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Abstract

With the proliferation of batteries in transportation, mobile devices and, more re-
cently, large scale energy storage, the demand for new efficient and safe algorithms for
battery management has surged. More complex chemistry cells, such as lithium-ion
batteries, with their sensitivity to mishandling, misuse and defects as is evident with
recent device recalls due to fires, have historically been treated more conservatively.
Maximizing performance of these cells safely requires knowledge of internal variables
of interest which are not directly measurable. Therefore, accurate models which esti-
mate these variables are needed. The focus of this thesis will be on a modified Single
Particle Model (SPM), specifically its internal state estimates. Unfortunately, while
the model structure is known, internal parameters which specify it are not, hence,
state estimation alone is not enough. This motivates simultaneous state estimation
and parameter identification of the electrochemical model. Existing solutions to this
task are minimal in the literature. Hence this thesis.

This thesis enumerates multiple developments in electrochemical modeling and
adaptive observers in general. The first and fundamental component is a modi-
fication of the SPM with attractive features such as the encapsulation of lithium
diffusion as a linear dynamical system independent of nonlinearities and decoupling
of the nonlinear relationships defining the kinetic properties of lithium ion trans-
fer and open circuit potential respectively. A second development defines a set of
guidelines reducing the design parameters for adaptive observers to a single tuning
parameter, enabling rapid implementation and prototyping. Third, a new variant of
adaptive observer, using multiple simultaneous equivalent system representations, is
derived for fast parameter convergence. A novel selection of observer design variables
and augmentation of the underlying equivalent system with nonlinear basis functions
constitutes a fourth development extensively validated through numerical simulation
and theory. This adaptive observer combined with an independent offline algorithm
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to update effective electrode capacity and available lithium adapts every parameter
of the modified SP model to account for aging or manufacturing differences. Valida-
tion of this observer in hardware using commercially available Panasonic 18650 cells
completes the goals originally set forth for this research.

The developments presented pave the way for fast, computationally efficient,
advanced battery management systems with the potential to increase the effective
capacity of a battery or alternatively reduce the size, and therefore cost, of batteries
in various applications.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

With the proliferation of batteries in transportation, mobile devices and energy stor-

age, research for the safe and efficient use of various chemistry based cells has erupted.

There are two major fronts to this eruption, the first approaching from a material

science perspective, and the second from control engineers. Material science research

is continuously investigating and producing new cell designs using alternative chem-

istry electrodes or electrolytes. While control engineers have the task of enabling safe

and efficient use of batteries with these advanced chemistries, such as those based on

lithium ion transfer. To accomplish this task both the State of Charge (SoC) and the

State of Health (SoH) within a battery pack must be known. SoC is the equivalent

of a fuel gauge for the battery pack in electric devices. It is a relative measurement

ranging from 0% at 'empty' to 100% when 'fully' charged. However, 'empty' and

'full' are dependent on the battery's total capacity, a metric of the State of Health

(SoH) which also must be known to guarantee safety, durability and performance.

SoH encapsulates a number of metrics, usually providing a measure of the battery's

condition relative to its designed specifications. Historically, the knowledge of these

variables of interest has been only moderately accurate, which allows only moderate

17



performance and requires conservative use. To obtain the most out of more ad-

vanced chemistry cells, such as lithium ion, more accurate battery SoC estimation

algorithms are of extreme importance. [14,62]

Together, algorithms for determining SoC and SoH and their associated hardware

are part of the battery management system (BMS). Throughout the past decade

there have been a multitude of applications inspiring research using various mathe-

matical models and algorithms. In relation to this work it is helpful to break down

the existing literature on BMS development into categories based on the mathemat-

ical battery model used. There are three main categories which we will define. The

first are equivalent circuit models (ECM), these were the first to be widely used

and offer a model which is simple in structure, modular and expandable for higher

accuracy. These are built upon linear dynamics. Notable work using these models

are [1, 23,45,62]. Although ECMs offer simple and linear structure, to obtain a high

level of accuracy a large number of states is required which yields a system which is

not relatively complex, but cumbersome and unattractive computationally.

The second category of models are electrochemical models, including that of

Doyle, Fuller and Newman (DFN) 1141. Not only are these more accurate than ECM

but also have physically relevant parameters. This makes the SoH task with a BMS

more natural. Although the most accurate, these electrochemical models are also

the most unwieldily, relying on chemical properties and phenomena most accurately

described by partial differential equations, in addition to algebraic relationships and

static nonlinearities. For this reason, these models are rarely if ever considered for

use in actual applications.

Models from a third category, which is a subset of electrochemical models are

gaining popularity. This third category includes simplified electrochemical models

such as the Single Particle Model (SP model) [10] and recent extensions including

electrolyte dynamics [35] and thermal dynamics [201 have been explored as of late.

Chapter 1. Introduction18
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The reduced electrochemical models of the third category offer a balance of model

simplicity and accuracy while retaining physical significance of parameters. This

makes them attractive for BMS applications. To attain the accuracy desired in

both SoC and SoH determination, we not only need access to models which are

accurate in form, we need algorithms that can track the states, and update the

parameters within these models to account for upfront manufacturer deviations, and

aging and abuse over time. Although reduced electrochemical models such as the

SP model are not as complex as DFN, these models are still composed of dynamics

best described by partial differential equations and algebraic constraints. For this

reason, the full SP model does not lend itself well to many robust linear observation

and system identification tools. For this reason, the focus of this paper is specifically

on a modification of the SP model, notably with diffusion processes described by

linear ordinary differential equations. If the model is assumed to be fully known,

the internal states such as the SoC could be adequately determined using a state

observer, however, this assumption is not valid. The model form is assumed to be

known, but the parameters which specify it cannot be, hence, an adaptive observer

is desired to simultaneously identify the model parameters and estimate the internal

states. To account for modeling errors and ensure parameter estimates are as current

as possible a type of fast adaptive observer is implemented to ensure the safety of the

cell during rapidly changing operating conditions or abusive operating conditions.

Previous approaches to the BMS task can generally be broken into three cat-

egories. Methods which attempt to estimate SoC alone, methods which attempt

to estimate SoH alone and the third group of algorithms which attempts to per-

form these SoC and SoH estimations simultaneously. This third category is where,

adaptive observers, the algorithms of this thesis fall.

SoC estimation has been approached a number of different ways both in labora-

tory settings and in applications. Estimating SoC without destruction of the battery



or disconnecting from a load/source is quite challenging. The most reliable method

of determining SoC is a discharge test, however, this results in a fully discharged cell

and capacity is only determined after the fact. [30] Thus, this is not a reasonable

method for on-line estimation. The most general and simple method is integrating

the input current to the cell, or the so-called coulomb counting method. This results

in SoC = SoCo - Capacity ft I(T)dr, where SoCo is the state of charge at to. Two crit-

ical issues arise with this approach. First, the initial SoCo must be known precisely,

and this is not easily achieved. Secondly, sensor bias can quickly result in drift of

the SoC estimate. A third method does not require any past history of signals, but

relies on adequate resting after which there is a 1 - 1 correspondence between the

cell voltage and SoC. This long resting time makes this method poor in application

but could be combined with coulomb counting to provide an accurate SoCo if at to

the cell has been resting for a sufficient length of time. Unfortunately, this rest can

take upwards of several hours 158] for certain chemistry lithium ion cells. Inversion

of the 1-1 relationship between the open circuit potential and the state of charge is

a fundamental component of nearly all SoC estimation algorithms. The resting re-

quirement for open circuit inversion can be eliminated if a battery model can provide

the open circuit voltage estimate regardless of the operating condition. This is the

category of SoC estimation which this thesis falls. This method works well for on-line

SoC estimation, but the estimate precision is only as good as the model and OCP-

SOC mapping precision. Other black box approaches have been proposed [8,11,52]

but rely on experimentally training using physical cells. These algorithms are not

transparent in their estimation process, and may exhibit questionable performance

outside of the trained operating region. Fusion of multiple algorithms previously

mentioned is common, often using algorithms such as the Kalman Filter or Sliding

mode observers.

Estimation of the SoH is determined using one of two overarching methods.

20 Chapter 1. Introduction
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Either model-based open loop estimation or closed-loop parameter identification.

Open-loop directly predicts SoH metrics such as loss of lithium, loss of active elec-

trode material or internal resistance using the age of the cell, the number of cy-

cles the cell has been used and the depth of discharges, among other quantities.

[6,16, 17,30,34,48,53, 59] These are highly dependent of the accuracy of the aging

models and can not account for unforeseen side reactions or operating conditions,

as well as environmental situations encountered while the battery management sys-

tem was not active. Closed-loop methods are much more powerful and are either

performed on-line or off-line. The most common of which involve augmentation of a

SoC estimator's state with the parameters expected to change. [18,19,30,44,47,57]

Although this augmentation approach has been shown to work in numerous other

applications, it violates the assumptions of the original estimators. Less ad-hoc meth-

ods such as recursive least squares and adaptive observers have also been attempted.

However, often unmeasurable signals are assumed to be known or signals are differ-

entiated resulting in algorithms which are not realistically implementable. [12,13]

We take a distinct approach from others which have appeared in the literature

and break apart the complex differential equations of the SP model into manageable

blocks of both linear dynamics and static nonlinearities. By doing so tools such

as fast Matrix Regressor Adaptive Observers (MR-AOs) [22] and other well known

system identification techniques [28] can be combined to accurately estimate both

the state of charge of the cell as well as internal parameters representative of the

SoH of the cell.

The adaptive observer proposed is an algorithm which simultaneously identifies

the parameters and estimates the states of a system. In the late 1960's and early

1970's considerable work was done to develop adaptive observers that guaranteed

global stability [7, 26,28,31,32] for linear systems. These observers were also shown to

be uniformly asymptotically stable under conditions of persistent excitation (PE) on



the underlying regressor vector. This in turn was shown to be feasible if the external

input into the observer contained sufficient frequency content [3, 40, 501. Later a

number of authors introduced modifications to these original algorithms to provide

'arbitrarily fast' convergence of the errors under the same PE conditions [24,25,42,

43]. These methods introduced a matrix of regressors or past regressor information,

rather than simply a single regressor vector. This eliminated the hyperplane within

the error state space on which slow convergence can occur, a characteristic exhibited

by vector regressor based adaptive observers. A strict limitation still existed, in

that these Matrix regressor adaptive observers still could only be used on linear

time invariant systems with measured output and input. This thesis will attempt to

overcome this limitation.

1.1 Thesis Overview

The first contribution of this thesis is the modified SP model presented in Chapter

2. This chapter begins with an overview of existing battery models and a descrip-

tion of the underlying partial differential equation based cell model whose coarse

discretization results in a single particle model. The key contribution here are two

alterations to existing SP models justified by experimental results, existing literature

and an observability analysis. These alterations decouple the nonlinearities in the SP

model and enable the use of a modified adaptive observer, whose use was previously

restricted to linear systems.

Chapter 3 begins with the introduction of an adaptive observer, referred to here

as a vector regressor based adaptive observer (VR-AO). Following the description of

the AO algorithm, a set of guidelines for designing adaptive observers is presented, a

contribution of this research. Notably, these guidelines reduce the number of design

parameters for a n'th order system from 4n2 + n to a pair of tuning parameters. Ex-
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ceptionally slow convergence of VR-AOs are greatly improved using these guidelines.

To increase the performance further, two matrix regressor adaptive observers (MR-

AOs) are presented, the first of which appeared in literature previously, the second

of which is the third contribution of this research resulting in a fundamentally new

type of MR-AO for fast parameter convergence.

A fourth contribution of this thesis is the modification of MR-AOs for use with

the SP model derived in Chapter 2. The modifications involve a new methodology

of creating additional regressors which make up the full matrix of regressors. This

effectively generates regressors which contain predominantly high frequency content,

these can then be used to estimate feedthrough parameters nearly independent of any

unknown lower frequency dynamics. This ability to identify parameters associated

with strictly high frequency signal content allows the synthesis of an internal signal

otherwise unavailable for use in generating nonminimal system states.

In Chapter 5, a fifth contribution is presented, this algorithm estimates the pa-

rameters associated with the equilibrium open circuit potential. This can be accom-

plished using a large class of inputs which are likely to occur during normal use of

many electrical products such as electric vehicles or power tools. This procedure

involves the generation of a feature set providing conservative estimates of unavail-

able signals which are required to effectively determine these parameters of interest.

The key parameters estimated by this algorithm are the effective volume of each

electrode and the total available lithium within the system, which correspond to two

SoH metrics, loss of active electrode and loss of lithium respectively. Following this

OCP parameter estimation, the final contribution of this research is validation of the

modified MR-AO on a physical cell. Using a specifically formulated excitation signal,

with high signal strength and the ability to identify nonlinearities, 18650 cells are

cycled generating rich datasets for testing of BMS algorithms. The OCP calibration

algorithm also provides accurate state of charge signals for every experiment, which

1.1. Thesis Overview 23
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are used to validate the MR-AO.
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There are many compelling reasons to use an electrochemical model for repre-

senting Lithium-Ion cells. Perhaps most importantly, using a electrochemical model

inherently results in a clear correlation between the model parameters and key phys-

ically representative parameters of the actual cell. These physical parameters are
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often used as metrics of the State of Health (SOH). Secondly, the states which are to

be monitored and controlled for fast charging and deep discharging are internal states

of the electrochemical model. When black or grey box representations are used we

may loose the ability to observe these specific internal states of the system. Lastly,

for parameter adaptation, with only input current and output voltage measurements

available for such a complex system, we would like to leverage all the physically

and chemically relevant information possible about the cell. This is accomplished by

using a model structure which uses a minimal number of parameters for the system

description.

Primarily, models are developed and derived with a goal of cell optimization or

simulation. Due to this, complexity is usually not the largest concern when these

models are developed. However, for observation and control a compromise between

model accuracy and model complexity must be made. The model developed here is

designed to be simple but also modular in order to allow the use of more complex

blocks to replace the modeling of particular chemical phenomena. This may be

desired when more demanding applications are encountered or new chemistries are

developed. Trade-off between model accuracy and model complexity is not only to

achieve a model which can be numerically evaluated in at least real-time, but also,

of particular importance in context of adaptive observers is a model with a number

of parameters which is low enough to be uniquely determined with the excitation

experienced under normal operation.

In the development of the model within this chapter we begin with the Doyle-

Fuller-Newman (DFN) model 114,551 which is the most accessible to the public and

widely accepted as an accurate mathematical representation of lithium ion batteries

over a wide range of operating conditions. When used in applications the underlying

partial differential equations (PDEs) of this model are discretized to achieve varying

levels of fidelity for the purpose of analysis or within an observer. Within this chapter
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we will describe the full DFN model and its most coarse discretization commonly

referred to as the Single Particle Model (SPM or SP model). XVe take this model one

step further, similar to [51,54] arriving at a model composed of diffusion described

by ordinary differential equations (ODEs) and static nonlinearities representing the

Butler Volmer kinetics and the open-circuit potential. The Butler Volmer kinetics

describe the equilibrium current from a specific load, it can be thought of as a

combination of Kirkoffs voltage law and Ohm's law. The open-circuit potential

represents the equilibrium electrochemical potential between the cell's electrodes as

a function of the lithium concentration within each electrode's solid matrix.

Batteries are a store of chemical energy providing electrical energy to a load or

storing electrical energy from a source via a redox reaction. A battery can consist of

a number of electrochemical cells. For example, a standard AA battery is one cell,

a 9-volt battery is made up of 6 small cells within an outer metal canister, and a

typical electric car battery consists of between a dozen and thousands of individual

cells. Each cell is composed of two half-cells connected internally by a flow of ions

through an electrically insulating separator. Each half cell includes electrolyte and

either the positive or negative electrodes. During charging, cations are reduced

(addition of electrons) at the cathode and anions are oxidized (removal of electrons)

at the anode. During discharge the process is reversed and the half cells switch

processes. We define the negative and positive electrodes to remain consistent but

their alternative designations as anode and cathode switch depending on if the cell

is being discharged or charged.

