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Energy Management Considering Unknown Dynamics Based on Extremum
Seeking Control and Particle Swarm Optimization

Kai Ma , Shubing Hu, Guoqiang Hu , Yege Bai, Jie Yang , Chunxia Dou , and Josep M. Guerrero

Abstract— This brief studies an energy management (EM)
problem with unknown dynamics of consumer appliances. A two-
level optimization model is established between the utility com-
pany and the consumers. In this model, the utility company
maximizes its profit by setting the electricity price, and the
consumers respond to the price by regulating power usage to
minimize their costs. The aforementioned process is performed
in multiple stages. In each stage, the consumer response is
formulated as a constrained optimization problem, which can
be transformed into an unconstrained optimization problem
using the penalty function method, and then an extremum
seeking control (ESC) algorithm is developed to search for the
quasi-optimal power consumption of the consumers. The ESC
algorithm has noncontinuous first and second derivatives with
respect to the variables. We propose an approximation method to
make the ESC algorithm continuous and prove that the algorithm
is semiglobally practically asymptotically (SPA) stable. After the
consumer response in the same stage, the utility company updates
the electricity price by the particle swarm optimization (PSO)
algorithm. Then, we give an EM algorithm that integrates the
ESC with PSO. In simulations, the algorithm is applied to achieve
EM of heating, ventilation, and air conditioning (HVAC) systems,
and the results show that the algorithm can converge to a
neighborhood of the optimal solution and reduce the peak load
and daily load.

Index Terms— Energy management (EM), extremum seeking
control (ESC), heating, ventilation, and air conditioning (HVAC),
particle swarm optimization (PSO), semiglobally practically
asymptotically (SPA) stability.

I. INTRODUCTION

ENERGY MANAGEMENT (EM) plays an important
role in smart grids [1] in order to achieve frequency

regulation [2], economic dispatch [3], and voltage balance [4].
Generally, the objective of EM is to maximize the social
welfare of electricity markets. Specifically, the utility company
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sets the electricity price to maximize its profit, and then,
the consumers determine the power consumption to mini-
mize their costs according to the published electricity price.
The decision making of the utility company and consumers
can be formulated by game models, such as noncoopera-
tive game [5], [6], hierarchical game [7], [8], and cooperative
game [9]. In these game models, the profit maximization or
cost minimization can be achieved by different types of opti-
mization algorithms. For example, gradient-based algorithms
are used in [5], [6], and [10]–[12], numerical algorithms are
considered in [13] and [14], and bioinspired algorithms are
applied in [15] and [16]. It is noted that unknown dynamics
exist in the operation of some typical appliances, such as the
heating, ventilation, and air conditioning (HVAC) system [17]
and the lighting system [18]. In this case, the gradient-
based algorithms cannot be used, and the numerical algo-
rithms and bioinspired algorithms are not suitable for the
dynamic system. To address this problem, this brief proposes
an optimization algorithm based on the extremum seeking
control (ESC), which is an online optimization method for
seeking the extremum of a dynamic system with unknown
dynamics [19], [20].

In this brief, a two-level optimization model is established
between the utility company and the consumers, and the
decision making of the utility company and the consumers
is formulated as constrained optimization problems. We use
the ESC algorithm to search for the quasi-optimal power
consumption of the consumers and prove that the ESC
algorithm is semiglobally practically asymptotically (SPA)
stable. Then, we optimize the electricity price of the util-
ity company to maximize its profit by using the particle
swarm optimization (PSO) algorithm, which was applied
in the home EM system to solve a combinational opti-
mization problem in our previous work [16]. The novelty
of this brief is to apply the ESC algorithm to the EM
system with unknown dynamics and give the convergence
conditions of the ESC algorithm. The contributions are as
follows.

1) An EM algorithm that integrates the ESC with PSO is
proposed.

2) An approximation method is developed to achieve
the continuity for the ESC algorithm with unknown
dynamics.

3) The SPA stability is proved for the approximated ESC
algorithm.

The rest of the brief is organized as follows. Section II
gives some notations and definitions. Section III presents the
problem formulation. Section IV describes the EM algorithm
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in detail. Section V shows the simulation results. Finally,
the conclusions are summarized in Section VI.

II. PRELIMINARIES

In this section, we introduce some notations and definitions
that will be used in this brief. Given a vector x , we define ‖x‖
as the Euclidean norm.

Definition 1 [21]: A continuous function β : [0, a) ×
[0,∞)→ [0,∞) is of class K L if, for each fixed s, β(r, s)
is strictly increasing with r and β(0, s) = 0, for each fixed r ,
β(r, s) is decreasing with s and converging to zero as s →∞.

Definition 2 [21]: A vector function f (x, ε) ∈ Rn is said to
be O(ε) if for any compact set D there exist positive constants
k and ε∗ such that ‖ f (x, ε)‖ ≤ kε, for ε ∈ (0, ε∗]andx ∈ D .

