUSIONS

In this paper we have presented a fuzzy fitted Q-function
methodology to obtain approximately optimal controllers
based on Takagi-Sugeno systems.

The method first proposes to identify a fuzzy model based
on collected data, incorporating partial model information via

x10%

Cumulative Cost

o

0.5 1 15
Time(s)

Fig. 6. Cost performance of PD (yellow), LMI (blue) and learning (red)
controllers.

the memberships arising from sector-nonlinearity TS theoret-
ical models. Second, a guaranteed cost controller based on
LMIs can be designed for the identified system. Last, based
on this controller, we can use it to initialize a fuzzy function
approximator of the Q-function and apply Q-function fitting
algorithms from the same dataset used in the identification
phase. The Q-function fitting step can be carried out with
standard policy/value iteration or, alternatively, if there are
convergence problems, via generic (monotonic) optimisation
algorithms. Examples illustrate that the methodology proposal
(LMI initialisation plus monotonic optimization) is advan-
tageous with respect to standard PI/VI (which may have
convergence issues) or BRM (which may converge to a local
minima if not properly initialised).

This methodology combines model-based optimal control
(via identification) with data-based learning. We have shown
that the proposed initialization (guaranteed-cost controller for
the identified TS system) can be considered a good starting
condition for most fitted Q-function algorithms. The paper
presents results both in simulation and with real experimental
data from an inverted pendulum.
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APPENDIX

The LMIs (24) and (25) come from replacing the Bellman
equation (4) by an inequality

V™ (x) > r(z,m(z)) + V™ (x) (54)

so that the value functions V' that fulfil it are only upper
bounds of the optimal cost, i.e., V(z) > V™ (x).

With the proposed expression for V and 77,57, the inequal-
ity gets:

o' X e — 2" Hyw — 2" X TR H Fy X e
=72 (Apy B Fig X)X (A +By Fg X~z > 0

(55)



The change of variable X ~'x = 1/ transforms the above to:

wTXdJ - 'l/)TXHwa - wTF[z:]HuF[u]w
— T (A X + Bp Fi) " XAy X + Biyg Fig)y > 0
(56)

So, application of Schur complement and double-sum relax-
ation yields the stated LMIs conditions.
Consider a matrix

Sex  SL,
S = {S SW} (57)

and consider now the expression:

5 - S, ST 1
= — T T ux "
E(S,K):=(I K ){Sw Smj (K> (58)
If we set K = —S;!S,. + A, elementary algebraic
manipulations yield:
2(S, =S Sus +A) = Sy — ST S71S0 + AT S A (59)

ur~uu

thus, if Sy, is positive definite, we can ensure that

=i - (&) [3= 5] (1)

1\ [See ST I
= Spr — ST S 18,0 =2(S, =S S0,)  (60)

ur=~uu

for any matrix K of compatible size.

a) Linear case: In a linear case with controller 7(x) =
— K7™z, the Lyapunov equation (26) can be equivalently un-
derstood as Z(S, K™) = P7, thus from (60) we can assert
2'Px > 27(Sp, — SL.S,1S)x = Q™ (x,7(z)), and
from standard dynamic-programming (9) argumentations, we
can quantify a bound for the policy improvement x7 Pz >
2T (Syu — SL.S2LS, 0 )x > QF (2, 7(w)).

b) TS case: The guaranteed-cost LMIs (24) and (25) im-
ply (56), and the latter equation implies X = > E(X ', F,,)),
understanding the generic .S in (57) to be Sz} in (29). Thus,
we have proven that

VLM (r) = 2Tx 1y > xTE(X_17 F[lt])x
> Z‘TE(X_17 _(S[M2]7uu)_1s[#2],um)x = ‘77}1 (x) 2 Vﬁ'l (.’L‘)
(61)

thus the upper bound V™ (z) is better than the LMI-proven
bound V™LMI (1),