Each of these half-cells can be modeled as a continuum of material with interstitial

sites for lithium to bond. Physically cells are composed of a sandwich of current

collector, electrode and electrolyte, separator, electrode and electrolyte and another

current collector (Figure 2-1). The sheets of this sandwich are very thin compared

to their other dimensions motivating the reduction of the underlying dynamics to
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Positive
terminal

Negative electrode

Separator

Negative terminal Positive electrode

Figure 2-1: A typical 18650 lithium ion cell is constructed as a 'jellyroll' with sheets of
each electrode's material and separator rolled inside a metal canister. These cells are
commonly used in laptop and power-tool batteries as well as Tesla vehicle batteries.
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Negative Electrode Separator Positive Electrode
Domain Domain Domain

0sep LseP

0- L+ 0+

Electrolyte

Li in Electrolyte Phase

- Current Collector

e-

Solid Particles

Figure 2-2: A discretized DFN model results in each electrode's solid material mod-
eled as a number of spheres. When charging Li+ migrates from the positive electrode
solid through the electrolyte to the negative electrode solid

a single dimension, x, and small particles which spread along the x dimension with

their own single dimension, r. The movement of lithium ions can be represented by

a diffusion process in both the solid and electrolyte. The ideally continuous media is

modeled as many spheres into which the lithium can intercalate. A schematic of this

is shown in Figure 2-2. This diffusion into the solid spheres can be mathematically

represented by a PDE,

0c,(x, r, t) _ 1 Dr2cs(xr,t) (2.1)
t r 2 Or 49r

where D, is the diffusion coefficient in the solid. Empty space between these spheres

Li+ +

o 0

0 0
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is filled with an electrolyte through which movement of ions is represented by,

ace(X, t) = - (D Oce(x, t)+ 1 -(t 0ie(X, t))
O = x e + Fe x(2.2)

with De the diffusion coefficient of the electrolyte, F is Faraday's constant, ce is

the volume fraction of electrolyte in the half cell and to is the activation energy

coefficient. Continuity between the flux of lithium ions leaving the solid defines the

boundary condition of (2.1) at the surface, r = R., as

1c(x, r, t) -1
Or r=Rp= DSJn (2.3)

and due to symmetry of each sphere,

ac(X,=r,t) 0 (2.4)
Or r=O

A net electromotive force results in ions migrating from the cathode to the anode

during discharge. Once a circuit is completed the flux of ions out of the solid particles,

jn, is determined by the Butler-Volmer Kinetics

i0 a,, F - acF
in(X, I ) = exp 7T 9(X , t) -exp RT 8 y(X, t) (2.5)F I 1 k RT

where aa and ac, are the anodic and cathodic charge transfer coefficients respectively,

T is the temperature, R is the universal gas constant. io is the exchange current

density and q, is the difference between the open-circuit potential and the half cell

potential respectively,

rS (x, t) = 0$(x, t) - 4,(x, t) - U(c,.(x, t)) - FRfj (x, t)

30
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where #, is the solid potential, #e is the electrolyte potential, U is the half-cell open-

circuit potential, c8,(x, t) is the surface concentration of the sphere at x and R- is o

film resistance. The solid potential along the spatial dimension x is determined by

Ohm's law,

aOs8 (x, t) _ ie(x, t) - I(t) (2.7)O9x 01

where a is the conductivity of the solid and the electrolyte current governed by

aie(x ) = aFj,(x, t) (2.8)
ax

where a is the interfacial area

3
a = ES (2.9)

Rp

with Rp being the particle radius and c, is the volume fraction of the solid electrode

material in the half-cell. The electrolyte potential is described in the x dimension as

a PDE dependent on the electrolyte current ie and the electrolyte concentration ce

as

Oe(Xt) -i e(X,t) + 2RT(I to)(1 d ln f (t) In ce(x, t) (2.10)
ax K F d In ce Ox

the net voltage of the cell is determined by the boundary conditions of (2.7) as

V(t) = #S(0+, t) - # 8(0-, t) (2.11)

where 0+, 0- are the locations of the current collectors in positive and negative half

cells respectively. Continuity of current between the solid, electrolyte and through
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Electrolyte

- Li in Electrolyte Phase

-- Current Collector

e-

Solid Particles

Figure 2-3: The most coarse discretization of the DFM model results in the single
particle model. Each electrode is represented as a single particle in electrolyte. This
coarse discretization is most accurate at low currents.

the cell obeys Kirkoff's current law,

i,(x, t) + ie(X, t) = I(t)

Equations (2.1)-(2.12) outline the DFN model for each half-cell with more detailed

descriptions found in [9,10,14,55]. Whereas the DFN is defined by a PDE in the x-

dimension and a continuity of additional PDEs in the radial direction representing an

infinite number of solid particles, numerical evaluation is accomplished by considering

a finite number of these spherical particles. The most coarse discretization results

from consideration of a single particle in each half-cell, and is commonly referred to

as the Single Particle Model (SPM). In this model the electrolyte concentration, and

therefore potential as well, are assumed constant across the cell. Additionally due

to conservation of lithium within the cell we obtain the constraint,

47rr2c +(r, t)dr + L- R (
8 4/3,7r(R )3 0

(2.12)
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with c+ and c- the lithium concentration within the solid governed by (2.1) for the

positive and negative half-cells respectively. With only two particles present (2.7)

and (2.8) reduce to

_-I(t)

in+ (0) Fa+L+ (2.14)
j~(t) I(t)

Fa-L-

Here we reduce the model one step further and describe an ordinary differential

equation (ODE) simplification of the single particle model which will be used to

simulate the lithium ion cell within this paper. The reduction to an ODE based model

is attractive since in addition to state estimation, simultaneous online parameter

identification is being performed.

2.1 Modified Single Particle (SP) Model

The SP model in [101 is a commonly used reduced electrochemical model of the DFN.

In essence, the electrolyte dynamics are assumed to be constant in time and space in

the SP model , which has been shown to be a valid approximation for current rates

under 1C1 [10, 20]. Unfortunately, although this assumption eliminates some of the

complex dynamics involved, PDEs remain, as well as nonlinear relationships. A full

exposition of the SP model can be found in [101.

The SP model can be reduced further using polynomial approximations [491 or

eigenfunction approximations [20J resulting in diffusion processes described by linear

ordinary differential equations. Each electrode of the resulting modified SP model is

described by two linear differential equations, the first of which describes the mean

'It is common to define charging and discharging currents normalized by the battery capacity.
For a 3AH (amp-hour) battery 1C current is 3A.
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concentration in each electrode. Using the superscript : to compactly represent each

electrode,

dBI8 = a I

+ i3 1 (2.15)
=+

R Fa+L c -axp s,max

where zf, ;- are the normalized bulk lithium ion concentrations of the positive and

negative electrodes, respectively, with the actual cell concentrations

c = c C . (2.16)

8 s,max

Notice that the differential equation (2.15) is simply an integrator. Therefore there is

a linear dependence between Zl and Z - resulting in an algebraic constraint equivalent

to the reduction of (2.13)

1 1
+CS + -- = ntot (2.17)a+ a

where nrtot is the total moles of available lithium in the cell and a were defined in

(2.15). The remaining states of the SP model are the normalized lithium ion fluxes

of the positive and negative electrodes, -q, and are described as

dq Ds 12s = - 3 0 D 24 +a i (2.18)
dt (R,)28 7

Defining an intermediate output T (t), which corresponds to the normalized surface

concentration of each electrode one can derive the relation,

Z = E + (2.19)
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Figure 2-4: Half cell potentials of a Lonza KS6 graphite negative electrode and a

NiO2 positive electrode. These cell potentials are used for simulated cells of Chapter

4

The open circuit potential is composed of the two half-cell electrochemical potentials

which are functions of the particle surface concentrations,

VO, =f O(S ,?;) = (+) - R~(z8) (2.20)

The half-cell potentials U ( .) used for simulation were originally defined within

the Dualfoil cell simulator [41] and are shown in 2-4. W (-+) are usually empirically

determined and will be different for each electrode chemistry. The full R x R -+ R

mapping is shown in 2-5, with the equilibrium open circuit potential marked in green

on the surface. Equation (2.5) can be inverted assuming the common approximation

a+ = a- = 0.5 [14,15, 49,551 yielding

2RT I R+ 2RT I R71
Voer =fover (I, io+,i- = F sinh- i+ a+L+ F sinh~ +0 a- L

(2.21)

with the exchange current density

i =aLk c(- )(2.22)e0 effmx~1~
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Figure 2-5: Open circuit potential mapping of (2.20) for a Panasonic NCR18650B
cell. When in a relaxed state the cell voltage will lie on the green line, deviating
from this line during transients. The location of this line is determined by the total
available lithium within the system and the ratio of the effective electrode volumes.
It is these parameters and hence this line which is calibrated in Section 5.1
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Figure 2-6: Modular system representation of the single particle model of (2.15)-

(2.23)

The resulting output of the system is the cell voltage

V =Vocp + Vover (2.23)

yielding an ODE based SP model completely defined by (2.15)-(2.23) and is shown

in Figure 2-6.

The R x R -+ R mapping of foc, and the dependence of foe, on c' both prevent

the direct use of adaptive observers on the previously formulated model. For the

purposes of this work two modifications are made which reduce the complexity while

maintaining accuracy and hold for the majority of the operating window. This results

in the decoupling of the two nonlinearities. As pointed out in [551, the reaction

mechanisms at the solid electrolyte interphase are not understood in great detail.

And furthermore, the rapid kinetics in lithium batteries reduce the importance of

the exact mechanism. This leads to the common first order approximation within

the Butler-Volmer equation and a+ = a- = 0.5. This first order approximation

of (2.22) yields a nonlinearity dependent on the solid surface concentrations within

(2.21) of the form

1 (2.24)

372. 1. Modified Single Particle (SP) Model
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Figure 2-7: The effect of lithium concentration on the overpotential according to
(2.21) is minimal except at extreme high/low concentrations. 2 of (2.25) is used as an
approximation which is independent of the lithium concentration. This is assumption
is justified by examination of the overpotential from experimental results as well
as [551 who points out that the reaction mechanisms at the solid electrolyte interphase
are not well understood and [4] who shows experimentally that the exchange current
is indeed nearly flat across the full range of concentrations

The sensitivity of V,,e, according to (2.21) to a change in the surface concentration c,~ ~ 88

is shown in Figure 2-7. Noting that this function was already an approximation of the

true kinetics and the relative flatness of this function between 0.1 and 0.9 motivates

further investigation into the true sensitivity of the exchange current density i to

lithium concentration. Through analysis of experimental results collected as well as

the results presented by [4] in which calculations of the exchange current density i

are nearly flat across the full range of concentrations tested justifies an approximation

of

i =a Leke c c 052 (2.25)

T de e fro te smaxo t

This decouples the nonlinearity ferfrom the surface concentration states of the
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Figure 2-8: Full equilibrium open circuit potential for a cell with electrode half cell

potentials of Figure 2-4. This function is f,,(y) of (2.26) used for the OCP in

simulation

dynamical system, G,. The importance of this for modeling may be trivial, however,

for state observers, particularly observers with simultaneous system identification,

this results in foye, which is purely a function of the measurable input I.

Additionally, we make two distinct approximations to V,,, of (2.20) with the

primary purpose of reducing the R x R -+ R mapping to a R -+ R invertible non-

linearity. Due to differences in the half-cell potentials of the simulated cell and the

cell used for experiments individual approximations are made for each. For simu-

lation we assume that the open circuit potential in (2.20) is dependent on a linear

combination of the electrode surface concentrations, -y,, - -E, resulting in,

414(y = Yocp; - c ,) = boc - 3%) (2.26)

This simplification is most accurate at low charge/discharge rates for the electrode

chemistries used in simulation. The validity of this assumption is derived from the

fact that the sensitivity of each half-cell are relatively constant and related by the

gain . Unlike an approximation in which the surface concentrations maintain the

algebraic constraint (2.17) as has been made in [38] this system approximation retains

observability. A different chemistry cell used for experimental results motivates a

392.1. Modified Single Particle (SP) Model
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Figure 2-9: Half cell potentials of a Panasonic NCR18650B cell. The nega-
tive electrode is C and the positive electrode is LiCoNiAlO 2 . The flat sections
0.3 < c- 0.5 and 0.6 < c- 0.9 motivate approximation of the total opencircuit
potential by (2.28).

different approximation of V, for Chapter 5.2. We observe in Figure 2-9 that the

negative electrode half-cell potential is not sensitive to the lithium concentration for

over 50% of its domain. While in these concentration ranges the negative electrode

surface concentration becomes unobservable from the output voltage. Due to this,

an assumption similar to [381 is made that

a+~ =- + a-nett (2.27)

The result is that the negative electrode diffusion dynamics are no longer observable

and the resulting open circuit potential is

-( c~s+) -y( _ + a-nftt) (2.28)

With the negative electrode diffusion no longer observable, the corresponding state

of the diffusion dynamics q- is removed from the observer's system representation.

With the resulting modular structure shown in Figure 5-1, either of the nonlinear

blocks or the linear dynamic block can be changed for higher fidelity models without
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effecting the remaining two. Additionally, the basic structure is consistent between

simulation and experimental results.

With a control theory audience in mind, the system can be represented in a more

familiar state space representation with nonlinear outputs. Denoting the current,

I, as the input one can compactly represent this reduced modified SP model for

simulation using

[ Tx = 8; -q+ q;S

i= Ax+BI (2.29)

y = Cx

V = foep (Y) + fover()

where A, B contain the coefficients of (2.15) and (2.18), and are not assumed to be

known, with (2.19) and (2.17), C contains the coefficients resulting in

y=OcpTs - T + (2.30)

The overall modified SP model is therefore a combination of a linear dynamic system

G,(s) and nonlinearities fje, and fivr, (see Figure 5-1), where

Gp(s) = C(sI - A)- 1 B. (2.31)

2.1.1 Approximation of the Cell Overpotential using sigmoidal

basis functions

In anticipation of considering parametric uncertainty within Voer of (2.21) we seek

a formulation of the nonlinearity which is linearly parameterized. This will allow the
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ODE dynamics Yp Open-ctcuit Vcp
tial

Overpotential

(foyer)

Figure 2-10: Block diagram of the electrochemical model used to represent a Lithium-

Ion battery cell after simplifications are made for the observer.

use of linear system identification tools. Noting that the initial form is sigmoidal in

nature, a sigmoidal basis function will be used to approximate Vove, as

N

fovoer(I) = a1 I + E a fi(I) (2.32)
i=2

ai are unknown constant coefficients of the current, I and known basis functions

fi (I). Here we use a basis function derived from the cumulative distribution function

of a Beta distribution [5] with a = 1 and f = 2. The original function only defined

from 0 < x < 1 as 1 - (1 - x) 2 is mirrored about the origin, stretched by swapping

x for x and extrapolated for x < z and x > A resulting in

8. 1 )2 0 < X < #

-1+ (1 + f)2 _-3, < X < 0

fi(x)= 1 x ;> (2.33)

-1 x <;-#i

0 otherwise

The desirable properties which resulted in the use of this basis function over other

sigmoidal functions are that it saturates at x = i03 , is continuous and differentiable

and requires only one parameter, Pi, with a clear correlation to its impact of stretch-

42



2.1. Modified Single Particle (SP) Model 43

ing fi over its domain. Since Vve,. of (2.22) is a strictly monotonically increasing

function we can expect all coefficients ai to be positive. An accurate fit can be

accomplished using three basis functions with f3 E { 1 2}. The agreement of fjve,

of (2.32) with (2.21) is seen in Figure 2-11. Symmetry of the function allows fitting

to be performed and displayed for positive currents, using points in red, a fit for

0 < Ik < 2 is performed using the method of least squares. The fitting extrapolates

well past the domain used for fitting matching the nonlinearity up to 3A.
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Figure 2-11: Approximation of the overpotential function fe, using sigmoidal basis

functions. The resulting coefficients are a = [ 0.0443 0.0559 0.0504 0.102 ]T
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2.2 Sensitivity to parametric uncertainties in the

modified SP model

The focus of this thesis is simultaneous estimation of parameters and states. In

this section we briefly explore the effect of parametric uncertainty on the plant re-

sponse in comparison to the resulting error from modeling simplifications. Due to

manufacturing processes, aging or abuse, many of the physical variables will not

be consistent cell to cell or remain constant over time. This in turn implies that

the parameters of A, B and the nonlinearities focp and f,,er of (2.29) as well as the

algebraic constraint (2.17) may not be known initially and can change over time.