Definition 3 [22]: Given a parameterized family of systems

ẋ = f (t, x, ε) (1)

where x ∈ Rn , t ∈ R+, and ε ∈ Rl+ are the state vector,
the time variable, and the parameter vector, respectively. The
system (1) is said to be SPA stable in (ε1, . . . , εl), if there
exists β ∈ K L and constructed parameters ε = (ε1, . . . , εl)
that meet the following properties. For each pair of strictly
positive real numbers (�, v), there exists ε∗1 > 0 for any
ε1 ∈ (0, ε∗1), ε∗2 = ε∗2(ε1) > 0 for any ε2 ∈ (0, ε∗2),
ε∗3 = ε∗3(ε1, ε2) > 0 for any ε3 ∈ (0, ε∗3), . . . , ε∗l =
ε∗l (ε1, ε2, . . . , εl−1) > 0 for any εl ∈ (0, ε∗l ), respectively,
and the solution of (1) satisfy

‖x‖ ≤ β(‖x(0)‖, (ε1 · ε2 · · · · εl)(t − t0))+ v (2)

for all t ≥ t0 ≥ 0 and the initial state x(t0) = x(0) with
‖x(0)‖ ≤ �.

III. PROBLEM FORMULATION

We consider an EM system consisting of one utility com-
pany and N consumers. A two-level optimization model is
established between the utility company and the consumers.
The utility company determines the pricing strategy to max-
imize its profit. According to the electricity price announced
by the utility company, the consumers determine the power
consumption to minimize their costs.

A. Cost Model of Consumers

The cost function Ui (yi ) of the consumer i (i ∈ N =
{1, . . . , N}) is defined as the summation of the discomfort
costs and the payments to utility company. We denote the
discomfort cost as gi (yi ), where yi is the operating state
of consumer i ’s appliance. The discomfort cost is caused
by changing the desired operating state yN

i to the actual
operating state yi . The operating state is a general concept
that denotes the working status of the appliances, such as the
temperature setting of the HVAC system and the brightness
of the lighting system. Thus, the cost function can be defined
as: Ui (yi ) = gi (yi ) + pxi , where p is the electricity price
announced by the utility company and xi is the power con-
sumption of consumer i . The dynamics of the appliances are
characterized as dyi/dt = γi si (xi , yi ), where γi is a coefficient

of operating state change caused by the characteristics of the
electric equipment and external environment. A consumption-
to-operating state function yi = fi (xi ) is obtained from
si (xi , yi ) = 0, which denotes the relationship between the
operating states and the power consumption at the equilibrium.
In practice, the consumption-to-operating state function fi (xi )
could be a combination of multiple step functions, which can
be approximated to a continuous convex function [11].

The objective of the consumer i is to minimize its cost
subject to the power limitation and the appliance dynamics.
It can be formulated as the following optimization problem:

(P1) min Ui (yi )

s.t. xmin
i ≤ xi ≤ xmax

i , i ∈ N,

dyi/dt = γi si (xi , yi ), i ∈ N

where xmin
i and xmax

i are the minimum and maximum power
consumption of the consumer i , respectively. Before proceed-
ing further, we give the following assumptions.

Assumption 1: Ui (yi ) is continuous, increasing, and convex,
and fi (xi) is convex.

Assumption 2: The dynamics of the appliances are fast
enough such that they can be separated from the EM algorithm,
and the equilibrium yi = fi (xi ) is globally asymptotically
stable along the dynamics dyi/dt = γi si (xi , yi ).

The first assumption is made to guarantee a globally optimal
solution, and the second assumption is necessary to analyze the
stability of the algorithm with dynamic mappings. These two
assumptions are commonly used in the research of EM and
ESC algorithm [23]–[26]. Next, we address the optimization
problem with the equilibrium constraint yi = fi (xi ) and
transform (P1) to

(P2) min Ui ( fi (xi ))

s.t. xmin
i ≤ xi ≤ xmax

i , i ∈ N.

Using the penalty function method [27, Ch. 9], we transform
the above problem to the following unconstrained problem:

(P3) min P(xi , m) = Ui ( fi (xi ))

+m1
[
max(xmin

i − xi , 0)
]2

+m2
[
max(xi − xmax

i , 0)
]2

where m1 and m2 are the penalty factors, and the last two
parts are the penalty terms. When xi is out of the upper
and lower bounds, the objective function is penalized, and
the punishment is more severe as the penalty factors getting
greater.

B. Profit of the Utility Company

The utility company purchases power from the electricity
markets and sells them to the consumers. We assume that
the power supply is equal to the summation of the power
consumption of all consumers. Hence, the profit of the utility
company is defined as the difference between the revenue
obtained from the consumers and the costs of purchasing
power from the electricity markets. The utility company’s
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profit is maximized by the optimization problem as follows:

(P4) max W (p)= p
∑

i∈N
xi−

(
ρ1

( ∑

i∈N
xi

)2+ρ2

∑

i∈N
xi+ρ3

)

where ρ1, ρ2, and ρ3 are the cost coefficients, which are
determined by the generation costs. The first part is the revenue
obtained from the residential consumers and the second part
is the cost of purchasing power.