One approach to solve this issue would be to calibrate each cell post production and

model the slow aging process explicitly, but this would be a time consuming process,

add to the already complex model, and assume that we fully understand every pos-

sible aging mechanism. We propose a different approach which consists of real-time

parameter estimation in the battery model specified by (2.15)-(2.23) using real-time

measurements of the input I and output V.

One of the questions that arises is the accuracy and relevance of parameter es-

timation using the nonlinear, yet ODE-model as in (2.15)-(2.23), which is based on

a reduced SP model, given that the underlying battery dynamics is spatio-temporal

in nature. As shown previously in the literature [10, 37, 61] we maintain that for

a significant class of operating conditions, the ODE model does indeed accurately

capture the variations of a higher fidelity PDE model, which is also based on the SP

model. This is justified by the following simulation studies. Table 1 lists all of the

parameters used in the all simulation studies reported in this paper.

Denoting the modified SP model with nominal parameters as ODE* and the SP

model with nominal parameters as PDE*, we compare the error between the two



Chapter 2. Electrochemical Battery Modeling for Observer Design

40- Input Current (A)

20 -

<0-

-20 -

40 T
1000 2000 3000 4000 5000 6000

Time (s)

0.05 - Cell voltage errors vs PDE* E

-0.05

-0.1
1000 2000 3000 4000 5000 6000

Time (s)

Figure 2-12: Output voltage errors due to model reduction and/or parametric uncer-
tainty with maximum input current of less than 1C. The baseline model is the SPM
with PDE dynamics (PDE*). Error due to ODE reduction is in blue (ODE*). Error
due to introduction of parametric uncertianty to the PDE SP model is in red (PDE).
Error due to parameter error in the ODE SP model is in dotted yellow (ODE).

model outputs for charge-discharge rates of up to 1C, and present the results in

Figure 2-12. We then introduce parametric uncertainties of D = 0.5Df, k' =

0.5k , L+ = 1.2L+, L = 0.9L- into both models, denoting the corresponding

models as ODE and PDE respectively, and evaluate their output error responses

relative to PDE* in Figure 2-12 as well.

We do not focus on a comparison of ODE to PDE-model or ODE* to PDE*-

model, as that has been discussed extensively in existing literature [10, 37,61]. In-

stead, we compare the responses of ODE* with PDE* as well as ODE with PDE,

where the former will only reflect the error due to ODE discretization while the later

will show both the errors due to discretization and parametric uncertainties. The

effect of parametric uncertianty alone is captured by the comparison of PDE and

PDE*-model error. We see in Figure 2-12 that modest parametric uncertainties of

the models can yield more than a 10-fold increase in model output error compared

to ODE discretization alone.
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2.3. Summary of the modified SP models

The complexity as well as combined presence of linear dynamics together with the

two nonlinearities f0c, and foye, introduces a number of challenges for simultaneous

state estimation and parameter identification. In order to overcome this, we separate

the identification of each, but do so in a way which is guaranteed to result in bounded

errors. For ease of exposition we first assume that the nonlinearities are known

and therefore can be isolated and removed or inverted. This allows us to consider

unknown linear dynamics only, and propose an adaptive observer that is capable of

fast parameter estimation. As a second step, we extend this adaptive observer to

accommodate the estimation of the overpotential nonlinearity fe, of (2.32) with an

approximation using sigmoidal basis functions while assuming only foc, is known.

2.3 Summary of the modified SP models

Table 2.1: The nominal
reported in this paper.

Li-Ion Battery parameters used for all simulation results

R+ 10-5 R- 10-5
L+ 10-4 L- 10-4
R, 0 - 103
# 4.5 x 10-6 k- 4.5 x 10-6

+ 3.53 - 46.47
C+ 0.3 0.3
a+ 1.5 x 105  a- 1.8 x 10 5

to 0.6 CeO 1000
C+___ 51217 c-max 24983

D+ 4.58 x 10-11 D- 2.79 x 10-11
D 1 xl-3 10_D- 4 x 10-14
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2.3.1 Summary of modified SP model for simulation

We now present a summary of the modified SP model used for simulations.

diffusion of lithium in the solid particles is modeled as,

Cs I
= Ax + BI = ..0 0 0

-30 D 0 X +(4)2

0 0 -30 D
(RP )2

with dynamical system output,

y = Cx = [ (Ncp

which is related to the measurable cell voltage as,

V = f,(y - a+ ntot) + fe,,r(I)

where f,, is the open circuit potential function used for simulation,

f, (y = c,--s - ) = R( - +)

and fave, is the overpotential function used for simulation,

4

folver(I a 1 + ai f(I)
i=2

The

(2.34)
a

12a-
7[ I

-1 Yoc, x+ (2.35)

(2.36)

(2.37)

(2.38)
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using the basis functions fi,

fj(x) =

/#i E 2

(2.39)1

-1

0

1 2}

otherwise

(2.40)

2.3.2 Summary of modified SP model for experimental results

We now summarize the modified SP model structure used for experiments.

diffusion of lithium in the solid particles is modeled as,

x = Ax + BI = [0 01

0 - 3 0
(Rp)2 J

where due to unobservability of the negative electrode for the majority of operating

conditions the dynamical system is reduced by one order relative to (2.34).

dynamical system output is,

y =Cx= [ -1] x

which is related to the measurable cell voltage as,

V = f0 P (Y) + fver(I)

The

(2.41)
1-

1a+
I

The

(2.42)

(2.43)
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Chapter 2. Electrochemical Battery Modeling for Observer Design

where f, is the open circuit potential function used for experiments,

f , (y = ') = 11'. -R_ a 'c + a -ntot) (2.44)

using the approximation of the negative electrode surface concentration

,-8 - at + a ontot (2.45)

4.

4.0

3.5

3.0

0.0 0.2 04 0.6 0.8 1.0

Figure 2-13: Although this looks quite similar to 2-8 when one looks at the underlying
half-cell potentials in 2-4 and 2-9 you see that the fiat sections which make up
50% of the operating region of the negative electrode prevent observability of the
corresponding electrodes concentration

and f,2e,. is the overpotential function used for experiments,

(2.46)f2Ver (I) = aI
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Chapter 3. Adaptive Observers for Linear SP Models

Chapter 3 begins with the assumption that both fc, and fo.r are known allow-

ing them to be inverted and removed respectively. Next, in Chapter 4, we allow for,

to be unknown, and it is replaced by an approximation using basis functions. The

unknown coefficients of the basis functions are added to the adaptive observer param-

eter vector. This resulting observer estimates the equivalent dynamic system as well

as the nonlinear overpotential simultaneously. This chapter focuses on the generation

and analysis of adaptive observers for linear system observation and identification.

Section 3.1 reviews the basic adaptive observer which has appeared in [7,31,391. The

stability of the vector regressor based adaptive observer (VR-AO) is analyzed and

the notion of persistence of excitation (PE), which is required for convergence of the

parameter errors to 0, is explored. Design guidelines, a primary contribution of this

thesis are explored and a set of tools is suggested to generate the adaptive observer

with a significantly reduced number of tuning parameters. The topic of parameter

constraints is addressed by utilizing a projection algorithm. Lastly the procedure for

state transformations is formally laid out, with an example relevant to our battery

model of transforming back to a Jordan-canonical form.

In section 3.2 two matrix regressor adaptive observers (MR-AO) are explored and

the notion of strong persistent excitation (SPE) is introduced. The first of which,

designated MR-AO-I was previously proposed by [24,25,39] as an adaptive observer

capable of arbitrarily fast parameter convergence. This claim is explored using the

notion of Strong-PE (SPE) and a stability analysis will show that there exists a

limiting factor of the speed of convergence. Next we propose a new form of MR-AO

previously reported in [22]. There is a fundamental difference to in the generation of

regressors which offers multiple advantages over MR-AO-I. The chapter is concluded

with a comparison of the three adaptive observers and a summary of their algorithms.

Since the underlying battery model is in the form of the block diagram in Figure
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5-1 and defined by (2.34)-(2.39), from observations of V, one can accurately esti-

mate the parameters of Gp(s) from input-output measurements of I(t), y(t) using an

adaptive observer [401, with y = fg(V - fover(I)).

3.1 Vector-regressor (VR) Adaptive Observers (AOs)

Consider a stable linear, time-invariant system which is both controllable and ob-

servable, and of known order n. This system can be represented in state space form

as

:i(t) = Apx(t) + bpu(t) (3.1)

y(t) = c'X(t)

The system matrices Ap E R"n", bp, cp E R' as well as the initial state x(to) E R"

are unknown. The problem we wish to solve is to use the input u(t) and output

y(t) and estimate the states x(t) as well as the dynamics described by Ap, bp, c,. By

considering a reduction of the system to its transfer function representation, Gp(s),

_1 P(s) PO + p1 s + p 2s
2 + -- - +pn-is- (

G,(s) = c, (sI - A,>1 b,= Q =) q~~~~ 2 +. qi~s (3.2)
Q(s) q0 +gjs +q2S2 +-+gis~"

where I E RIX is an identity matrix, it becomes clear that even though Ap, bp, c,

of (3.1) contain n2 + 2n variables, a unique description of the plant requires only

2n parameters. In the case of (3.2) these 2n parameters are the coefficients of the

transfer-function numerator and denominator, these parameters are directly related

to the poles and zeros of the plant. In order to determine the full state space model

from only input-output data some additional information is required in order to de-

termine the remaining n 2 parameters, such as a common pre-defined representation.

3. 1. Vector-regressor (VR) Adaptive Observers (AOs) 53



This additional information is essential to estimate any internal states of a state

space model. For example, we know the system of (2.29) is Jordan-normal form.

Without loss of generality, throughout this section we will assume that the system

is initially described in observer-canonical form, with

'n-ixn-1

Ap= -a cp= [0 (3.3)

01xn_1:

where all unknown parameters of (3.1) are contained in the vectors ap, b, E Rn. An

equivalent system can then be defined

-k (t) = (FOC + 9c )x(t) + bpu(t) = FOcx(t) + Oyy(t) + 6uu(t) (3.4)

y(t) = cx(t)

with FOC E R"xf"

In-lxn-1

FOC 1-(3.5)
01xn-1

chosen by the designer to obtain a stable, observable pair (FOC, cp). All unknown

parameters are now isolated into two vectors Ou, Oy E R' given by

9U=bp and 9y=f -ap (3.6)

Notice here that 0. is independent of the filter choice FOC and 0, is a linear combi-

nation of the plant and filter characteristic polynomial coefficients. Leveraging the

property of superposition one can generate the output y of (3.4) in an alternate form
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ODE dynamics (Gp)

y Gf

Figure 3-1: Equivalent system representation for the battery dynamics of the elec-
trochemical model used.

using a nonminimal system in observer-canonical (OC) form

y(t) = g'x1 (t) + gix2(t)

ki(t) = FoCx1(t) + 9Ou(t) (3.7)

k2(t ) = FoCx2(t) + 9y(t)

with g = c,. We perform one more transformation, generating the output y(t) using

control-canonical (CC) filters, F = (Foc)T, to obtain vector regressors wu, W. as

y(t) = OTwU(t) + 9ToW(t)

w.(t) = Fwu(t) + gu(t) (3.8)

cy(t) = Fwy(t) + gy(t)

which follows from straight forward algebraic manipulation, and the suitable choice

of initial conditions of wu and w.. By transforming from a nonminimal system (3.7)

in OC form to (3.8) in CC form we have manipulated the system such that all system

unknowns are now in the output equation y(t) = UTLOw(t) + OToW(t). The resulting

figure is shown in Figure 3-1.

With the plant in (3.1) rewritten in the form of (3.8), one can construct an

adaptive observer to generate the parameter estimates Ou and $, [40J. The adaptive
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Chapter 3. Adaptive Observers for Linear SP Models

observer is begins with the reconstruction of the nonminimal states and an estimate

of the plant output,

Y(t) = ou(t)TCa(t) + OV(t)%TCJ(t)

cZ'u(t) = FZu(t) + gu(t) (3.9)

Wy(t) = Fcy(t) + gy(t).

We note from (3.8) and (3.9) that a corresponding error e is obtained as

e(t) = yXt) - y(t) (3.10)

The estimates of the unknown plant parameters are identified using a gradient adap-

tive law [40]using the vector regressors cZu and W0, as

6(t) = -FUC2'(t)e(t) (3.11)

9U(t) = -F7Y~C(t e(t)

where 17, LFY E R"' are positive definite matrices free to be chosen in the adaptive

observer design. We denote the adaptive observer defined by equations (3.9)-(3.11)

as the vector regressor based adaptive observer (VR-AO). Before formally moving

on to a rigorous proof of the observer's stability properties we define the nonminimal

system state errors wu = Ju - wu and ,y = C, - w. which are described by

W= Fcu + gu - (Fwu + gu)

(3.12)
= Fc^ +guyy- (Fw,,+gy)

= FWY
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3.1. Vector-regressor (VR) Adaptive Observers (AOs)

which, since F is Hurwitz, will decay exponentially to zero regardless of the parameter

estimates. This is a result of our transformation of the nonminimal system from OC

form of (3.7) to CC form in (3.8). With the vector-regressor based adaptive observer

fully described, we now move on to prove stability of the VR-AO.

3.1.1 Stability of the VR-AO

For a nonminimal system (3.8), with an estimated system (3.9) and nonminimal

state errors (3.12). We now analyze the stability of the nonminimal state errors at

w = 0 and Fy = 0 and the parameter errors OU = 0 and 0Y = 0 assuming u, y E 4,G.

To ease the notation in what follows we combine nonminimal states Wu and wY to

create a single regressor w and do the same for 0, 0,, as well as their estimates, to

obtain,

w ~ 0 =70-=,O= (3.13)

with errors defined as - = W - w and 0 = -9. Additionally we define F, g such

that ci= Fw+ [ ,

F=[ F ]1 (3.14)
F g

we update the parameters of the adaptive observer using a gradient descent adaptive

law,

0 = 9 = -1 Ce (3.15)
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Chapter 3. Adaptive Observers for Linear SP Models

where we use a positive definite adaptive gain, IF, E R 2 nx2 n, and use the output

error,

= -T 0 - wTO = T - (p + 0)T0  (3.16)

eo e.

Notice from 3.16 that the error e = eo + e, has been decomposed into two terms,

eo and e, which are sensitive to the parameter error and the nonminimal state

error respectively. To analyze the stability of the adaptive observer defined by

(3.9),(3.13),(3.15) and (3.16) we define a radially unbounded Lyapunov function

candidate

V = -JTFJ6+ TPo (3.17)
2

with positive definite F, P E R 2nx2n. For which P which satisfies the lyapunov

equation,

F P + p- + Q = 0 (3.18)

for any positive definite Q E R2nx2n, this P will be positive definite and is guaranteed

to exist for any Hurwitz F. Using 0 of (3.15) and D of (3.12) the time derivative of

(3.17) is given by

= (1 - pj) + bTPEO (3.19)

- 2~ (ec~~~J W~~~w2e +W VTTIW + ep
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3.1. Vector-regressor (VR) Adaptive Observers (AOs)

Using from (3.16) and the lyapuov equation of (3.18) we can then rewrite (3.19)

as

v = (I (( + ), + OT~)-pTF 9+ Fprp,(CTW +-To) - DTQF

(JT ~TpTp j~ ~
- ;TQF (OTTTFJ+

(3.20)

Proceeding with F, = F1, and using eo, e, of (3.16), (3.20) simplifies to

OTQO-_1 1 TEOCTW+ T- To
2 \i2

= -ETC -T _TQ - COTW

< -eo- TQ- - eeo

Where the first term is a negative quadratic term in eo and the last is a sign indefinite

term which is linear in eo. We can explicitly write e, in terms of the initial condition

of 0,

= OTe(tkO(O) (3.22)

From (3.21) we see that V < 0 when leol > 1Q.

outside of the compact set

This guarantees local stability

S = {I E R2n, C R 2n IT +)I < T (3.23)

Since e, = 9 T exponentially decreases independent of any inputs or adaptive pa-

rameters, S exponentially decreases in size and we exponentially approach a globally

stable system.