IV. ENERGY MANAGEMENT ALGORITHM

In this section, we propose an EM algorithm, including the
ESC algorithm and the PSO algorithm. Specifically, the utility
company announces the optimal retail price to maximize its
profit based on PSO algorithm, and the residential consumers’
power consumption is optimized by the ESC algorithm. The
utility company and the consumers communicate with each
other based on a two-way communication network [28], [29].

A. Optimizing Power Consumption of Consumers

For the consumers, we use a subgradient algorithm to solve
the optimization problem (P3) and model the dynamics of the
power consumption as

dxi

dt
= ki

(
− dUi ( fi (xi ))

d fi (xi )
· d fi (xi )

dxi

+2m1[xmin
i − xi ]+ − 2m2[xi − xmax

i ]+
)

(3)

where ki is the adaptive gain, [φ]+ = φ if φ > 0, and [φ]+ = 0
if φ ≤ 0.

In (3), we need to obtain the gradient of fi (xi ). In practice,
it is hard to obtain the accurate formulation of fi (xi ). For
example, the actual temperature setting of the HVAC is varying
with the weather conditions, the occupant behavior, and so on.
Therefore, the relationship between the temperature setting and
the power consumption is unknown. Next, we utilize the ESC
algorithm to estimate the gradient of fi (xi ). The core idea of
the ESC algorithm is to estimate the gradient by adding dither
signals to the input of the system (i.e., power consumption)
and multiplying dither signals to the output of the system (i.e.,
operating states). The ESC algorithm based on the estimated
gradient is developed as

dx̂i

dt
= k̂i

(
− dgi( fi (x̂i ))

d fi (x̂i )
· ξi − p + 2m1

[
x̂min

i − x̂i
]+

− 2m2[x̂i − x̂max
i ]+

)
(4)

dξi

dt
= −ω̂

ξ
i

(
ξi − 2

a
fi (x̂i + a sin(ωt)) sin(ωt)

)
(5)

where k̂i is the control gains of the ESC algorithm, ω̂
ξ
i is

the adaptive gain, sin(ωt) is the dither signal, a is the signal
amplitude, and ξi is a filtered signal that represents the gradient
estimation of fi (xi ). To separate the dynamics of ξi from the
other variables, we assume that ω̂

ξ
i is much larger than k̂i ,

ω̂
ξ
i = ωLω

ξ
i , k̂i = δω̂x

i , and ω̂x
i = ωLωx

i , where ωL and ωx
i

are both positive and real numbers.

The first and second derivatives of the right-hand side
function of (4) with respect to xi is noncontinuous because of
the projection in (4). We construct an approximated continuous
ESC algorithm as

dx̂i

dt
= k̂i

(
− dgi ( fi (x̂i ))

d fi (x̂i )
· ξi − p

+ 2m1
([x̂min

i − x̂i ]+ + q1(x̂i )
)

− 2m2
([x̂i − x̂max

i ]+ + q2(x̂i )
)
)

, (6)

dξi

dt
= −ω̂

ξ
i (ξi − 2

a
fi (x̂i + a sin(ωt)) sin(ωt)) (7)

where q1(x̂i ) and q2(x̂i ) are continuous functions that are
defined in [x̂min

i − ε1, x̂min
i + ε2] and [x̂max

i − ε1, x̂max
i + ε2],

respectively. The continuous functions q1(x̂i) and q2(x̂i ) sat-
isfy the following properties:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1
(
x̂min

i − ε2
1

) = 0

q1
(
x̂min

i + ε2
2

) = 0

Dq1
(
x̂min

i − ε2
1

) = −1

Dq1
(
x̂min

i + ε2
2

) = 0

D2q1
(
x̂min

i − ε2
1

) = 0

D2q1
(
x̂min

i + ε2
2

) = 0

(8)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2
(
x̂max

i − ε2
1

) = 0

q2
(
x̂max

i + ε2
2

) = 0

Dq2
(
x̂max

i − ε2
1

) = 0

Dq2
(
x̂max

i + ε2
2

) = 1

D2q2
(
x̂max

i − ε2
1

) = 0

D2q2
(
x̂max

i + ε2
2

) = 0

(9)

where D and D2 denote the first and second derivatives
of the functions with respect to the variables, respectively.
Defining ε = max{ε1, ε2}, we prove the SPA stability of the
approximated ESC algorithm [see (6) and (7)]. It is intuitive
that there always exist polynomial functions that satisfy the
above properties given any ε > 0 and ρ > 0. For example,
we use the following polynomial functions:

q1(x̂i ) = b1
(
x̂i − x̂min

i

)8 + o1
(
x̂i − x̂min

i

)7

+e1
(
x̂i − x̂min

i

)6 + n1
(
x̂i − x̂min

i

)5

+w1
(
x̂i − x̂min

i

)4 + h1
(
x̂i − x̂min

i

)3 (10)

and

q2(x̂i ) = b2
(
x̂max

i − x̂i
)8 + o2

(
x̂max

i − x̂i
)7

+e2
(
x̂max

i − x̂i
)6 + n2

(
x̂max

i − x̂i
)5

+w2
(
x̂max

i − x̂i
)4 + h2

(
x̂max

i − x̂i
)3 (11)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = 3(2ε1 + ε2)

ε4
1

(
ε1 + ε2

)(
ε3

1 + 3ε2
1ε2 + 3ε1ε

2
2 + ε3

2

)

o1 = 13ε2
1 − 11ε1ε2 − 9ε2

2

ε4
1

(
ε1 + ε2

)(
ε3

1 + 3ε2
1ε2 + 3ε1ε

2
2 + ε3

2

)

e1 = 7ε3
1 − 35ε2

1ε2 − 3ε1ε
2
2 + 9ε3

2

ε4
1

(
ε1 + ε2

)(
ε3

1 + 3ε2
1ε2 + 3ε1ε

2
2 + ε3

2

)

n1 = 3
(− 7ε3

1ε2 + 9ε2
1ε2

2 + 5ε1ε
3
2

)− ε4
2

ε4
1

(
ε1 + ε2

)(
ε3

1 + 3ε2
1ε2 + 3ε1ε

2
2 + ε3

2

)

w1 = 21ε2
1ε2

2 − ε1ε
3
2 − 7ε4

2

ε3
1

(
ε1 + ε2

)(
ε3

1 + 3ε2
1ε2 + 3ε1ε

2
2 + ε3

2

)

h1 = −4ε4
2 − 7ε1ε

3
2

ε2
1

(
ε1 + ε2

)(
ε3

1 + 3ε2
1ε2 + 3ε1ε

2
2 + ε3

2

)

(12)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 = −3
(
ε1 + 2ε2

)

ε3
2

(
ε1 + ε2

)2(
ε2

1ε2 + 2ε1ε
2
2 + ε3

2

)

o2 = 9ε2
1 + 11ε1ε2 − 13ε2

2

ε3
2 (ε1 + ε2)2

(
ε2

1ε2 + 2ε1ε
2
2 + ε3

2

)

e2 = −9ε3
1 + 3ε2

1ε2 + 35ε1ε
2
2 − 7ε3

2

ε3
2

(
ε1 + ε2

)2(
ε2

1ε2 + 2ε1ε
2
2 + ε3

2

)

n2 = 3ε1
(
ε3

1 − 5ε2
1ε2 − 9ε1ε

2
2 + 7ε3

2

)

(
ε1 + ε2

)(
ε3

1ε4
2 + 3ε2

1ε5
2 + 3ε1ε

6
2 + ε7

2

)

w2 = ε2
1

(
7ε2

1 + ε1ε2 − 21ε2
2

)

(
ε1 + ε2

)(
ε3

1ε3
2 + 3ε2

1ε4
2 + 3ε1ε

5
2 + ε6

2

)

h2 = ε3
1

(
4ε1 + 7ε2

)

(
ε1 + ε2

)(
ε3

1ε2 + 3ε2
1ε2

2 + 3ε1ε
3
2 + ε4

2

) .

(13)

Theorem 1: The closed-loop system under the ESC algo-
rithm [see (6) and (7)] is SPA stable at the optimal solution
of (P3), uniformly in (a, ε, δ), if dgi(yi)/dyi ≤ μi and
d2gi(yi )/dy2

i ≥ ηi for i ∈ N, where μi and ηi are the positive
scalars.

Proof: The proof is provided in Appendix A.
Next, we turn to the optimization problem (P1) with

unknown appliance dynamics and solve it by the following
algorithm:

dx̂i

dt
= k̂i

(
− dgi( fi (x̂i ))

d fi (x̂i )
· ξi − p + 2m1

[
x̂min

i − x̂i
]+

+ q1(x̂i )− 2m2
[
x̂i − x̂max

i

]+ + q2(x̂i )

)
(14)

dξi

dt
= −ω̂

ξ
i

(
ξi − 2

a
ŷi sin(ωt)

)
(15)

dŷi

dt
= γi si (x̂i + a sin(ωt), ŷi ). (16)

Following the second assumption, we define γi = ζ−1
i ω̂

ξ
i ,

which is much larger than ω̂
ξ
i and ki . The results of Theorem 1

can be extended to the power consumption problem with
unknown appliance dynamics by analyzing the system in
two separated time scales. Before presenting the theorem,
we define ζ = max{ζ1, ζ2, . . . , ζN }.

Theorem 2: The closed-loop system under the ESC algo-
rithm [see (14)–(16)] is SPA stable at the optimal solution

of (P1), uniformly in (a, ε, ζ , δ), if dgi(yi)/dyi ≤ μi and
d2gi(yi )/dy2

i ≥ ηi for i ∈ N, where μi and ηi are the positive
scalars.