From here we consider two cases. For case 1, the input u is bounded. With

1

(3.21)
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u E Loo it follows that since F is Hurwitz and G,(s) is stable, W, W, 0, G E ,o. Since

V is radially unbounded and V < 0 outside the set S, V(t) < oo and therefore

V(t) E L.. which implies that 0, 0 E Loo. We can then conclude that eo, ew, c E

Lo,. With P Hurwitz we also have e, E 42. Furthermore, since S exponentially

decreases there will exist a time t1 for which t > ti and V(t) V(ti) < oo. With

ft V(r)dr = V(t) -V(t 1 ) and since V(t) is both positive definite and non-decreasing,

we have V(ti) - V(t) V(ti) and therefore - ft (r)dT V(ti) From (3.21) we

have f(e+ eoe Q + TQU)dT V(ti), since we have e, E 2, ft (e + eoe, + le +

VT QFD)dT V(ti) + C where e 2 d-r = C,,. This simplifies to t(2 + le,) 2 +

T Q D-)d < V(ti) + C, and we find that e, E L2. From this, we can conclude

using Barbalat's Lemma l40]that limt÷,o eo(t) = 0.

However, eo = 0 does not imply 0 = 0. Case 2 defines the necessary and sufficient

conditions for limtwo W(t) = 0. As we are guaranteed limt,+o F(t) = 0 and therefore

e, -+ 0 we focus on the error eo alone. Recall that eo = CT9, which in combination

with our adaptive law 9 = -CZ(2;T0 results in the so called error model 1 from 1401.

Theorem 2.16 of [40Odefines 4 equivalent conditions which assure the asymptotic

stability of 9 = 0. Here we utilize the 4 th which will be referred to as the persistence

of excitation (PE) condition. There exist positive constants to, To and c1 such that

Ai [M(t)] ;> el, i = 1, 2, ... , 2n, Vt > to,
t+T (3.24)

M(t) = it dr

where Ai [A] denotes the i'th eigenvalue of matrix A. We denote condition (3.24)

as W^ E PE2n. This condition ensures that over any time span To, eo(t) = 0, T <

t < T + T for any T > to only if 9(t) = 0. Since we already showed the asymptotic

stability of eo = 0, if W^ E PE2n we are also guaranteed limt,,,9(t) = 0. A more

formal proof of this fact can be found in [40].

60 Chapter 3. Adaptive Observers for Linear SP Models



The slow nature of this convergence witnessed and commented on by previous

authors such as [421 motivates the two approaches to improve this rate detailed in

this Chapter. The first approach is by specific design of the observer filters.

3.1.2 Nonminimal equivalent system design

Although the vector regressor based adaptive observer first appeared more than 50

years ago, universal guidelines for the design of the filters, (3.5), which generate

the nonminimal states are to the best of the author's knowledge absent in existing

literature. The observer performance becomes particularly sensitive to filter design

when the poles of the true plant, (3.1), are separated by more than an order of

magnitude, as may be the case for the SPM of a lithium battery. In this section, we

discuss how the filter parameters in F and g as well as the gains F, and FY can be

chosen.

The sensitivity of the observer performance to the filters (F, g) stems from the

wide spread of Ai[M(t)] in (3.24) arrising from many choices of (F, g). We propose

a design procedure for choosing F and g such that the spread of Ai is small for an

optimally exciting system input and therefore degree of PE, El, is optimized. For an

unknown system, we require a signal with frequency content at at least n distinct

frequencies. However, to produce an unbiased fit of the system at all frequencies,

a signal which is white is optimal. The easiest examples of white signals are the

impulse signal or white noise, which can be represented as a sum of impulse signals.

Furthermore, we must be careful when trying to maximize the degree of PE, Ei, as

this could be accomplished by simply increasing the magnitude of the input u, or

equivalently, increasing g. To account for this we search for the optimal filters with
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two restrictions imposed. Iu(t)I Uma, Vt and IIGfi(s)HJ < 1,Vi with

Gf (s) = (F - sI)-'g (3.25)

the vector of transfer functions and Gf(i) (s) the transfer function from input u to

nonminimal state w(i). These two conditions constrain optimization allowing a fea-

sible solution.

We break the problem down into two steps. The first is placement of the filter

poles based on a nominal estimate of the plant,

= A'x' + b'u

y' = 'i 
(3.26)

We use the Kalman filter design process to compute filters which will balance a

preservation of signal strength in the bandwidth of the nominal plant and speed

of the filter to ensure D decays reasonably fast. We emphasize that although the

Kalman filter is designed to handle stochastic uncertainty of the plant input and

output, we are not considering external noise in our problem statement. Instead,

utilization of the steady-state kalman filter is justified by a property of the algebraic

riccatti equation (ARE) of SISO systems for which K is defined not by Q and R

independently but by the ratio of Q/R. Therefore, allowing K of (3.28) to be

computed in the limit as Q -+ 0, R -+ 0. The quantity which remains Q/R is a

tuning parameter which qualitatively weights the speed of the filters with a similarity

of the filters to the nominal plant.

The Kalman filter prescribes the optimal filter for a known plant with stochastic

uncertainties on the input and output. Optimality is designated by the minimization

of the expected output error squared. We assume the plant to be our nominal plant
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from (3.26) with noise w, v on the input and output respectively,

.i- = Ax +bu+bw

y = C TX + V

(3.27)

with the expected covariance

The expected variance of the

of the noise E[wwT] = Q E R and E[vvT] = R C R.

error P is tracked as

P = AP+ PAT +Q+ PcTTR-JcP (3.28)

with the subsequent Kalman gain then defined as

K = PcT R-1 (3.29)

The presence of R-1 in both (3.28) and (3.29) presents an issue for setting R = 0.

However, defining the noise ratio

Q =(3.30)
R

we can rewrite the steady state (3.28) and (3.29),

AP+ PAT +1 - PcT Ucp = 0

K = j5cTa

(3.31)

with Q, R no longer appearing we compute our optimal filter for a system with no

noise and instead a weighting between measurements and nominal plant, a. The

resulting kalman filter is then

x= (A - KcT)X+ bu + Ky
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With our nominal plant, (3.26) defined in observer canonical form, our kalman filter

(3.32) will also be in observer canonical form. Noticing the similarity between (3.32)

and (3.4), we can then define our nonminimal filter in observer canonical form as

FOc = A - KcT.

The second step of the design process is to place the zeros for each filter input-

state relationship. We begin with a control canonical filter Ffo = (A - KcT)T using

A, K, c from (3.32) and go = c from (3.26) with the corresponding filters

0no = Ffowo + gou (3.33)

yo = FoOYo + goy

We next determine Po as the solution to the Lyapunov equation

0 = FfoPO + P Fo + g9g (3.34)

which is decomposed as

VDVT = p0 (3.35)

where D is a diagonal matrix containing the eigenvalues and V contains the eigen-

vectors of Po respectively. A transformation matrix T = D- 1/2 V is then determined

to find the final filter design

jul = Ffl1WUl + gulu (3.36)
C,1 = FflwYi + gy1y

with the filters defined as

Ff1 = TuFfoTu-1 gu1 = Tugo gy1 = Tygo
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using the transformation matrices

Tu = D-12V

Ty = pD-1 2V
(3.38)

where p is a measure of the gain of the system, used here as a scaling parameter

computed as

p = (cT Pc) 1 /2 (3.39)

and P, is the solution to the Lyapunov equation

0 = AP, + PpA T + bbT (3.40)

with (A, b, c) are nominal values of the plant parameters of (3.26).
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Figure 3-2: The transformations T and T, locate the zeros of the transfer matrix to
de-correlate the filter states assuming a input signal with a flat spectrum. Here the
three transfer function Bode plots are shown for filters designed using a nominal SP
model plant.
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Ga Gb

-+ Gf f

Figure 3-3: Equivalent system used to construct adaptive observers. The fact that

9u is related exclusively to the zeros of the minimal system and that 0., is related

exclusively to the poles of the minimal system can be clearly seen via reduction of

the block diagram to Ga and Gb. The equivalent system poles, will appear in the

denominator of Ga and the numerator of Gb.

The reasoning behind the choice of the transformation Tu and T. is to ensure the

matrix M(t) of (3.24), for large t, corresponding to the states in (3.36) is as close to

identity as possible. It can be seen that Po in (3.34) coincides with M(t) for a signal

u(t) with a uniform power spectrum, such as an impulse, and sufficiently large To.

The reasoning for introducing p is to accommodate the scaling between the 2-norm

11u(t)11 2 and ||y(t)1 2 when u(t) is an impulse. Here we point out that although the

tuned filters result in different g, and gy the poles of each filter remain the same, this

matching of poles for the filters of the input and output respectively is a necessary

condition for the observer. This can be seen algebraically when performing the pole-

zero cancellations of the nonminimal system required to achieve the original plant.

Alternatively, conceptually, the nonminimal system can be broken into two blocks,

one with a feedback loop and one which is only feedforward. The filter of the output

can be viewed as a system Gf with full state feedback achieved using Oy this full

state feedback has the ability to place both the poles and zeros of this loop. Poles

are placed to match the system poles and the resulting zeros will cancel the poles of

signal from the input filter.

With the filter parameters chosen as in (3.36)-(3.37), we can set I, = Iu = -y,
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with the magnitude of -y limited by the computational platform. With our trans-

formation of the nonminimal system, a transformation of the original parameters 0"

and 0, of (3.6) which correspond to the filters of (3.33) will be required. The new

parameter set for the filters of (3.36) is

ou1 = T-TOUi T(3.41)

oyl = T-7To

which was derived by equating the output of the nonminimal systems (3.33) and

(3.36) respectively,

= 0TUO + OT WyO

= TJT-l 1 + oT -'wYl (3.42)

= &W{1ul + 6jTwy 1

3.1.3 Maintaining Parameter Constraints using Projection

On occasion one may have a-priori knowledge of the plant such as a known pole. In

the case of the SPM we know that the plant will possess a free integrator, i.e. a pole

at zero.

A projection operator in adaptive systems was rigorously described in [27] and

proposed for parameter constraints in [21]. In the case of a known integrator, from

our original system description (3.2) we know that qo = 0. Therefore the nth element

of OY is known to be the corresponding element of the filter coefficients as is shown in

(3.6). That is Oy(n) = f(n). If our adaptive observer was implemented using control

canonical filters, it would be sufficient to simply set Oy(n)(0) = Oy(n) and Oy(n) = 0

to maintain this known constraint. However, in the previous section the system was

transformed, the resulting constraint is now a hyperplane on which the parameter
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6 y1 must remain. Decomposing our transformation matrix

TY= [t ty2 -.. ty] (3.43)

and using (3.41) in which T = we can define the hyperplane constraint as the

surface

S = {oy, E RE : f(n) tyn7y1} (3.44)

With our original parameter update law of 01 =

W1 = {V4Li yT we introduce a projection gain

wie with 01 = [Gf1 T]T

Fe = I - teCT
tTctI
tiC

where

t= 0 R 2 n

resulting in an a-posteriori update law projected onto the hyperplane S

1= -F1>le

where this projection only maintains 01 on a hyperplane parallel to S, therefore we

must also have initialized O1(0) E S.

and

(3.45)

(3.46)

(3.47)
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3.1.4 State Transformations

Up until this section we have presented algorithms which search for parameter es-

timates k2, , and compute nonminimal states C, in an arbitrary state space

representation. Originally in control-canonical form, but after the previous section

we have used a similarity transformation yielding a likely irrelevant system represen-

tation. Here we outline the options for obtaining parameter and state estimates in

a desired form. We begin by adding superscripts to our nonminimal representations

to idetify them from one another. First we have the states as implemented by the

observer defined below.

AO = F AOAOO +gAOU

WO F oWo +g Oy (3.48)

y = (AOo)TWAO + (oAO)TWAO

Using the process of section 3.1.2 with AOT C = Tu and AOTCC Ty we have a

relationship between control canonical (CC) nonminimal states and the adaptive

observer's (AOs) nonminimal states

WAO = ATCC
AOTCWCC(3.49)

AO AOTCCWCC
Y YI Y

and a similar relationship between the nonminimal system parameters of the CC and

AO representations

6 oA _ AOTCC)-ToCC

0 = (A )(3.50)
SAO - AOT CC -T gCC

Y V I
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with A-T =(AT)- 1. For reference we also define the CC nonminimal system

jCC = FccwcC + gCCU

- =CC FCCwCC + gCCy (3.51)

y = (OCC)T WCC + (OcC)T WcC

and from our original state space representation of prior sections we alter the notation

for this section as

OC = AOCxOC + bOcu = (FOc + 0OCCgCC)T) OC + C(c35
Y (gCC )X U(3.52)
y = (gCC)TxCC

which can be broken apart by superposition into an observer canonical nonminimal

system representation,

Oc = F0Cw0C + OCCu

6joc = FOCwOC + 9 CC (3.53)

C= (gCC)TOC + (gCC)T OC CC)T OC + W0c)

At this point we point out that the minimal system state of (3.52) in observer

canonical form is the sum of our nonminimal states in OC form,

XOC _ OC OC (3.54)

however, it is important to note xCC wCC + WCC.

In general the process for determining states of a general state space form requires

the ability to construct A, b for this form strictly from the poles and zeros of the

plant, or equivalently from the denominator and numerator polynomials of Gp. For

example, Jordan normal form system representation only requires the poles, \j, of
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the system

A1

A 2

1

1

1

(3.55)

when Ai 4 Aj, Vi # j. In the context of our observer,

form matrices

A1
A2

n

we can estimate the jordan

(3.56)

where Ai are estimated by computing the roots of the polynomial with coefficients

[1 (fcc _ 0CC)T] Transformation of a state z in representation i to j is accomplished

using a general transformation matrix iT,, where zi = jTz with

Tz = c-,(C0) - (3.57)

with C', C' being the controlability matrices for representation i, j respectively. To

obtain xj from W0 and O, must first convert our nonminimal states to OC form

before they can be summed to obtain our minimal state using

xJ = Tf (wOC + W C)

x _JTC (ocTAoWO + OCTAOwAO( )U UW V
(3.58)
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where

=V Cxf(CC)l,

OCT AO = COC (C^O -1

OCTAO = COC(CA0 1

Wy Wy ts

and our controllability matrices are computed as

LJ bj
C c = O b'

CSC = [9Gcc

CC = [ of

C^= g

CoC= 

C = gy

Alb

(Foc + OCCgT) Cc

FOCU

FAOgy

... (FOC + CCgT)n-I{CC

... (FOC)n-1 ou

... (FAO)n-lgu

... (FOC)yn-10]

... (F^AO)n 1 g]

similar to (3.58), jordan normal form state estimate can be computed as

iJ_ oc ( AoC-AO OCfAOAO
= 'X ~WU + TWy y J

where

J = CO (GAO

OCtA -
WPOy _ O )-1

OCTpAO _ dOCcA Ao-1

(3.62)

Noting that C A and CAO are completely known and no estimates are required.

(3.59)

(3.60)

(3.61)
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The remaining controllability matrices are estimated as

dxj = bJ A'bJ ... (AJ)n-1bJ
C = [dcc (FOC + CCg T)G CC ... (FOG + 6CCgT pn- .cc

U Y 0YIL U(3.63)
oC =dcc FOCgcc --- (FoC)n-1 CC

doc = [dcc Foc^cc - . (Foc)n-1^cc

Here, we have no guarantee that dv C will be non-singular, and we also are not
guaranteed that Cio and CA" are not poorly conditioned subjecting the algorithm

guarntee tha CXWY

to amplification of numerical errors when implemented. Alternatively to (3.61) we

can eliminate the need to invert CZ and CY0 using an alternative method to estimate

PCo using an additional online estimate,

x = FocOC + 0 y +0'U (3.64)

J
for which we are then only required to compute POC of (3.62). The state estimate

in jordan form is then

'= xoc (3.65)

In general this second method using (3.64) and .(3.65) will be used in the following

chapters. Care should be taken if the parameter estimate is initialized at 0 as dxc

will be initially singular.
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3.2 Matrix-regressor (MR) Adaptive Observers

Asymptotic stability of parameter error estimates to zero can be shown for the vector

regressor adaptive observer provided the input to the system is persistently exciting

(PE). However, the rate of convergence is not only very difficult to compute, but

also extremely slow. In order to generate adaptive observers with improved error

convergence, matrix regressors have been explored in leiu of vector regressors [22,24,

251. In this section be begin by introducing the notion of strong persistent excitation

(SPE). We then present two matrix regressor based adaptive observers (MR-AOs).