Proof: The proof is provided in Appendix B.
Remark 1: The upper bounds of parameters a and ε are

determined in the proof in Appendix A, and the existence and
calculation of the upper bounds of parameters ζ and δ can be
referred to [21, Th. 11.3].

B. Optimizing Price of the Utility Company

We utilize the PSO algorithm to solve the profit optimization
problem (P4). Assume that the size of particles is Z .
(P1, . . . , Pi , . . . , PZ ) and (V1, . . . , Vi , . . . , VZ ) are the posi-
tion and velocity of particles, respectively. In D-dimensional
space, Pi = (p1

i , p2
i , · · · , pd

i , · · · , pD
i ), where pd

i ∈
[pmin, pmax] and Vi = (v1

i , v2
i , · · · , vd

i , · · · , v D
i ), where vd

i ∈[vmin, vmax] and d ∈ [1, D]. The velocity and position updat-
ing strategy of the i th particle are expressed as follows:

vd
i ← vd

i + c1 · rand1d
i ·

(
pbestdi − pd

i

)

+c2 · rand2d
i ·

(
gbestd − pd

i

)
(17)

pd
i = pd

i + vd
i (18)

where c1 and c2 indicate the learning factors that adjust the
step size. c1 represents the step size that the i th particle tracks
its own historical optimal value pbesti , and c2 represents the
step size that the i th particle tracks the globally optimal value
gbest . Within each iteration, pbesti and gbest are updated
according to the fitness value of each particle. rand1d

i and
rand2d

i are the two uniform random numbers over [0, 1].
The convergence value of pd

i represents the electricity price
p announced by the utility company. It will be substituted
into the ESC algorithm [see (6) and (7)] to obtain the optimal
power consumption, and the initial value of pd

i is selected in
the range [pmin, pmax].

C. Implementation of Energy Management Algorithm
The EM algorithm includes the ESC algorithm and the

PSO algorithm. First, the price is initialized by the PSO
algorithm, and the power consumption of the consumers is
obtained by substituting the price into the ESC algorithm
[see (6) and (7)]. Consequently, the fitness value can be
calculated by the PSO algorithm. Then, the price is updated
by the PSO algorithm based on (17) and (18). The PSO
algorithm and the ESC algorithm are repeated until the price
and the power consumption converge or the maximum number
of iterations is reached. Especially, the time scales of the
ESC algorithm and the PSO algorithm are different. The PSO
algorithm starts to run after the ESC algorithm converges. For
the PSO algorithm, the fitness value denotes the profit of the
utility company. The pseudocode of the EM algorithm is given
in Algorithm 1.

V. SIMULATION RESULTS

We apply the algorithm to achieve EM of residential con-
sumers with distributed HVAC systems. The operating state
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Algorithm 1 EM Algorithm

is the temperature setting Ti in the HVAC system, and the
discomfort cost function gi (Ti ) is defined as

gi
(
Ti

) = θi
(
Ti − T N

i

)2
(19)

where θi is a constant coefficient used to describe the dis-
comfort cost. Here, the Fanger thermal comfort model can
be applied to describe the human body’s thermal comfort
and obtain the corresponding θi by quadratic fitting of the
PPD-PWV index [30].

We assume that the dynamics of the HVACs are denoted as
dTi/dt = γi si (li , Ti ), where li is the power consumption. The
relationship between the temperature settings and the power
consumption is defined by a convex function Ti = fi (li ).
In practice, the dynamics of the EM algorithm should be
carefully set up, such that the dynamics of the HVAC can
be separated from it. Thus, the second assumption is satisfied,
and the optimization problem is as follows:

(P5) min θi
(

fi (li )− T N
i

)2 + pli

s.t. lmin
i ≤ li ≤ lmax

i , i ∈ N.

A quadratic function is used to approximate the rela-
tionship between the temperature setting and the power
consumption [11]

li = λ1(30− Ti )
2 + λ2(30− Ti )+ λ3 (20)

where λ1 = ϕ�ς Ai Hi I1, λ2 = ϕ� Si + ϕ�ς Ai I0, and
λ3 = ϕQsil, and the parameter settings are given in Table I.

In the simulations, we consider an EM system consisting of
one utility company and ten residential consumers with HVAC
systems. Without loss of generality, the HVAC is assumed
to be a cooler. The desired temperature settings are assumed
to be 24 ◦C, and the parameters of the ESC algorithm are
ki = 0.001, a = 0.1, ω̂

ξ
i = 2, and ω = 20. The initial values

of li and p are randomly selected in three ranges and have no
impact on the convergence of the algorithm. The simulations
are performed based on MATLAB (R2010b).

Using the sixth, eighth, and tenth residential con-
sumers as an example, the SPA stability is demonstrated
in Figs. 1 and 2. It is shown that the ESC algorithm converges

TABLE I

PARAMETER SETTINGS

Fig. 1. Convergence of the power consumption.

Fig. 2. Convergence of the temperature setting.

TABLE II

POWER CONSUMPTION AND THE TEMPERATURE SETTING

to a neighborhood of the optimal power consumption and
temperature setting. The convergence bound of the temperature
setting is 0.3 ◦C . The quasi-optimal power consumption and
temperature settings of ten residential consumers are shown
in Table II.

The solar and internal load is assumed to be 300 W from
19 : 00 to 7 : 00 in the next day, within [3000 W, 3600 W]
from 7 : 00 to 8 : 00 and from 18 : 00 to 19 : 00, and
within [3000 W, 4500 W] from 8 : 00 to 18 : 00. The daily
outdoor temperature in the summer is shown in Fig. 3, and the
indoor temperature of the sixth consumer in a day is shown
in Fig. 4. The prices, profits, and the total power consumption
in a day are shown in Figs. 5–7, respectively. We can observe
that the EM algorithm can effectively reduce the peak load
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Fig. 3. Outdoor temperature in a day.

Fig. 4. Indoor temperature of the sixth consumer in a day.

Fig. 5. Price of the utility company in a day.

Fig. 6. Profit of the utility company in a day.

Fig. 7. Total power consumption in a day.

compared with no EM (NEM) scheme. The NEM scheme
means that the consumers use the appliances without sacrific-
ing any comfort. The electricity price announced by the utility
company, the profit of the utility company, and the total power
consumption of all residential consumers can be obtained from
the PSO algorithm, and the convergence results are shown

Fig. 8. Convergence curve of the electricity price.

Fig. 9. Convergence curve of the profit of the utility company.

Fig. 10. Convergence curve of the total power consumption.

TABLE III

PERFORMANCE OF EM

in Figs. 8–10. The overall performance of the EM algorithm
is given in Table III, from which we observe that the daily
energy consumption (EC) is reduced by 54.51%. The PAR is
reduced from 2.28 to 1.37 using the proposed EM algorithm.

VI. CONCLUSION

In this brief, we formulate a two-level optimization model
between the utility company and the residential consumers.
An ESC algorithm is utilized to study the EM problem with
unknown dynamics of the residential consumers. Due to upper
and lower limits on the power consumption, the positive pro-
jection will be introduced to the ESC algorithm. We propose an
approximation method to make the algorithm continuous and
prove the stability of the algorithm. Using the PSO algorithm,
we optimize the electricity price of the utility company to
maximize its profit. It is shown that the algorithm can converge
to a small neighborhood of the optimal solution with unknown
dynamics of the appliances, and the optimal profit of the utility
company can be obtained.
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APPENDIX A
PROOF OF THEOREM 1

Proof: q1(x̂i ) and q2(x̂i ) can be denoted as the infinites-
imal of higher order that are denoted as O(ε2) [31]. Then,
the extremum seeking algorithm is approximated to

dx̂i

dt
= k̂i

(
− dgi ( fi (x̂i))

d fi (x̂i )
· ξi − p

+ 2m1
([x̂min

i − x̂i ]+ + O(ε2)
)

− 2m2
([x̂i − x̂max

i ]+ + O(ε2)
)
)

(21)

dξi

dt
= −ω̂

ξ
i (ξi − 2

a
fi (x̂i + a sin(ωt)) sin(ωt)). (22)

If τ = ωL t , then we obtain the ESC algorithm in the new time
scale τ

dx̂i

dτ
= δωx

i

(
− dgi( fi (x̂i ))

d fi (x̂i )
· ξi − p

+ 2m1
([x̂min

i − x̂i ]+ + O(ε2)
)

− 2m2
([x̂i − x̂max

i ]+ + O(ε2)
)
)

(23)

dξi

dτ
= −ω

ξ
i

(
ξi − 2

a
fi (x̂i + a sin(ωt)) sin(ωt)

)
. (24)

According to the averaging method of the dynamic
system [21], the dynamic system with periodic disturbance can
be approximated by its average system

dx̂ A
i

dτ
= δωx

i

(
− dgi( fi (x̂ A

i ))

d fi (x̂ A
i )
· ξ A

i − p

+ 2m1
([x̂min

i − x̂ A
i ]+ + O(ε2)

)

− 2m2
([x̂ A

i − x̂max
i ]+ + O(ε2)

)
)

(25)

dξ A
i

dτ
= −ω

ξ
i

(
ξ A

i −
2

a
f A
i

)
(26)

where x̂ A
i and ξ A

i denote the averaging variable with respect
to x̂i and ξi , respectively, and f A

i is defined as

f A
i =

1

2π

∫ 2π

0
fi (x̂i + a sin(ωt)) sin(ωt)dt . (27)

Approximating fi (x̂i + a sin(ωt)) with Taylor series,
we have

2

a
f A
i =

1

aπ

∫ 2π

0

(
fi (x̂i )+ a sin(ωt)

d fi (x̂i )

dx̂i

+
∞∑

n=2

(a sin(ωt))n

n! · dn fi (x̂i )

d(x̂i )n

)
sin(ωt)dt

= d fi (x̂ A
i )

dx̂ A
i

+ O f
i (a2) (28)

where O f
i (a2) denotes the infinitesimal of a2.