The first has been reported previously in 124,25,40], and is discussed in 3.2.2, while

the second was introduced by the author in [22] and is a primary contribution of this

research. This second MR-AO structure is discussed in 3.2.4

3.2.1 Strong Persistent Excitation

The drawback of the PE condition in (3.24) is that the degree of persistent excitation

ei in (3.24) is not directly related to the convergence rate of W to zero in (3.15). More

importantly, it has been observed in practice that the convergence rate, though

guaranteed to be non-zero, is extremely slow. This motivates the notion of strong

persistent excitation (SPE), for which we consider a matrix of regressors Q E R"'"

and the exponential stability of 0(t) = 0 of the differential equation

0(t) = - (t)2T (t)O(t) (3.66)

Theorem 1 (Strong Persistent Excitation 1). If there exist positive constants to, e2

and P2 such that

(3.67)P2 A [Q(t)QT(t)] > e2, i = 1,2, ..., N, Vt> to
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then (i) Q is said to satisfy strong PE, and (ii) the origin W(t) = 0 is exponentially

stable and satisfies the inequality

e-I2(t-t0) ( e_6to)II , Vt ;> to (3.68)

for any initial condition 0(to).

The proof of Theorem 1 (as well as Theorem 2) is omitted as it follows directly

from properties of linear time-varying systems. We denote condition (3.67) as Q E

SPEN and E2 as the degree of SPE of Q.

A slightly weaker version can be formulated which allows for Q(t)QT (t) to be

occasionally singular, and is stated in Theorem 2.

Theorem 2 (Strong Persistent Excitation 2). If there exist positive constants T, to,

E3 and p3 such that Vt > to

t+T
Tp3 > j A [Q(T)QT (r)] dr > TE3 , i = 1, 2, ... , N (3.69)

then (i) Q is said to satisfy strong PE, and (ii) the origin 0(t) = 0 is exponentially

stable and satisfies the inequality

ep3(t-to) < I0(t)I < eE-3(t-to) Vt > to + T (3.70)

||0(to)||

for any initial condition 0(to).

It should be noted that with the matrix regressor and the resulting differential

equation in (3.66), if Q satisfies either the SPE condition in (3.67) or the condition

in (3.69), there is a direct relation between its degree of persistent excitation and the

convergence rate of 0(t) to zero in (3.66). This in turn implies that one can use the
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U1

GP - Go - Y1

Figure 3-4: The equivalence of the relationship between u, y and ui, yj for MR-AO I
is clear once initial condition errors decay.

degree of SPE as an on-line metric for evaluating parameter convergence in a given

dynamic system.

It is easy to see that if Q satisfies either (3.67) or (3.69), it will satisfy (3.24) for

some positive constants to, To, and cl.

We now discuss adaptive observers which use matrix regressors rather than vector

regressors.

3.2.2 Matrix-Regressor (MR) Adaptive Observer (AO) I

The matrix regressor used in MR-AO I is composed of 2n vector regressors. To

generate these multiple vector regressors, denoted wi, instead of a single vector w as

in (3.9), we utilize additional filters of the regressors and system output y(t). The

base regressor is constructed as in (3.9)

Co = FWO + [j, (3.71)
Y
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F_ [F 0 _

0 F

g 0

0 g I
where F, g are defined as in (3.5). 2n - 1

are created as

wi = G(')(s)wo,

i =

additional regressors and output signals

(3.72)y = G

1, 2, ... , 2n- 1

where yo(t) = y(t), and G(o(s) = (+), > 0, and s denotes the differential

operator Here Go(s) is a first order low pass filter, but in general any filter can

be used, in the following chapter we will use a combination of high and low pass

filters. With the total of 2n wi, we generate the matrix regressor and vector output

as

O2 = [wo, i 1, ... ,W2n-1],

Yo

Y = J Qyi = (3.73)

where Figure ?? depicts these signals in a block diagram form. For clarity it is helpful

to point out that one can construct an equivalent set of regressors by sequentially

filtering u and y as ui = (Go(s))(')u and yj = (Go(s))(')y and then compute filters as

Cwi = FW, + g[U, y] for i = 1, 2,..., 2n - 1.

We now present the matrix regressor adaptive observer, denoted as MRAO-I

3.2. Matrix-regressor (MR) Adaptive Observers 77



Chapter 3. Adaptive Observers for Linear SP Models

(see [24,25] for details):

Wo =Fco + 7

s=G (s)cGo, i = 1, 2, .. -7 ,2n - I

j G(' (s)y, i = 1, 2, - - - 2n - 1

V Yi ... 92n-1 1 (3.74)

E = 2T -

0 = 0 =--101E

1= [ I0,1,. .. ,Cl J2n- 1

where 9 = 9 - 9 is the parameter error, c2)j are estimates of the filter states wi of

(3.71)-(3.72) implemented by the observer and y E R+ is a positive learning gain.

Whether for the vector regressor adaptive observer in (3.9)-(3.11) or the MRAO in

(3.71)-(3.74), a persistent excitation condition [40] must be satisfied for parameter

errors 6(t) to converge to zero asymptotically. In the latter case, we previously

defined the notion of Strong Persistent Excitation (SPE) and below a theorem that

derives conditions under which parameter convergence takes place.

Theorem 3. If the external input u(t) = E= sin vjt it can be shown that (i) Q, E

SPE2n and (ii) W(t) = 0 in (3.73) is exponentially stable and satisfies the inequality

F(t) < F(to) e- EO-to), Vt > to (3.75)

where en is the degree of SPE of Q 1 .

Proof. Using transformation matrices J and K the matrix regressor can be shown
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to be

Q1(t) = J [vo(t), Kvo(t), K2vO(t), ... K2n-1v0(t)] (3.76)

where vo(t) = [sin(vit), cos(vit),..., sin(Vnt), cos(Vnt)] T , J and K are constructed as

T

TR,

K =Ro

with the transformation matrices T, R, Ri e R"lXf

wai = T 1 T 2 ... ]

T

Wyj = TRpRjS

-R- sin v1t
Ril

cos v1t
Ri2

sinv2t

S

(3.78)

and Rij E R2
x2 is a block of Ri. bij and #ij E R are the gain and phase shift due to

Gi at frequency vj respectively.

Rij = bij COS #ij

L- sin Oij

sin #ij]

cos #$j J
(3.79)

(3.77)
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Tj E Rnx2 is another transformation matrix,

1 0

0 v3

Tj= -v? 0 (3.80)

0 -v

and K is a block diagonal matrix whose jth block is given by

Kj bj cos #j bj sin Oj (3.81)
-bj sin #j bj cos #b,

where bj and 5j are the gain and phase of Go at frequency v3 . vo(t) , 0 for all t by

construction.

It can be shown that J is nonsingular [40]. We will now show that

= [vo, Kvo, K2vO, ... K2n-1vo] (3.82)

is nonsingular.

The block diagonal structure of K results in q(s) = cT(sI - K)-'b where c and

b are arbitrary vectors in R2n. The structure of K in (3.76) implies that q(s) has n

pairs of complex conjugate poles and at most only one real zero for any b and c in

R2,. This in turn implies that there are no pole-zero cancellations in the transfer

function q(s). Therefore the triple {c, K, b} is controllable and observable which

implies that T is nonsingular. This proves that Q1 (t) is non-singular for all t which

proves (i). From Theorem 1 we conclude that there will exist an cQ > 0 such that

QIQT > E0 Vt > to. This proves (ii) in Theorem 3.
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It should be noted, that as represented above, the adaptive observer in (3.74)

will require 4n2 + 4n - 2 integrators. As a result, for a given set of frequencies in

u(t), the degree of SPE cQ may be rather small due to the filtering by a transfer

function of order 4n. This motivates the new MR-AO structure described in 3.2.4

which reduces this order to 2n2

3.2.3 Stability of MR-AO I

For the nonminimal system (3.71) and subsequent filtered states and output of

(3.72) we now analyze the stability of the matrix regressor error, i.j = 0, - QI,

synthetic output error Y = Y - Y and parameter error 0 = 0 - 0. We begin

by stacking the vector regressors which make up Q, E R 2nx2n into two vectors

W.= [C U0 U)U ... T]T2n-1]I]I E R2n 2 and Wy = [wT wT ... w -]T]T E R2n2 which

from (3.71) and (3.72) are constructed as

W = FwWu + gwu (3.83)

Wy = FwW + gwy

with Fw E R2n 2 
x 2n2 , gw E j2n 2 defined as,

F g

Fw = -3wf f1 0 (3.84)

fIn -3In 0
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with I, E R"'" an identity matrix. The estimate W of W is similarly

W. = FwWu + gwu

Wy = FwW, + gwy

resulting in error dynamics of the nonminimal states

Wu = FwWu

y = FwWy

We additionally describe the construction of synthetic output vector Y' = [y1

and its implementation Y' as,

FyY'+ gyy

Y'= FyY' + gyy

where Fy E R 2n--x2n-1, gy E R2n-1 is constructed as

1 -[ 0

# -#

gy =

0

(3.85)

(3.86)

(3.87)

(3.88)

resulting in a synthetic output error dynamics of

Y=Fy' (3.89)

and the full output error of k E R2n = [y()T]T. This error in the synthetic output

vector is purely a result of initial condition mismatch due to our observer initializing
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without a prior history of y.

We now expand the error E of (3.74) for use in the analysis to follow,

E = OT _ -Y,

= nOT - QTO -_

= OT _- (OT - U) -(3.90)
-~ ~ I7~ -]7 -

Eo Ep

To analyze the stability of the MR adaptive observer in (3.74) we define a radially

unbounded Lyapunov function candidate

(3.91)V= VW+ W T PwVW + (Y') T PrY'
2

with positive definite Pw E R2,n2 x 2n2 satisfying FwTPw + PwFw + Qw = 0 for any

positive definite Qw E R2n 2
x2n

2 and positive definite Py E R2 ,- 1 x 2 n- 1 satisfying

FyTPY + PYFr + Qy = 0 for any positive definite Qy E R2 n- 1 x 2 n- 1. Using 0 of

(3.74), W from (3.86) and Y' of (3.89) the time derivative of (3.91) is given by

1 ~T
V=- 0 + + WT

2 PWW + WT PW + (Y')T Py '+ (YI)T py]

-1 (ETA7J+ TnE) - V T QwW - (Y') TQwY'

= -jT W j+2To - k) - WTQwW - (Y') TQwY' (3.92)

= -Trnn -Trn 9 + 22 Th) - WTQwW - (Y') TQwY'

= - TEO + EOTY - W T QwW - (Y') T QwY'

Where we see the fourth and fifth terms are negative definite while the first term is

a negative quadratic term in E0 and the second and third are linear in E0 . From
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this we can conclude that # < 0 outside of the compact set

S = 9e R2n, E R2nx2n, E R2n T > i2TO+V } (3.93)

From (3.86) and (3.89) we see that IIT + f exponentially decreases independent

of excitation and other signals. And therefore S exponentially shrinks to the null

set and we approach a globally stable system. Identical arguments to that of the

VR-AO show that regardless of excitation limt.., E = 0 and with n E SPE, 0

will exponentially decrease to 0.

Here it is important to note a caveat to claims of arbitrarily fast convergence of

the observer. Clearly from the stability analysis our limiting factor to convergence

is U and Y which determine the size of S. In theory, the filters F, g and Go(s) can

be made arbitrarily fast and therefore S would shrink arbitrarily fast. However, in

practice, numerical errors prevent using F, g and Go(s) which are 'too fast' relative

the original plant poles. Obviously, 'too fast' would be determined by the hardware

available..

3.2.4 Matrix-Regressor Adaptive Observer II

Ga Gb

Figure 3-5: Equivalence of multiple independent nonminimal systems is achieved by
an additional feedback term, 6fi in the output filter Gb. Since this 6fi is known, mul-
tiple nonminimal representations can be used simultaneously to construct a matrix
of regressors.
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In this section, we present a second matrix regressor adaptive observer with an

inherently different method of generating the multiple regressor vectors. Recall that

the adaptive observer is built upon a nonminimal equivalent system of (3.3)

(t ) = ( F0 + Oyc )x(t) + bpu(t) = -fo

In-lxn-1

x(t) + GVy(t) + OGu(t)

01xn-1

(3.94)

y(t) = cfxz(t)

and that of the true parameters,

U= b, and O, = fo -a (3.95)

., is independent of the filter FOC and 0, is biased by the filter characteristic poly-

nomial coefficients fo. This allows the creation of additional nonminimal represen-

tations for the same system using the true parameters of (3.96)

i(t) = [fi

y(t) = c x(t)

In-lxn-1

x(t) + GOy(t) + (fi - fo) y(t) + 9u(t)

01xn-1

The fundamental characteristic of matrix regressor adaptive observers is the gen-

eration of additional nonminimal state regressors which when excited will provide

responses linearly independent of any other regressor. In the previous section and

elsewhere in literature this was accomplished by creating virtual inputs and outputs,

(3.96)
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ui and yi respectively, by filtering the true systems input, v and output y. This new

approach creates additional regressors instead through generation of an alternative

equivalent system, something not seen before in the literature. The key enabling

factor for this is that the same parameterization, 9O, Oy, is used for every equivalent

system. With this understanding of the intracacies of equivalent systems, we present

an alternative matrix regressor adaptive observer, designated here MR-AO-II.

We represent the plant using states wi that are generated as

W, = Fiwi + [i , (3.97)

Fi 0 _g 0
Fi = , g9 =

0 Fi 10 g

In--lxn-1 1

F = -9 g 0

O1xn_1:

QII WO W1 --- W2n-1

where fi ff Vi / j. This leads to a total of 4n2 integrators that make up the

matrix regressor QII.

With the above states, the plant output y can be expressed as

2n- 1

Y Y[1 =jII9 + wiwi[6fi (3.98)

0
6fi =i = 1, 2, ..-. 2n - 1

Ai - fo
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where wi is a unit vector directed in the ith dimension. It is the introduction of this

offset to 0 = -ap + fo which allows the construction of 2n error equations while only

filtering the input by filters of order 2n.

With the plant representation as in (3.98), we now generate errors

ej = (0 + 6fi)TCi - y (3.99)

E = [eo, el, ..., e2 n-]T

Since fi and fo are known for all i, the offset 6fi is known. Therefore, ei(t) can be

constructed at each instant of time using a single estimate of the parameter vector

for which we can now choose an adaptive law similar to that in (3.74) as

0 = 0 = -7A11E (3.100)

where -Y E R+ and 6 = - 0 is the parameter error.

Note that the true unknown parameters will be different for each filter, but all

related by known vector shifts 6f . Therefore only one vector parameter estimation

O of 0 is required. We now state the convergence result for MR-adaptive observer II,

similar to Theorem 3.

Theorem 4. Assume for all frequencies v3 there exists a pair of filters i, j such that

sin(pij - $kj) 7 0. If the external input u(t) = En 1 sin vjt it can be shown that (i)

QH1 E SPE2n and (ii) 0(t) = 0 is exponentially stable and 3T > 0 such that I(t)
satisfies the inequality

I(t) < W(to) e-E(t-O), Vt > to + T (3.101)

where cQ is the degree of SPE of QII.
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Proof. Using transformation matrices J and Ki the matrix regressor can be shown

to be

11(t ) = J[Kvo(t), K2vo(t), K3vo(t), ... K2nv0 (t)] (3.102)

where vo(t) = [sin(vit), cos(vit), ... , sin(vet), cos(vst)]T . As in Theorem 3, it follows

that vo # 0 Vt. J and K are defined as

T

LTRp I (3.103)

where the transformation matrices T, Rp, R, E R"'" are

1 sin v1t
Ril] cos v1tWi= T, T2 .-- Ri2

%e- Sin V2tT L_
S

W= TRpRjS (3.104)

and Rij E R2
x

2 is a block of Ri. bij and #ij E R are the gain and phase shift due to

Gi at frequency vj respectively.