If α = δτ and substituting (28) into the average systems (25)
and (26), we have the dynamic system in time scale α

dx̂ A
i

dα
= ωx

i

(
− dgi ( fi (x̂ A

i ))

d fi (x̂ A
i )
· ξ A

i − p

+ 2m1
([x̂min

i − x̂ A
i ]+ + O(ε2)

)

− 2m2
([x̂ A

i − x̂max
i ]+ + O(ε2)

)
)

(29)

δ
dξ A

i

dα
= −ω

ξ
i

(
ξ A

i −
d fi (x̂ A

i )

dx̂ A
i

− O f
i (a2)

)
. (30)

The systems (29) and (30) are the standard singular
perturbation forms with fast dynamics ξ A

i when δ is
small [21]. “Freezing” the dynamics (30) at the equilibrium
ξ A∗

i = d fi (x̂ A
i )/dx̂ A

i + O f
i (a2), we obtain the reduced

system

dx̂ r
i

dα
= ωx

i

(
− dgi( fi (x̂ r

i ))

d fi (x̂ r
i )
· (d fi (x̂ r

i )

dx̂ r
i
+ O f

i (a2))− p

+ 2m1
([x̂min

i − x̂ r
i ]+ + O(ε2)

)

− 2m2
([x̂ r

i − x̂max
i ]+ + O(ε2)

)
)

(31)

where x̂ r
i denotes the variable in the reduced system with

respect to l̂ A
i . Next, we will prove the practically asymptotic

stability of the reduced system. We assume that x̂ r∗ is the
optimal solution of the optimization problem in (P2) and define
x̂ r = (x̂ r

1, . . . , x̂ r
i , . . . , x̂ r

N )T , x̂ r∗ = (x̂ r∗
1 , . . . , x̂ r∗

i , . . . , x̂ r∗
N )T ,

and x̃ r = x̂ r − x̂ r∗. We choose a candidate Lyapunov
function

V = 1

2
x̃ rT �−1 x̃ r (32)

where � = diag{ki} is a diagonal matrice. Define RN =
(1, . . . , 1)T with |RN | = N . Then, the derivative of the
Lyapunov function along the reduced system (31) is denoted
as

V̇ = x̃ rT
(
− g′(x̂ r )− O f (g′i ( fi (x̂ r

i )), a2)− RT
N p

+ 2m1
([x̂min − x̂ r ]+ + O(ε2)

)

− 2m2
([x̂ r − x̂max]+ + O(ε2)

)
)

(33)

where g′(x̂ r ) = (dg1(x̂ r
1)/dx̂ r

1, . . . , dgi (x̂ r
i )/dx̂ r

i , . . . , dgN

(x̂ r
N )/dx̂ r

N )T , dgi(x̂ r
i )/dx̂ r

i = dgi( fi (x̂ r
i ))/d fi (x̂ r

i ) · d fi (x̂ r
i )/

dx̂ r
i , and O f (g′i ( fi (x̂ r

i )), a2) = (g′1( f1(x̂ r
1)) · O f

1 (a2), . . . ,

g′i( fi (x̂ r
i )) · O f

i (a2), . . . , g′N ( fN (x̂ r
N )) · O f

N (a2))T .
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At the equilibrium, we have g′(x̂ r∗) = −RT
N p + 2m1

[x̂min − x̂ r∗]+ − 2m2[x̂ r∗ − x̂max]+. Then, we can obtain

V̇ = x̃ rT
(
− g′(x̂ r )+ g′

(
x̂ r∗)− O f (g′i ( fi (x̂ r

i )), a2)

−2m1[x̂min − x̂ r∗]+ + 2m2[x̂ r∗ − x̂max]+
+2m1

([x̂min − x̂ r ]+ + O(ε2)
)

−2m2
([x̂ r − x̂max]+ + O(ε2)

)
)

= x̃ rT
(
− g′(x̂ r )+ g′(x̂ r∗)− O f (g′i( fi (x̂ r

i )), a2)

− 2m1
[
x̂min − x̂ r∗]+ + 2m2

[
x̂ r∗ − x̂max]+

+ 2m1
[
x̂min − x̂ r]+ − 2m2

[
x̂ r − x̂max]+

+ 2(m1 − m2)O(ε2)

)
. (34)

Using the mean value theorem, we have

RN g′(x̂ r )− RN g′(x̂ r∗) = g′′(x̂m)T x̃r (35)

where x̂m = (x̂m
1 , . . . , x̂m

i , . . . , x̂m
N )T such that

x̂m
i ∈ [x̂ r

i , x̂ r∗
i ] or x̂m

i ∈ [x̂ r∗
i , x̂ r

i ] and g′′(x̂ r ) =
(dg′1(x̂ r

1)/dx̂ r
1, . . . , dg′i (x̂ r

i )/dx̂ r
i , . . . , dg′N (x̂ r

N )/dx̂ r
N )T .