Rij = bi
Cos #ij sin #ij

- sin #ij cos /ij j
(3.105)
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T c Rnx2 is another transformation matrix,

1 C)

0 vj

T= --v2 0 (3.106)

0 -V

and Ki is a block diagonal matrix whose jth block is given by

Ki bij cos #ij bij sin #,j (3.107)
L -bij sin #ij bij cos #ij J

where bij and #ij are the gain and phase of Gi at frequency vj.

It can be shown that J is nonsingular 1401. We will now show that for all t,

T = [Kivo, K2vo, K3vo, ...K2 ,vo] is not singular.

The block diagonal structure of Ki results in each block Kij multiplying only

frequency j. Additionally by assumption 3i, k s.t. sin(#ij - q$j) -# 0 and it

follows that 13 = [Kivo, K2 vo, ... , K2 y vo] is rank 2. Therefore, 3T, to such that

ft Tm [IF] dT > 0 m = 1, 2, ..., 2n Vt > to which implies f- T Am [IM](t) d >

0 m = 1,2, ... , 2n Vt > to and proves (i). From Theorem 2 we conclude that there

will exist to, T, cQ > 0 such that It Am [Q11 I,] dr > cn m = 1, 2, ... , 2n Vt > to.

This proves (ii) in Theorem 4. E

Similar to MR adaptive observer I, as represented above, the adaptive observer

in (3.100) will require 4n2 integrators. However, unlike MR adaptive observer I, no

signal is filtered by a transfer function of order greater than 2n, which has obvious

advantages. Additionally, MR adaptive observer II is advantageous when the band-

width of the plant is not well known. This is because, unlike MR adaptive observer I,

3.2. Matrix-regressor (MR) Adaptive Observers 89



the filters of adaptive observer II can be distributed throughout the predicted range

of the unknown plant's bandwidth.

To facilitate faster convergence, equation (3.74) should include positive definite

gain matrix IF. A similar proof to that of Theorem 3 can easily be derived for this

case as well but was omitted here for ease of exposition.

3.2.5 Stability of MR-AO II

For the nonminimal systems (3.97) we now analyze the stability of the matrix re-

gressor error, 5)I = f11 - QII and parameter error 9 = 9 - 0.

We begin by expanding the error E = [eo el ... e2n-1]T for use in the analysis

to follow. First note that from (3.99)

ej = (9 + 6fi)TZi - y (3.108)

= (9 + 6fi)TZ2i - (9 + 6fi)T wi (3.109)

= (9+ 6 fi)T i - (9 + 6 f )T (P - &i) (3.110)

-Ii + ( + oi)T i (3.111)

(3.112)

which can then be written in vector form as

E = - 1T +E, (3.113)

E0

Chapter 3. Adaptive Observers for Linear SP Models90



3.2. Matrix-regressor (MR) Adaptive Observers 91

with

E, = T6+

0

-T~

'2n-1 ji

(3.114)

Additionally we compute the nonminimal state errors wi = Wi - Wi,

== FjUj' (3.115)

To analyze the stability of the MR adaptive observer in (3.99) we define a radially

unbounded Lyapunov function candidate

2n- 1

V= JTJ + E fT P.&
2 i=0

(3.116)

with positive definite Pi C R 2nx2 n satisfying FTP + PF + Qj = 0 for any positive

definite Qi E R 2 nx 2 n for all i E {0, 1,..., 2n - 1}. Using 0 of (3.99), Dj from (3.115)

the time derivative of (3.116) is given by

= - (ET0 +#T

2n-1

( _ ipi + Of p
i=O

2n-1

n11E) -
i=O

2n-1
= f - -TW Ar -T A- E -Qiji

i=O
2n-1

= -E0E - EoEo - 2 1
i=o

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)
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Where we see final summation term is negative definite while the first term is a

negative quadratic term in E0 and the second is linear in E0 . From this we can

conclude that # < 0 outside of the compact set

S = {W E R2n, Q E R2nx 2 n: QT0  > IIEQII} (3.122)

From (3.115) we see that ||EQII exponentially decreases independent of excitation

and other signals. And therefore S exponentially shrinks to the null set and we

approach a globally stable system. Identical arguments to that of the VR-AO show

that regardless of excitation limt÷e E0 = 0 and with f E SPE 1 , 0 will exponentially

decrease to 0.

Once again, as with the MR-AO-I we can in theory achieve arbitrarily fast con-

vergence of the parameter error with persistent excitation of the system implying

SPE. However, we are still limited by the presence of S.

A few comments are now in order to address differences between MR-AO I and

II. First, in order to rapidly decrease the size of S of MR-AO-I we would need to

increase the speed of the base filter. However, using a base filter which is very fast

relative to the plant will result in poor SPE and poor learning in general. In MR-

AO-II a number of filters can be used, with a range of speeds, from extremely fast

relative to the system, to on the same order of the system. Introduction of scalar

time varying gains for lerning from each regressor which start small but increase to

unity at the same rate the error decreases allows poorly conditioned fast regressors

when slower regressors contain error due to initial conditions, but using slower better

conditioned filters once errors are expected to have decayed sufficiently. Secondly,

the sequential filtering of regressors in MR-AO-I will significantly attenuate signal

strength at higher frequencies, thereby potentially significantly reducing the degree of

SPE if the input signal contains high frequency content. The MR-AO-II alternatively
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only filters the original signal with its full strength. And third, as the order of the

plant increases the number of regressors increases and when large would require a

large number of filters to be assembled for MR-AO-II, as these filters must be spaced

significantly apart in the frequency domain in order to maintain sufficient SPE it

may become difficult for higher order plants. For these higher order plants, the

best course of action would likely be a combination of multiple base regressors as

constructed in MR-AO-Il each sequentially filtered as in MR-AO-I in order to create

at least 2n regressors. If resources permit, more than 2n regressors can increase the

degree of SPE for a given input resulting in Q G R 2nxn with m > 2n.
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Chapter 4

Adaptive Observers for the modified

SP model

Contents

4.1 MR-AO I for the modified SPM, overpotential known . 97

4.2 Augmented MR-AO I for the modified SPM, overpo-

tential unknown ....... ........................ 103

In the previous chapter we discussed adaptive observers for linear time invariant

(LTI) strictly proper single-input, single-output (SISO) systems. For our battery

management system (BMS) task, as can be seen from the model summarized in

section 2.3.2, our system does not fit this description due to the presence of two

static nonlinear functions, a nonlinearity at the output of the dynamic system and

a nonlinear feedthrough, fj, and fle, respectively (Figure 5-1). In this chapter we

assume that fo, is known, but still present, and modify the adaptive observer to

work in the cases of fover known and unknown.
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Figure 4-1: Schematic of true, predicted and estimated signals of the modified SP
model for implementation of the MR-AO I.
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4.1. MR-AO I for the modified SPM, overpotential known

4.1 MR-AO I for the modified SPM, overpotential

known

For a physical cell the only measurements available are the input, I, and the potential

across the cell terminals, V. For the nonminimal states of an adaptive observer to

converge to their true states a measurement of the output of the dynamical system

is required. We can compute an a-priori prediction of this signal, designated in

figure 4-1, as

1OcP = V - fe er(I)

_1ep (4.1)P

where Ve is the predicted open circuit voltage after the estimated overpotential has

been subtracted from the measured cell voltage and y is the predicted dynamical

system output. In the ideal case where fver = fve, and = fJ, we have

that foc, = Vocp and = y. It is the synthesis of this signal, which will mimic

the dynamical system output independent of its estimate that enables the use of an

adaptive observer for this system despite the presence of nonlinearities on the output

and feedthrough.

We first validate the performance of the adaptive observer described in Section

3.2. The problem is to identify the parameters the SP model defined by (2.34)-

(2.39), using I and the corresponding prediction of y, y, from measurements of V,

first assuming both fi, and folver are known.

To test the adaptive observer under realistic PE conditions a UDDS drive cycle

[561 is used as the cell input and repeated for 3 hours. The UDDS signal is an urban

dynamometer driving schedule used by the United States Environmental Protection

Agency to test fuel economy representing city driving conditions. Examining the
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frequency spectrum of this signal confirms that it is indeed persistently exciting.

Figure 4-2 shows both the input profile as well as the cell voltage and internal state of

charge. A total of 6 parameters are estimated by the adaptive observer, representing

the 3 numerator coefficients and 3 denominator coefficients of the equivalent transfer

function from I to y. The filter n, was chosen as in (3.74), with W^ 0 determined using

F1, gui, gyi as specified by (3.34)-(3.40) and W'i as in (3.72) with Go(s) = 0.03 and
s+0.03

the scalar gain -y = 3. The MRAO-I described in (3.74) was evaluated with a 30%

corruption in the six parameters what correspond to the 3rd order transfer function

of the SPM.

input Current
100-

50-

0-
-50 -

-100-

0 0.5 1 1.5 2 2.5 3
Tim (h)

Cell Potential

3.8-

3.6 -

3.4-

0 0.5 1 1.2 2.5 3
Time (h)

SoC

0.6

0.50.

0.3

0 0.5 1 1.5 2 2.5 3
Time (hi)

Figure 4-2: Input current, cell voltage and state of charge of the cell for all simulation
results

Figure 4-3(a) shows the corresponding parameter estimates obtained using the

predicted output 9 = y. Also shown in Figure 4-3(b) is the estimated output of the

cell, which is a nonlinear transformation of the dynamical error used for the adaptive
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4.1. MR-AO I for the modified SPM, overpotential known

learning. Figure 4-3(c) is the corresponding SOC estimate error, which corresponds

to the est imiation of the state variable T; defined in (2.34). Given that a key goal of

a BMS is an accurate estimation of SOC, Figure 4-3 clearly shows that assuming fo.
and fve, are known a matrix regressor adaptive observer can successfully estimate

internal states and correctly identify the underlying diffusion dynamics.

The results of Figure 4-3 are based on the assumption that foyr, and foP are

fully known. We now relax this assumption and assess the need for estimating the

nonlinear components of the SPM. We begin with a numerical evaluation of the

system considered previously, and introduce a 50% reduction in RJ. From (4.1), it

follows that this in turn leads to errors in y where

y = (fop) (V - fovter(I)) (4.2)

e= - y = -ktO.5R7I (4.4)

where kt E R+ is some time varying scalar gain. This therefore introduces errors

in parameter estimation as well. Figure 4-6(a) shows the corresponding parameter

estimates obtained using the corrupted output 9 which clearly illustrate the lack of

their convergence. Also shown in Figure 4-6(b) is the estimated output of the cell,

which is a nonlinear transformation of the dynamical error used for the adaptive

learning. Figure 4-6(c) is the corresponding SOC estimate error, which corresponds

to the estimation of the state variable T; defined in (2.34). Given that a key goal of

a BMS is an accurate estimation of SOC, Figure 4-6 clearly shows that uncertainties

in fje, cannot be ignored. For this reason, estimation of the overpotential should

be added to the adaptive observer and is addressed below.
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Overpotential(foyer)

0O +- Vover

fN

Figure 4-5: Overpotential basis function representation
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Normalized Dynamical Parameter Estimates
2 A

0-

-1- -i

-2 -i2

-u

.-

(a)

0 0.5 1 1.5 2 2.5 3

Time (h)

Cell Voltage Estimate Error

0.05 -

01

(b)

-0.05-

-0.1 -

0 0.5 1 1.5 2 2.5 3

Time (h)

SoC estimate error

0.05-

0-

(c)

-0.05-

-0.1-

0 0.5 1 1.5 2 2.5 3

Time (h)

Figure 4-3: MR adaptive observer when foyer = fover (a) normalized parameter estimates,
0., where Oi is the i'th element of the true parameter (defined in (3.73)) (b) cell voltage

estimate error (actual cell voltage can be seen in Figure 4-2) , (c) SoC estimation error
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Normalized Dynamical Parameter Estimates

,V1 (a)

2.5 30 0.5 I 1.5

Time (h)
2

Cell Voltage Estimate Error

I

(b)

-0.1

0 0.5 1 1.5
Time (h)

2 2.5 3

SoC etimate error

0 0.5 1 1.5
Time (h)

2 2.5 3

Figure 4-4: MR adaptive observer with corrupted fover (a) normalized parameter esti-

mates, -, where Oi is the i'th element of the true parameter (defined in (3.73)) (b) cell
voltage estimate error (actual cell voltage can be seen in Figure 4-2) , (c) SoC estimation
error

102

I
0.1 -

0.05-

0-

-0.05-

0.04-

0.02 -

0-

-0.02-

-0.04-

-0.0e -

-0.05 -

-0.1 -

(c)

2 -

-2 -



4.2. Augmented MR-AO I for the modified SPM, overpotential unknown

4.2 Augmented MR-AO I for the modified SPM,

overpotential unknown

In the ideal case, when f,, is perfectly known, it follows that a variable Yvo can be

synthesized as

Yvo = y + fo=er (I)y + vT a (4.5)

with

I

f2(I)

fN I)

a1

a2

aN

(4.6)

This in turn leads to an underlying linear regression model of the form

Yvo = Ao (4.7)

where

to = 4 Y

Lv I a

(4.8)
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Chapter 4. Adaptive Observers for the modified SP model

based on (3.71) and (2.32) The combined nonlinear MRAO observer is proposed as

YVi =PA

w.o = Fc'.O + guI

WyO = Fc7JYo + gM T ()

Ai = G(')(s)Ao 1 < i < 2n

G -2n)(s)G-21) (s)Ao 2n i < 2n+N-1

where n is the order of the dynamic system (2.29) and N is the number of basis

functions used for (2.32). G(a(s) = ( b)', b > 0, is used to create the first 2n - 1

additional regressors and Gb(s), a high pass filter, is introduced in the generation of

the last N filters required to assemble a full rank matrix of regressors. Recall from

Section 3.2 that although a low pass filter, Go(s), was used, any filter can be used.

Design of F, g,, gy is given by Equations (3.33)-(3.40) described in Section 3.1.2. The

reasoning behind the use of Gb(S) will be described shortly.

In order to estimate the parameters, 6, we need to generate an output error ej

using yvo and yVi, i = 0, 1,... , 2n + N. However, as noted above, yvo is a synthetic

variable only available when the nonlinearities are known. We therefore use variables

y(t) and 1ie,(t) defined in (4.1) to generate the output errors as follows

ei = Yvi - QVi

I a i 0 (4.10)
i = G() (s) 1)(so 1<i < 2n

G( 2n) (s)G (-2ngl)(S) Vo 2n~i< 2n+N-1
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4.2. Augmented MR-AO I for the modified SPM, overpotential unknown

Using these output errors, the parameter estimate adaptive law is,

0 - -PQ' E

POfOi, r1 1,--, P2n+NA2n+N-1

E= eoei,. .. ,e2n+N-1 ]
(4.11)

T

where p is a projection gain akin to the projection algorithm of [27] defined as

FP = I - IFa - b,

= ( a0f 'iffa fa(O) > 0 A (Vfa(9
a = 0 otherwise

Pb = f b fb(9) > 0 A (Vfb ()

0 otherwise

where fa(O) and fa(O) are convex functions

ITQO maxH 1 L TU TT

fa(0) = Iax , Q0=
2ep||Omax| + Cp2

9TQa6 - Iamax1| 2

fb(0) = 22 maxH + ep
02n

=

))TOE > 0

TQE > 0

Ty TY

IN]

using T, Ty of (3.38) and with 1k E Rkxk, an identity matrix, and 0 k E Rkxk, a

matrix of zeros. Use of the transformation matrices T, TY is required to maintain

compatibility between this projection gain, IP and the constraint projection gain IF,

of (3.45). P, ensures the parameter estimate of the dynamic system ky = [T 0T]T

remain within a convex set Ouy = {$,y E R2n : < 9} and the overpotential

(4.12)

ON (4.13)
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106 Chapter 4. Adaptive Observers for the modified SP model

parameter estimates, d, remain within a convex set 0, = {& E RN .I&1 < dl

where

(4.14)
a =||amax||+ p

For this work conservative bounds 9 max = 10, amax= 1 are chosen ensuring the true

parameters, 0,,y E 0y and a E 0,. C = 0.1 defines a finite region at the outer

edges of e), and e, between which IP, smoothly transitions from an identity matrix

to what is known as a projection matrix. [60] Equation (4.11) can be rewritten in

summation form as

2n-1 2n+N-1

0 = -FP(1 FACiei + E rAei (4.15)
i=O j=2n

where Ai e R2n+N, j > 2n are the regressors which have been high pass filtered.

i E R2n+Nx2n+N are diagonal tunable gains, which can be further broken down into

two components

F= J i=0,1, ... , 2n+N-1 (4.16)

L 'Yvi IN

where -y, E R+ and -y, E R+. Since the nonlinear observer above used y, defined in

(4.1), rather than the true y, c2y in (4.9) can contain errors as fve, may not equal

fj.ver As these errors in cJ, are due to incorrect estimation of &, we have introduced

a high pass filter Gb which can attenuate the effect of cQi, but retain the component
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of v in ii, i > 2n. In particular, we choose Gb(s) such that IIGb(S)II_ < 1 and

max |G(,(s)G$--'(s) [(sI - F)-'g ]jiEl,jEJ=,y b 0 1100

S {1,72,. . ., 2n + N}

I = {1, 2,..., N}

Bode Diagram

0

-20

j-40

100

180

0

5 Eb

(4.17)

10 10- I 102 10-1 100 101 102

Frequency (rad/s)

Figure 4-6: Bode diagram of the nonminimal system states and the high
All signals which pass through both of these filters will be attenuated by
which here is 10-2.

pass filter.
at least Eb,

where [G(S)]j denotes the jth element of a transfer vector G(s). Additionally we

define Y,, = 1, 2n < i < 2n + N and

7vi = ebs maxy JG( -'(s) [(sI - f)-lg ]jYC=, 0 1b -)(4.18)

i E {0,2, ..., 2n - 1}

For the complete nonlinear battery model in (2.34)-(2.39), a nonlinear adaptive

observer is now completely specified given by (4.1), (4.9)-(4.17). The following the-

-

WI.
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orem summarizes the stability properties of the nonlinear observer.

I Gf

GG f0ep V
W Y

fi Vover

Figure 4-7: Nonminimal representation of the battery including overpotential non-
linearity, for this section we assume fc, is known allowing it to be inverted and be
transparent to the adaptive observer.

Theorem 5. Let n E SPE, the nonlinear observer in (4.1), (4.9)-(4.17) generates

bounded parameter estimates 0 of the true parameter 0 in (4.8) and bounded state

estimates cji of the nonminimal state wi in (3.72) with

2n+N-1

9(t) - 0 + Z IVi(t) - wi(t)II <; et(t)
i=O

(4.19)

where et(t) is monotonically decreasing with t to a value of O(Eb).

Proof. We begin with a state space description of the ideal plant (3.71)-(3.73) and

its additional synthetic outputs required to create a matrix regressor.

KC Fzj 0

[gC-i F

0 0

0 In^n K

of

gZi

+ g gg

0 <i< 2n+N

= u, and = y

(4.20)
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with F, g of (4.9), and C, Fz, gzj such that

Cz (sI - Fzi' jgzi =

{ G( (s)

G( -2n) (s)G(' 2n+l) (S)

(4.21)0 < i < 2n

2n < i < 2n + N - 1

Equation (4.21) implies that Wj,, Fi, i, CI all have dimensions which vary with i,
-T

where gi, Ci , Wi,C C R", where m = i + n when 0 < i < 2n and m = i - n + nb(i -

2n + 1) for 2n < i < 2n + N - 1 with nb being the order of the high pass filter used.

We can then construct the nonminimal state estimates,

Wc = FiWi,C + gj

C i= uiwiC 0 < i < 2n + N, (4.22)

= u, and =

To show the stability properties of the adaptive observer (4.8)-(4.16) we construct a

Lyapunov function candidate

V= VW+2
2n+N-1

=uy i=0

(4.23)

where W = 0 - 0 is the parameter estimate error of 0 defined as in (4.8), and the

errors within the construction of the nonminimal states are, Wi' = KC - W . To

compute V 1, we use (4.10), (4.11), (4.20), and (4.22) and note that the time-derivative
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of (4.23) can be simplified as

2n+N-1

EO = PiWi,
i=0

+W7lPii) +
2n+N-1

E
i=O

(IvTPiivV,y + "

= -4Fp'Q'E -

2n+N-1

+

2n+N-1

E (WiT QiSu)

( i Pi( + ( - y)) + ((# -y)-T + VV7FTi)PWi,y)

(4.24)

-T-
where Qj > 0 and P solves Fj P + PFj = -Qj with Fi, gi of (4.20). Expanding e0

of (4.11) we see that

e0 = yyi - yvi

=- -v~ f-( +v

= 0 -- fg(fo(wTO) + vTa - vT&)

=-T - f (f c,(w TO) + VT&)

and due to the monotonicity of flc, we have

eo =CT (WTo ktVT&)

= _)T +kt VT&

(4.25)

(4.26)
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I

-+

0.4

0-ke .8

0.6 0.8 1.0

Figure 4-8: Due to the monotonicity of fl,, the error in the predicted open circuit
potential V,, will result in the same sign but scaled error in the predicted dynamical
output Q

where kt E R+, a bounded time-varying gain,

1
mx< ktaf ,() -max, f"PY

1

min af (y)miY ay
(4.27)

The error of the subsequently filtered regressors is

G(s) (s)eo

G( -2n) (s)G -2n+l (s)eo
e = {

Additionally, the error in our a-priori prediction of y, 9 is

-y = (wT ktzV&) - WT9

= -kv Ta

V4o.p
4.5r

4.0

f'

3.5

3.0

0.0 0.2 CBS

1 < i < 2n

2n < i < 2n + N - 1
(4.28)

(4.29)

11il

V.n.n |
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Using these errors in (4.24) we see that

2n+N-1 2n+N-1 2n+N-1

V1 = W TFrF]ft~r,ATW- S -~i ( -T~
i=O i=O i=O

2n+N-1 2n+N-1

- (WiPigi(ktieai) + (ktieai)/PikW,,) + 5 FriAi CiT
i=O i=O ew

(4.30)

rt = 12n (4.31)
k'IN

Unfortunately, we are not assured that e, decays exponentially as we were with just

a linear system due to our use of an a-priori estimate of the dynamical system output

y instead of the true y. With the construction of a second Lyapunov candidate we

show that e, and e, are of the order Eb from (4.17). Let

V2 = aT& (4.32)

and recall from (4.15) that

2n+N-1

a = a= b 7'5 Vi i (4.33)
i=O

where IF' E RNxN is the lower right block of F,, the projection gain in (4.12), and

-y, were defined in (4.18). Taking the derivative of (4.32) and expanding ei we arrive

at

2n+N-1 2n+N-1

2 -T'sViTY,i + &TF V'i v(CT + EO ,, (4.34)
1 b( i=O i= O



4.2. Augmented MR-AO I for the modified SPM, overpotential unknown

We now derive bounds on each term in the right hand side of (4.34). Due to our

projection algorithm we have P <0 . From (4.17) and (4.18) we have y, I|Ii(t)II

Eb(2n + N)IvTdi + Eb jjeFt(i(O)J Eb( 2n + N)Umax2|T| + Eb leFtcoi(O)1 as well as

'Yvi I6iI| < EZmax where Zmax = maxt{Iu(t)I, Iy(t)I} resulting in

2n+N-1

i=o

2n+N- 1 (4.35)
+Eb b

i=O

(20Zmax + (2n + N)Umax2Z + eFtC(O))

The first term is quadratic in & and negative since Q and therefore [vil, v2,... , V2n+N-1]

is SPE. The second term is linear with &Tv and a sum of bounded constants scaled

by Eb which can be made arbitrarily small via design of the filter Gb. Therefore d is

asymptotically convergent to a set of size Cb. This in turn forces the third term of

(4.24) to yet another small value proportional to Eb, resulting in asymptotic conver-

gence of the remaining parameter and state errors to an arbitrarily small compact

set on the order of Eb.

To efficiently depict the effectiveness of this algorithm we turn to simulation,

Figure 4-9 shows the normalized parameter estimates converging to 1 as expected

and the state of charge estimation is once again to a level of less than 1%.
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Figure 4-9: Full MR adaptive observer for both GO and foyer (a) normalized dynamical

parameter estimates, , where 9i is the i'th element of the true parameter (defined in

(3.73)) (b) normalized foyer parameter estimates, a, where ai is the i'th element of the
true parameter (defined in (2.32)) (c) cell voltage estimate error (actual cell voltage can be
seen in Figure 4-2) , (d) SoC estimation error



Chapter 5

Experimental Validation of Adaptive

observers using Panasonic 18650 cells

In this chapter the augmented adaptive observer is experimentally validated using

a commercially available 18650 cell. Before this can be accomplished, the final as-

sumption of known must be satisfied and an experimental procedure for testing

cells must be presented. We start with a procedure for estimating the parameters

which define the resting open circuit potential, foi. This algorithm is then validated

using experimental data. This process is performed for each dataset collected in

later sections to provide an accurate estimate of the state of charge throughout the

experiment. Next, the experimental procedure and excitation signal are presented,

followed by results of the augmented adaptive observer running using experimental

data.
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Figure 5-1: Block diagram of the electrochemical model used to represent a Lithium-
Ion battery cell after simplifications are made for the observer.

5.1 Estimation of the Resting Open Circuit Poten-

tial

In this section the parameters required to determine either f, of (2.37) or f of

(2.44), from their underlying half-cell potentials are estimated. The structure of the

SP model poses several challenges when it comes to on-line parameter estimation.

The first is the presence of the nonlinearity foq, which causes difficulty in determining

the outputs of the linear dynamics on-line.

Previously, adaptive observers were developed for the system (2.34) for scenarios

in which both fclver and fol, were known as well as when only fr,, was known.

Here we now develop a procedure to estimate the model parameters required to

obtain fc and f2 . Due to the nature of the open-circuit nonlinearity and the high

sensitivity to parameters throughout the majority of a cell's operating voltage as well

as the expectation that the parameters which define the resting OCP are very slowly

varying, a offline approach is taken for its calibration. This could be extended to a

recursive procedure. The algorithm of this chapter does not require states estimated

by the adaptive observer, an important fact to establish stability and accuracy of

the estimate. The only knowledge assumed of the system is a conservative estimate

of the slowest pole in (2.34).



We begin with the generation of a signal, r., the integral of the current

t) I(7)dr. (5.1)

Using this signal, it directly follows that the state of (2.15) can be rewritten as

T1(t) = ati(t) + /3 (5.2)

where a , #3 E R are parameters we wish to estimate, compactly assembled as

G0cp = a+ cT13+ a- 3- 1 (5.3)

With z4 parameterized as in (5.2) we can define the surface concentrations as

S= s(t) + O + 4.(5.4)

If we collect input-output data when q e 0, then we will have an approximation of

the surface concentrations as in (5.2) and hence the open circuit potential becomes

VOC ~p fO'CP(K, BOeC) = U+(a+K + 0+) - U-(a-K + 03) (5.5)

In order to collect data that allows the simplification in (5.5), we determine an

upper bound of q7 in (5.4) with a lower bound on the poles appearing in (2.18).

With a conservative estimate of the slowest pole in (2.18) designated as -amin we

then construct additional signals

MO = -a p(t) + ajII(t)| (5.6)

Vaj E {amin, 1Oamin, 102amin, 103amin, 104 amin}
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and a composite of these which provides an upper bound on the relaxation of the

cell,

p,(t) = max pj (t). (5.7)
3

Using this setup pc(t) can be used as a conservative estimate of the quantity ~q(t).

If a sufficient quantity of base filters are used in (5.6)

q (t) yIpe(t) (5.8)

where i* is an unknown constant. We therefore empirically choose a limit plim such

that when I = 0 and pc(t) pwm, we can approximate the nonlinearity using (5.5)

leading to V,p(t) ~ f' ,(K(t), Op).

5.1.1 Experimental Results

Data was collected using a custom battery cycler and two Panasonic NCR18650B

lithium ion cells in a laboratory setting. Temperature of the ambient air is kept

constant and the cell casing temperature only varies by +2%. The cycler's maximum

sampling rate of 20Hz is used to obtain the most versatile data sets. Additional

details of the battery cycler are proprietary and have been omitted. A number

of experiments were run, in total cycling each cell close to 80 times. Each distinct

experiment began with an input profile as seen in Figure 5-2. The resulting capacities

computed at the start of each experiment are presented in Figure 5-5.

Unlike the later sections in which signals were all continuous, here we use discrete
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measurements. For all discrete t, such that To < tj < T1 and for which

C
II(ti)I < um = -

10 (5.9)
pc(t ) < plm = 0.2

are satisfied, we computed discrete signals ji = K(ti) defined in (5.1) and pi = p,(ti)

defined in (5.7) as well as measured signals Vi = V(ti) and I = I(ti). These signals

are accumulated into a set of sampled sequences of data Q1, as,

r = {1, P2, --- N}

P = {P1,P2,.--PN} (5.10)
V = {Vl, V2 , ... VN}

I = {I1,I2, ... IN

Using (5.5), and the sampled set (5.10), the estimate error ej, a cost function Jc,

and weights for each sample are defined as

ej (OOC) = (Vi - f', (Ki

N

Joe,(OOC,) = S (ei(koc,)) 2 wfi(oC,)wpiw1i
i=1

Wfi(OOC) = (5.11)
|10fo,l| j r'| C

W pi = P( 1 P)

wIi=( )
|I= i| + E,

The three weights are introduced in order to ensure that the data which corresponds

to samples when the cell is closer to its equilibrium are used most heavily. Ideally Q'0,

in (5.10) would only contain measurements when I = 0 and p = 0, however, this may
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never be the case in normal operation. By addition of the first two weights w,4 and

wji, our data collection process is simplified greatly. The third weight corresponds

to the inverse of the differential of the open circuit potential local to the current

capacity measure ni. This ensures that the capacity error is also minimized when

minimizing the voltage error ej and is essential to prevent over-weighting at extreme

high and low capacities where the open circuit potential is extremely sensitive to

lithium concentration. The resulting estimate of the parameter of (5.3) is

0* =arg min JOCP (OOc) (5.12)ocp 
cp

where this minimization is performed using the interior point method in MATLAB.

1.38- -

>0- --- - - - - - -

-1.38 -

0 5 10 15
Time [h]

Figure 5-2: Tailored input current for estimation of (5.3), OOC9. Beginning with a fully
charged cell, a series of 15 minute discharge pulses of I(t) = -1.38A each followed by
30 minutes of I(t) = 0 are performed until a minimum voltage, V = 2.5V is reached,
held for 30 minutes at constant voltage, followed by 30 minutes of I(t) = 0. The
discharge sequence is then reversed with pulses of I(t) = 1.38A until a maximum
voltage, V = 4.2V is reached.

The resulting parameters in OO,, corresponds to those in (2.15) and (2.17) as

k3 -_0+ 0-a= RP Fa L "O' - - (5.13)

The fourth degree of freedom within 00, absorbs the unknown initial condition,
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Figure 5-3: The top plot shows how the sampled sequence e- were constructed from
pc(t). The bottom plot shows the resulting optimal f,,,(r,*,0) in green. For com-
parison, the corresponding voltage profile for the data shown above is also provided.

= c-(to).

The parameter estimates 0* were determined as in (5.12) using data collected

from a number of experiments. For the two cells used, these estimated parameters

from each experiment are distilled into a plot (Figure 5-5) of the decreasing capacity

trend that would be expected under the cycling and excitation which the cells were

subjected to.

The benefit of the algorithm presented above, in comparison to the general ap-

proach of using a slow charge/discharge cycle of the cell, is that the process of this

section only requires points of relaxation spread over the operating voltage. This

allows a cell to be pulsed, similar to what may be experienced when a vehicle is used

for a series of trips with sufficient time between trips. The conventional method

requires the battery be taken out of use and subjected to a 48+ hour calibration
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Figure 5-4: The relationship between the measured voltage from Figure 5-3 and
the estimated equilibrium open circuit potential f4,,(K(t), 0,9,) from (5.5) and (5.12)
with Capacity(t) = r(t) - mint K(t) are shown in blue and red respectively.

test. In contrast, this method can be accomplished in under 8 hours, while being

used.