Substituting (35) into (34) and combining with the lower
bounds of g′′i (x̂ r

i ) = dg′i (x̂ r
i )/dx̂ r

i , we can obtain that when
x̂ r < x̂min, the derivative of the Lyapunov function can be
bounded by

V̇ ≤ x̃ rT (− g′(x̂ r )+ g′(x̂ r∗)− O f (g′i( fi (x̂ r
i )), a2)

− 2m1 x̃ r)+ 2x̃ rT (m1 − m2)O(ε2)

≤ −(η + 2m1)‖x̃ r‖2 − x̃ rT O f (g′i
(

fi
(
x̂ r

i

))
, a2)

+2x̃ rT (m1 − m2)O(ε2) (36)

where η = {η1, η2, . . . , ηN } is the lower bound of g′′(x̂ r ).
When x̂ r > x̂max, the derivative of the Lyapunov function

can be bounded by

V̇ ≤ l̃rT (− g′(x̂ r )+ g′(x̂ r∗)− O f (g′i ( fi (x̂ r
i )), a2)

− 2m2x̃ r )+ 2x̃ rT (m1 − m2)O(ε2)

≤ −(η + 2m2)‖x̃ r‖2 − x̃ rT O f (g′i ( fi (x̂ r
i )), a2)

+2x̃ rT (m1 − m2)O(ε2). (37)

When x̂min ≤ x̂ r ≤ x̂max, the derivative of the Lyapunov
function can be bounded by

V̇ ≤ x̃ rT (− g′(x̂ r )+ g′(x̂ r∗)− O f (g′i ( fi (x̂ r
i )), a2)

)

+2x̃ rT (m1 − m2)O(ε2)

≤ −η‖x̃ r‖2 − x̃ rT O f (g′i ( fi (x̂ r
i )), a2)

+2x̃ rT (m1 − m2)O(ε2). (38)

Under the condition of x̂ r < x̂min, there exists a positive
scalar η∗ such that

η∗V = 2(η1 + 2m1)ω
x
minV (39)

where ωx
min = min{ωx

1 , . . . , ωx
N }. When η ∈ [0, η∗], we have

V̇ ≤ −ηV − x̃ rT O f (g′i( fi (x̂ r
i )), a2)

+2x̃ rT (m1 − m2)O(ε2). (40)

For sufficiently small a, there exists μ such that
μV (1/2) ≥ −x̃ rT O f (g′i ( fi (x̂ r

i )), a2) + 2x̃ rT (m1 − m2)O(ε2),
i.e., V̇ ≤ −ηV +μV (1/2). Following the comparison principle
in [21], we have:

‖W‖ ≤ e−
η
2 α‖W (0)‖ + 2

η
μ (41)

where W = √V . If z̃r = (x̃ r
1, . . . , x̃ r

N )T , then we obtain

‖z̃r‖ ≤ √
2ωmax‖W‖ ≤

√
2ωmax

(
e−

η
2 α‖W (0)‖ + 2

η
μ

)
(42)

where ωmax = max{ωx
1 , . . . , ωx

N }. Similar to x̂ r < x̂min, when
x̂ r > x̂max or x̂min ≤ x̂ r ≤ x̂max, we can also have the
above conclusions. Thus, the reduced system (31) is SPA
stable, uniformly in (a, ε). The upper bound of a and ε
can be determined by μV (1/2) ≥ −x̃ rT O f (g′i( fi (x̂ r

i )), a2) +
2x̃ rT (m1 − m2)O(ε2), which can be transformed to

kμ ≥ μO(a2)+ 2(m1 − m2)O(ε2) (43)

where k = (k1, k2, . . . , kN ), μ = {μ1, μ2, . . . , μN }, and
μi = max fi (x̂r

i ) g′i ( fi (x̂ r
i )). Define the boundary system as

ex
i = ξ A

i − 2/a f A
i for i = 1, . . . , N . According to (30),

the boundary system is globally asymptotically stable. Com-
bining with the SPA stability of the reduced system and
[22, Lemma 2], the average systems (25) and (26) are SPA
stable, uniformly in (a, ε, δ) in τ -time scale. Following
[22, Lemma 1], the original systems (6) and (7) are SPA stable,
uniformly in (a, ε, δ).

APPENDIX B
PROOF OF THEOREM 2

Proof: The systems (14)–(16) are the standard singular
perturbation forms with fast dynamics dyi/dt = γi si (x̂i +
a sin(ωt), ŷi ) when ε is small. “Freezing” the dynamics (16) at
the equilibrium yi = fi (xi+a sin(ωt)), we obtain the reduced
systems (6) and (7), which are proved to be SPA stable,
uniformly in (a, ε, δ), in Theorem 1. Following Assumption 2,
the boundary system of (14)–(16) is globally asymptotically
stable, and we conclude that the systems (14)–(16) are SPA
stable, uniformly in (a, ε, δ, ζ ).
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