It should be noted that one can replace the batch procedure for estimating the

parameters of f;,, in (5.11),(5.12) by a recursive procedure.

This algorithm was designed using experimental data hence the empirical choices

for Iu, and plirn in (5.9). Using the OCP calibration input profile of Chapter 5.2 and

a values for limiting signals in (5.9) estimates 9O are consistent with the parameters

resulting from routines used at Bosch for their model parameterization. The benefit

of the algorithm presented above in comparison to the general approach of using a

very slow charge/discharge cycle of the cell at a current of C/25 is that the process

of this Chapter only requires points of relaxation spread over the operating voltage.
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Figure 5-5: Cell capacities computed prior to each experiment performed. The
number of cycles is computed as Cycles(t) = -Lft II@) I d-r. A downward trend is
observed and expected; inconsistent drops of capacity per cycle is expected due to
differences between experiments.

This allows a cell to be pulsed, similar to what may be experienced when a vehicle is

used for a series of trips with sufficient time between trips. The conventional method

requires the battery be taken out of use and subjected to a 48+ hour calibration test.

Whereas, this method can be accomplished in a few hours.

5.1.2 Recursive OCP Estimation

The above procedure would ideally provide a new estimate of the equilibrium OCP

every time a sufficient amount of data is collected, for example, at T1, T2 etc in figure

5-6. Without loss of generality we assume there is an initial estimate * = 0OP 0C73

This initial estimate could be generated by either using a set of calibration data

collected before the cell is deployed or a manufacturer supplied estimation. Such

a scenario would use fo,,(O ) for To < t < T1. During this time data would be

accumulated into Q, of (5.10). When sufficient data has been collected at T a new

estimate of the equilibrium OCP parameters would be computed 0* =01 and the
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AO

To T1 T2

Figure 5-6: Schematic for implementation of Chapter 4 and Section 5.1 together.
The adaptive observer will run continuously for all time. For To < t < T1 an initial
estimate of fcp designated f',,(00,) is used. At T data collected in Q, is used to
estimate f',P(O' ) which will then be used by the adaptive observer for T < t < T2 .
This process is repeated for the duration of use.

adaptive observer would then use f,( ' ) for T1 < t < T2 . Determination of when

sufficient data has been collected within Q, could be as simple as when there are

data points within V in each of the five ranges,

Vi < 3

3 <Vi < 3.33

3.33 <Vi < 3.67 (5.14)

3.67 <Vi < 4

4 <V

at T2 when sufficient data has been collected to generate an updated estimate 0*oCP

2 and the adaptive observer would then use f C,( 2,) and the process would repeat.

Due to its highly nonlinear cost function the minimization of (5.12) requires a

reasonable initial estimate of the true parameter. If the cost function of (5.11) is

reformulated as a function of both the previous estimate 9 k-1 and a correction term

65$ asOCP

^k1 jc(= - + 6J(JJOCP\OC-p~ ~vc)tOCP ~CP ocp, (5.15)



Then the initialization of 6O kCI within the minimization algorithm can be 0 and all

information previously used is no longer discarded. At each Tk the new correction

term is then computed as

69*= arg minJ'(k.*, 60,) (5.16)

with

* +0 (5.17)
OCl, OCl, OCP

to be used within f,, of (5.5).

5.2 Estimation of linear dynamics and overpotential

Having presented a matrix regressor based adaptive observer for the reduced SP

model of (2.34)-(2.39), we now wish to validate this adaptive observer via experi-

ments with a consumer 18650 lithium ion cell. These cells can be found in laptops,

power-tools and electric cars. Experiments require additional considerations beyond

those previously outlined, specifically the experiment design. Experiment design typ-

ically consists of selection of the signals which will be measured and excited, selection

of the sampling rate of these measurements, the hardware to be used for both, as

well as design of an excitation signal before implementation of the adaptive observer

of Chapter 4.

Some of the decisions for the experiment design are constrained by the resources

available and laboratory requirements. Without destruction of a cell, the only mea-

surements available are the current, potential across the terminals and the temper-

ature of the outer casing. Both the current and voltage are required by observer
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algorithms, the temperature is assumed constant for these models and is recorded to

ensure that this assumption is valid. In order to gather the most flexible data sets,

the highest sampling rate possible is preferred. Internally the system samples at the

kilohertz frequency, but due to data transmission limits, data can only be recorded at

a frequency of 20Hz. A potentially complex task of choosing which hardware would

best suit the experiments to be performed was unnecessary as only one system was

available which was capable of accomplishing the tasks required. The hardware used

was a custom cell cycler designed for Bosch by PEC.

Design of the excitation signal was the largest task. An excitation signal can be

characterized by two aspects, the shape of the signal (or waveform) and 2nd order

properties such as the spectrum, <I,(w), where w is frequency, not the regressor of

previous chapters. Common excitation signals are sum of sinusoids, swept sines,

filtered white noise, pseudo-random signals and binary signals [291. System identifi-

cation literature commonly refers to these signals as being informative if they are able

to distinguish between any two models being considered by the experiment. This

quality of "informative" is directly related to the condition of PE in (3.24). Similar

to PE conditions previously mentioned, a input is informative for linear models of

order n when the signal spectrum is nonzero at at-least n distinct frequencies.

The asymptotic properties of the estimate depend only on the input spectrum,

not the actual waveform. As the optimal input design will depend on the system

which is unknown, optimality of the input is difficult to achieve. Therefore in practice

it is sufficient to choose a important frequency band and use a signal which has a

flat spectrum across this band. 129] As our model contains a free integrator, slow

poles as well as direct feedthrough, the frequency band of importance is across the

full spectrum.

To guarantee a wide flat spectrum, of the previous list, filtered white noise or

random binary signals are common. However, neither are ideal. Filtered white noise
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possesses a very high (theoretically infinite) crest factor,

C / = maxt u2 (t) (5.18)
VlimN-+oo 2 t=1

The crest factor is a metric of the waveform of a signal. A good signal waveform is one

that has a low crest factor [291. Clearly from inspection of (5.18), C ;> 1, resulting

in an optimal crest factor of 1. The physical interpretation of the optimization

of the crest factor is the optimization of the signal to noise ratio when limits are

imposed on the input, where noise in our case should encompass both signal noise as

well as discretization errors. Binary signals possess the ideal C. = 1, however, the

nonlinearity in the SP model necessitates a signal which is not binary. Instead, a

signal is generated using a sum of multiple random binary signals modified to result

in a low crest factor.

In practice random binary signals can be deterministically synthesized using a

pseudo random binary signal (PRBS). This signal maintains white noise like prop-

erties while being easily generated using a shift register.

0-1 0 0 0 0 0 0 0 0 1 0 1

U(i) = ( mod 2 ((o )T U(i - 1))) o(1:k-l)(i - 1) (5.19)

ui(i) = U(k)(i)

where mod i is the modulo operator, and subscripts designate elements of a vector

0 (j:k)- c-(i) is a shift register, where the new value entering on the left is the modulo 2

value of oO -(i -1). Where o is the PRBS polynomial of length k. The length of the

pseudo random sequence before repeating itself will be 2 k -1 with every permutation

of binary vectors with length k appearing with the exception of all O's. A listing of

polynomials for alternative length PRBS sequences can be found in [2, 331
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As previously mentioned a binary signal is not sufficient to identify a nonlinearity

in the system. Therefore N = 5 PRBS signals are summed each with different initial

shift register values,

N

UN(i) 1: (0)=1 (5.20)
j=1

with every other element of a(0) = 0. The resulting signal maintains white like

properties, however, the crest factor has grown to C, = v5. As N PRBS signals

are summed the crest factor grows as C, = v'N further decreasing the quality of the

signal. Instead of u5 the signal is modified using

N+1--UN(i)

u'N (iN { N ) (5.21)
-(N+1)-UN(i) u

resulting in a signal with C, 1.16 for u'. The above algorithm works for any

odd N. The final remaining characteristics required to define the excitation signal

are the base period and peak amplitude. For the experimental results shown in

the following section, the base period is 10 seconds resulting in a roll-off of the flat

frequency spectrum at 0.1Hz. Resulting in a signal IPRs(t) generated from the

sequence U'N(i) as

IPRS-N(t) = kuN () + Ibias, iTPRS t < (i + 1)TPRS (5.22)

where kI scales the pseudo random signal u' which has a maximum amplitude of

1, the Ibia, term can induce a mean current to the signal resulting in a charging or

discharging signal with the pseudo random signal as excitation on top of the bias

current.

With the details of the experimental setup described and a excitation signal



defined with a low crest factor. The experiment is divided into two sections. In the

first a full (lhar ge-discharge cycle are performed to estimate the equilibrium OCP

parameters using the algorithm of Section 5.1. Second, the pseudo random signal

u' generated using (5.21) is used in two different scenarios. In the first scenario the

cell is initialized to a voltage in the middle of one of bands in which the negative

electrode is unobservable, 3.58V and the excitation signal IPRS of (5.22) is used with

Ibia, = 0. The second scenario adds a small bias current to the excitation signal to

slowly sweep through the full range of SoC while exciting the cell. Results from this

second scenario will be presented using the augmented MR-AO of Chapter 4.

Preliminary analysis was was performed using batch estimation tools to confirm

that the model described in Chapter 2 is sufficient to capture the dominant response

of the cell. Here, it was noticed that due to the limit imposed on the maximum

current for the experiment the overpotential did not leave the nearly linear regime

for low currents. This low current was chosen for two purposes, predominantly, to

ensure the SP model assumption of low C-rate remains valid. As the cells used

are energy cells, not power cells, we can expect 1C to be on the brink of model

invalidity. Secondly, safety concerns in the laboratory led to conservative experiment

design. The effect of this is that the overpotential does not need a full 4 basis

function approximation, instead it is assumed to be linear to the input I and only

one parameter is augmented to the standard adaptive observers described in Chapter

3.

Using the adaptive observer of Chapter 4 implemented assuming the model struc-

ture of (2.41)-(2.46) and an excitation input IPRs-5(t) generated using (5.22) with

TPRS = 20sec, k, = 1.375A and bias, = -0.125A a NCR18650 Panasonic cell slowly

discharged for 7 hours.
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Figure 5-7: Excitation signal I into the system and the resulting measured cell
voltage. A small bias in the excitation signal results in a slow discharge of the cell
while being excited.

Despite the differences between the true cell dynamics and the model (2.41)-

(2.46) the dominant phenomena are correctly adapted to by the adaptive observer

resulting in state of charge estimates within 1% of the true value. Where the true

value is determined by c-(t) = a-(t) + #- using a-, /- from (5.12) and K(t) from

(5.1).
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Figure 5-8: State of charge estimate and SoC estimate error.

The adaptive parameters converge to values which are appropriate for the cell,

unfortunately, the true parameters cannot be determined.
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Figure 5-9: Resulting parameter estimates for the dynamical system and the over-
potential approximation

The resulting estimated output voltage and its estimate are shown in Figure 5-10

where the error converges to within t10mV of the measured voltage.
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Figure 5-10: Estimated cell voltage and the corresponding error, zero mean error
after 1 hour which does not decay further is the result of our approximation of the
cell as our modified SP model.

5.3 Discussion

Although the true cell kinetic and dynamic properties are more complex than the

modified SP model assumed, the matrix regressor adaptive observer provides accu-
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rate output estimation as well as internal state estimates. Even through a projection

algorithm is implemented to ensure stability of the overall system, the projection

gain is never engaged and parameters estimates appear quite robust regardless of

this projection. These well behaved parameter estimates may be partially due to the

optimally exciting signal which were used. A deeper analysis of the frequency spec-

trums of the input, output and their ratios indicates that the diffusion may indeed

by better represented by higher order transfer functions. If this is true, even signals

which are SPE of the order 2n + N may not provide the optimal parameter estimates.

Instead SPE of the order of the true system is ideal. Due to the modularity of the

modified SP model higher order diffusion dynamical systems could be explored with-

out significant changes required of the adaptive observer proposed, however, this is

left to future work.



Chapter 6

Conclusions and Future Work

This thesis enumerated multiple developments in electrochemical modeling and adap-

tive observers in general. The first and fundamental component was a modification

of the SP model with attractive features such as the encapsulation of lithium diffu-

sion as a linear dynamical system independent of nonlinearities and decoupling of

the nonlinear relationships defining the kinetic properties of lithium ion transfer and

open circuit potential respectively. A second development defined a set of guidelines

reducing the design parameters for adaptive observers from on the order of n2 to a

single tuning parameter. This enables rapid implementation and prototyping. Third,

a new variant of adaptive observer, referred to here as matrix regressor adaptive ob-

server II (MR-AO II), is derived for fast parameter convergence. This new observer

uses multiple simultaneous equivalent system representations leveraging a linearity

property between parameters equating the nonminimal system to that of the true

system to allow tracking of a single set of parameters. A novel selection of both low

pass and high pass filters used to generate additional regressors in the MR-AO I in

addition to augmentation of the underlying equivalent system with nonlinear basis

functions constitutes a fourth development extensively validated through numerical
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simulation and theory. This adaptive observer combined with an independent of-

fline algorithm to update effective electrode capacity and available lithium adapts

every parameter of the modified SP model to account for aging or manufacturing

differences. The offline equilibrium open circuit potential estimation algorithm is

designed to operate using data collected from general use, eliminating the need for

very slow capacity calibrations which could take days to run. Validation of this ob-

server and ocp algorithm in hardware using commercially available Panasonic 18650

cells completes the goals originally set forth for this research.

The developments presented pave the way for fast, computationally efficient,

advanced battery management systems with the potential to increase the effective

capacity of a battery or alternatively reduce the size, and therefore cost, of batteries

in various applications.

6.1 Future Work

There are a number of directions which could be explored as extensions to this work.

Some of which are minor while others could require significant exploration.

6.1.1 Shaping of the full nonminimal system state

In the equivalent system design section, each filter F, g were shaped independently.

Alternatively shaping of the full regressor state w = W T WTI could be explored.

This would require use of the nominal plant model. Sensitivity of this resulting

transformation to error in the nominal plant is unknown and could potentially yield

a better performance when the nominal plant is close to the true plant, but worse

performance when the nominal plant estimate is poor. For this reason, in addition to

the complications imposed to estimate the minimal state representation states from
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the resulting transformed regressors, this transformation was not explored here.

6.1.2 Higher order approximations of the model dynamics

There are a number of models which fall between the DFN and the modified SP

model in complexity which still rely on ordinary differential equations to describe

the diffusion dynamics. Less coarse discretizations in the x domain would extend the

accuracy of the model to higher currents, however, the resulting model will include

algebraic relationships which can not be eliminated by inversion as was the case for

the modified SP model. This would require the computation of multiple predicted

outputs yj which would all contain errors until the system was identified. The effect

of these errors is unclear, however, as they would be the result of solving an algebraic

equation, the sum of all predicted output errors should be zero. This property may

be able to be leveraged to show stability of an adaptive observer on this system.

Alternatively, a higher order approximation to the diffusion dynamics of the SPM

could also be made similar to [36,46]. The solid particle diffusion dynamics can be

shown to be more accurately represented by a transcendental transfer function of

the form,

cos(s) -bo sinh ( s/)
(6.1)

I(s) cosh ( s/c) - sinh

This can be approximated using higher order transfer functions. Incorporation of

this new diffusion dynamical model into the modular modified SP model would only

require incorporation of additional constraints defining the relationship between the

higher order transfer function coefficients.
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6.1.3 Extension of the MR-AO II to discrete time observers

The original inspiration for MR-AO II was a question of the optimal sampling time

when identifying discrete time systems. Clearly, the Nyquist frequency provides a

upper bound on the sampling rate, however, in theory there is no lower limit. To

generate a discrete time adaptive observer when the system dynamics are not well

known, it would help performance to be able to use multiple discretizations simulta-

neously. Unfortunately, the relationship between parameters of different equivalent

systems is not a simple shift of parameters.
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